

Barcelona GSE Working Paper Series

Working Paper nº 534

An Enhanced Concave Program
Relaxation for Choice Network

Revenue Management
Joern Meissner

Arne Strauss
Kalyan Tallury
January 2011

An Enhanced Concave Program Relaxation for Choice

Network Revenue Management

Joern Meissner, Arne Strauss∗, Kalyan Talluri†

20 January 2011

Abstract

The network choice revenue management problem models customers as choosing from an offer-
set, and the firm decides the best subset to offer at any given moment to maximize expected
revenue. The resulting dynamic program for the firm is intractable and approximated by a
deterministic linear program called the CDLP which has an exponential number of columns.
However, under the choice-set paradigm when the segment consideration sets overlap, the CDLP
is difficult to solve. Column generation has been proposed but finding an entering column has
been shown to be NP-hard. In this paper, starting with a concave program formulation based
on segment-level consideration sets called SDCP , we add a class of valid inequalities called
product cuts, that project onto subsets of intersections. In addition we propose a natural direct
tightening of the SDCP called κSDCP , and compare the performance of both methods on the
benchmark data sets in the literature. Both the product cuts and the κSDCP method are very
simple and easy to implement, work with general discrete choice models and are applicable to
the case of overlapping segment consideration sets. In our computational testing SDCP with
product cuts achieves the CDLP value at a fraction of the CPU time taken by column genera-
tion and hence has the potential to be scalable to industrial-size problems.

Keywords: bid prices, yield management, heuristics, discrete-choice, network revenue manage-
ment

1 Introduction and literature review

Revenue management is the control of the sale of a limited quantity of a resource (hotel rooms for
a night, airline seats, advertising slots etc.) to a heterogenous population with different valuations
for a unit of the resource. The resource is perishable, and for simplicity’s sake, we assume that it
perishes at a fixed point of time in the future. Customers are independent of each other and arrive
randomly during a sales period, and demand one unit of resource each. The sales process is online,
so the firm has to decide if it wishes to sell (at a specific price) or not, the tradeoff being selling
too much at a too low price early and running out of capacity, or, rejecting too many low valuation
customers and ending up with excess unsold inventory.

∗Lancaster University Management School, Lancaster LA1 4YX, United Kingdom.
†ICREA & Universitat Pompeu Fabra, Ramon Trias Fargas 25-27, 08005 Barcelona, Spain.

1

In industries such as hotels and airlines the products consume bundles of different resources
(multi-night stays, multi-leg itineraries) and the decision to accept or reject a particular product at
a certain price depends on the future demands and revenues for all the resources used by the product
(and indirectly potentially on all resources in the network, depending on the network and product
structure). Network revenue management (network RM) controls acceptance/reject decisions for
demand requests for the entire network. Chapter 3 of Talluri and van Ryzin (2004b) contains all
the necessary background on network RM.

Revenue management incorporating more realistic models of customer behavior, such as cus-
tomers choosing products from an offer set, have recently become popular, initiated by work of
Talluri and van Ryzin (2004a) on the single-resource problem. Many network RM extensions of such
models have recently been proposed: Zhang and Cooper (2005), Gallego et al. (2004), Liu and van
Ryzin (2008) propose a deterministic linear programming approximation (CDLP), Kunnumkal and
Topaloglu (2010) a Lagrangian relaxation, Zhang and Adelman (2009) and Meissner and Strauss
(2008) affine relaxation approximations. In many cases these are modifications of older methods
proposed for network RM with the so-called independent class assumption. The incorporation of
customer choice models, however, makes the approximations considerably more difficult to solve.
The CDLP formulation has an exponential number of variables and the solution strategy is to use
column generation, but finding an entering column is computationally easy only in a limited number
of cases. While the Lagrangian and affine relaxation approximations are closer to the dynamic pro-
gram than the CDLP , their solution is no easier; for instance the affine relaxation approximation
involves generating columns by solving a non-linear mixed-integer program. The objective of this
paper is to find new methods to solve or approximate CDLP quickly when the segment consideration
sets overlap.

Given the difficulties in solving these models, Talluri (2010) proposed a concave programming
formulation that is weaker than the upper bound resulting from the (CDLP) from Gallego et al.
(2004) and Liu and van Ryzin (2008), but coincides for non-overlapping segments. The advantage is
that the method is tractable for any choice model whenever the number of elements in a segment’s
consideration set is not too large. In this paper we extend the method to obtain progressively
tighter relaxations of (CDLP). We add valid inequalities derived from a projection onto subsets
of intersections, and refer to them as product cuts. These cuts are easy to generate and work for
general discrete choice models—in fact this is the only approach that we know of that can handle
general discrete choice models and overlapping segment consideration sets. We report extensive
computational results showing their performance on various types of networks. We contrast the
results with an extension of SDCP called κSDCP . In our numerical testing, SDCP with product
cuts achieves the CDLP value at a fraction of the CPU time taken by column generation (Table 13)
making CDLP tractable even for industrial-size problems.

The remainder of the paper is organized as follows: In §2 we introduce the notation, the demand
model and the basic dynamic program. In §3 we state the (CDLP) and (SDCP) approximations
of the dynamic program, followed by the presentation of the main computational approaches that
we propose in this paper in §4. §5 contains our numerical results using the new methods, and we
present our conclusions in §6.

2 Model and Notation

A product is a specification of a price and a combination of resources to be consumed. For example,
a product could be an itinerary-fare class combination for an airline network, where an itinerary

2

is a combination of flight legs; in a hotel network, a product would be a multi-night stay for a
particular room type at a certain price point. Time is discrete and assumed to consist of T intervals,
indexed by t. We assume that the booking horizon begins at time 0 and that all the resources perish
instantaneously at time T . We make the standard assumption that the time intervals are fine enough
so that the probability of more than one customer arriving in any single time period is negligible.
The underlying network has m resources (indexed by i) and n products (indexed by j) of resources,
and we refer to the set of all resources as I and the set of all products as J . Product j uses a subset
of resources, and is identified (possibly) with a set of sale restrictions or features and a revenue of
rj . A resource i is said to be in product j (i ∈ j) if j uses resource i. The resources used by j are
represented by aij = 1 if i ∈ j, and aij = 0 if i /∈ j, or alternately with the 0-1 incidence vector
Aj of product j. Let A denote the resource-product incidence matrix; columns of A are then Aj .
We denote capacity on resource i at time t as ci,t and the vector of capacities as �ct, so the initial

set of capacities at time 0 is �c0. The vector �1 is a vector of all ones, and �0 is a vector of all zeroes
(dimension appropriate to the context).

We represent a mathematical program or a dynamic program by a label that also serves as the
optimal value of the program. For example, (CDLP) represents the deterministic linear program
(described below) and CDLP represents the objective function value of the optimal solution.

2.1 Demand model

The demand model is a latent finite segment-mixture model with overlapping segment consideration
sets. We assume there are L > 1 underlying segments, each with distinct purchase behavior. In
each period, there is a customer arrival with probability λ. A customer belongs to segment l with
probability pl. We denote λl = plλ and assume

∑
l pl = 1, so λ =

∑
l λl. Define �λ = [λ1, . . . , λL].

We are assuming time-homogenous arrivals (homogenous in rates and segment mix), but the model
and all solution methods in this paper can be transparently extended to the case when rates and
mix change by period. Each segment l has a consideration set, a subset of products Cl ⊆ J that it
considers for purchase. We assume this consideration set is known to the firm (by a previous process
of estimation and analysis) and the consideration sets for different segments can overlap.

In each period the firm offers a subset S of its products for sale, called the offer set. Given an
offer set S, an arriving customer purchases a product j in the set S or decides not to purchase. The
no-purchase option is indexed by 0 and is always present for the customer.

A segment-l customer is indifferent to a product outside his consideration set; i.e., his choice
probabilities are not affected by products offered outside the consideration set. A segment-l customer
purchases j ∈ S with given probability P l

j(S). This is a set-function defined on all subsets of J . For
the moment we assume these set functions are given by an oracle; it could conceivably be given by a
simple formula such as the multinomial-logit model. Whenever we specify probabilities for a segment
l for a given offer-set S, we just write it with respect to Sl := Cl ∩ S (note that P l

j (S) = P l
j (Sl)).

We define the vector �P l(S) = [P l
1(Sl), . . . , P

l
n(Sl)].

Given a customer arrival, and an offer set S, the probability that the firm sells j ∈ S is then given
by Pj(S) =

∑
l plP

l
j(Sl) and makes no sale with probability P0(S) = 1−∑

j∈S Pj(S). We define the

vector �P (S) = [P1(S), . . . , Pn(S)]. Notice that �P (S) =
∑

l pl
�P l(S). We define the vectors �Ql(S) =

A�P l(S) and �Q(S) = A�P (S). The revenue functions can be written as Rl(S) =
∑

j∈Sl
rjP

l
j(Sl) and

R(S) =
∑

j∈S rjPj(S). Define a subset incidence matrix B with rows for all Sl ⊂ Cl, l = 1, 2, . . . , L
and columns S ⊆ J , and BSlS = 1 if subset Sl = S ∩ Cl and 0 otherwise.

3

In our notation and demand model we broadly follow Bront et al. (2009) and Liu and van Ryzin
(2008). The motivation for the design of our solution procedures comes from the following premise:
The number of elements in a segment’s consideration set is usually small. It sounds unlikely that a
customer can process hundreds of choices in making a decision. So the problem for a single segment
might be tractable by just brute-force enumeration, i.e., the number of subsets of Cl for a segment
l can be enumerated explicitly as if say, |Cl| ∼ 10, we can easily compute all the 210 = 1024 subsets
of Cl.

2.2 Dynamic program

The dynamic program (DP) to determine optimal controls can be written down as follows: Let
Vt(�ct) denote the maximum expected revenue to go, given remaining capacity �ct in period t. Then
Vt(�ct) must satisfy the well-known Bellman equation

Vt(�ct) = max
S⊆J

⎧⎨
⎩
∑
j∈S

λPj(S)(rj + Vt+1(�ct −Aj)) + (λP0(S) + 1− λ)Vt+1(�ct)

⎫⎬
⎭ (1)

with the boundary condition VT (�cT) = Vt(�0) = 0 for all �cT . Let V DP = V0(�c0) denote the optimal
value of this dynamic program from 0 to T , for the given initial capacity vector �c0.

3 Approximations and upper bounds

We give now the CDLP and SDCP approximations of (1).

3.1 Choice Deterministic Linear Program (CDLP)

The choice deterministic linear program (CDLP) defined in Gallego et al. (2004) and Liu and van
Ryzin (2008) is as follows:

max
∑
S⊆J

λR(S)w(S) (2)

s.t.
∑
S⊆J

λw(S) �Q(S) ≤ �c0

(CDLP)
∑
S⊆J

w(S) = T

0 ≤ w(S), ∀S ⊆ J.

The formulation has 2n variables w(S) that can be interpreted as the time each set is offered
(including w(∅)). Liu and van Ryzin (2008) show that the optimal objective value is an upper
bound on V DP . They also show that the problem can be solved efficiently by column-generation for
the multinomial-logit choice model and non-overlapping segments. Bront et al. (2009) investigate
this further and show that column generation is NP-hard whenever the consideration sets for the
segments overlap.

4

3.2 Segment-based Deterministic Concave Program (SDCP)

Talluri (2010) proposed the following formulation that coincides with the (CDLP) when the seg-
ments do not overlap. For segment l, define a capacity vector �0 ≤ �ylt ≤ �1 that we reserve for sale to
segment l in period t (even if we cannot identify this segment at the time of purchase). Given �ylt, let
R∗

l (�ylt) represent the optimal revenue we can obtain offering some convex combination of product
sets to segment l. R∗

l (�ylt) can be obtained by solving the following linear program (we index sets in
Cl ∩ J by Sl):

R∗
l (�y

l
t) = max

∑
Sl

λlR
l(Sl)w

l
Sl

(3)

s.t.
∑
Sl

λlw
l
Sl
�Ql(Sl) ≤ �y l

t

(Rgen)
∑
Sl

wl
Sl

≤ 1

wl
Sl

≥ 0, ∀Sl ⊆ Cl ∩ J.

Note that R∗
l (�ylt) is a concave function of �ylt. The linear program (Rgen) has an exponential number

of columns but can be solved by column generation and the column generation is often easier than
that of (CDLP) as it is segment specific and (Rgen) considers only subsets of the consideration set
of a single segment at a time. In fact, we can easily generate all columns if the number of considered
products |Cl| is small.

Now, define the following concave programming problem over the capacity vectors:

max

T∑
t=1

L∑
l=1

R∗
l (�y

l
t) (4)

s.t.
T∑

t=1

L∑
l=1

�y l
t ≤ �c0

(SDCP) �y l
t ≤ λl

�1, ∀ l, t

�y l
t ≥ �0.

The above formulation of (SDCP) assumes uniform arrival rates and segment mix for simplicity,
but can be modified transparently by using λ’s indexed by t. The formulation is a discrete-time
formulation but can be made compact by merging periods with the same arrival rates.

(SDCP) is a compact formulation, and can be solved by any number of standard concave-
programming methods generating the objective function values by solving (Rgen). So the critical
computation lies in the calculation of R∗

l (�y
l
t).

Clearly (SDCP) overestimates revenue compared to (CDLP) and therefore CDLP ≤ SDCP
but the objective values of both formulations coincide for the case of non-overlapping segments
(Talluri, 2010).

4 Tightening SDCP

Solving (CDLP) when the segments overlap has been found to be exceptionally difficult. In the
most general setting, the segments’ consideration sets can overlap in a variety of ways, and the choice

5

probabilities depend on the offer set, and need not follow any structure. Indeed, Bront et al. (2009)
show that generating the columns of (CDLP) even in a very restrictive setting (multinomial-logit
model of probabilities, two segments) is NP-hard.

In this section we describe the two computational approaches that we propose in this paper.

4.1 Product cuts

The first method is based on consistency of projections onto the intersections of the considera-
tions sets, that we call product cuts. This method works in a general discrete-choice setting and
makes no assumptions on the overlap structure of the consideration sets or the choice probabilities.
Throughout we assume that choice probabilities are given by an oracle for every segment l and offer
set S.

We first describe the intuition behind our cuts. The wS ’s can be interpreted as a distribution
over subsets of J , and can be considered a randomization rule—at each point choose a subset based
on this distribution. The distribution in turn induces a distribution for each one of the segments l,
via the matrix B, wl

Sl
=

∑
S BSlSwS .

Now the space of wS ’s is prohibitively large, and the matrix B has almost no structure as the
considerations sets are arbitrary. So we choose to work in the smaller space of wl

Sl
and impose

consistency conditions that arise from the fact that the segment-level distributions are generated by
a common set of wS ’s for each segment l. We would like these consistency conditions to be linear
and to be easily generated.

Let Xj be a Bernoulli random variable which takes the value Xj = 1 if j ∈ S for an offer set
S sampled from the wS distribution, and Xj = 0 otherwise. The expectation E[Xj] is then the
probability that product j is offered under this randomized rule; moreover this expected value has
to be the same if we follow a similar randomized rule for segment-level distributions wl with j ∈ Cl.
So E[Xj] should be the same for all segments that contain product j in their consideration sets.
One can extend this to subsets of products. As Xj is a Bernoulli random variable, for any pair of
segments l and k that contain two products j1 and j2 the following equation holds: E[Xj1Xj2] =∑

S�{j1,j2} wS =
∑

Sl�{j1,j2} w
l
Sl

=
∑

Sk�{j1,j2} w
k
Sk
. So we obtain linear valid cuts to (SDCP) of

the form
∑

Sl�{j1,j2} w
l
Sl

=
∑

Sk�{j1,j2} w
k
Sk

for all segments l, k such that Cl, Ck � {j1, j2}. This

extends to triples of products {j1, j2, j3} via
∑

Sl�{j1,j2,j3} w
l
Sl

=
∑

Sk�{j1,j2,j3} w
k
Sk
, and so on.

An alternate way of viewing this idea is that the distributions wS ’s and wl
Sl
’s have to be consistent

once we project them onto the subsets of the intersection of the consideration sets. Since our premise
is that consideration sets are relatively small, intersections of consideration sets are small also, and
we can enumerate all subsets of the intersections and obtain a large number of valid cuts.

The relation between CDLP and SDCP is shown in (Talluri, 2010) and we repeat the connection
here to show the validity of the product cuts. First formulate CDLP as follows (as we are assuming
uniform arrival rates, we forego subscripting the variables by t):

max
∑T

t=1

∑
l λl

∑
Sl⊂Cl

Rl(Sl)w
l
Sl

(5)

(CDLP ′)
∑T

t=1

∑
l λl

∑
Sl⊂Cl

�Ql(Sl)w
l
Sl

≤ �c0 (6)

wl
Sl

∈ Proj(W),

where W is the space of probability distributions w over all S and Proj(W) is the projection of W

6

onto the space of wl
Sl
’s, that means it is the set of all probability distributions wl over Sl, for all l,

such that there exists a feasible solution to the following system:

∑
S

BSlSwS = wl
Sl

∀l

(W([wl]))
∑

wS = 1

wS ≥ 0.

The wl
Sl
’s in the above formulation can be thought of as the marginal distribution on subsets of Cl

for a distribution of w on S ⊂ C.

Proposition 1. CDLP ′ = CDLP .

Proof
Notice that

∑
l λl

∑
Sl⊂Cl

�Ql(Sl)
∑

S BSlSwS =
∑

S⊆J λw(S) �Q(S).
�

The difficulty of solving (CDLP) is in solving (W([wl])) as its columns are indexed by all subsets
S and the matrix B has almost no structure when the segment consideration sets overlap. Consider
now SDCP written as follows,

max�yt

T∑
t=1

L∑
l=1

zlt

s.t.

T∑
t=1

L∑
l=1

�ylt ≤ �c0

(SDCP ′) �ylt ≤ λl
�1 ∀ l, t∑

l∈L
zlt ≤ R∗

L(�yt) ∀L ⊂ {1, . . . , L} (7)

�ylt ≥ �0,

and

R∗
L(�yt) = max

∑
l∈L

∑
Sl

λlR
l(Sl)w

l
Sl

s.t.
∑
Sl

λl
�Ql(Sl)w

l
Sl

≤ �ylt ∀l ∈ L,

(RgenL)
∑
Sl

wl
Sl

≤ 1 ∀l ∈ L,

wl
Sl

≥ 0, ∀l ∈ L, ∀Sl ⊆ Cl ∩ J.

If we consider only subsets of the form L := {l}, we recover (SDCP). It should be clear that
equations (7) in SDCP ′ are redundant for all non-singleton subsets of {1, . . . , L}. However, if we
define L to contain two overlapping segments, we can tighten the formulation by adding the following
constraints to (RgenL):

∑
Sl⊇Slk

wl
Sl

=
∑

Sk⊇Slk

wk
Sk

∀Slk ⊆ Cl ∩Ck, ∀{l, k} ⊂ L, (8)

7

that we call product cuts (if we restrict |Slk| = κ, we refer to them as κPC cuts). We implement
this by obtaining the dual solution (�π, �σ) to (RgenL) with the additional cuts (8) for the current �yt,
and adding the cut

∑
l∈L zlt ≤

∑
l∈L[〈�πl, �ylt〉+ σl] to (SDCP ′) iteratively.

Proposition 2. Suppose we add product cuts to (RgenL) and solve SDCP ′ as described above, then
the value of the resulting linear program is greater than or equal to CDLP .

Proof
Suppose wl

Sl
and wk

Sk
’s are feasible solutions of (CDLP ′), then there exists a set of wS ’s such that

wl
Sl

=
∑

S BSlSwS as wl
Sl

∈ Proj(W). Then, for any fixed Slk ⊆ Cl ∩ Ck, we have:

∑
Sl⊇Slk

wl
Sl

=
∑

Sl⊇Slk

∑
S

BSlSwS =
∑

S|S∩Cl⊇Slk

wS =
∑

S|S∩Ck⊇Slk

wS =
∑

Sk⊇Slk

wk
Sk
.

So the wl
Sl
’s should satisfy the product cuts (8) and a solution of SDCP ′ leads to a feasible solution

of (CDLP ′).
�

Thus we obtain a tightening of SDCP by adding product cuts and in our computational testing on
the benchmark data sets, we obtain the CDLP value rapidly just by adding cuts with small values
of |L|. Indeed we were unable to come up with an example where the values are different. Our
conjecture (that we have been unable to prove) is that the product cuts obtain CDLP value when
there is some structure in the way the segment consideration sets intersect—for instance when the
intersection graph is a tree.

4.2 κ-Segment Deterministic Concave Program (κSDCP)

In this section we describe our second method that is a natural tightening of (SDCP). Notice that
we can write (SDCP) as

max

T∑
t=1

L∑
l=1

zlt (9)

s.t.
T∑

t=1

L∑
l=1

�ylt ≤ �c0

(SDCP ′′) �ylt ≤ λl
�1 ∀l

zlt −R∗
l (�ylt) ≤ 0 ∀l (10)

�ylt ≥ �0

Our idea now is to progressively tighten this formulation by adding constraints for each subset of
size κ of the segments. We call this level-κ formulation (κSDCP). This way we obtain a way of
fine-tuning the formulation—so that we always maintain an upper bound on the dynamic program,
in fact on the CDLP—and can choose the level to suit the network and computational resources.
In practice we expect this to be solved for levels 2 or 3 at most. If a large proportion of the products
belong to at most two or three segments, then it is reasonable to assume that we come close to
CDLP .

To reduce notation, we describe the formulation for segment pairs, i.e., κ = 2; the general case
should be transparent from the description. For every pair of segments (k1, k2) where k1 < k2 and

8

a set of vectors of assigned capacities �yk1 , �yk2 , define

R∗
k1,k2

(�yk1t, �yk2t) = max
∑

S⊆Ck1
∪Ck2

(λk1Rk1(Sk1) + λk2Rk2(Sk2))w(S) (11)

s.t.
∑

S⊆Ck1
∪Ck2

[
λk1

�Qk1(Sk1) + λk2
�Qk2(Sk2)

]
w(S) ≤ �yk1t + �yk2t

(Rgen(k1,k2))
∑

S⊆Ck1
∪Ck2

w(S) ≤ 1

w(S) ≥ 0, ∀S ⊆ Ck1 ∪ Ck2

Notice that R∗
k,l(�ykt, �ylt) is a concave function of the variables �ykt, �ylt. We add the following con-

straint to (SDCP ′′) for all pairs (k1, k2) of segments:

zk1t + zk2t −R∗
k1,k2

(�yk1t, �yk2t) ≤ 0 (12)

and call the resulting formulation (κSDCP). We solve the generating concave program (Rgen(k1,k2))
on the fly (and in parallel) and replace the constraints (12) by linear constraints

zk1t + zk2t − 〈�πk
tk1k2

, �yk1 + �yk2〉 ≤ σk
tk1k2

, (13)

where (�πk
tk1k2

, σk
tk1k2

) is the dual solution to R∗
k1,k2

(�yk1t, �yk2t).

To motivate (κSDCP), consider a simple situation where there are exactly two segments (L = 2)
with consideration sets C1 and C2. (κSDCP) is then (CDLP), just written slightly differently. Now
if the network naturally has a partition of the segments so that the consideration sets of segments in
two different elements of the partition do not overlap (or have scarce overlap), then our formulation
would exploit it as follows: We assign a capacity vector to each element of the partition and then,
for a fixed set of capacity vectors, try to determine the optimal revenue from the assignment. For
instance, if each element of the partition has exactly two segments, then we do recover the CDLP
as pointed out earlier.

For the general case, where each element of the partition has multiple segments, we can still
solve the 2SDCP as an approximation. Of course, we can strengthen the formulation by defin-
ing generating concave programs for triplets of segments and so on. For a κ-tuple of segments
{k1, . . . , kκ} ⊆ {1, . . . , L} we define generating concave programs R∗

{k1,...,kκ}(�yk1t , . . . , �ykκt) analo-

gous to (11) and incorporate the corresponding inequalities as in (12) for the κ-tuple of variables.
If we do not have an idea of the partition, we just solve it for all pairs of segments or all κ-tuples in
general. No matter to what depth we solve the problem, at every stage, we are assured of an upper
bound on the dynamic program. In general this upper bound is weaker than the CDLP bound.

Proposition 3. (SDCP ′′) with the constraints (12) has an objective value greater than or equal to
CDLP .

Proof
Let w(S) be a solution to (CDLP). For every segment l, define

�ylt = λl

∑
S

�Ql(Sl)
w(S)

T
.

We verify (κSDCP) with these vectors has an objective value same as (CDLP). The vectors �ylt
satisfy

∑T
t=1

∑L
l=1 �ylt ≤ �c0 as these are the same constraints as that of (CDLP). Next, notice

9

that by construction w(S) =
∑

{S′|S′∩(Ck1
∪Ck2

)=S} w(S
′), S ⊆ Ck1 ∪ Ck2 is a feasible solution to

(Rgen(k1,k2)), so we conclude κSDCP ≥ CDLP .
�

4.2.1 κ-Segment Randomized Concave Program (κRCP)

The (SDCP) can be tightened by means of randomization, similar to the randomized linear program
for the deterministic linear program as proposed by Talluri and van Ryzin (1999). This approach
is called randomized concave program (RCP) and was developed by Talluri (2010). We generate
K sample paths of segment demands based on the Bernoulli random variables with parameters λl

drawn T times. We represent the realization of segment l demand in period t for the kth sample
path by the indicator function 1k

[lt], which shall be equal to 1 if there is a segment l arrival and 0

otherwise. We consider a time-aggregated version of (RCP):

max
L∑

l=1

R∗
l (�yl) (14)

s.t.
L∑

l=1

�yl ≤ �c0

(RCP k) �yl ≤
T∑

t=1

1k
[lt]
�1, ∀ l,

�yl ≥ �0

We define the value of RCP (K) as the average of the K concave programs:

RCP (K) =

∑K
k=1 RCP k

K
.

We can randomize (κSDCP) in the same way as we obtained (RCP) from (SDCP), that is,
we substitute λl with 1k

[lt] in equation �ylt ≤ λl
�1 and in R∗

k1,k2
(�yk1t, �yk2t) as defined in (11) for all

segments l and time steps t of (κSDCP) for each sample path k. In our numerical experiments, we
consider the time-aggregated version and refer to it as (κRCP). We omit further details as they
should be obvious from the discussion above.

5 Numerical Results

The (CDLP) is usually implemented to produce an estimate of the marginal value of capacity for
each resource, and subsequently to decompose the network problem into a collection of single-resource
problems. There are numerous studies that analyze the revenue performance of this decomposition
process, see for example Zhang and Adelman (2009). We do not add anything new to network
decomposition methods and therefore do not carry out related experiments. Instead, we focus on
the tightening of upper bounds achieved by the (SDCP). All experiments were programmed in
Matlab R2009b with Tomlab R7 /CPLEX 11.2 on a desktop PC running MS Windows XP with a
Pentium 4 CPU 2GHz and 1GB RAM.

10

5.1 Overview Tested Methods

We conduct a numerical study on various test networks where we compare the values resulting from
the following (time-aggregated) approaches:

• CDLP : Choice-based deterministic linear program as defined in §3.1. As proposed by Bront
et al. (2009), we use their pricing heuristic to identify new columns; if it does not find any
more columns, then we use their mixed integer programming formulation until optimality is
reached.

• SDCP : Segment-based deterministic concave program as defined in §3.2.
• κPC: SDCP with Product Cuts as defined in §4.1. We define L := {1, . . . , L}. In method
κPC we add product cut constraints of the form (8) only for subsets |Slk| ≤ κ. We use
κ ∈ {1, 2}.

• R2PC: This is 2PC as defined above with randomization over λ.

• κSDCP : The SDCP with segment-pair cuts as specified in .

• RCP : Randomized Concave Program, which is a randomized version of SDCP as defined in
(Talluri, 2010),

• κRCP : Randomized version of κSDCP, see §4.2.1.

All randomized approaches use 500 sample paths for the first network (parallel flights) and 300 for
the others.

We add product cuts for just pairs of products in the intersections of the considerations sets
(2PC) as in all but one case (where 3PC gets CDLP value) we obtain the CDLP value and need
not consider larger subsets. Likewise we test κSDCP with κ at most 2.

5.2 Test Networks

We use the same test networks as in Liu and van Ryzin (2008) and Bront et al. (2009), where different
scenarios were obtained by scaling the capacities by a factor α ∈ {0.4, 0.6, 1, 1.2, 1.4}. For each of
these scenarios, different no-purchase weights v0 are applied to vary demand. The probabilities are
derived from the weights by using the multinomial-logit model for each of the segments exactly as
in Bront et al. (2009).

Parallel Flights Example

The first network example consists of three parallel flight legs as depicted in Figure 1 with initial
leg capacity 30, 50 and 40, respectively. On each flight there is a low and a high fare class L and H,
respectively, with fares as specified in Table 1. We define four customer segments in Table 2; note
that we do not give the preference values for the no-purchase option at this point. This is because we
consider various scenarios of this network by varying both the vector of no-purchase preferences and
the network capacity. The sales horizon consists of 300 time periods. In Table 3 we report upper
bounds on the optimal expected revenue obtained from our various approaches. Randomization over
λ does not gain much for these network instances (see Table 4 for standard deviations). The product

11

A B

Leg 1 (morning)

Leg 2 (afternoon)

Leg 3 (evening)

Figure 1: Parallel Flights Example.

Product Leg Class Fare
1 1 L 400
2 1 H 800
3 2 L 500
4 2 H 1,000
5 3 L 300
6 3 H 600

Table 1: Product definitions for Parallel Flights Example.

Segment Consideration set Pref. vector λl Description
1 {2,4,6} [5,10,1] 0.1 Price insensitive, afternoon preference
2 {1,3,5} [5,1,10] 0.15 Price sensitive, evening preference
3 {1,2,3,4,5,6} [10,8,6,4,3,1] 0.2 Early preference, price sensitive
4 {1,2,3,4,5,6} [8,10,4,6,1,3] 0.05 Price insensitive, early preference

Table 2: Segment definitions for Parallel Flights Example.

12

cuts are very successful; 2PC obtains the CDLP objective value in all instances, and even 1PC is
already close to CDLP .

α v0 CDLP R2PC 2PC 1PC 2RCP 2SDCP RCP SDCP

0.6
[1,5,5,1] 56,884 56,832 56,884 57,338 57,408 57,556 58,193 58,755
[1,10,5,1] 56,848 56,796 56,848 57,316 57,398 57,546 58,193 58,755
[5,20,10,5] 53,820 53,352 53,820 53,839 53,721 54,047 54,381 54,684

0.8
[1,5,5,1] 71,936 71,240 71,936 72,025 72,349 72,650 73,607 73,870
[1,10,5,1] 71,795 70,832 71,795 71,865 72,072 72,608 73,465 73,870
[5,20,10,5] 61,868 61,366 61,868 61,898 61,859 62,302 63,139 63,440

1.0
[1,5,5,1] 79,156 78,553 79,156 79,373 81,355 82,188 84,439 85,424
[1,10,5,1] 76,866 76,547 76,866 77,069 79,339 79,938 82,688 83,377
[5,20,10,5] 63,256 63,037 63,256 63,256 63,707 64,036 65,528 65,848

1.2
[1,5,5,1] 80,371 80,045 80,371 80,371 82,771 83,130 87,691 88,332
[1,10,5,1] 78,045 77,741 78,045 78,045 80,513 80,880 85,635 86,333
[5,20,10,5] 63,296 63,171 63,296 63,296 64,170 64,339 66,370 66,648

1.4
[1,5,5,1] 81,067 80,627 81,067 81,067 82,924 83,130 88,338 88,621
[1,10,5,1] 78,817 78,365 78,817 78,817 80,660 80,880 86,100 86,355
[5,20,10,5] 63,337 63,231 63,337 63,337 64,449 64,642 66,639 66,841

Table 3: Upper bounds for Parallel Flights Example.

α v0 R2PC 2RCP RCP

0.6
[1,5,5,1] 1,147 1,076 839
[1,10,5,1] 1,166 1,084 839
[5,20,10,5] 1,424 1,262 1,143

0.8
[1,5,5,1] 2,414 1,837 1,755
[1,10,5,1] 2,840 2,289 2,058
[5,20,10,5] 4,351 4,413 4,416

1.0
[1,5,5,1] 5,842 5,942 5,015
[1,10,5,1] 6,130 6,203 5,289
[5,20,10,5] 5,572 5,479 5,352

1.2
[1,5,5,1] 6,683 7,223 7,056
[1,10,5,1] 6,603 7,176 7,097
[5,20,10,5] 5,670 5,664 5,687

1.4
[1,5,5,1] 6,978 7,433 7,687
[1,10,5,1] 6,904 7,383 7,653
[5,20,10,5] 5,654 5,681 5,933

Table 4: Standard deviations of objectives values of R2PC, 2RCP and RCP based on K = 500 for
Parallel Flights example

Small Network Example

Next, we test the policies on a network with seven flight legs as depicted in Figure 2. In total,
22 products are defined in Table 5 and the network capacity is �c0 = [100, 150, 150, 150, 150, 80, 80],
where c0i is the initial seat capacity of flight leg i. In Table 6, we summarize the segment definitions

13

according to desired origin-destination (O-D), price sensitivity and preference for earlier flights. The
booking horizon has τ = 1000 time periods.

A H

B

C

Leg 2 (morning)

Leg 1 (morning)

Leg 3 (afternoon)

Leg 4 (morning)

Leg 5 (afternoon)

Leg 6 (morning)

Leg 7 (afternoon)

Figure 2: Small Network example.

Class = H Class = L
Product Legs Fare Product Legs Fare

1 1 1,000 12 1 500
2 2 400 13 2 200
3 3 400 14 3 200
4 4 300 15 4 150
5 5 300 16 5 150
6 6 500 17 6 250
7 7 500 18 7 250
8 2,4 600 19 2,4 300
9 3,5 600 20 3,5 300
10 2,6 700 21 2,6 350
11 3,7 700 22 3,7 350

Table 5: Product definitions for Small Network Example

The upper bound results for the Small Network example in Table 7 look a bit different from
the Parallel Flights case in that 2SDCP achieves the CDLP value in all instances. This is due
to the fact that each product is being considered by exactly two customer segments, and from the
definition of 2SDCP it follows that this approach is equivalent to CDLP in this situation. The
product cuts perform again quite well: 2PC equals CDLP in all except one instance. This instance
α = 0.8, v0 = [15 . . .] is the only one where 2PC does not equal CDLP ; however, 3PC does deliver
the CDLP solution 266,934. Randomization over λ lowers the respective bounds only marginally;
the associated standard deviations are reported in Table 8.

14

Segment O-D Consideration set Pref. vector λl Description
1 A→B {1,8,9,12,19,20} (10,8,8,6,4,4) 0.08 less price sensitive, early pref.
2 A→B {1,8,9,12,19,20} (1,2,2,8,10,10) 0.2 price sensitive
3 A→H {2,3,13,14} (10,10,5,5) 0.05 less price sensitive
4 A→H {2,3,13,14} (2,2,10,10) 0.2 price sensitive
5 H→B {4,5,15,16} (10,10,5,5) 0.1 less price sensitive
6 H→B {4,5,15,16} (2,2,10,8) 0.15 price sensitive, slight early pref.
7 H→C {6,7,17,18} (10,8,5,5) 0.02 less price sensitive, slight early pref.
8 H→C {6,7,17,18} (2,2,10,8) 0.05 price sensitive
9 A→C {10,11,21,22} (10,8,5,5) 0.02 less price sensitive, slight early pref.
10 A→C {10,11,21,22} (2,2,10,10) 0.04 price sensitive

Table 6: Segment definitions for Small Network Example

α v0 CDLP R2PC 2PC 1PC 2RCP 2SDCP RCP SDCP

0.6
[1,5] 215,793 215,694 215,793 215,793 215,694 215,793 216,412 216,649
[5,10] 200,515 199,521 200,515 201,294 199,521 200,515 205,312 206,392
[10,20] 170,137 169,948 170,137 170,265 169,948 170,137 173,763 173,948

0.8
[1,5] 266,934 265,616 266,949 268,842 265,597 266,934 272,335 272,719
[5,10] 223,173 222,934 223,173 223,536 222,934 223,173 230,000 230,393
[10,20] 188,574 187,956 188,574 188,657 187,956 188,574 192,912 193,464

1.0
[1,5] 281,967 281,573 281,967 282,078 281,573 281,967 295,826 296,513
[5,10] 235,284 234,866 235,284 235,446 234,866 235,284 244,635 245,226
[10,20] 192,038 191,687 192,038 192,094 191,687 192,038 198,025 198,636

1.2
[1,5] 284,772 284,422 284,772 285,052 284,422 284,772 301,280 301,773
[5,10] 238,562 238,113 238,562 238,562 238,113 238,562 248,304 248,728
[10,20] 192,373 192,043 192,373 192,373 192,043 192,373 198,553 198,914

1.4
[1,5] 287,076 286,406 287,076 287,357 286,406 287,076 304,843 305,329
[5,10] 238,562 238,160 238,562 238,562 238,160 238,562 248,909 249,372
[10,20] 192,373 192,043 192,373 192,373 192,043 192,373 198,553 198,914

Table 7: Upper bounds for Small Network example

15

α v0 R2PC 2RCP RCP

0.6
[1,5] 3,222 3,222 3,099
[5,10] 4,256 4,256 3,124
[10,20] 4,267 4,267 4,080

0.8
[1,5] 5,981 5,995 3,587
[5,10] 6,096 6,096 6,081
[10,20] 5,380 5,380 6,200

1.0
[1,5] 9,335 9,335 9,355
[5,10] 6,731 6,731 6,929
[10,20] 6,653 6,653 6,759

1.2
[1,5] 9,477 9,477 10,035
[5,10] 8,311 8,311 8,619
[10,20] 6,851 6,851 7,209

1.4
[1,5] 9,848 9,848 10,044
[5,10] 8,389 8,389 8,891
[10,20] 6,851 6,851 7,209

Table 8: Standard deviations of objectives values of R2PC, 2RCP and RCP based on K = 300 for
Small Network example

Hub & Spoke Example

Consider the Hub & Spoke network in Figure 3. It has eight flight legs, one hub and four spokes.
Each flight i has initial capacity ci = 200 and the booking horizon is divided into τ = 2000 time
periods. There are 80 products in total which we define in Table 9 in the following way: product 1
corresponds to the trip ATL-BOS using leg 3 in class Y, product 4 is ATL-BOS in class Q, product 5
is BOS-ATL using leg 4 in class Y and so on. Definitions of the 40 customer segments for this
example can be found in Table 10. We report upper bounds on the optimal expected revenue

LAX ATL

BOS

SAV

MIA

2

2

1

4

5

6

78

Figure 3: Hub & Spoke Network example.

in Table 11. As for the Small Network example, each product is being considered by at most two
segments. Therefore, 2SDCP is equivalent to CDLP . The product cuts 2PC obtain CDLP value
in all instances. We point out that for both (κPC) and (κSDCP) it is not possible to apply the
standard proof of tightening the upper bound by randomization over the random variable λ because

16

O-D Market Legs Revenue
Y M B Q

ATLBOS/BOSATL 3/4 310 290 95 69
ATLLAX/LAXATL 2/1 455 391 142 122
ATLMIA/MIAATL 7/8 280 209 94 59
ATLSAV/SAVATL 5/6 159 140 64 49
BOSLAX/LAXBOS 4,2/1,3 575 380 159 139
BOSMIA/MIABOS 4,7/8,3 403 314 124 89
BOSSAV/SAVBOS 4,5/6,3 319 250 109 69
LAXMIA/MIALAX 1,7/8,2 477 239 139 119
LAXSAV/SAVLAX 1,5/6,2 502 450 154 134
MIASAV/SAVMIA 8,5/6,7 226 168 84 59

Table 9: Product definitions for Hub and Spoke Example.

Segment Cl vl λl Segment Cl vl λl

ATL/BOS H {1,2,3,4} {6,7,9,10} 0.015 BOS/MIA H {41,42,43,44} {6,7,10,10} 0.008
ATL/BOS L {3,4} {8,10} 0.035 BOS/MIA L {43,44} {8,10} 0.03
BOS/AT H {5,6,7,8} {6,7,9,10} 0.015 MIA/BOS H {45,46,47,48} {6,7,10,10} 0.008
BOS/ATL L {7,8} {8,10} 0.035 MIA/BOS L {47,48} {8,10} 0.03
ATL/LAX H {9,10,11,12} {5,6,9,10} 0.01 BOS/SAV H {49,50,51,52} {5,6,9,10} 0.01
ATL/LAX L {11,12} {10,10} 0.04 BOS/SAV L {51,52} {8,10} 0.035
LAX/ATL H {13,14,15,16} {5,6,9,10} 0.01 SAV/BOS H {53,54,55,56} {5,6,9,10} 0.01
LAX/ATL L {15,16} {10,10} 0.04 SAV/BOS L {55,56} {8,10} 0.035
ATL/MIA H {17,18,19,20} {5,5,10,10} 0.012 LAX/MIA H {57,58,59,60} {5,6,10,10} 0.012
ATL/MIA L {19,20} {8,10} 0.035 LAX/MIA L {59,60} {9,10} 0.028
MIA/ATL H {21,22,23,24} {5,5,10,10} 0.012 MIA/LAX H {61,62,63,64} {5,6,10,10} 0.012
MIA/ATL L {23,24} {8,10} 0.035 MIA/LAX L {63,64} {9,10} 0.028
ATL/SAV H {25,26,27,28} {4,5,8,9} 0.01 LAX/SAV H {65,66,67,68} {6,7,10,10} 0.016
ATL/SAV L {27,28} {7,10} 0.03 LAX/SAV L {67,68} {10,10} 0.03
SAV/ATL H {29,30,31,32} {4,5,8,9} 0.01 SAV/LAX H {69,70,71,72} {6,7,10,10} 0.016
SAV/ATL L {31,32} {7,10} 0.03 SAV/LAX L {71,72} {10,10} 0.03
BOS/LAX H {33,34,35,36} {5,5,7,10} 0.01 MIA/SAV H {73,74,75,76} {6,7,8,10} 0.01
BOS/LAX L {35,36} {9,10} 0.032 MIA/SAV L {75,76} {9,10} 0.025
LAX/BOS H {37,38,39,40} {5,5,7,10} 0.01 MIA/SAV H {77,78,79,80} {6,7,8,10} 0.01
LAX/BOS L {39,40} {9,10} 0.032 MIA/SAV L {79,80} {9,10} 0.025

Table 10: Segment definitions for Hub and Spoke Example.

17

λ appears in the coefficient matrix. Indeed, in Table 11 we observe instances where R2PC does
not tighten the 2PC bound, and likewise for 2RCP and 2SDCP . We even tested some of those
instances using 3,000 sample paths, but still no improvement was achieved, suggesting that these
two methods indeed do not necessarily provide tighter bounds.

α v0 CDLP R2PC 2PC 1PC 2RCP 2SDCP RCP SDCP

0.6
[1,5] 163,897 163,796 163,897 163,952 163,796 163,897 176,065 176,808
[5,10] 132,674 132,772 132,674 132,674 132,772 132,674 143,888 144,249
[10,20] 111,897 111,800 111,897 111,897 111,800 111,897 122,655 122,932

0.8
[1,5] 177,384 177,907 177,384 177,978 177,907 177,384 199,059 199,682
[5,10] 146,338 146,336 146,338 146,641 146,336 146,338 163,740 164,037
[10,20] 122,464 122,318 122,464 122,575 122,318 122,464 138,239 138,752

1.0
[1,5] 187,270 187,919 187,270 189,294 187,919 187,270 219,059 219,671
[5,10] 156,243 155,875 156,243 157,082 155,875 156,243 180,217 180,880
[10,20] 128,386 127,796 128,386 128,389 127,796 128,386 143,402 143,723

1.2
[1,5] 195,269 194,984 195,269 198,923 194,984 195,269 235,920 236,739
[5,10] 160,206 159,889 160,206 160,674 159,889 160,206 188,996 189,955
[10,20] 128,448 128,170 128,448 128,448 128,170 128,448 143,408 143,723

1.4
[1,5] 197,113 196,974 197,113 201,894 196,974 197,113 245,864 246,768
[5,10] 160,453 160,422 160,453 160,818 160,422 160,453 189,536 189,955
[10,20] 128,448 128,170 128,448 128,448 128,170 128,448 143,408 143,723

Table 11: Upper bounds for Hub & Spoke Example

α v0 R2PC 2RCP RCP

0.6
[1,5] 4,808 4,808 4,472
[5,10] 3,513 3,513 3,435
[10,20] 2,702 2,702 2,752

0.8
[1,5] 5,092 5,092 4,896
[5,10] 3,514 3,514 3,600
[10,20] 2,880 2,880 3,204

1.0
[1,5] 4,997 4,997 5,105
[5,10] 3,820 3,820 4,109
[10,20] 3,433 3,433 4,293

1.2
[1,5] 5,062 5,062 5,687
[5,10] 4,261 4,261 5,291
[10,20] 3,648 3,648 4,303

1.4
[1,5] 5,610 5,610 6,737
[5,10] 4,493 4,493 5,631
[10,20] 3,648 3,648 4,303

Table 12: Standard deviations of objectives values of R2PC, 2RCP and RCP based on K = 300
for Hub & Spoke example

5.3 Run Times

The main motivation for the methods discussed in this article is to overcome the numerical difficulties
inherent to the (CDLP) formulation. While (CDLP) optimizes over all possible offer sets, our

18

alternative formulations require much less variables. In fact, based on the premise that there are
only few subsets Sl ⊂ Cl for each segment, we can even solve the (SDCP) (with or without product
cuts) as a single linear program. In Table 13, we compare the run times in CPU seconds of the
different approaches. We emphasize that—as always in such experiments—the measured run times
will depend on the programming language used, the hardware and the skill of the programmer.
However, they still may serve as an indication to the benefits obtainable from the new methods that
we proposed. We implemented the methods (2PC), (1PC) and (SDCP) as a single linear program,
while (2SDCP) uses the dynamic generation of cuts as described above. The run times of (SDCP)
with and without product cuts are significantly shorter than (CDLP) using column-generation.

α v0 CDLP 2PC 1PC 2SDCP SDCP

0.6
[1,5] 15.92 0.28 0.28 2.43 0.16
[5,10] 11.79 0.28 0.27 2.80 0.16
[10,20] 16.14 0.28 0.27 2.85 0.15

0.8
[1,5] 23.72 0.29 0.28 2.44 0.16
[5,10] 18.95 0.36 0.31 2.95 0.19
[10,20] 17.90 0.28 0.27 3.15 0.15

1.0
[1,5] 24.85 0.29 0.29 2.76 0.15
[5,10] 7.27 0.33 0.27 3.12 0.16
[10,20] 4.32 0.28 0.27 2.87 0.15

1.2
[1,5] 9.40 0.34 0.27 2.18 0.15
[5,10] 4.55 0.28 0.27 2.84 0.15
[10,20] 1.52 0.28 0.27 2.81 0.16

1.4
[1,5] 1.71 0.28 0.27 2.19 0.15
[5,10] 1.69 0.28 0.27 2.90 0.16
[10,20] 1.53 0.28 0.27 2.81 0.15

Table 13: Run times in CPU seconds. CDLP run times are for solution by column-generation. 2PC
and 2SDCP obtain the same values as CDLP for all cases except one where we need to go to 3PC.

6 Conclusions

In this paper, we have developed a computationally attractive method for solving the (CDLP)
approximation to the choice network revenue management problem. Using a formulation based on
segments and their consideration sets, we add product cuts that are easy to generate and highly
effective—they obtain the same value as CDLP in all the benchmark test instances, usually in
a fraction of CPU time (Table 13). Moreover, the formulation and the cuts operate at a high
level of generality being applicable to a general discrete-choice model of demand, and of course for
overlapping customer segments. Along with the product cuts we develop the κSDCP method to
generalize (SDCP). Finally, we perform extensive numerical simulations to test the methods. Our
results indicate that it is possible to solve (CDLP) effectively for industrial-sized problems when
customer consideration sets are not too large, under any choice model, by adding product cuts to
(SDCP).

19

References

Bront, J. J. M., I. Méndez-Dı́az, G. Vulcano. 2009. A column generation algorithm for choice-based
network revenue management. Operations Research 57(3) 769–784.

Gallego, G., G. Iyengar, R. Phillips, A. Dubey. 2004. Managing flexible products on a network.
Tech. Rep. TR-2004-01, Dept of Industrial Engineering, Columbia University, NY, NY.

Kunnumkal, S., H. Topaloglu. 2010. A new dynamic programming decomposition method for the
network revenue management problem with customer choice behavior. Production and Operations
Management 19 575–590.

Liu, Q., G. van Ryzin. 2008. On the choice-based linear programming model for network revenue
management. Manufacturing and Service Operations Management 10(2) 288–310.

Meissner, J., A. K. Strauss. 2008. Network revenue management with inventory-sensitive bid prices
and customer choice. Tech. rep., Lancaster University, Department of Management Science.

Talluri, K. T., G. J. van Ryzin. 1999. A randomized linear programming method for computing
network bid prices. Transportation Science 33 207–216.

Talluri, K. T., G. J. van Ryzin. 2004a. Revenue management under a general discrete choice model
of consumer behavior. Management Science .

Talluri, K. T., G. J. van Ryzin. 2004b. The Theory and Practice of Revenue Management . Kluwer,
New York, NY.

Talluri, K.T. 2010. A randomized concave programming method for choice network revenue man-
agement. Tech. Rep. 1215, Department of Economics, Universitat Pompeu Fabra, Barcelona,
Spain.

Zhang, D., D. Adelman. 2009. An approximate dynamic programming approach to network revenue
management with customer choice. Transportation Science 43(3) 381–394.

Zhang, D., W. L. Cooper. 2005. Revenue management for parallel flights with customer choice.
Operations Research 53 415–431.

20

