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Abstract

We propose a method to estimate time invariant cyclical DSGE models using the information
provided by a variety of �lters. We treat data �ltered with alternative procedures as contami-
nated proxies of the relevant model-based quantities and estimate structural and non-structural
parameters jointly using a signal extraction approach. We employ simulated data to illustrate
the properties of the procedure and compare our conclusions with those obtained when just one
�lter is used. We revisit the role of money in the transmission of monetary business cycles.
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1 Introduction

DSGE models have become the paradigm for business cycle and policy analyses in academic and

policy circles. Relative to earlier structures, current models are of larger scale and feature numerous

real and nominal frictions that help to closely replicate the dynamic responses that structural VARs

produce. A few years ago it was standard to informally calibrate these models but today, increased

computing power, and recent developments in system-wide estimation methods allow researchers

to routinely employ full information techniques in structural estimation exercises.

Despite the increased popularity, structural estimation faces important conceptual and numer-

ical problems. For example, as emphasized in Canova (2009), full information classical estimation

makes sense only if the model is the data generating process (DGP) of the observables, up to a set

of serially uncorrelated measurement errors. Since such an assumption is hard to entrain, unless

the model is augmented with ad-hoc dynamics, Fukac and Pagan (2010) suggest to complement

standard inference with a more robust limited information analysis. It is also well known that

there are abundant population identi�cation problems (see Canova and Sala (2009), Del Negro

and Schorfheide (2008)), that numerical di¢ culties are widespread, and that errors-in-variables are

present (the variables in the model do not often have a direct counterpart in the data). Finally,

the vast majority of the models used in the literature are time invariant and intended to explain

only the cyclical portion of the observable �uctuations while the actual data contains many types

of �uctuations, all of which may be subject to breaks and other forms of slowly moving variations.

To �t stationary cyclical DSGE models to the data, applied investigators typically select a sub-

sample where time invariance is more likely to hold, �lter the raw data with an arbitrary statistical

device, and treat the �ltered data as the relevant measure of stationary cyclical �uctuations (see

e.g. Smets and Wouters (2003), Ireland (2004)). Alternatively, one arbitrarily builds a non-cyclical

component into the model (e.g. via a deterministic labor augmenting technology progress or unit

roots in total factor productivity and/or the price of investment) and �lters the raw data using a

model-driven transformation (see e.g. Fernandez Villaverde and Rubio Ramirez (2007) or Justiniano

et al. (2010)) or an arbitrary statistical device (see Smets and Wouters (2007)).

Both approaches are, in general, problematic. While the profession shares the idea that a

cyclical model should explain �uctuations with an average periodicity of 8-32 quarters, there is little

agreement on how to obtain these �uctuations from the data and only a partial understanding of the

consequences that statistical �ltering induce. For example, it is common to use linearly detrended
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or �rst di¤erenced data as input in the estimation process, but such transformations do not isolate

�uctuations with the required periodicity (see e.g. Canova (1998)). A band pass (BP) �lter, which

can potentially extract the �uctuations of interest with an in�nite amount of data, it is typically

discarded in the estimation literature because its two-sided nature alters the timing of the data

information - a similar argument is also made for the Hodrick and Prescott (HP) �lter. Moreover,

while real variables typically show long run drifts, nominal variables just display low frequency

�uctuations. Hence, should we �lter all the data or only real variables? Investigators have taken

both positions but it is not obvious which approach is preferable. Finally, since researchers �lter

each series separately, theoretically relevant constraints may not be satis�ed with �ltered data (for

example, does a resource constraint holds with �ltered data?).

Model-driven �ltering also fails to extract cycles with the required periodicity. For example,

when Total Factor Productivity (TFP) is trending, real variables share similar trends and appro-

priate linear combinations should be free of non-cyclical dynamics. However, as shown in Canova

(2008), real and nominal �Great Ratios�display signi�cant upward drifts and the portion of the

variance of the transformed variables located outside the cyclical frequencies is generally large. Most

problematic of all, model-based �ltering requires knowledge of the number, the nature and the time

series features of the shocks driving the non-cyclical component. Given our general ignorance on

the subject, important speci�cation errors may plague structural estimates.

Since solving this complex mismatch problem is di¢ cult, this paper focuses on how to improve

structural estimation of the parameters of a cyclical DSGE model when a statistical �ltering ap-

proach is used to match the data to the model counterparts. We make three contributions to

the existing literature. First, we show that a typical log-linearized DSGE model produces cyclical

�uctuations which are not necessarily located at the so-called business cycle frequencies. Thus,

standard �ltering approaches induce measurement errors in the estimated cyclical components.

Since these errors have important low frequency components, the true income and substitution

e¤ects are mismeasured leading to distortions in the estimates of important structural parameters.

Second, we show how to design a statistical �lter which captures the cyclical component of a DSGE

model. This �lter is model speci�c and the computational complexities involved make its practical

implementation unfeasible on current computers. Third, we propose a method to estimate the

structural parameters of a time invariant cyclical DSGE model which may potentially eliminate

the biases that statistical �lters produce. The approach borrows ideas from the recent data-rich

environment literature (see Boivin and Giannoni (2005)). We set up a signal extraction frame-
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work where the cyclical DSGE is the unobservable factor; vectors of �ltered data are contaminated

observable proxies, and DSGE and non-structural parameters are jointly estimated.

Our approach is advantageous in, at least, two respects. Since we do not have to arbitrarily

choose one �ltering method prior to the estimation, nor to select which shock drives the non-

cyclical component, we avoid important speci�cation errors. Moreover, our method can be used

with cyclical data obtained with one-sided and two-sided �lters, of both univariate and multivariate

nature, as long as the list of �lters is su¢ ciently rich. For the approach to work properly, the list

of �lters should be carefully chosen and suggestions on how to do this in practice are provided.

We investigate the properties of our approach using experimental data of the typical length

employed in macroeconomics and demonstrate that the biases obtained when just one �lter is used

are reduced with our approach. We also show that the unconditional one step ahead mean square

error (MSE) produced by our approach is smaller than the MSE obtained with standard procedures

and that conditional forecasts are better behaved.

To show that the biases are also economically relevant, we revisit the role of money in ampli-

fying cyclical �uctuations. The recent literature has neglected the stock of money when studying

monetary business cycles and Ireland (2004) demonstrates that such an approach is, by and large,

appropriate using US data, standard �ltering techniques and a maximum likelihood estimator. We

show that when multiple �ltered data is jointly used in the estimation, money balances matter for

the transmission of cyclical �uctuations to output and in�ation and the propagation of primitive

shocks di¤ers from the one obtained when only one data transformation is used.

We want to be clear for why we insist on working with time invariant cyclical models, rather than

considering structures where cyclical and non-cyclical �uctuations are jointly accounted for. On one

hand, constructing reasonable models with these features is hard: theory is largely silent on how

cyclical shocks can be propagated at longer frequencies (exceptions are Comin and Gertler (2006) or

Lopez Salido and Michelacci (2007)) or on how long run disturbances can produce important cyclical

implications. Moreover, it is convenient for both policy and interpretation purposes to assume that

the mechanisms driving cyclical and non-cyclical �uctuations are distinct and orthogonal. Finally,

breaks make the data largely uninformative about the features of non-cyclical �uctuations.

The rest of the paper is organized as follows. The next section shows the problems one encoun-

ters using a single �lter to estimate the parameters of DSGE models. Section 3 derives the features

of an optimal �lter. Section 4 presents our approach. Section 5 examines the role of money in

transmitting monetary business cycles. Section 6 concludes.
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2 Statistical �lters and structural parameter estimates

To show that statistical �ltering induces important measurement errors in the estimated cyclical

components and to investigate how these errors a¤ect structural estimates, we simulate data from

a textbook New-Keynesian model (see e.g. Gali (2008)), where agents face a labor-leisure choice,

production is carried out with labor, �rms face an exogenous probability of price adjustments and

monetary policy is represented with a conventional Taylor rule. The equilibrium conditions are
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where h is the consumption habit coe¢ cient, �c the risk aversion coe¢ cient, 1=�n the Frisch

elasticity, � the discount factor, 1 � � the share of labor in production, 1 � �p, the probability of

changing prices, and ��; �y; �r are the parameters of the monetary policy rule; Lt is the Lagrangian
on the consumer budget constraint, Yt aggregate output, Yt(j) output of good j, Nt aggregate

hours, Wt the nominal wage, Rt the nominal interest rate, �t the in�ation rate, Pt the price level,

Pt(j) the price of good j, MCrt aggregate real marginal costs and ePt the optimal price; �t is
a preference shock, Zt a technology shock, �t a markup shock and vt a monetary policy shock.

The �rst equation equates the marginal utility of consumption to the Lagrangian; the second the

intertemporal rate of substitution between leisure and consumption to the real wage and the third
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is a pricing relationship for one period real bonds. The next equation is a Phillips curve. Equation

(5) describe the behavior of the aggregate price level. Equations (6), (7) and (8) de�ne the resource

constraints, aggregate hours and real marginal costs. The last equation is the policy rule of the

central bank. A full description of the model and the log-linearized conditions are in appendix A.

For the sake of illustration, we consider two situations. In the �rst one, ln�t = �� ln�t�1 +

et, where et � N(0; �2�); ln �t = � + 1��
� �t, where �t � N(0; �2�), ln vt � N(0; �2v) and Zt =

Zt;cZt;T , where lnZt;T = 
t + et;T with et;T � N(0; �2Z;T ) and lnZt;c = �z lnZt�1;c + et;c with

et;c � N(0; �2Z;c) (DGP1). In the second case �t = �t;c�t;T where ln�t;c = �� ln�t�1;c + et;c with

et;c � N(0; �2�;c); ln�t;T = ln�t�1;T + et;T with et;T � N(0; �2�;T ); ln �t = � + 1��
� �t, where �t �

N(0; �2�), ln vt � N(0; �2v) and lnZt = �z lnZt�1 + et, where et � N(0; �2Z) (DGP2). Thus, in both

speci�cations, there are four shocks driving cyclical (stationary) �uctuations and one shock driving

non-cyclical (non-stationary) �uctuations. However, in DGP1 non-cyclical �uctuations are driven

by a technology shock which is stochastic around a linear trend and in DGP2 they are driven by a

preference shock displaying a unit root. For both DGPs, we set � = 0:99;�c = 1:00;h = 0:70;�n =

0:70; � = 7:0; �r = 0:2; �� = 1:30; �y = 0:05; �p = 0:8 �� = 0:5; �z = 0:8;�v = 0:0012;�� = 0:2064.

In DGP1 we select � = 0:4; �� = 0:0112, 
 = 0:002, �Z;T = 0:003; �Z;c = 0:0051 and in DGP2

� = 0:0; �Z = 0:0051, ��;c = 0:0112, and ��;T = 0:0012. None of the points we make, however,

depends on the choice of these parameters.

DGP1 DGP2
Variable Filter St.dev. AR1 corr(y,�) St.dev. AR1 corr(y,�)

Output LT 0.0486 0.925 0.864 0.0123 0.911 -0.196
HP 0.0366 0.876 0.834 0.0065 0.691 -0.288
BP 0.0377 0.908 0.939 0.0060 0.859 -0.553
FOD 0.0188 0.608 0.513 0.0052 0.100 -0.029
True 0.0295 0.914 0.728 0.0082 0.811 -0.324

In�ation LT 0.0043 0.703 0.0100 -0.005
HP 0.0037 0.602 0.0095 -0.083
BP 0.0034 0.873 0.0050 -0.810
FOD 0.0033 -0.138 0.0138 -0.495
True 0.0022 0.590 0.0098 0.005

Table 1: Moments of �ltered and true cyclical components; simulated data.

Table 1 presents a few moments of �ltered output and �ltered in�ation when linear (LT), Hodrick

and Prescott (HP), band pass (BP) and �rst order di¤erence (FOD) �ltering are used together with



2 STATISTICAL FILTERS AND STRUCTURAL PARAMETER ESTIMATES 6

Filter LT HP FOD BP
True Prior Median (s.e.) Median (s.e.) Median (s.e.) Median (s.e.)

�c 1.00 �(0.1,0.1) [1.00, 10.0] 3.77 ( 0.25) 4.38 ( 0.36) 2.21 ( 0.16) 5.23 ( 0.24)
�n 0.70 �(0.5,0.5) [1.00, 4.0] 0.28 ( 0.05) 0.13 ( 0.02) 0.04 ( 0.00) 0.06 ( 0.01)
h 0.70 B(10,3) [0.76, 0.11] 0.58 ( 0.03) 0.61 ( 0.06) 0.69 ( 0.03) 0.85 ( 0.05)
� 7.00 N(6,0.5) [6.00, 0.50] 3.95 ( 0.13) 3.95 ( 0.13) 4.05 ( 0.13) 3.96 ( 0.13)
�r 0.20 B(10,6) [0.71, 0.09] 0.30 ( 0.01) 0.27 ( 0.01) 0.39 ( 0.01) 0.59 ( 0.02)
�� 1.30 N(1.5,0.2) [1.50,0.20] 1.71 ( 0.06) 1.60 ( 0.05) 1.79 ( 0.06) 1.50 ( 0.05)
�y 0.05 N(0.4,0.2) [0.40, 0.20] -0.03 ( 0.01) -0.12 ( 0.03) 0.01 ( 0.00) -0.04 ( 0.01)
�p 0.80 B(6,6) [0.50, 0.14] 0.83 ( 0.03) 0.82 ( 0.03) 0.80 ( 0.03) 0.93 ( 0.03)
�� 0.50 B(10,6) [0.71, 0.09] 0.61 ( 0.03) 0.33 ( 0.02) 0.62 ( 0.05) 0.61 ( 0.04)
�z 0.80 B(10,6) [0.71, 0.09] 0.72 ( 0.04) 0.54 ( 0.04) 0.24 ( 0.03) 0.70 ( 0.03)
��;c 1.11 ��1(10,20) [0.0056, 0.0020] 0.14 ( 0.02) 0.18 ( 0.16) 0.21 ( 0.05) 0.23 ( 0.43)
�z 0.51 ��1(10,20) [0.0056, 0.0020] 0.15 ( 0.03) 0.27 ( 0.04) 3.87 ( 0.42) 1.72 ( 0.22)
�v 0.12 ��1(10,20) [0.0056, 0.0020] 0.03 ( 0.00) 0.03 ( 0.00) 0.03 ( 0.00) 0.03 ( 0.00)
�� 20.64 ��1(10,20) [0.0056, 0.0020] 7.31 ( 0.35) 4.90 ( 0.39) 4.96 ( 0.19) 5.77 ( 0.23)

Table 2: Parameters estimates obtained using di¤erent �lters; the DGP features a preference shock with
two components, a stationary AR(1) and a unit root. All variables are �ltered prior to estimation. The
sample size is T=150. � stands for the gamma distribution, B for the beta distribution and N for the normal
distribution. In square brackets are the mean and the standard deviation of the prior.

the moments of their true cyclical component, when T=1000 - this sample size e¤ectively reduces

small sample biases to zero. Clearly, regardless of the DGP, the variability, the serial and the

cross correlation properties of the cyclical component of output and in�ation are distorted. Also,

although output displays a linear trend under DGP1 and a unit root under DGP2, LT �ltering

in DGP1 and FOD �ltering in DGP2 are as biased as other arbitrary �ltering approaches. Thus,

misspeci�cation of the non-cyclical component can not be reason for these distortions. Finally,

although DGP2 features a unit root, the raw in�ation series is persistent but stationary. Hence, it

will matter for structural estimation whether the model is �tted to �ltered or un�ltered in�ation.

To show how �ltering errors a¤ect parameter estimation, we take the experimental data for

output, real wages, interest rates and in�ation constructed with DGP2 and estimate the structural

parameters pre�ltering the raw data with LT, HP, BP and FOD �lters. Estimation is conducted

with Bayesian methods: we choose relatively loose priors for all the parameters and, to give the

best chance to the routine, start estimation at the true parameter values. Posterior estimates are

obtained with a random walk Metropolis algorithm, where the jumping variable has a t-distribution
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with 5 degrees of freedom and the variance is tuned to have an acceptance rate of about 30 percent

for each �ltering approach. Half a million draws were made in each case; convergence was checked

with a standard CUMSUM statistic and achieved after less than 250000 iterations. We keep one out

of hundred of the last 100,000 draws to compute posterior statistics. Results obtained experimenting

with a �at prior are available on request from the authors.

Table 2 reports the median and the standard deviation of the posterior of each structural

parameter when all observables are independently �ltered prior to estimation. Appendix B contains

estimates for other relevant cases and other DGPs. There are important estimation biases in all

cases and the magnitude of the bias can exceed 100 percent for some parameter. Interestingly,

the parameters regulating the relative magnitude of income and substitution e¤ects (the Frisch

elasticity ��1n , the habit parameter h, the policy parameter �� and persistence of the shocks)

are considerably distorted. Estimates of the structural parameters appear to be relatively similar

across three of the columns but this outcome depends on the features of the DGP, in particular,

on whether the non-cyclical component is driven by technology or preference disturbances, on the

relative variability of the non-cyclical shocks, and on whether all observables or only a portion of

them is �ltered prior to estimation (see appendix B).

While we have chosen to perform estimation using 150 data points to mimic a realistic estimation

situation, larger samples will not change the conclusions. Thus, distortions obtain because of

�population� rather than �small sample� errors. Similarly, allowing for measurement errors in

the estimation will not change the features of table 2: the variability of the structural shocks is

altered but the magnitude and the direction of the biases in the estimates of important structural

parameters is unchanged (for both exercises, see Appendix B).

To understand why distortions occur, it is useful to plot the spectral density of the cyclical

component of output and in�ation (obtained by setting 
 = �z;T = 0 for GDP1 or ��;T = 0 for

DGP2 in the simulations) together with the spectral density of the four �ltered data when T=1000.

If one �ltering transformation recovers the true cyclical component, the di¤erence between the two

spectra will be zero at all frequencies. Imperfect isolation in certain frequency bands will be evident

when the two spectra di¤er considerably in those bands. To facilitate the discussion, we divide the

spectrum into low, business cycle, and high frequencies and, in �gure 1, separate the frequencies

corresponding to cycles of 8-32 quarters from the others with two vertical bars.

Two observations are immediate. First, the cyclical component produced by a DSGE model

does not have power only at the so-called business cycle frequencies - in fact, its spectrum resembles
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the one of an AR(1) process . For the standard shock processes we have used, about half of the

variability of the series is located at frequencies corresponding to cycles larger than 32 quarters.

Thus, the idea that a statistical �lter de�nes what is relevant for the analysis is incompatible with

the assumption that a class of stationary DSGE models has generated the data. Moreover,
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Figure 1: Log spectrum: true and estimated cyclical components. Top panel DGP1; bottom panel
DGP2.

focusing on business cycle frequencies is restrictive and may bias the interpretation of the economic

phenomena. Second, even with 1000 data points, all �lters imperfectly capture the spectrum of

the true cyclical component of output and in�ation. More importantly, regardless of the DGP, the

�ltering error is not only located in the high frequencies and its frequency distribution is somewhat

�lter dependent. For example, LT �ltered data has a stronger low frequency component and the
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other three �ltered data a weaker low frequency component than the actual cyclical data. At busi-

ness cycles frequencies, the cyclical component extracted with HP, BP and LT �lters overestimates

the true cyclical component of both variables while FOD �ltered data grossly underestimates the

variability of the true cyclical component.

Why are errors present? The statistical �lters we consider look like �high pass�or �band pass�

�lters. Thus, they appropriately extract the cyclical component of the data if and only if the non-

cyclical component of the model is solely located at those frequencies suppressed by the �lters and

the cyclical component is entirely located at the frequencies where the gain function of the �lter

is unity. Given that the cyclical component generated by a (log-linear) DSGE model will typically

have power at all frequencies of the spectrum, �ltering errors are created. In particular, since all

the �lters but LT attribute the power in low frequencies to the non-cyclical component, important

downward distortions are created at these frequencies. For the LT �lter instead, upward distor-

tions are produced because the stochastic elements of the non-cyclical component are disregarded.

Mismeasurement of the low frequencies portion of the cyclical �uctuations is particularly trouble-

some because the estimated income and substitution e¤ects are di¤erent from the true income and

substitution e¤ects and this a¤ects structural parameter estimates.

Knowing the DGP of the data is not a precondition for the above argument to hold. The

(log-linear) solution of a stationary DSGE model has either a AR or an ARMA representation

(depending on whether all or a subset of the endogenous variables is considered), regardless of its

exact structure. If the shocks are persistent, as it is usually assumed, it will always be the case that

the data simulated by the stationary solution will have power in the low frequencies of the spectrum

. Furthermore, the proportion of the variability in those frequencies is an increasing function of the

persistence of the shocks. Our point is also completely independent of the assumed process driving

the non-cyclical component and of its exact location (compare, e.g., the plots obtained with DGP1

and DGP2).

It is common among practitioners to believe that di¤erent �lters are simply di¤erent ways to

capture what generates the non-cyclical component of the data. This perception is, in general,

incorrect. The choice of �lter has also implications for what we believe the cyclical component is.

Incorrect �ltering distorts both components and, as the discussion following table 1 demonstrates,

misspeci�cation of the cyclical component may have more severe consequences than misspeci�cation

of the non-cyclical component.
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3 An ideal �lter for DSGE models

To eliminate the distortions induced by imperfect �ltering one should design a �lter exploiting the

information that the cyclical components of a DSGE has the features of an AR (ARMA) process.

For this purpose, suppose a time series yt has two components: ct, which carries relevant

information about the parameters of the model, and Tt, a nuisance component, and suppose for

simplicity that Tt and ct are uncorrelated (which, in our context, means that they are driven

by independent shocks). Suppose we have available a time invariant linear �lter g(L) and let

yft = g(L)yt be the �ltered series. Under what conditions would y
f
t = ct? For this to happen,

we need g(L)Tt = 0 and g(L)ct = ct. In frequency domain, these two conditions imply that

g(!)(ST (!) + Sc(!)) = Sc(!), where Si(!) is the spectral density of i = T; c at frequency ! and

g(!) is the square modulus of the transfer function of g(L). Then, if 0 � g�(!) = Sc(!)
ST (!)+Sc(!)

� 1,
yft = ct. Thus, g�(!) needs to be large (small) at the frequencies where Sc(!) is large (small).

In time series analysis, it is typical to assume that ct has power only certain frequencies, say,

Sc(!) 6= 0; 8 ! 2 (!1; !2) and Tt has power at other frequencies, so that ST (!) = 0; 8 ! 2 (!1; !2).
In this case, a band pass �lter g�(!) = 1;8! 2 (!1; !2) and g�(!) = 0 otherwise, will make yft = ct.

However, if ct has also power for ! 2 (0; !1), g�(!) 6= 0; 8 ! 2 (0; !1); a band pass �lter fails to
recover the true cyclical component.

As discussed, in log-linearized DSGE models ct has, roughly, the structure of a persistent AR

(or a persistent ARMA) process, meaning that Sc(!) 6= 0;8! and @Sc(!)
@! < 0;8! (or @Sc(!)

@! � 0

for ! < !1 and
@Sc(!)
@! � 0 for ! � !1). Hence, regardless of the exact structure of Tt, band pass

or high pass �lters (such as the HP or FOD �lters) will induce measurement error at some or all

frequencies. High frequency measurement error a¤ects the standard errors of the estimates but,

in general, will not change the properties of point estimates (compare, for example, BP and HP

estimates in table 2). On the other hand, low frequency measurement errors are problematic.

Since Sc(!) 6= 0;8! and @Sc(!)
@! < 0;8!, the ideal �lter for a DSGE model must be such that

log g�(!) is increasing in !, never vanishes over (0; �) and approaches one only for ! = �. If it is

unique, it can be calculated with an iterative approach which we summarize next:

Algorithm 3.1 1. Choose a �0 vector of structural parameters and compute ct(�0) using the model.

2. Given an observable yt, obtain g(!)(�0) =
Sc(!;�

0)
Sy(!)

and compute yft (�
0) = g(L)(�0)yt using the

resulting g(L) �lter.
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3. Use yft (�
0) to estimate the parameters of the model. Call the estimated vector �1.

4. Iterate on steps 1.-3. until jjg(L)(�i)yt � ct(�i)jj < " or jj�i � �i�1jj < ", or both, i = 2; : : :.

where the metric in step 4. is chosen by the investigator and may be frequency speci�c. Under

the assumption that the data have been generated by a Markov process which is irreducible, ape-

riodic and Harris recurrent, and that the metric used is the total variation norm over frequencies,

adaptation of the results of Tierney (1994) will insure that convergence occurs as the number of

iterations becomes large.

A few points about the algorithm are worth emphasizing. First, the optimal g�(!) does not

necessarily generate a one-sided g(L), nor weights gj decaying fast to zero. Therefore, practical

issues concerning alteration of the timing of the information and truncation need to be address.

Second, the iterative procedure is time consuming since the model needs to be estimated numerous

times before the �xed point is found. Given the computational costs of estimating the parameters

of DSGE models by full information methods, this iterative approach is unfeasible on current

computers. Finally, the ideal �lter is model speci�c - it depends on what shocks drive ct, their

time series structure and the features of the internal propagation mechanism of shocks - and it is

subject to standard speci�cation errors if the cyclical component is misspeci�ed.

Given these di¢ culties, rather than trying to construct the ideal �lter for a particular model,

we prefer to take another route to improve the quality of the estimates of the structural parameters

of a cyclical DSGE, which is not model speci�c and is computationally feasible. Our idea is to use

the information contained in the cyclical data generated by a number of �lters in the estimation. In

practice, we treat cyclical data extracted with various �ltering methods as contaminated estimates

of the unobservable model-based cyclical component and use the information provided by a carefully

selected list of �lters jointly in the estimation of the structural parameters. If the measurement

error is close to be idiosyncratic across �ltering methods in the low frequencies, our signal extraction

approach will average it out. Thus, we obtain more precise estimates of the cyclical features of the

economy and, hopefully, better estimates of the structural parameters are obtained.

How do we obtained improved estimates of the structural parameters? Let gi(L); i = 1; 2; : : : ; q

to be di¤erent �lters and yit the resulting �ltered data. Let Si(!); i = 1; 2; : : : ; q be the spectral

density of the �ltered data yit and assume that Si(!) = Sc(!) + Sui(!). Then
P
i & i(!)Sui(!) = 0

for some set of weights & i(!) as long as Sui(!) are su¢ ciently idiosyncratic across i. For weights

& i(!) which are independent of !, it may not be possible to set
P
i & iSui(!) = 0 at all ! and one can
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choose them to reduce, e.g., low frequency measurement error. Note that the use of cross sectional

information to identify the model-based cyclical component allows the ui to be serially correlated.

Given that q is �nite here, we will not allow cross �lter correlation in the ui and this requires a

careful selection of �ltering methods to be used in the estimation.

4 An alternative framework

Let the log-linearized solution of a cyclical DSGE model be:

xt = �(�)xt�1 +	(�)et et � (0;�(�)) (10)

where 	;� are time invariant functions of the vector of structural parameters � = (�1; : : : ; �k), xt

are the endogenous variables and et the structural innovations. We let xmt = Sxt, be a n� 1 vector
where S is a selection matrix picking the variables which are observable and interesting from the

point of view of the analysis.

Let xit be a vector of size n � 1 of observable time series �ltered with method i = 1; 2; :::q,

and let xt = [x01t; x
0
2t; : : : ; x

0
qt]
0. Assume that the �ltered observables are linked to the true cyclical

component with the following structure:

xt = �0 + �1x
m
t + ut ut � (0;�u) (11)

where �0 = [�10; �
2
0; : : : ; �

q
0]
0 is a nq � 1 vector of constants, �1 = [�11; �

2
1; : : : ; �

q
1]
0 a nq � n matrix

of non-structural parameters, �i1 is a n � n diagonal matrix each i, and ut = [u01t; u
0
2t; : : : ; u

0
qt] is a

nq � 1 vector of possibly serially correlated errors. For estimation purposes, we normalize �11 = I.

Joint estimation of the structural parameters � and the non-structural parameters (�0; �1;�u)

is now possible because (10) and (11) represent a state space system with the latter being a mea-

surement equation and the former state equations. Thus, the likelihood of (10) and (11) can be

computed with the Kalman �lter. If Bayesian estimation is preferred, the posterior distribution

for the parameters can be obtained with Monte Carlo Markov Chain simulators (see e.g. Canova

(2007)). Note that identi�cation of xmt is obtained from the cross section of �lters under the

conditions stated in Forni et al (2000).

In (11) di¤erent cyclical estimates xit are treated as contaminated proxies of the true cyclical

component xmt . They are contaminated because they alter the power spectrum of the true cyclical

component at some or all frequencies. The information they contain for the model relevant concepts

of cyclical �uctuations is measured by �0 and �1. Ideally, �0 is a vector of zeros and �1 a matrix
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with the identity in each n� n block, so that each set of �ltered data is an unbiased and perfectly
correlated although noisy signal of the true cyclical component. In general, we expect either �0 6= 0
or �i1 6= I; i 6= 1, or both, for some or all i . Since �11 = I, estimates of �i1 for i 6= 1 give us the idea
of the amount of correlation distortions each method displays relative to the �rst.

While we think of (10) and (11) as a way to correct for �ltering biases, one could also think

of our setup as a factor model, where the model concept of cyclical �uctuations is de�ned as the

common factor to the noisy indicators produced by the various �lters - we thank a referee for

suggesting such an interpretation. This idea is appealing but disregards the information that the

cyclical component of a DSGE model has a particular structure.

The signal extraction setup we use is advantageous in, at least, two respects. First, since we do

not have to arbitrarily choose one �ltering approach prior to the estimation or select which shock

drives the non-cyclical component, we avoid speci�cation errors. Second, our approach can use

as observables the output of one-sided and two-sided �lters, both of univariate and multivariate

nature and of �lters which assume that cyclical and non-cyclical components are correlated or not,

as long as the list of �lters is su¢ ciently rich.

We stress that our analysis is conditional on two important assumptions. First, we assume that

the model generating xt is correctly speci�ed; that is, there are no missing variables or shocks.

When this is not the case, the interpretation of the � 0s becomes more di¢ cult and there is no

guaranteed that our signal extraction approach has better properties than any of the standard

approaches. Second, we assume that the cyclical and the non-cyclical components are theoretically

uncorrelated. While this simplifying assumption is common in the literature, the presence of a

correlation among components adds misspeci�cation and biases which are neglected in this paper.

4.1 Selecting the �lters to be used in the estimation

We have mentioned that we need vectors of �ltered data which are su¢ ciently idiosyncratic in their

low frequency distortions. Hence, knowledge of features of various �lters is necessary to create a list

which e¤ectively averages out the low frequency measurement errors induced by imperfect �ltering.

We have also mentioned that, apart from LT, standard �lters resemble high pass �lters and

thus tend to underestimate the low frequency contribution of the cyclical component. Therefore,

it is important to use in the estimation �lters which overestimate the low frequency contribution

of the cyclical components. One class of �lters with such a property is the cumulative operator

(1+L)j ; j = 1; 2; : : :. Notice that for j = 1, this �lter has a square gain function which is the mirror
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image of the FOD �lter. Low pass �lters can also be considered - as long as the zero frequency is

properly accounted for, for example, by requiring that the sum of the �lter weights is zero. One

can also consider Butterworth �lters, where the two free parameters are chosen to let interesting

frequencies (say, from 8 to 100 quarters) be passed with minor changes.

4.2 The relationship with the literature

The literature is largely silent about the issues we address in this paper. Cogley (2001) and Gorod-

nichenko and Ng (2010) are concerned with the problem of estimating the structural parameters

of a cyclical DSGE when the trend speci�cation is incorrect, but do not investigate what are the

consequences that imperfect �ltering has on the properties of the cyclical component nor their

implications for structural estimates. Giannone et al. (2006) emphasize that if model variables are

measured with error, the solution has a natural factor structure and exploit this feature to com-

pare VAR and factor models impulse responses. Rather than considering a factor structure for the

endogenous variables in terms of the states, we construct an estimable structure where vectors of

�ltered observable data have a factor structure in terms of the variables of the model. However, as

in Giannone et al., we emphasize that low frequency measurement error may exist. Canova (2008)

suggests to estimate cyclical DSGE models by specifying a �exible link between the model and the

raw data - the approach is designed to deal with di¤erent sources of misspeci�cation than those con-

sidered here. Ferroni (2009) provides a one-step approach which allows to test trend speci�cations.

The paper closest in spirit to ours is Boivin and Giannoni (2005). Their main point is that the

model variables do not have an exact observable counterpart and that some indicators external to

the model may have important information for model variables. The idea here is somewhat similar.

The cyclical component of the model does not have an exact counterpart in the data because none

of the existing �lters captures the time series features of the cyclical component produced by a

DSGE. If di¤erent cyclical vectors have idiosyncratic error components, this error may be averaged

out with our approach.

Commentators have noticed that the procedure resembles Bayesian averaging of outcomes.

Two main di¤erences set our approach apart from this procedure. First, in Bayesian averaging

the weights are the posterior probabilities of each model, while here they capture the amount of

information contained in the �ltered data for the model based concept of cyclical �uctuations.

Second, in Bayesian averaging the data is the same but the models are di¤erent. Here, there is

a single model, but the data used to estimate it is di¤erent. Finally, our approach has the same
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�avour of multivariate unobservable component �ltering (see e.g. Canova (2007)). The extraction

problem applies here to vectors of �ltered data rather than to a vector of raw data.

4.3 How does the procedure fare with simulated data?

To show the properties of our approach and to highlight the practical importance of appropriately

choosing the list of �lters, we estimate the structural parameters of the model of section 2 using

the experimental data produced by DGP2. As input in our procedure, we employ either LT, HP

and FOD �ltered data (Factor 1) or HP and BP �ltered data - in this case we use two smoothing

constants � = 1600 and � = 6400 (Factor 2). As shown in �gure 1, LT, HP and FOD �ltered

data display signi�cant low frequency di¤erences, while HP and BP �ltered data have similar low

frequency components. Thus, we expect a reduction of the parameter distortions in the �rst but not

in the second case. Since the list of �lters is short, biased will not be wiped out but improvements

in the quality of the estimates could be signi�cant.

We employ the same Bayesian approach used in section 2, assuming the same priors on the

structural parameters and loose priors on the non-structural parameters entering (11). In particular,

we assume that each element of �0 is normally distributed, with mean zero with standard deviation

equal to 0.5; the prior for the non-normalized elements of �1 is normal, centered at 1 with standard

deviation 0.5: and the prior for the standard deviation of the ut�s is inverted gamma with mean

0.0037 and standard deviation 0.0002.

Because the data set is short, we present results obtained when constants and the loadings in

(11) are common across series for each �lter (in this case, there are 17 non-structural parameters).

It makes sense to restrict the model this way because the distortions we emphasize are independent

of the series (see e.g. output and in�ation in table 1 ). In an earlier version of the paper, we had also

performed unrestricted estimation (which implies 32 non-structural parameters to be estimated):

the direction of the changes was similar but the quality of the estimates worsened.

Table 3 presents the median and the standard error of posterior for the structural parameters

when all variables are �ltered. Results for other speci�cations are in appendix B. In general, the

biases we noted in table 2 are reduced with the Factor 1 speci�cation but not with the Factor 2

speci�cation. For example, the habit and the risk aversion parameters are better estimated, and the

in�ation coe¢ cient in the Taylor rule much closer to the true value with Factor 1. The variability

of the structural shocks is still poorly estimated but for reasons distinct from those discussed here

(these parameters are weakly identi�ed, regardless of cyclical data used).
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Factor 1 Factor 2

True Median (s.e.) Median (s.e.)
�c 1.00 1.10 (0.10) 2.18 (0.37)
�n 0.70 0.49 (0.05) 0.11 (0.03)
h 0.70 0.74 (0.11) 0.62 (0.02)
� 7.00 6.28 (0.11) 6.27 (0.06)
�r 0.20 0.30 (0.07) 0.28 (0.02)
�� 1.30 1.46 (0.03) 1.53 (0.05)
�y 0.05 0.06 (0.01) 0.32 (0.05)
�p 0.80 0.85 (0.03) 0.89 (0.01)
�� 0.50 0.53 (0.05) 0.65 (0.04)
�z 0.80 0.66 (0.03) 0.62 (0.02)
�� 1.10 0.23 (0.07) 0.21 (0.07)
�z 0.57 0.19 (0.04) 0.49 (0.10)
�v 0.12 0.09 (0.01) 0.09 (0.01)
�� 20.64 5.21 (0.52) 4.44 (0.73)

Table 3: Posterior parameters estimates. Factor 1 uses LT, HP and FOD �ltered data; factor 2 HP(� =
1600), HP(� = 6400) and BP �ltered data. The DGP features a preference shock with two components, a
stationary AR(1) and a unit root. All variables are �ltered prior to estimation. The sample size is T=150.

To see what Factor 1 estimates imply in terms of economically meaningful statistics, we �rst

compute the autocorrelation function of the cyclical components of output and in�ation when the

posterior median estimates of the parameters are used and compare them with the true autocorre-

lation function and the autocorrelation function obtained with LT and FOD approaches (see �gure

2). For output, the autocorrelation function obtained with our speci�cations is very close to the

true one and it is di¤erent from the one obtained, for example, with the FOD �lter. For in�ation,

the match is good but di¤erences with standard methods are less dramatic, primarily because true

in�ation persistence is low.

The good performance of our approach is reinforced when we look at the responses of the

endogenous variables to the four structural shocks. Figure 3 presents the responses produced with

the true parameters, those generated with the posterior median estimates obtained with our model

and with LT and FOD �ltered data.
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Figure 2: Autocorrelation functions of estimated and true cyclical components

Both the shape and the persistence of the conditional responses are reasonably captured by our

setup. In addition, and contrary to what was happening with LT and FOD �lters, the real wage

response to technology has the right sign on impact. Finally, our estimates roughly replicate the

magnitude of the responses to both preferences and technological disturbances while this is not the

case with standard approaches.

Next, we examine the out-of-sample performance of our setup relative to traditional ones. We

conduct two types of forecasting exercises. In the �rst, we compute the sequence of one step ahead

forecast errors for output and in�ation, when we take as parameter values the posterior median

estimates, setting all the shocks in the forecasting period to zero. The MSE is computed over 150

forecasting periods, with no parameter updating in the forecasting sample, and appears in table 4.

Series LT FOD Factor 1

Output 0.006 0.003 0.001
In�ation 0.030 0.031 0.029

Table 4: Mean square error of the unconditional forecasts; simulated data; scale 10�2.
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Figure 3: Impulse responses to shocks

Figure 4 traces out the one-step ahead path of cyclical output and cyclical in�ation that would

obtain with posterior median estimates when monetary shocks were drawn so as to keep the nominal

interest rate �xed over the forecasting path - a standard assumption in policy projections. That

is, we allow the nominal interest rate to endogenously react to output and in�ation but make sure

that the monetary shocks are such that the nominal rate is constant over the forecasting path and

equal to the value taken prior to the forecasting period (time 0 in the �gure).

Overall, our speci�cation is superior to single �ltering approaches in unconditionally forecasting

one-step ahead cyclical output and cyclical in�ation and for output, the reduction in MSE is

considerable. Our speci�cation does well also in conditional forecasting. The counterfactual path

for output our speci�cation produces is very close to the true one at all horizons and practically

eliminates the systematic bias that LT and FOD �lters generate. For in�ation, the counterfactual
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path produced by our model is similar to the true path; it is signi�cantly better than the one

obtained with FOD estimates, but roughly comparable to the one produced by LT estimates.
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Figure 4: One step ahead forecasts, conditional on a constant interest rate path.

Since these conclusions hold also for alternative DGPs and combinations of �ltered and un�ltered

observables, the speci�cation is e¤ective in reducing low frequency measurement errors and can

provide a more reliable picture of the cyclicality of the variables of interest.

5 Does money matter in transmitting monetary business cycles?

To show that our procedure may be relevant for understanding important economic phenomena,

we reconsider the role of money in transmitting monetary business cycles. The majority of the

monetary models nowadays used in the policy and academic literature attributes a minimal role

to the stock of money. In most cases these models make no reference whatsoever to monetary

aggregates, and when they do, they use a speci�cation where a money demand function determines
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how much money needs to be supplied, given predetermined levels of output, in�ation and the

nominal rate. Ireland (2004) has constructed a speci�cation in the class of New Keynesian models

where real balances may have in�uence the dynamics of output and in�ation. He estimated the

relevant parameters by likelihood techniques using post 1980 US data and found that current

theoretical practices are, by and large, appropriate. To construct the likelihood of his cyclical

model, Ireland takes away a linear trend from per-capita GDP and per-capita real balances and

demean in�ation and the nominal interest rate. Here, we repeat Ireland�s exercise using a number

of �ltering procedures.

5.1 The model economy

Since the economy is quite standard, we only brie�y describe its features. At each t the represen-

tative household maximizes

Et
X
t

�t�t[U(ct;
Mt

ptet
)� �nt] (12)

where 0 < � < 1; � > 0, subject to the sequence of budget constraints

Mt�1 + Trt +Bt�1 +Wtnt +Dt = ptct +
Bt
Rt
+Mt (13)

where ct is consumption, nt are hours worked, pt is the price level, Mt are nominal balances, Wt is

the nominal wage and Bt are one period nominal bonds with gross nominal interest rate Rt; Trt

are lump sum nominal transfers made by the monetary authority at the beginning of each t, and Dt

nominal dividends distributed by the intermediate �rms. �t and et are disturbances to preferences

and the money demand whose properties are described below. Let mt � Mt
pt
denote real balances

and �t � pt
pt�1

the period t gross in�ation rate.

The representative �nal good producing �rm uses yit units of intermediate good i, purchased

at the price pit to manufacture yt units of �nal goods according to the constant return to scale

technology yt = [
R 1
0 (y

i
t)
(��1)=�di]�=(1��), where � > 1 is the constant price elasticity of demand for

each intermediate good. Pro�t maximization produces the demand functions

yit = (
pit
pt
)��yt (14)

Competition within the sector implies that pt = (
R 1
0 (p

i
t)
1��di)1=(1��)

The intermediate good producing �rm i 2 [0,1], hires nit units of labor from the representative

household to produce yit units of intermediate good i using the production function yit = ztn
i
t;
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where zt is an aggregate productivity shock. Since intermediate goods substitute imperfectly for

one another in producing �nished goods, intermediate �rms can set the price of their good but

must satisfy (14) at the chosen price. We assume a quadratic cost in adjusting prices, measured

in �nished goods, given by �
2 (

pit
�spit�1

� 1)2yt where � > 0 and �s measures steady state in�ation.

Optimal prices are chosen to maximize

E
X
t

�t�t[U1(ct;
Mt

ptet
)](
Di
t

pt
) (15)

subject to (14), where �t�tU1(ct;
Mt
ptet
)measures the marginal value to the household of an additional

unit of pro�ts t and real dividends are Di
t
pt
= (

pit
pt
)1��yt � (p

i
t
pt
)��(wtytzt

)� �
2 (

pit
�pit�1

� 1)2yt.
The monetary authority sets the nominal interest rate according to

Rt = R
�r
t�1y

(1��r)�y
t�1 �

(1��r)��
t�1 �M

(1��r)�m
t vt (16)

where �r; �y; ��; �m � 0 are parameters and vt is a monetary policy shock.
The law of motion of the disturbances dt = (�t; et; zt; vt) is log dt = �d+H log dt�1+ �t, where H

is diagonal with entries ��; �e; �z; 0, respectively. The covariance matrix of the structural shocks �

is diagonal with entries �2�; �
2
e; �

2
z; �

2
v. In a symmetric equilibrium yit = yt; n

i
t = nt; p

i
t = pt; D

i
t = Dt.

Log-linearizing the model around the steady state produces the following equilibrium conditions:

ŷt = Etŷt+1 � !1((R̂t � Et�̂t+1)� (�̂t � Et�̂t+1)) + !2((m̂t � êt)� (Etm̂t+1 � Etêt+1))(17)

m̂t = 
1ŷy � 
2R̂t + (1� (Rs � 1)
2)êt (18)

�̂t = �Et�̂t+1 +  (
1

!1
ŷt �

!2
!1
(m̂t � êt)� ẑt) (19)

R̂t = �rR̂t�1 + (1� �r)�yŷt�1 + (1� �r)���̂t�1 + (1� �r)�m(�m̂t + �̂) + v̂t (20)

where

!1 = �
U1(c

s; mses )

ysU11(cs;
ms

pses )
(21)

!2 = �m
s

es
U12(c

s; m
s

es )

ysU11(cs;
ms

es )
(22)


1 = (Rs � 1 + ysrs!2
ms

)(

2
!1
) (23)


2 =
Rs

(Rs � 1)(ms=es)
(

U2(c
s; m

s

es )

(Rs � 1)esU12(cs; m
s

es )�RsU22(cs;
ms

es )
) (24)

 =
�� 1
�

(25)
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the superscript s denotes steady state values of the variables, Uj is the �rst derivative of U with

respect to argument j = 1; 2 and Uij is the second order derivative of U , i; j = 1; 2.

The log-linearized Euler condition (equation (17)) includes terms involving real money balances

and the money demand shocks. They drop out if and only if utility is separable in consumption and

real balances (see equation (22)). Similarly, real balances play a role in the forward looking Phillips

curve (equation (19)), as long as !2 6= 0. Thus, real balances directly a¤ect the determination

of output and in�ation if and only if real balances and consumption enter non-separably in the

utility function. On the other hand, the posited policy rule implies that the growth rate of nominal

balances may in�uence output and in�ation indirectly, via interest rate determination. When

!2 = �m = 0, real balances have no direct or indirect role in propagating cyclical �uctuations.

5.2 Estimation

We estimate the model with quarterly US data spanning the period 1959:1-2008:2. All data comes

from the FRED data bank at the Federal Reserve Bank of Saint Louis and it is seasonally adjusted.

For real GDP we take the GDPC96 series, which is a chain weighted real value of domestic produc-

tion, convert it in per-capita terms dividing it by the civilian non-istitutional population, age 16

and over (CNP16OV) and log it. For real balances, we use the stock of M2 (M2SL), divide it by the

GDP de�ator (GDPDEF), convert it into per-capita terms scaling it by the civilian non-istitutional

population, age 16 and over and log it. In�ation is calculated annualizing the quarterly growth rate

of the GDP de�ator and a three months T-bill (TB3M) is our measure of interest rates.

We employ 8 procedures to extract the cyclical component of all variables. The �rst (POLY)

�ts a second order polynomial to each series separately, allowing for a change in the parameters at

1980:3. The cyclical component is the residual of the regression. The second transformation takes

the �rst di¤erence of each series (FOD) as an estimate of the cyclical component. The third and the

fourth transformations are obtained with a HP �lter and � = 1600 or � = 128000 - the latter leaves

almost unchanged cycles with 2 to 100 quarters periodicity. The �fth transformation takes the �rst

cumulant of all series as an estimate of the cyclical component (CUM). The sixth transformation

is a multivariate version of the Beveridge and Nelson decomposition (MBN) which �ts a VAR with

6 lags to the growth rate of the four variables and takes as an estimate of the cyclical component,

the di¤erence between the level of the variables and their estimated long run values. The seventh

transformation is a classical decomposition (CD) which assumes an additive representation of the

components, �ts a linear trend to the log data and takes the residuals as the cyclical component. The
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last transformation employs an unobservable component (UC) decomposition which assumes that

the non-cyclical component is a random walk and that the cyclical component has a trigonometric

representation (see Canova (2007)). Since each series has an ARIMA(2,1,0) representation, the

cyclical component is estimated with the projected values of an AR(2) regression of the growth

rate of each variable.

We have selected these procedures to introduce as much cross-sectional idiosyncrasies in the

vectors of observables as possible. In fact, in some procedures the non-cyclical component is

quasi-deterministic (CD, POLY), in some it is very volatile (FOD, UC, MBN), and in some it

is stochastic but smooth (HP); most decompositions use univariate and one (MBN) multivariate

information; most imply that cyclical and non-cyclical components are independent and one that

they are correlated (MBN). Finally, some are two-sided (such as the HP �lters) and some one-sided

(such as the MBN or UC �lters). Note that, as far as low frequency distortions are concerned, CD,

POLY, CUM and HP128000 are likely to overestimate the low frequency variability of the cyclical

component, while the other four are likely to underestimate it.

We estimate the parameters of the model by Bayesian methods. The priors are in appendix

C. The vector of observables is 32 � 1 (four series, 8 �ltering methods) and the vector of states
is 4 � 1. Since we set � = 0:99 and steady state in�ation to 2 percent, there are 9 structural

parameters (!1; !2;  ; 
1; 
2; �r; �p; �y; �m) - � and � are not separately identi�able - and seven

auxiliary parameters (��; �e; �z; ��; �e; �z; �v) to be estimated. We parameterize the link between

the model and the cyclical data with one intercept and one slope per �lter, independent of the

series, but we allow the idiosyncratic term to be series and �lter dependent. Thus, the intercept

measures the average (across series and time) bias of each procedure and the slope the average

correlation between the data produced by each method and the relevant model-based quantities.

Since we normalize the slope of the �rst procedure, we have a total of 47 non-structural parameters

to be estimated (8 intercepts, 7 slopes and 32 variances) 1.

We also estimate the structural parameters of interest using Ireland�s original transformation,

but allow for measurement error in each of the four equations - since our approach has an idiosyn-

cratic error built, this is the relevant setup for comparison. For both speci�cations we draw 500,000

elements of a MCMC chain; convergence was achieved in less than 100,000 draws, and posterior

statistics are computed using one every 100 of the last 200,000 draws.

1We have also experimented with speci�cations which leaves all the intercepts and all the slopes free or which
restricts the variances of the idiosyncratic component to be either series speci�c (independent of the �ltering method)
or �lter speci�c (independent of the series) but discarded them because the model �t was relatively poor.
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5.3 The results

Before presenting estimates of the relevant parameters, we brie�y comment on the estimates of the

non-structural parameters we have obtained. First, the vector of �0 is estimated to be zero with

very small standard errors - level biases appear to be absent. Since steady state information is not

used in the estimation, the mean of the data may be di¤erent from the steady state of the model at

the estimated parameters. The fact that this does not happen is encouraging from an estimation

point of view. Second, the loadings �i1 vary from 0.70 (with UC �ltered data) to 0.86 (with CD

�ltered data). Thus, all �ltered series are highly correlated with the respective model quantities.

Finally, standard errors for each series vary across �ltering methods, con�rming the presence of

su¢ cient idiosyncratic information in the vector of cyclical data we employ.

Speci�cation Marginal log Likelihood !2 �m
Basic 16274 0.44 (0.02) 0.48 (0.02)
!2 = 0 16237 0 0.96(0.01)
�m = 0 16212 0.43(0.02) 0

!2 = 0, �m = 0 16220 0 0
Ireland 0.03 (0.02) 0.04 (0.03)

Table 5: Marginal log likelihood and posterior estimates.

Table 5 presents the marginal likelihood of the basic speci�cation, where both the direct and

the indirect e¤ects are allowed for, and for three restricted speci�cations, where either the direct

e¤ect is eliminated (!2 = 0), the indirect e¤ect is eliminated (�m = 0), or both are eliminated and

the estimates of !2 and �m obtained in the various cases. For comparison, we also report estimates

obtained with Ireland�s �ltering speci�cation. The full set of estimates is in appendix C.

A model where both the direct and the indirect e¤ects of money are present is preferable in

terms of in-sample �t. Furthermore, restricting both �m = 0 and !2 = 0 is preferable to restricting

only �m = 0. Posterior estimates con�rm this conclusions: both parameters are tightly estimated,

a-posteriori di¤erent from zero and indicate that money has a moderate in�uence on output and

in�ation �uctuations. Estimates obtained with just one �lter, on the other hand, imply that both

the direct and the indirect e¤ects of money are statistically small and economically unimportant.
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Figure 5: Impulse responses.

Figure 5 presents responses to unitary impulses in our basic speci�cation and in Ireland�s.

Responses look qualitatively similar, but di¤erences in the magnitude and the persistence of the

responses to shocks are evident. In particular, when our approach is used, the persistence of

the responses to technology shocks is reduced, and the responses to money demand shocks have

di¤erent magnitude and persistence. Interestingly, both speci�cations produce a liquidity puzzle

(expansionary monetary shocks decrease real balances rather than increasing them) and a price

puzzle (expansionary monetary shocks decrease in�ation rather than increasing it). We conjecture

that with a more homogenous sample, say 1984-2008, both puzzles would disappear.

In sum, in our setup money plays a role in transmitting �uctuations to output and in�ation

while this is not the case when a standard single �ltering approach is used. Since the list of �lters

we have used can average out low frequency measurement errors, the conclusions obtained with our

approach appear to be more credible.
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6 Conclusions

This paper has three parts. In the �rst, we show that standard �ltering methods are unable to

extract the cyclical component of a DSGE model and that measurement errors distorts estimates

of the structural parameters. Biases obtain because a typical cyclical DSGE model produces time

series with important low frequency components. These components are treated as non-cyclical by

leading �ltering approaches.

In the second part, we discuss how to construct a �lter which takes into account the structure

that a cyclical DSGE model imposes on the data. The derivation of this �lter is theoretically

straightforward, but it requires knowledge of the cyclical model generating the data. Furthermore,

computational complexities make its implementation on existing computers unfeasible.

The third part proposes a method to estimate the structural parameters of a time invariant

cyclical DSGE model which use multiple sources of cyclical information. The approach borrows

ideas from the recent literature employing data-rich environments (see Boivin and Giannoni (2005)).

We set up an estimation framework where the cyclical DSGE model is the unobservable factor;

vectors of �ltered data are contaminated observable proxies; and structural DSGE parameters are

jointly estimated together with the non-structural parameters linking the model and the observables

using signal extraction techniques.

Our approach is advantageous in, at least, two respects. Since we do not have to arbitrarily

choose one �ltering method prior to estimation, or select which shock drives the non-cyclical com-

ponent, we avoid important speci�cation errors. Moreover, our approach can be used with cyclical

data obtained with one-sided and two-sided �lters, of both univariate and multivariate nature, as

long as the list of �lters is su¢ ciently rich. When appropriate conditions are satis�ed, low frequency

errors can be averaged out making inference more reliable.

Using experimental data, we demonstrate that the biases obtained when just one �lter is used are

reduced, that the unconditional one step ahead mean square error (MSE) produced by our approach

is smaller than the MSE obtained with a standard procedure and that conditional forecasts are

better behaved. To show that the biases are also economically relevant, we revisit the role of

money in transmitting monetary business cycles. We show that when the output of multiple �lters

is jointly used in the estimation, money balances statistically matter for the transmission of cyclical

�uctuations to output and in�ation and that the propagation of primitive shocks di¤ers.

We want to reiterate two points which make alternatives to the procedure we present unpalat-
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able. First, although nowadays popular, the approach of using model-based transformation to

�t cyclical models is as problematic as any statistical �ltering approach. Speci�cation errors are

likely to be important. Moreover, since we can solve models only when non-cyclical shocks a¤ect

the technology, the consumption/investment transformation frontier or preferences (see Chang, et

al. (2007)), computational rather than economic considerations may drive model-based �ltering.

Thus, although some form of consistency between the model and the data is imposed, a great deal

of arbitrariness is also present with this approach.

Second, the more appealing approach of employing (time varying) models to jointly explain

the cyclical and the non-cyclical properties of the data is currently unfeasible. Many reasons

make such a research program di¢ cult to pursue. First, jointly modelling cyclical and non-cyclical

�uctuations poses important theoretical challenges: there are few known mechanisms which are

able to propagate temporary shocks for a long period of time (we need, for example, R&D, as in

Comin and Gertler (2006) or Schumpeterian creative destruction, as in Lopez-Salido and Michelacci

(2007)) or create important cyclical implications from long run disturbances. Second, to jointly

account for both types of �uctuations we need to measure the features of non-cyclical dynamics.

Relatively short reliable time series and breaks of various sorts make the data largely uninformative

about these features. Third, although some progress in this respect has been reported by Fernandez

Villaverde and Rubio Ramirez (2007), time varying structures are di¢ cult to deal with in theory

and hard to handle computationally.

Given these problems, this paper provides a simple setup where speci�cation and measurement

error biases could be reduced. In this sense, the paper constitutes a step forward in improving the

reliability of inferential exercises in DSGE models.

References

Boivin, J. and Giannoni, M., (2005), DSGE estimation with data rich environments, University of

Montreal, manuscript.

Canova, F., (1998), Detrending and Business Cycle Facts, Journal of Monetary Economics, 41,

475-512.

Canova, F., (2007), Methods for Applied Macroeconomic Research, Princeton University Press,

Princeton, N.J.



6 CONCLUSIONS 28

Canova, F. , (2008), Bridging cyclical DSGE models and the raw data, UPF manuscript.

Canova, F., (2009), How much structure in empirical models?, in Mills, T. and Patterson, K.

(eds.), Palgrave Handbook of Applied Econometrics, Palgrave Macmillan.

Canova, F. and Sala, L., (2009), Back to square one: identi�cation issues in DSGE models,

Journal of Monetary Economics, 56, 431-449.

Chang, Y., Doh, T. and Schorfheide, F. (2007), Non stationary hours in a DSGE model, Journal

of Money Credit and Banking , 39, 1357-1373.

Cogley, T., (2001), Estimating and testing Rational Expectations Models When the Trend

Speci�cation is Uncertain, Journal of Economic Dynamics and Control, 25, 1485-1525.

Comin, D. and Gertler, M., (2006), Medium Term Cycles, American Economic Review, 96,

523-551.

Del Negro, M. and Schorfheide, F., (2008), Forming Priors for DSGE models (and how it a¤ects

the assessment of nominal rigidities), Journal of Monetary Economics, 55, 1191-1208.

Fernandez Villaverde, J. and Rubio Ramirez, J., (2007), How structural are structural parameter

values?, NBER Macroeconomic Annual, 83-137.

Forni, M., Hallin, M., Lippi, M. and Reichlin, L., (2000), The Generalized Dynamic Factor

Model: Identi�cation and Estimation, The Review of Economic and Statistics, 82, 540-554.

Ferroni, F., (2009), Trend agnostic one step estimation of DSGE models. MPRA paper 14550,

Library of Munich, Germany.

Fukac, M. and Pagan, A., (2010), Limited Information Estimation and Evaluation of DSGE

Models, Journal of Applied Econometrics, 25, 55-70.

Gali, J. (2008), Monetary Policy, In�ation, and the Business Cycle: An Introduction to the

New Keynesian Framework, Princeton University Press, N.J.

Giannone, D., Sala, L. and Reichlin, L., (2006), VARs, common factors and the empirical

validation of Equilibrium Business cycle models�, Journal of Econometrics, 127, 257-279.

Gorodnichenko, V. and Ng, S., (2010), Estimation of DSGE models when data are persistent,

Journal of Monetary Economics, 57, 325-340..

Ireland, P., (2004), Money�s role in the Monetary Business cycle, Journal of Money Credit and

Banking, 36, 969-983.

Justiniano, A., Primiceri, G. and Tambalotti, A., (2010), Investment shocks and the relative

price of investments, forthcoming, Review of Economic Dynamics.

Lopez Salido, and Michelacci, C.(2007) Technology shocks and Job �ows, Review of Economic



6 CONCLUSIONS 29

Studies, 74, 1195-1227.

Smets, F. and Wouters, R., (2003), An estimated Dynamic Stochastic General Equilibrium

models of the Euro area, Journal of the European Economic Association, I, 1123-1175.

Smets, F. andWouters, R., (2007), Shocks and Frictions in the US economy, American Economic

Review, 97, 586-606.

Tierney, L.(1994), Markov chains for exploring posterior distributions, Annals of Statistics, 22,

1702-1762.



6 CONCLUSIONS 30

Appendix A: the NK model

The model we use is a version of a textbook New Keynesian model (e.g. Gali, 2008) with a few

exceptions. We assume habit in consumption, a preference shock and, as in Smets an Wouters

(2003, 2007), we assume that the elasticity of variety of goods is an exogenous stochastic process.

Households

The representative household prefers to consume a variety of goods: the consumption basket is

Ct =

�Z 1

0
Ct(j)

�t�1
�t dj

� �t
�t�1

(26)

where Ct(j) is the consumption of the good j. Maximization with respect to Ct(j), for a given

total expenditure, leads to a set of demand function of the type

Ct(j) =

�
Pt(j)

Pt

���t
Ct (27)

where Pt(j) is the price of the good j. We let

�t = � exp
1� �
�

�t � > 1 (28)

where �t is a i.i.d. normal shock. The appropriate price de�ator for the consumption basket is

Pt =

�Z 1

0
Pt(j)

1��tdj

� 1
1��t

(29)

Conditional on the optimal consumer behavior, PtCt = [
R 1
0 Pt(j)Ct(j)dj]. The representative house-

hold chooses sequences for consumption, savings and leisure to maximize

E0

1X
t=0

�t

"
�t
(Ct � hCt�1)1��c

1� �c
� N1+�n

t

1 + �n

#
(30)

where �t is an exogenous demand shifter. Household maximization is subject to the sequence of

budget constraints:

PtCt + btBt = Bt�1 +WtNt (31)
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Thus, the household holds its �nancial wealth in the form of one period bonds, Bt with price bt;

Wt is the nominal wage and Nt is hours worked. The �rst order conditions of the problem are:

0 = �t(Ct � hCt�1)��c � Lt (32)

0 = �N�n
t + Lt

Wt

Pt
(33)

1 = Et

�
�
Lt+1
Lt

Pt
Pt+1

Rt

�
= Et

�
�
Lt+1
Lt

Rt
�t+1

�
(34)

where Lt is the Lagrangian multiplier associated to the budget constraint and Rt is the gross

nominal rate of return on bonds (Rt = 1 + rt = 1=bt). In the non stochastic steady states:

w =W=P = N�n(C � hC)�c

1 = �R=�

Firms

There is a continuum of �rms, indexed by j 2 [0; 1], producing a di¤erentiated good. They face
the same technology:

Yt(j) = ZtNt(j)
1�� (35)

where Zt is an exogenous technology process. Firms pay a nominal wage Wt for every hour worked

to the household. Following Calvo (1983), each �rm may reset its price with probability 1� �p in

any given period, independently of time elapsed since last adjustment. Thus, a fraction (1 � �p)

chooses the price that maximizes nominal pro�ts subject to a demand schedule 2, that is

max
Pt(j)

Prt = maxPt(j)Yt(j)� TCt(j) = max (Pt(j)�MCt(j))Yt(j)

subject to Yt(j) =
�
Pt(j)
Pt

���t
Yt. The �rst order conditions imply that�

Pt(j)�
�t

�t � 1
MCt(j)

�
Yt(j) = 0

Thus, the optimal price exceeds the marginal cost since the elasticity of good variety exceeds 1.

For the fraction of �rms �p that can not reoptimize prices we assume

Pt(j) = Pt�1(j)

2Following Gali (2008), we assume that �rms take the marginal cost as given and do not optimize subject to
equation (38). Thus, the only constraint �rms face is the demand schedule.
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Let eVt be the value of a �rm allowed to change prices at time t and let Vt(Pt�1(i)) be the value of

a �rm not allowed to change prices. Since the problem is identical for all �rms of one type, they

will choose the same optimal price. The value of a �rm allowed to change the price is

eVt = maxePt
�
Prt( ePt) + �EtQt+1

Qt

�
(1� �p)eVt+1 + �pVt+1( ePt)��

where Qt+k
Qt

= Lt+1=Pt+1
Lt=Pt is the stochastic discount factor. The value of the �rm not allowed to

change prices is

Vt(Pt�1) = Prt(Pt�1) + �Et
Qt+1
Qt

�
(1� �p)eVt+1 + �pVt+1(Pt�1)�

From the �rst order condition and the envelope theorem we have

0 = Pr0t( ePt) + �EtQt+1Qt
�pV

0
t+1( ePt) (36)

V 0t (Pt�1) = Pr0t(Pt�1) + �Et
Qt+1
Qt

�pV
0
t+1(Pt�1)

Moving forward the latter equation, assuming ePt = Pt and iterating foreword we have

V 0t+1( ePt) = Pr0t+1( ePt) + Et+1Qt+2Qt+1
��p

�
Pr0t+2( ePt) + Et+3Qt+3Qt+2

��p

�
Pr0t+3( ePt) + :::��

multiplying by Qt+1
Qt

��p and taking expectations conditional on time t information we get

Et

�
Qt+1
Qt

��pV
0
t+1( ePt)� = Et(

Qt+1
Qt

��pPr
0
t+1( ePt) + Qt+2

Qt
(��p)

2Pr0t+2( ePt)
+
Qt+3
Qt

(��p)
3Pr0t+3( ePt) + :::) =

= Et

 1X
k=1

Qt+k
Qt

(��p)
kPr0t+k( ePt)

!

Substituting the latter into (36) we obtain

Et

 1X
k=0

Qt+k
Qt

(��p)
kPr0t+k( ePt)

!
= 0

Substituting the �rst order condition for pro�t maximization we get

Et

 1X
k=0

Qt+k
Qt

(��p)
k

�
1� �t+k +

MCt+k(i)ePt �t+k

�
Yt+k(j)

!
= 0



6 CONCLUSIONS 33

Cost minimization implies that the marginal cost is equal to the average cost, so

MCt(j) = TCt(j)=Yt(j) =
WtNt(i)

Yt(j)
=

Wt

Yt(j)

�
Yt(j)

Zt

� 1
1��

=WtYt(j)
�

1��Z
� 1
1��

t (37)

Combining the marginal cost equation and the demand schedule we get

MCt(i) =WtYt(i)
�

1��Z
� 1
1��

t =Wt

 �
Pt(j)

Pt

���t
Yt

! �
1��

Z
� 1
1��

t

=WtY
�

1��
t Z

� 1
1��

t

�
Pt(j)

Pt

����t
1��

=MCt

�
Pt(j)

Pt

����t
1��

(38)

Thus the �rst order condition associated to the �rm program is

Et

0B@ 1X
k=0

Qt+k
Qt

(��p)
k

2641� �t+k +MCrt+k�t+k

 ePt
Pt+k

!��1���t+k
1��

375Yt+k(j)
1CA = 0

where MCrt+k =
MCt+k
Pt+k

is the real (aggregate) marginal cost. In the non stochastic steady state

the latter equation is veri�ed if an only if the term inside the square brackets is zero, thus

1� �+MCr �

 eP
P

!��1���
1��

= 0

Recall that the price de�ator is Pt =
�R 1
0 Pt(j)

1��tdj
� 1
1��t . The law of motion of prices is

1 =

0@�p�Pt�1Pt

�1��t
+ (1� �p)

 ePt
Pt

!1��t1A 1
1��t

In the steady state

1 =

0@�p�PP
�1��

+ (1� �p)
 eP
P

!1��1A 1
1��

= �p + (1� �p)
 eP
P

!1��

Thus, eP = P and the real marginal cost in the steady state is MCr = ��1
� .
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Market clearing and Aggregation

Market clearing in the goods market requires Yt(j) = Ct(j). Letting the aggregate output be

Yt �
�R 1

0 Yt(j)
�t�1
�t dj

� �t
�t�1

we have Ct = Yt. In the labor market we have that

Nt =

Z 1

0
Nt(j)dj =

Z 1

0

�
Yt(j)

Zt

� 1
1��

dj =

�
Yt
Zt

� 1
1��

Z 1

0

�
Pt(j)

Pt

� ��t
1��

dj

Similarly, the aggregate real marginal cost is

MCrt =

Z 1

0
MCrt (j)dj =

Z 1

0

Wt=PtNt(j)

Yt(j)
dj

=
Wt

Pt

Z 1

0

1

Yt(j)

�
Yt(j)

Zt

� 1
1��

dj =
Wt

Pt

�
1

Zt

� 1
1��

Z 1

0
Yt(j)

�
1��dj =

=
Wt

Pt

�
1

Zt

� 1
1��

Y
�

1��
t

Z 1

0

�
Pt(j)

Pt

���t�
1��

dj

To sum up the main equations of the model are

0 = �t(Ct � hCt�1)��c � Lt = �t(Ct � hCt�1)��c � PtQt

0 = N�n
t � Lt

Wt

Pt

1 = Et

�
�
Lt+1
Lt

Rt
�t+1

�

0 = Et

0B@ 1X
k=0
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We now derive the log linearized conditions when either the technology process or the preference

process have a non-stationary component.
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Non stationary technology shock

Assume that the preference shock is ln�t = �� ln�t�1+�
�
t where �

�
t � N(0; �2�) and that technology

process has two components, an autoregressive and a stochastic time trend, that is

Zt = ZctZ
T
t

lnZTt = bt+ eZ;Tt

lnZct = �z lnZ
c
t�1 + e

Z;c
t

The equilibrium conditions need to be rescaled by ZTt . Let bYt = Yt
ZTt
, bCt = Ct

ZTt
and cWt =
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bCt = bYt
Lt(1=ZTt )��c = �t( bCt � h bCt�1ZTt�1ZTt

)��c

bLt = �t( bCt � h bCt�1 expf�b+ eZ;Tt�1 � eZ;Tt g)��c

bN��n
t = � bLtcWt

Pt

where bNt = Nt

(ZTt )
�c�1
�n

. Thus, if �c = 1; hours worked is stationary and consistency is insured. The

Euler equation becomes
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t g Rt
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The �rm optimal condition when �c = 1 is

0 = Et
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bQt+keQt (��p)k
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Log linearization of the equilibrium conditions leads to

�t = �t �
1

1� h
(yt � hyt�1 � heZ;Tt�1 + he

Z;T
t )

wt = �nnt � �t

yt = zt + (1� �)nt

mct = !t + nt � yt

rt = �rrt�1 + (1� �r)(�yyt + ���t) + vt

�t = Et[�t+1 + rt � �t+1 � ez;Tt+1 + e
z;T
t ]

�t = �Et�t+1 + �p (�t +mct)

where �p = 1��
1��+��

(1���p)(1��p)
�p

, h = e�bh and variables in small letters are rescaled variables in

log deviation from the steady state. Thus, in log deviations from the steady state:

lnYt = bt+ eZ;Tt + yt

lnWt = bt+ eZ;Tt + wt

ln�t = �t

lnRt = rt

Non stationary preference shock

Assume that the technology shock is ln zt = �z ln zt�1 + �zt where �
z
t � N(0; �2z) and that the

preference process is

�t = (�
T
t )
1+�n�ct

ln�Tt = ln�
T
t�1 + e

T;�
t

ln�ct = �� ln�
c
t�1 + e

c;�
t
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where ej;�t � N(0; �2j;�) with j = T; c. Assume further that �c = 1 and � = 0. De�ne bCt = Ct=�
T
t ,bYt = Yt=�

T
t , bNt = Nt=�

T
t , bLt = Lt(�Tt )��n , bQt+k = bLt+kPt+k. The equilibrium conditions become

bLt = �ctbCt � h bCt�1 exp(�eT;�t )

0 = bN�n
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Log linearization leads to

�t = �ct �
1

1� h(yt � hyt�1 + he
T;�
t )

wt = �nnt � �t

yt = zt + nt

mct = !t + nt � yt

rt = �rrt�1 + (1� �r)(�yyt + ���t) + vt

�t = Et[�t+1 + rt � �t+1 + �neT;�t+1]

�t = �Et�t+1 + �p (�t +mct)

where variables in small letters are rescaled variables in log deviation from the steady state. Thus,

in log deviations from the steady state:

lnYt = �Tt + yt

lnWt = wt

ln�t = �t

lnRt = rt
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Appendix B

This appendix reports the estimation results mentioned in the paper for alternative speci�cations

of the DGP of the non-cyclical component, for alternative combinations of �ltered and un�ltered

observables and for di¤erent sample sizes.

Filter True LT HP FOD BP

Median (s.e.) Median (s.e.) Median (s.e.) Median (s.e.)
�c 1.0 1.13 (0.07) 1.15 (0.08) 1.07 (0.04) 1.07 (0.07)
�n 0.7 1.34 (0.06) 1.31 (0.06) 1.32 (0.05) 1.38 (0.06)
h 0.7 0.59 (0.03) 0.58 (0.03) 0.59 (0.02) 0.64 (0.02)
� 0.4 0.14 (0.02) 0.15 (0.02) 0.13 (0.01) 0.21 (0.02)
� 7.0 3.85 (0.13) 4.51 (0.16) 4.19 (0.13) 3.81 (0.14)
�r 0.2 0.74 (0.03) 0.73 (0.03) 0.67 (0.02) 0.68 (0.03)
�� 1.3 1.45 (0.07) 1.53 (0.06) 1.59 (0.05) 1.54 (0.06)
�y 0.05 0.48 (0.05) 0.46 (0.05) -0.01 (0.00) 0.06 (0.02)
�p 0.8 0.87 (0.03) 0.87 (0.03) 0.89 (0.03) 0.88 (0.03)
�� 0.5 0.74 (0.04) 0.76 (0.04) 0.42 (0.02) 0.99 (0.03)
�z 0.8 0.40 (0.04) 0.46 (0.05) 0.99 (0.03) 0.57 (0.03)
�� 1.12 0.19 (0.03) 0.19 (0.03) 0.16 (0.02) 0.07 (0.01)
�z;c 0.51 0.07 (0.01) 0.07 (0.01) 0.15 (0.02) 0.07 (0.01)
�mp 0.12 0.10 (0.01) 0.09 (0.01) 0.11 (0.01) 0.07 (0.01)
�� 20.64 1.78 (0.33) 1.50 (0.20) 6.28 (0.25) 0.60 (0.08)

Table 6: Parameters estimates using di¤erent �lters, all variables �ltered, DGP1.
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Filter LT HP FOD BP

Median (s.e.) Median (s.e.) Median (s.e.) Median(s.e.)
�c 1.14 ( 0.08) 1.15 ( 0.09) 1.27 ( 0.06) 1.21 ( 0.08)
�n 1.36 ( 0.07) 1.39 ( 0.08) 2.52 ( 0.11) 1.74 ( 0.11)
h 0.60 ( 0.03) 0.61 ( 0.03) 0.53 ( 0.03) 0.66 ( 0.03)
� 0.15 ( 0.02) 0.14 ( 0.02) 0.35 ( 0.03) 0.15 ( 0.03)
� 3.98 ( 0.13) 3.37 ( 0.12) 4.10 ( 0.14) 4.19 ( 0.17)
�r 0.75 ( 0.03) 0.75 ( 0.03) 0.71 ( 0.02) 0.66 ( 0.03)
�� 1.66 ( 0.09) 1.66 ( 0.10) 1.61 ( 0.06) 1.45 ( 0.08)
�y 0.49 ( 0.05) 0.58 ( 0.07) -0.01 ( 0.00) 0.59 ( 0.06)
�p 0.87 ( 0.03) 0.87 ( 0.03) 0.85 ( 0.03) 0.83 ( 0.03)
�� 0.73 ( 0.06) 0.78 ( 0.04) 0.30 ( 0.02) 0.82 ( 0.03)
�z 0.45 ( 0.05) 0.39 ( 0.04) 0.99 ( 0.03) 0.24 ( 0.04)
�� 0.19 ( 0.03) 0.23 ( 0.04) 0.83 ( 0.13) 0.48 ( 0.07)
�z;c 0.07 ( 0.01) 0.09 ( 0.01) 0.14 ( 0.02) 0.15 ( 0.02)
�mp 0.10 ( 0.01) 0.10 ( 0.01) 0.09 ( 0.01) 0.10 ( 0.01)
�� 2.07 ( 0.31) 1.85 ( 0.27) 10.67 ( 0.49) 0.65 ( 0.14)

Table 7: Parameters estimates using di¤erent �lters, real variables �ltered, DGP1.

Filter LT HP FOD BP

Median (s.e.) Median (s.e.) Median (s.e.) Median(s.e.)
�c 1.12 ( 0.05) 1.13 ( 0.05) 1.06 ( 0.04) 1.07 ( 0.05)
�n 1.33 ( 0.05) 1.34 ( 0.05) 1.35 ( 0.05) 1.34 ( 0.05)
h 0.60 ( 0.02) 0.60 ( 0.02) 0.61 ( 0.02) 0.63 ( 0.02)
� 0.13 ( 0.01) 0.14 ( 0.01) 0.13 ( 0.01) 0.18 ( 0.01)
� 4.18 ( 0.13) 3.97 ( 0.13) 4.00 ( 0.13) 4.06 ( 0.13)
�r 0.77 ( 0.03) 0.76 ( 0.03) 0.68 ( 0.02) 0.70 ( 0.02)
�� 1.60 ( 0.05) 1.59 ( 0.09) 1.53 ( 0.05) 1.60 ( 0.06)
�y 0.49 ( 0.03) 0.41 ( 0.04) -0.01 ( 0.00) 0.08 ( 0.01)
�p 0.88 ( 0.03) 0.88 ( 0.03) 0.89 ( 0.03) 0.87 ( 0.03)
�� 0.55 ( 0.06) 0.33 ( 0.02) 0.36 ( 0.03) 0.99 ( 0.03)
�z 0.44 ( 0.04) 0.49 ( 0.03) 0.99 ( 0.03) 0.71 ( 0.03)
�� 0.12 ( 0.02) 0.09 ( 0.01) 0.16 ( 0.01) 0.04 ( 0.00)
�z;c 0.04 ( 0.00) 0.04 ( 0.00) 0.11 ( 0.01) 0.04 ( 0.00)
�mp 0.07 ( 0.01) 0.06 ( 0.01) 0.08 ( 0.01) 0.04 ( 0.00)
�� 2.31 ( 0.19) 2.10 ( 0.16) 7.20 ( 0.31) 0.59 ( 0.05)

Table 8: Parameters estimates using di¤erent �lters, all variables �ltered, DGP1, sample size is
T=300.
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Filter LT HP FOD BP

Median (s.e.) Median (s.e.) Median (s.e.) Median (s.e.)
�c 1.13 ( 0.07) 1.13 ( 0.08) 1.08 ( 0.04) 1.02 ( 0.07)
�n 1.34 ( 0.06) 1.32 ( 0.06) 1.30 ( 0.06) 1.38 ( 0.06)
h 0.59 ( 0.03) 0.58 ( 0.03) 0.58 ( 0.03) 0.65 ( 0.02)
� 0.13 ( 0.02) 0.14 ( 0.03) 0.13 ( 0.02) 0.19 ( 0.02)
� 3.67 ( 0.14) 4.20 ( 0.14) 4.13 ( 0.13) 4.03 ( 0.13)
�r 0.73 ( 0.03) 0.72 ( 0.03) 0.67 ( 0.02) 0.68 ( 0.03)
�� 1.59 ( 0.12) 1.60 ( 0.10) 1.55 ( 0.05) 1.62 ( 0.06)
�y 0.45 ( 0.04) 0.41 ( 0.05) -0.01 ( 0.00) 0.06 ( 0.01)
�p 0.88 ( 0.03) 0.87 ( 0.03) 0.89 ( 0.03) 0.88 ( 0.03)
�� 0.76 ( 0.04) 0.78 ( 0.04) 0.45 ( 0.02) 0.99 ( 0.03)
�z 0.45 ( 0.05) 0.39 ( 0.06) 0.99 ( 0.03) 0.59 ( 0.04)
�� 0.19 ( 0.03) 0.19 ( 0.03) 0.17 ( 0.02) 0.07 ( 0.01)
�z;c 0.07 ( 0.01) 0.07 ( 0.01) 0.15 ( 0.02) 0.07 ( 0.01)
�mp 0.10 ( 0.01) 0.09 ( 0.01) 0.11 ( 0.01) 0.07 ( 0.01)
�� 1.87 ( 0.24) 1.44 ( 0.24) 6.32 ( 0.35) 0.58 ( 0.07)
�me1 0.61 ( 0.20) 0.68 ( 0.26) 0.51 ( 0.09) 0.70 ( 0.31)
�me2 0.64 ( 0.19) 0.62 ( 0.21) 0.75 ( 0.19) 0.58 ( 0.15)
�me3 0.68 ( 0.21) 0.66 ( 0.31) 0.89 ( 0.25) 0.56 ( 0.18)
�me4 0.56 ( 0.25) 0.68 ( 0.19) 0.64 ( 0.11) 0.68 ( 0.30)

Table 9: Parameters estimates using di¤erent �lters, all variables �ltered, DGP1, model with
measurement error.
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Filter LT HP FOD BP

Median (s.e.) Median (s.e.) Median (s.e.) Median (s.e.)
�c 3.90 ( 0.36) 4.71 ( 0.25) 3.23 ( 0.86) 5.22 ( 0.25)
�n 0.30 ( 0.05) 0.20 ( 0.02) 0.28 ( 0.03) 0.06 ( 0.03)
h 0.59 ( 0.03) 0.56 ( 0.03) 0.70 ( 0.02) 0.87 ( 0.03)
� 4.20 ( 0.14) 4.00 ( 0.13) 4.10 ( 0.13) 4.02 ( 0.13)
�r 0.30 ( 0.01) 0.29 ( 0.02) 0.56 ( 0.02) 0.16 ( 0.02)
�� 1.75 ( 0.07) 1.67 ( 0.06) 1.56 ( 0.05) 1.48 ( 0.05)
�y -0.03 ( 0.01) -0.08 ( 0.02) 0.03 ( 0.02) -0.13 ( 0.01)
�p 0.83 ( 0.03) 0.84 ( 0.03) 0.81 ( 0.03) 0.86 ( 0.03)
�� 0.62 ( 0.06) 0.39 ( 0.02) 0.48 ( 0.02) 0.79 ( 0.03)
�z 0.72 ( 0.03) 0.67 ( 0.02) 0.48 ( 0.02) 0.38 ( 0.02)
��;c 0.15 ( 0.03) 0.17 ( 0.02) 0.72 ( 0.38) 0.37 ( 0.07)
�z 0.15 ( 0.02) 0.20 ( 0.03) 0.38 ( 0.08) 5.15 ( 0.25)
�v 0.03 ( 0.00) 0.03 ( 0.00) 0.03 ( 0.00) 0.03 ( 0.00)
�� 7.28 ( 0.49) 8.92 ( 0.46) 4.95 ( 0.23) 3.74 ( 0.33)

Table 10: Parameters estimates using di¤erent �lters, real variables �ltered, DGP2.

Factor 1 Factor 2

True Median (s.e.) Median (s.e.)
�c 1.00 0.87 (0.10) 1.72 (0.10)
�n 0.70 0.73 (0.06) 0.29 (0.09)
h 0.70 0.56 (0.10) 0.62 (0.03)
� 0.40 0.34 (0.04) 0.32 (0.03)
� 7.00 6.29 (0.13) 6.45 (0.14)
�r 0.20 0.67 (0.03) 0.80 (0.04)
�� 1.30 1.61 (0.03) 1.51 (0.02)
�y 0.05 0.40 (0.03) 0.31 (0.04)
�p 0.80 0.85 (0.03) 0.85 (0.03)
�� 0.50 0.82 (0.06) 0.69 (0.08)
�z 0.80 0.70 (0.03) 0.69 (0.02)
��;c 1.10 0.22 (0.04) 0.21 (0.04)
�z 0.57 0.18 (0.03) 0.29 (0.08)
�v 0.12 0.13 (0.02) 0.10 (0.01)
�� 20.64 6.51 (1.11) 6.07 (1.25)

Table 11: Posterior parameters estimates. Factor 1 uses LT, HP and FOD �ltered data; factor 2 HP(� =
1600), HP(� = 6400) and BP �ltered data. The DGP features a technology shock with two components, a
stationary AR(1) and a unit root. All variables are �ltered prior to estimation. The sample size is T=150.
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Appendix C: Full set of estimates, model with money

Parameter Prior Basic model Ireland�s speci�cation
median (s.e.) median (s.e.)

!1 �(1; 0:1) 1.03 (0.02) 0.98 (0.01)
!2 �(1; 0:1) 0.44 (0.02) 0.03 (0.01)
 N(1:0; 0:1) 1.02 (0.02) 0.98 (0.03)
�r B(2; 6) 0.59 (0.01) 0.59 (0.01)
�� N(1:5; 0:2) 1.51 (0.02) 1.40 (0.01)
�y N(0:2; 0:2) 0.44 (0.01) 0.45 (0.01)
�m N(1:0; 0:2) 0.48 (0.02) 0.04 (0.02)

1 �(10; 0:1) 0.92 (0.02) 1.00 (0.01)

2 �(5; 0:1) 0.51 (0.01) 0.51 (0.01)
�a B(8; 8) 0.72 (0.01) 0.67 (0.01)
�e B(8; 8) 0.77 (0.01) 0.79 (0.03)
�z B(22; 8) 0.74 (0.04) 0.88 (0.01)
�a ��1(5; 20) 0.74 (0.10) 1.30 (0.07)
�e ��1(5; 20) 0.81 (0.08) 2.02 (0.16)
�z ��1(5; 20) 0.18 (0.03) 0.46 (0.40)
�v ��1(5; 20) 0.37 (0.06) 0.52 (0.15)

Table 12: Structural parameters estimates for model with money. � is the gamma distribution, B is the
beta distribution, N is the normal distribution.
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Parameter Prior Basic model Ireland�s speci�cation
median (s.e.) median (s.e.)

�po0 N(0,0.1) 0.00 (0.00)
�fd0 N(0,0.1) -0.00 (0.00)
�hp10 N(0,0.1) -0.00 (0.00)
�hp20 N(0,0.1) -0.00 (0.00)
�cum0 N(0,0.1) 0.00 (0.00)
�cd0 N(0,0.1) 0.00 (0.00)
�uc0 N(0,0.1) 0.00 (0.00)
�mbn0 N(0,0.1) 0.00 (0.00)
�fd1 N(1,0.5) 0.73 (0.01)
�hp11 N(1,0.5) 0.82 (0.02)
�hp21 N(1,0.5) 0.77 (0.01)
�cum1 N(1,0.5) 0.77 (0.02)
�cd1 N(1,0.5) 0.86 (0.02)
�uc1 N(1,0.5) 0.70 (0.05)
�mbn1 N(1,0.5) 0.78 (0.01)
�poy ��1(10; 30) 0.12 (0.01) 0.12 (0.01)
�pom ��1(10; 30) 0.24 (0.03) 0.06 (0.01)
�po� ��1(10; 30) 0.06 (0.01) 0.09 (0.01)
�por ��1(10; 30) 0.06 (0.01) 0.07 (0.01)
�fdy ��1(10; 30) 0.03 (0.00)
�fdw ��1(10; 30) 0.04 (0.00)
�fd� ��1(10; 30) 0.03 (0.00)
�fdr ��1(10; 30) 0.03 (0.00)
�hp1y ��1(10; 30) 0.05 (0.01)
�hp1w ��1(10; 30) 0.05 (0.01)
�hp1� ��1(10; 30) 0.04 (0.00)
�hp1r ��1(10; 30) 0.04 (0.00)
�hp2y ��1(10; 30) 0.05 (0.00)
�hp2w ��1(10; 30) 0.05 (0.01)
�hp2� ��1(10; 30) 0.04 (0.00)
�hp2r ��1(10; 30) 0.04 (0.00)
�cumy ��1(10; 30) 0.04 (0.00)
�cumw ��1(10; 30) 0.07 (0.01)
�cum� ��1(10; 30) 0.04 (0.00)
�cumr ��1(10; 30) 0.03 (0.00)
�cdy ��1(10; 30) 0.12 (0.01)
�cdw ��1(10; 30) 0.25 (0.03)
�cd� ��1(10; 30) 0.06 (0.01)
�cdr ��1(10; 30) 0.06 (0.01)
�ucy ��1(10; 30) 0.03 (0.00)
�ucw ��1(10; 30) 0.04 (0.00)
�uc� ��1(10; 30) 0.04 (0.00)
�ucr ��1(10; 30) 0.03 (0.00)
�mbny ��1(10; 30) 0.06 (0.01)
�mbnw ��1(10; 30) 0.07 (0.01)
�mbn� ��1(10; 30) 0.04 (0.00)
�mbnr ��1(10; 30) 0.04 (0.00)

Table 13: Additional parameters estimates for a model with money. � is the gamma distribution,
B is the beta distribution, N is the normal distribution.


