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Abstract

Let there be a positive (exogenous) probability that, ahekate, the human species will disap-
pear. We postulate an Ethical Observer (EO) who maximizestamporal welfare under this
uncertainty, with expected-utility preferences. Vari@agial welfare criteria entail alternative
von Neumann- Morgenstern utility functions for the EO:itdilian, Rawlsian, and an extension
of the latter that corrects for the size of population. Owalgsis covers, first, a cake-eating econ-
omy (without production), where the utilitarian and Raatsrecommend the same allocation.
Second, a productive economy with education and capitadyeit turns out that the recommen-
dations of the two EOs are in generaffdrent. But when the utilitarian program diverges, then
we prove it is optimal for the extended Rawlsian to ignoreutheertainty concerning the possible
disappearance of the human species in the future. We canblpdiscussing the implications
for intergenerational welfare maximization in the preseatglobal warming.

Keywords: Discounted utilitarianism, Rawlsian, sustainability,ximin, uncertainty, expected
utility, von Neumann-Morgenstern, dynamic welfare maxation.
JEL Classification Numbers: D63, D81, 040, Q54, Q56.

1. Introduction

We study the problem of intergenerational welfare maxitnirawhen the existence of future
worlds is uncertain. One of the major examples of this pnoltieday concerns global warming,
and how to structure resource use intertemporally in itsgmmee. The theoretical issues raised by
uncertainty are quite complex, and in the interest of glanwe will study only two simple models
in this article — and neither of them explicitly models tHeeet of production on the biosphere
and global temperature. In a companion paper (LlavadorpiRoeand Silvestre, 2009), we
study a more complex version of the second model of thislartichich does take into account
the biosphere as a renewable resource: but that paperstutiethe case with no uncertainty

UWe are indebted to a referee for detailed and useful suggestiKlaus Nehring, Andreu Mas-Colell and Geir
Asheim provided helpful comments. We thank the audiencesiious presentations, in particular in the European
General Equilibrium Workshop in Honor of Andreu Mas-Cal@&hrcelona, June 2009. We also thank Cong Huang for
his collaboration on the proof of the Turnpike Theorem. Thaal caveat applies. Financial support from the BBVA
Foundation is gratefully acknowledged.

1The author acknowledges the support of the Barcelona GStedaBovernment of Catalonia, and of the Spanish
Ministerio de Educacion y Ciencia (SEJ2006-09%330).
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concerning the existence of future generations. The ceimis of the present paper suggest
some inferences for the more complex problem.

We study several (intergenerational) social welfare fiomst utilitarian, Rawlsian, ‘extended
Rawlsian,” and ‘Rawlsian with growth. The Rawlsian furmttiis identified with the view of
sustainability in a model with productioR. Sustainability, in our parlance, means sustaining
human welfare over time at the highest possible level. Bhidtien called ‘weak sustainability,
to be contrasted with ‘strong sustainability’, which adates sustaining the physical stock of
bio-resources — species variety, forests, and so on. (8Sedéndtance, Neumayer, 2003, and
the articles in Asheim, 2007.) In another dimension, it ibéocontrasted with the discounted-
utilitarian approach, which does not advocate sustainimgdn welfare over time, but rather the
maximization of a weighted sum of generational welfare leve

There is a literature on Rawlsian social choice in the dyeamntext, beginning with Arrow
(1973), Dasgupta (1974), Solow (1974) and (Phelps and Ri¥8). As far as we know, how-
ever, there is no literature on the Rawlsian problem whereftigence of future generations is
uncertain.

In the next section, we introduce an Ethical Observer (EQ) Wwas von Neumann — Mor-
genstern preferences over the future history of the worlies€ preferences can be utilitarian,
Rawlsian or extended Rawlsian. We show that the EQ’s exgetility, evaluated at the lottery
which specifies stochastically when the human species wiiflecto an end, gives rise either to
‘discounted utilitarianism’ or ‘discounted sustainataitianism, depending on the EO’s prefer-
ences. We apply these criteria to two alternative econamies

First (Section 3), we consider a ‘cake-eating’ model: thera single non-produced con-
sumption good that must be allocated over all future geiterat The perhaps surprising result
is that the sustainabilitarian and the utilitarian recomthexactly the same solution to the cake-
eating problem (Theorem 1). Thus, these two apparently diéigrent social preference orders
do not difer in their optimal choice in this simple economy.

We introduce in Section 4 a generalization of the classic&d\® economic growth model.
There are two links between generations: investment, wiigtbrmines the change in capital
stock, and education, which determines the transmissiakitifto the next generation. It is
obvious that the utilitarian and sustainabilitarian carin@eneral choose the same path in this
model, for with some parameter values, the discountedartdin program diverges, while the
discounted sustainabilitarian program always has a (finttition. Nevertheless, we show that
if the discounted utilitarian program converges, and ifitiigal capital-labor ratio of the econ-
omy is suficiently large, then the two programs do have the same sal¢@orollary, Section
4.4). A fundamental result for this model is a Turnpike Treo(Theorem 4), which we prove.

More important, perhaps, is the case when the discountkiigin program diverges — in-
deed, given the characterization of when this occurs (Térads), this may be the empirically
salient case. The remarkable resultis that in this caseglliéions of thaliscountedgsustainabil-
itarian program (in the sense of the extended Rawlsian E@uadiscountedustainabilitarian
program are identical (Theorem 6). This case occurs wherdbheomy is sfiiciently produc-
tive, and the result says that great productivity rendesptiimal for the sustainabilitarian EO to
ignore the uncertainty concerning the possible disappearaf the human species in the future.
We consider this the most important result of our analysis.

2Calling the intergenerational welfare function ‘Rawlsiamay lead to some confusion. We mean ‘maximin’ applied
to the society consisting of an infinite number of generatiott is well known that Rawls himself, however, did not
advocate ‘maximin’ for the intergenerational problem.
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53 Some readers may find ‘sustainability, as we model it, taokstas it precludes the increase
s« in the welfare of the representative generational agent time. In Section 4.5, we introduce
s growth, and study optimal paths when it is specified that avelShould grow at some exoge-
s nhously specified ratg over time.

57 As noted above, when the initial capital-labor ratio is abawvcertain lower bound, the dis-
ss counted utilitarian and sustainabilitarian programs hheesame solution. In the Appendix we
s compute an example showing how the optimal paths of thesptagrams dier when the initial

« capital-labor ratio is below this bound and the utilitar@egram converges.

61 In Section 4.6, we focus upon the case when the discountbhnigin program diverges,
« and we note that, if an overtaking criterion is applied toesrdivergent paths, then the EO
s would recommend almost starving the early generations. M#rast this with the discounted
e Sustainabilitiarian, who in this case recommends equiiyuidr all future generations. We find
e the latter recommendation much more appealing.

66 Section 5 concludes andfers some conjectures about the generalization of our sdsuithe

e problem of intertemporal distribution in presence of glolarming.

e 2. Ethical Observers

60 Consider an economy that will exist for an infinite number efgrations; there is one repre-
o sentative agent at each date. Denote the generic utilggistiby (1, Uz, . ..) = {ug,.
7 Let P be an abstract set of feasible infinite utility streams, Wwhitay depend on a vector of

2 initial conditions. Asocial welfare functiotis a real-valued function with doma#h If the social
7z welfare function of the planner, whom we call an Ethical Qlsee(EO), isQ : P — ‘R, then she
7 maximizes(ug, up,...)onP.

) For example, if the EQ istilitarian, then her maximization program is

s Program U. max};;’; u; subject to (g, Up,...) € P.

7 If the EQ is a Rawlsian maximinner (i. e., sustainabilitajyjahen her maximization program
s IS
maxinf{ug, up, ...} subjectto(s, Uz, ...) € P,

7 which can also be written:
s Program SUS. maxA subjectto(, Up,...) € P,uy > A, Vt > 1.

8 “SUS stands forsustainability the economy is sustainable if it chooses a path that guar-
& antees a certain level of human welfare forever. Note tharaggramsU and SUSthere is no
ez Uncertainty concerning the existence of future generation

8 We now introduce uncertainty by assuming that there is ag@&xous probabilitp € (0, 1)
s that mankind will become extinct at each date, if it has notadso already.
8 The exogeneity op is a simplifying assumption: in many realistic applicagpsuch as

& Climate change, the policies adopted may well alter the givdities of survival of mankind.
e Our postulate of an exogenopsmplies that the EO cannot influence the lengttof human
s history, i. e., the size of population across time, allowiisgo focus on choosing potential utility
« levels, whileT is randomly variable but exogenous. Whether a generatistsexr not is, in our
s model, independent of the choices of the EO, enabling usiessip the well-known dilemmas
« of population ethics (see, e. g., Parfit, 1982, 1984).
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We suppose that the preferences of the EO satisfy the expetligy hypothesis. An out-
come (or ‘prize’) is defined by a daifg interpreted as the last date before extinction, and a util-
ity vector (Ug, Uy, ..., ur). Accordingly, her von Neumann-Morgenstern (vNM) utilfiynction
is defined on outcomed (uy, Uy, . .., Uy), with vNM utility valuesW(T; ug, Uy, ..., ur). Under
our assumption of exogenous probabilities, the EO’s chof@path (i1, Uy, ...) € P defines a
lottery with expected utility

PW(L;iup) + p(l-p)W(2;us, Up) + p(L — p)>W(3; Uy, Uz, Ug) + ...

= DZ (1 - p)' WL Uy, U, -, ). (1)
t=1
The vNM utility of a utilitarian EO if the world lastsT dates and she has chosen the path
(ug, Up,...)is

T
WY(T,uy,...,ur) = Zut,
t=1
and the expected utility ofug, up,...) is

Pts + (1= P)p(Us + Up) + (L= P)*pus + Uz + Ug) + ... (2)
By grouping the terms in (2), it becomes
upl+(1-p+1-p?+..)+

U(1-p)p(L+(A-p)+(L-p)*+...)+
us(1- p)’p(Ll+@A-p) +(1-p)>+...)+...

=) 4-p" U 3)
t=1

This immediately justifies the view that the utilitarian € Observer should be, in the
presence of uncertain future worldsdescounted utilitarian with the following optimization
program.

Program DU. max3s>; ¢'*u; subjectto (s, Up,...) € P, withp =1 - p.

We believe this is, indeed, the most solid justification toe tiscounted-utilitarian ethit.
Note, however, that the discount factpr= 1 - p, should be very close to one, assuming st
very close to zerd.Indeed, we cannot justify, using this approach, the redhtismall discount
factors that are often used in intergenerational welfaomemics.

3Many economists attempt to justify the use of a discounbfash the grounds that individuals discount the utility
they will receive at a later period in their lives. This faeinconly justify using such a (subjective) discount factothie
context of a model with an infinite number of generations ifwi@v the problem as isomorphic to a problem in which
there is a single, infinitely lived agent. We cannot acceptglausibility of such an isomorphism. Just because an indi-
vidual may today discount his future utility does not impgiat ethical observers, today, are entitled to discount titiyu
of future generations. This point was clearly stated by Ran{$928) in his pioneering work on the theory of saving,
who wrote, “One point should be emphasized more partigylaré do not discount later enjoyments in comparison with
earlier ones, a practice which is ethically indefensibld arises merely from weakness of the imagination; we shall,
however, in Section Il, include such a rate of discount insafour investigations.”

4Indeed the Stern Review (2007) chooges 0.999 per annum, which we believe is reasonable. Nordhaus3}200
on the contrary, uses the low discount factor 0.985.
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On the other hand, suppose that the EO is Rawlsian (or sabiliarian): she wishes to
maximize the minimum utility of all individuals who ever &v In this case her vNM utility
function is

WR(T; ug,...,ur) = min{uy, W, ..., ur}, (4)

and her expected utility associated with the path iy, ...) is p X, (1 - p) minfuy, .. ., ).
Her optimization program is then the following one.

Program R. maxp Y2, (1 - p)t min{uy, ..., u} subject to ¢z, Uy, ...) € P.

Klaus Nehring, Andreu Mas-Colell and Geir Asheim have otgddin private communica-
tions) to (4) for the following reason. Interpreting the vNMIues asx postutilities, the EO
will never ex postprefer a longer time span to a shorter one with the sameywtiitues for
the dates present in both, i. e., she vl postweakly prefer the outcomeT(us,...,ur) to
the outcomeT + 7;Uy,...,UT,Ur41,. .., Ursr), and she will actually prefer the shorter one if
U < min{uy, ..., ur} for somet > T. Consider for instance the outcomesy5y, u, u,u — &) and
(4;0,0,u,U). In the second case, humans disappear at date 5; in theofiest &t date 6, and the
last generation has almost the utility of the previous oiYesthe EO under formulation (4) must
ex postprefer the second, shorter outcome. Note that this predereinlates the “mere addition”
desideratum in Parfit's population ethics (Parfit, 1982).

As indicated, the diiculty is not critical under our assumption of an exogenpusecause
our EO choosesx ante lotteries with fixed probabilities, rather than outcomeser Fstance,
under our assumption of constant, exogenous probabitiey, BO would certainly choose the
become serious weeendogenous. Indeed, the well-known criticisms of the maxapproach
become more telling in the presence of an endogenouslyblanpulation.

Nehring’s suggestion is that we modify the vNM utility furart to be

WN(T; Uy, ... ur) = T minug, Up, ., ur}. (5)

_ Thus, in the example just given, the EO woebdpostprefer the first outcome as long as
2. Formulation (5) confers a powerful role to the lengtfof human history. But this too could
be problematic were the probability of extinction endogenand, accordingly, the EO could
influenceT: the resulting trade® betweenT and the sustainable utility level miim, up, ., ut}
could then lead to Parfit's (1984) “repugnant conclusion.”

More generally, the EO may adopt a vNM utility function of tloem
WA(T; U, ..., ur) = (14 (T = 1)8) minfug, Uy, ., ur), (6)

with 8 € [0, 1], which reduces to (4) whepi= 0 and to (5) whe8 = 1. An EO with the vNM
utility function of (6) will be called arExtended Rawlsian EO

We study the optimization programs of the various EO’s in pagticular economic models:
the cake-eating economy, and the education and capitabaggrwhich yield quite dierent
results. We will say that two programs aggquivalentf one possesses a solution if and only if
the other possesses a solution, and when both possessiarsdhg solutions are the same.

5We are indebted to the referee for this comment.
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Our main result in the cake-eating economy is the equivalémtween progranidU and
R: the Rawlsian (or sustainabilitarian) ethical observet e utilitarian ethical observer make
identical choices in the presence of uncertain future vgorld

In the education and capital economy, Progidbhmay diverge or converge: our main result
there is that, ifDU diverges, then, for ang € [0, 1], the EO’s optimization problem under the
vNM of (6), which, as noted, includes as special case Progtasmequivalent to the uncertainty-
free progranSUS the Extended Rawlsian EO can thignore uncertainty

We conclude this section with a lemma.

“ R R R R ” “ DU DU
Lemma 1. If“ (u7, us, . ..) solves Program Rs uf® > ujj,, ¥t > 1”and “ (u;™, U7, ...) solves

Program DU = ulPU > uE}i,Vt > 1 then Programs R and DU are equivalent.

Proof. Note that mirjuy, up, ., Ut} = W, Yt > 1, if and only ifu; > ui,q, Yt > 1, in which case the
objective function of ProgramRis p Y5, (1 - p)**w, and Prograni can be rewritten as

Program CDU. maxp 3¢ (1 - p)*tu; subject touy > Uy, Yt > 1 and (g, Up,...) € P.

The objective function of Progra@DU is that of ProgranDU multiplied by the positive
constantp. If “(uPY, udY,...) solves PrograndU = uPY > ulY, vt > 1,” then the constraints
U > U1 can be added to ProgradiJ, which then becomes equivalent to Programu. O

Remark. Lemma 1 cannot cover the Extended Rawlsian EO Witk 0, who has a dierent
objective function.

3. The cake-eating economy

Postulate an economy with a single good, non-produciblératialy available in the amount
w. A consumption path is writtery{, y»,...), wherey; is the consumption of the agent (or
generation) alive at date Fort = 1,2, ... , the utility function of Agent is denoteds™ R, —
R : vt — U(y;), and assumed to be increasing. Hence, a consumptiompayh, ( . . ) induces the
utility path (U, Up, . ..) = (T(y1), U(y2), . . .). Takingw = 1, the set of feasible consumption paths
iST ={(yr.Y2...) € RY : 221 %k < 1}, with the set of feasible utility path3 = {(u, up,...) €
R A(Y1, Y2, . ..) € I such thau = T(yy), Yt > 1}.

Thediscounted utilitariarprogrambDU specializes to ProgralU,, as follows, in the cake-
eating economy.

Program DU;. maxyy; ¢ 1l(y;) subjecttoy vy < 1,y; >0, Vt> 1.
Lemma 2. If (yPY,y2Y,...) solves Program DV, then ¥V > yPY vt > 1.

Proof. Suppose that for sonig y?Y, > y2U. Then switch these two terms, and the new policy
strictly dominatesyPV,y2Y, . ..), because the céigcients of the objective function ddU; are
strictly decreasing. Contradiction. O

The Rawlsian ProgramR becomes, in the cake-eating economy, ProgRanas follows.
Program R;.
max{pi(ys) + (1 - p) Min{ii(y), Uy2)} + p(L — p)? min{a(ys), b(yz), (ya)} + ... |

subject toz Vi<l y>0, Vt> 1
6
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Lemma 3. If (y},V5,...) solves Program B then f > yR vt > 1.

Proof. Appendix. O
Theorem 1. Programs DY and R are equivalent, and,¥> yi.1, Yt > 1, at any solution.
Proof. Immediate from Lemmas 1-3. O

Theorem 1, perhaps surprisingly, tells us that the RawEiarbehaves just like a discounted
utilitarian —and uses the same discount factor.
We now analyze the (common) solutions to progrdds andR;.

Theorem 2. Letil be concave, gferentiable orfR .., and increasing, and suppose thiaty_,o 0 (y)
= oo (i. e., U satisfies an “Inada condition”). I{y?",y5",...) solves Program Dy, then
yPY > Ofor all t.

Proof. Appendix. O

Example 1 in the Appendix provides a utility function "®2, — R (concave, increasing,
differentiable) for which prograni3U; andR; do notpossess a solution.
The next theorem studies the case when the derivativexbféro is finite.

Theorem 3. Letii be strictly concave, increasing, angfdrentiable ortR ,, with ' (0) = v < co.
Then Program Rpossesses a unique solutigf, y5, .. .), and there is a date T such thdty 0
forallt > T.

Proof. Appendix. O

We may thus summarize as follows, for functiana/fich are strictly concave, increasing,
and ditferentiable except perhaps at zero:

1. When program®U; or R; have a solution, then the solution is unique and identid¢e: t
Rawlsian EO and the discounted utilitarian EO make exab#ysame recommendation
(Theorems 1-3).

2. If '(0) < 0, then a solution to program3U; andR; does exist. Furthermore, there is a
T such that the optimal policy awards zero resource to allstateT: both the Rawlsian
EO and the discounted utilitarian EO prescribe zero consiomfor all suficiently distant
generations (Theorems 1-3).

3. Iflimy_o U'(y) = oo, and if there is a solution to prograridJ; andRy, then the solution
impliesy; > 0 for all t: both the Rawlsian EO and the discounted utilitarian EOqiks
positive consumption for all generations (Theorems 1-2).

4. There are functions "R2, — R with limy_{i(y) = —co for which program®U; or R,
have no solution. But if/{y;) does not approach infinity too fast gsapproaches zero,
then a solution exists (see Example 1 and its discussioreiAfipendix).
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4. An economy with education and capital

4.1. The model

At datet, the available amount of labor, measured in skill units agnodedx;, is partitioned
into three parts: leisurex), labor used in the production of commaoditie§)(and labor used
to educate the next generatioxf); Utility depends on consumptiort:f and leisure, and is
given by the functioru: when no confusion is likely, we will denotg = u(ct,x{). Physical

capital &) and labor produce output according to the production fonct(s\, x°): output is
partitioned into consumption and investmeny}. ( The initial endowment is the pair of stocks
(X5, %) e R2,. Given the initial endowment, a path for the economic vdeslis feasible if it
satisfies the following inequalities fait > 1:

1- 6)§7l +i = § (law of motion of capital), wheré € (0, 1) is the depreciation rate,
f(sk, X)) > ¢ + it (technology for the production of output),
£x8 1 >+ X + X (education technology).

The last inequality models the technology of education:ghantity of skilled labor at the
next date is simply a multiple# of the dficiency units of labor devoted to teaching at datel.
Thusé , which will turn out to be a key parameter, is the rate at wiskiied labor can reproduce
itself intergenerationally, or, in another locution, thedent-teacher ratio.

The problem is non-traditional in one way: utility dependd apon raw leisure but upon
educated leisure. Thus, we assume that a person’s leistivéi@g are more fulfilling, if she
is more highly educated. One might challenge this as arstelitew, but we insist upon it,
as we believe that education opens up for the individuakiasing opportunities for the use of
leisure. We may think of education as permitting the diieation of the leisure resource, which
increases its usefulness. In the words of Martin Wolf (2007)

The ends people desire are, instead, what makes the megrentipdoy valuable.

Ends should always come above the means people use. Théquerstducation

is whether it, too, can be an end in itself and not merely a mé&msome other end
— a better job, a more attractive mate or even, that holiesbofemporary grails, a
more productive economy.

The answer has to be yes. The search for understanding isa@samefining char-
acteristic of humanity as is the search for beauty. It iseed] far more of a defining
characteristic than the search for food or for a mate. Anyhwitb denies its intrin-

sic value also denies what makes us most fully human.

On the role of education in production, we are reminded ofréloent work of Goldin and
Katz (2008), who argue that the main reason for the exceflefiormance of the American
economy in the twentieth century was universal educatiamil& points have been made with
respect to South Korea and Japan. Of course, the Goldindfaitn is somewhat dierent from
ours —theirs is based on the growth of consumption, whils @ibased on the centrality of the
educational technology for growth of welfare.

We impose the following assumption. The Cobb-Douglas hypsgs could be dispensed
with in some of the results, but we adopt them for convenieantet to shorten some of the
arguments.



1 Assumption A.

=2  (a) Cobb-Douglas Utility Functionu(c, X) = c*(xX)*%, a € (0, 1);

x  (b) Cobb-Douglas Production Functioh(st, x°) = ($)(x°)1¢, 6 € (0, 1);
254 (C) f > 1.

255 The sustainability prograiBUSspecializes to Progra®US[ g, %], as follows, in the edu-
6 Cation and capital economy.

Program SUS;[%¢, (1.

maxA subject to
V) ucLX)=A, t=1,
(&) (@A-oL +ik>2s, t=1,
(b)  fEX) =+, t=1,
(d) X, >2x¢+x+x, t>1

257 We have written the dual variables in parentheses for futaee
258 We state a turnpike theorem for tB&S program.

20 Theorem 4(Turnpike Theorem)

260 A. There is a rayl" € R2 such that, if (xS, %) e T, then the solution path of Program
261 SUS[X, €] is stationary.

262 B. If (3¢, <) ¢ T, then along the solution path the sequeliEé, %), (xS, <),...) converges
263 to a pointinI.

264 C. Along the solution path, all constraints hold with eqtya{in particular, utility is constant
265 over t).

xs  D. The solution to SUBXE, ] is unique.

27 Proof. Appendix. O

268 Figure 1 illustrates the Turnpike Theorem. The solutiomukgtermined by initial conditions
0 Off rayT" has constant utility, and it has the property that, alongplaith, the sequence converges
20 toapointinl,

n 4.2. Discounted utilitarianism: the convergence conditio< 1/&

72 The discounted utilitarian progradU of Section 2 specializes to progradUz[e, X5, %],
2 as follows, for the education and capital economy.

Program DU,[¢, ¢, ]

maxi ¢"'u(cr. x) subject to
t=1

(1-6)s, +it>s, t=1,
F(s¢) 2 q+in t21,

_fxf_lzxf+xf+x{, t> 1
9
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Figure 1: Convergence to ray

Note that whether or nddU;[¢, g, %] converges depends only grand the initial ‘capital-
labor ratio’o- = sg/xg by the homogeneity of the program. (The set of feasiblegiath convex

cone.) We are interested in understanding thé(&eb—) | DU2[¢, X5, oXg] converge}a
Theorem 5.

A. If o¢ > 1, then Program D[, x5, ox3] diverges for all(xg, o-xg) e R2,.

B. If @& < 1, then Program DU[¢, x5, ox5] converges for al(x§, oxg) € R2,.
Proof. Appendix. O

Theorem 5 is important for our theory, and perhaps surggjdor it says that the ‘power’ of
the economy, in the sense of its capacity to caus®ttig program to diverge, depends only on
the dficiency of the educational technology, namely, thefidccienté. In particular, we need no
special assumptions on the technoldggther than the standard ones in Assumption A.

The proof of Theorem 5 is not particularly transparent, amd/e provide here a more intu-
itive argument. Letg = 1. Suppose we can find positive numbersq i, x°, x) such that the
following equations hold for some given positige

(g+ 0o =i, @)
f(o ) = C+1, ®8)
E=1+g+X+X. (9)

Then, from an initial endowment okg, %) = (1, 0), we can produce a balanced growth path
in which all variables grow by a ratg at each period. Just notice that the investment defined
by (7) will makeﬁ = (1 + g)o, that equation (9) says th&} = (1 + g)x;, and that the solution

10
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(c,i, ¢, x) will grow at rateg from date one onwards, invoking the fact that all three eqoat
are homogeneous of degree one in the five variables. Nowggr to solve these equations, it is
obviously necessary thatlg < &, for otherwise (9) would have no positive solution faf,(x).
The interesting fact is that the converse is true as welloag bs 1+ g < &, we can produce
the required solution, which would support a balanced gnqeth at growth ratg beginning at

a capital-labor ratier. To see this, eliminateusing (7) (which will surely be positive for any
positivec); then we must findd, ¢, x¢, X') positive such that:

f(o, X°)
£-(1+9
which is equivalent to findings, x°) such that
f(o, X°) > (g + d)o,
O<x*<é-(1+0).

c+(g+9)o,
X+ X,

But this can be accomplished if and only if there exists 0 such that

f(0.6 - (1+9) > (9+0)o,
or, invoking the fact thaf is one-homogeneous, if and only if:

f(l,w)>g+6.
o

But sincef increases without bound as we increase its labor argumertaw surely find-
sufficiently small that this is true. Let the value of such an adibleo be denoted-"

Now beginning with an arbitrary positive endowment vecigr Q;), we can reach the capital-
labor ratioo” in a finite number of steps; from there we taktBai any desired growth ragpe< £-1.
Since utility is also homogenous of degree onecirXy), it grows at that rate too. So the growth
factor of utility is (1 + g) < &. Itis now clear that PrograU, diverges if and only ifp¢ > 1.

The reason the above argument is only an intuition for, ratien a proof of, Theorem 5, is
that a proof cannot limit itself to studying only balancedwth paths.

We remind the reader that Theorem 5 depends, as well, on sumgdion that the leisure ar-
gument of the utility function is measured in quality undag that we strongly defend, although
it may be somewhat controversial.

4.3. The divergence of discounted utilitarianism and thetanability of the extended Rawlsian
path
Consider the Extended Rawlsian EO, i. e., with vNM utilitynétion given by (6) above,
with 8 € [0, 1]. Her optimization program for the education and capitalir®my can be written
as follows.

Program R¥[g, x¢, ]
max{uy + @(1 +8) Min {uy, Uz} + (1 + 28) Min {uy, Uy, Us} + ... |
subject tou, = U(Ct, x{) and
(1-6)s, +it>s, t=1,
FE6) 2 a+in, 121,

EC 2+, t>1
11
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Lemma 4. For any path(ug, Uy, ...) € RS, the sumyy; ¢ (L + (t - 1)8) min{uy, ..., W)
converges.

Proof. Appendix. O
Lemma 5. If (ug, Uy, ...) solves Program B, ég xgl, then y > u,1 for all t.

Proof. Suppose to the contrary that > u;. Then it follows thatu; = min{u;, u;}. We can
distribute back a small amount of resources from date 2 te fHateduce by a small amousnt
the value o, increase('l bye, and decreas>éZ by £g, making the date 2 agent take the reduction
of his skilled labor supply entirely in a reduction of leisurThis will increase the values of
and (1+ 8) min{uy, up} and will leave all other numbe(4 + (t — 1)8) min{uy, ..., u;} unchanged

or possibly greater. Hence, since the objective was finittdmmma 4, it is now increased, a
contradiction. The general claim follows from an inductamgument. O

We now state our main theorem:

Theorem 6. Let (xS, ) € T. If ¢¢ > 1, then forg € [0, 1], any solution to Program Ry, X¢, ]
is the solution to Program SUBG, éé]. Since the solution to SYBCG, éé] is unique, so is the

solution to Ry, X, <].
Proof. Appendix. O

Combined with Theorem 5, we have that, if Prograid, diverges, then the Extended Rawl-
sian EO carignore uncertaintyn choosing the optimal path (at least in the case when thialini
endowment vector lies on the rdy. We conjecture that Theorem 6 is true even if the initial
endowment is not on the rdy

4.4. The case where discounted utilitarianism converges

This section focuses on the cg&e- 0, for which Prograni is just the application of the
Rawlsian ProgranR of Section 2 above to the education and capital economy:sleefer to
it as ProgranRa[¢, X5, éé], or simply ProgranR,. We expect that, ifo¢ < 1, then the solution
to ProgramR, will not be the solution to Prograi8US, which is to say that the inequalities
U > U1 of Lemma 5 will not all be satisfied with equality. Thus, théuion to the Rawlsian
EO’s problem under uncertainBs may involve decreasing utilities over time. Indeed thisuet
for ¢ sufficiently close to zero, as the following simple result shows.

Theorem 7. Given (3¢, ), there is a numbep > 0 such that, ifp < ¢, then the solution to
Ro[e, X5, %] entails y > u, on the solution path.

Proof. Appendix. O

Moreover, a consequence of Theorem 8 below is that, undeZalip-Douglas assumptions,
for any ¢ < 1/¢, if the capital-labor ratios'é/xg is suficiently high, then utilities are strictly
monotone decreasing on the optimal path.

We now ask: If theDU>[¢, X5, §(§] program converges, is its solution the same as the solution
to Ro[g, ¢, 517 By lemmas 1 and 5, this will be the case if, at the solutioDtdy[¢, x¢, ],
utilities are weakly decreasing with time.

12



354 For an initial condition Qg ><§), define the ‘capital-labor ratiorg = %/xg. Recall that
s UG, X) = ¢x1?, andf(s, X) = ¥x?. Define the following variables:
E = (&)"(1-9),
g E-Bo-0 o (E-E)1-a)
1 1-af ’ 1 1-af ’
& = o) (1- )",
§=1-9's, X=KE" X=XET &=&(@-9'E) ™"

s Theorem 8. Suppose thapé < 1, and that g/xg = 0 > o whereg™ is the root of the equation

O\ oy @) 01— a)
1‘9((1—&0) "x_'l(‘”‘f)l/ i

% =E,

s Then the solution to Dile, X¢, <] is given by the geometric sequencé:=s §x¢, ¢ = ¢,
8 A:qug,ﬁzifxg,itzomralltzl.
s Proof. Appendix. O

w0 Corollary. If p& <1andog > o, then Programs D[, x¢, si] and Ry, X, <]
w1 are equivalent.

w2 Proof. Along the solution to Progra@U,, we have that
a -1
i = t(((2 - 0)'EX)ET)

xs  Whereu; = é‘{()”('l)l‘a; thus utilities are strictly decreasing with time becakse 1. The result
s then follows from lemmas 1 and 5. O

365 What happens wheiy < ¢*? The solution tdDU; will not be the well-behaved solution
xs Of geometric decay of Theorem 8. Will, nevertheless, ig#itstill be monotone decreasing on
w7 the optimal path? Perhaps, surprisingly, the answer is imeige negative. Example 2 in the
xs  Appendix has the property that, along the solution path tmqRmDU,, u, > u;, whereas the
s Utilities from date 2 onwards decay geometrically as in Theo8.
370 How do the solutions t®U, andR, compare when they areftérent anddU, converges?
an 10 see this, we calculate the solutionRpfor Example 2 in the Appendix. There, the Rawlsian
sz EO gives higher utility to the first generation than the taiiian EO, but the reverse is true for all
sz dates after that. In fact, the ratio of utilities for the twmgrams is constant for dates 2 and later
s at 1.015, with the larger utility associated witJ,: this is perhaps a surprise.
ars This concludes our discussion of the relationship betwheiDtU, andR, programs in the
s case wherdDU, converges. Unlike the cake-eating problem, the solutionthése two pro-
s grams are not always identical —although they are identibain the initial capital-labor ratio is
as  SUficiently large.
a7 Based on Example 2 in the Appendix, we may conjecture whatg#reral solution to
w0 DUz[e, X5, sg] looks like in the convergent case. There will be a sequericeumberso™ >
wm OoF > 01> 0> --->0,wheres” is given in Theorem 8, where, ift > oo > o741, the first
w2 1 dates will have; > 0, and at datd + 1, the capital-labor ratio will be-,"at which point the
w3 geometric-decay solution of Theorem 8 takes over. The satterp should be true in the solu-
s tion to ProgranRy[e, X3, éé], except that utility will be equal for all the dates whenéstment is
s poOSitive.
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4.5. Growth

Some may find sustainability, in the sense of prog&ld§ to be too stark, as it leads to
a constant level of human welfare until the disappearandbeofpecies. If, however, we treat
resources, such as the biosphere, as of limited capaddy,dbstainability may be the best we
can hope for. Nevertheless, we now introduce a program wiecimits the growth of welfare.

Program g-SUS[x¢, sil.
maxA subject to

(] u(ex)=(@+9)7'A, t=1,

[(2)]  f(&)za+i, tzl

(k)] (A-0)sy+ir>s, t=1,

[(d)] &, =2xX+X+x, t>1

Programg-SUSmaximizes date-1 welfare subject to assuring that welfaogvg at rateg

forever. Obviously, Program-SUSbecomesSUS wheng = 0.

What is the largesi for which Prograng-SUSpossesses a solution? We give a partial answer
with the next theorem.

Definition. A balanced growth path at rateig a path satisfying the(), (b;) and ;) constraints
of Programg-SU$E, ] such that:

3

Z

(1+0)s; andx® = (1+g)x ;, fort> 1,
(1+g)z1 for all other variableg € {x°, X, i.c}, fort > 2.

Theorem 9. Suppose thad < g < ¢ — 1 and ¥ = 1. Then there exists a vaIu% such that the
solution to Program g-SUS, éé] is a balanced growth path at rate g. Conversely, ¢ — 1,
then there exists no such path for any value(';cﬁ s

Proof. Appendix. O

We expect that a turnpike theorem holds for a8USmodel as well, and so, if and only if
0 < g < ¢-1, and given any value cr% Programg-SUSwill possess a solution at which all
constraints bind, which converges to a balanced growth gathteg.

4.6. Social choice when Dillp, x5, %] diverges

According to Theorem SDU;[¢, X3, éé] diverges whernp¢ > 1. The usual way of choosing
among paths in the case of divergence is to use a version afivéitéaking criterion: the latest
proposal that we have seen along these lines is that of Babara (2007). The utility path
(Up, Up, .. .) isat least as good as the utility paghy, Uy, . . . ) according to the overtaking criterion
if there exists & such that ' ¢ > Y[ 1 ¢!ty andt > T = 4y > &. This defines a pre-
order (i. e., an incomplete order) on feasible paths whemgram diverges.

The proof of Theorem 9 showed that balanced growth pathsfexithe education and capital
economy as long ag < £ — 1. The condition for a divergence of such a path in Progitaus is
¢(1+g) > 1. This condition surely holds whegis close ta¢ — 1 because(1+ (£ —1)) = & > 1.

6We are not interested in the problem with negative
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Let (U1, Up,...) and @, Uy, ...) be two feasible balanced-growth paths for a given initial
endowmentxg, %) which grow at rateg; andgy, respectively, wherg, > g;. It is easy to see
that (g, Up, .. .) is better than the utility pathug, U, ...) according to the overtaking criterion.
But it is also the case that utility will be smaller for the lgadtate(s) on the preferred path. (To
grow forever faster requires making early sacrifices.) Thimteresting, because discounted
utilitarianism is usually associated with implying thaettater generations sustain low utility.
This, however, is only the case when the program convetgdsed, as the proof of Theorem 9
shows, as the growth raggapproaches its unattainable supremgrX) (and these high-growth-
rate paths are the most desirable paths according to théakirey criterion), the utility of the
first generation approaches zero. We do not take this asieisiritof overtaking: rather, it is a
criticism of discounted utilitarianism.

In contrast, as Theorem 6 showedif > 1, then the solution to Prograf[¢, X, %]
entails constant utility for all generations, at the highmsssible level at which such a level can
be sustained. We find this distinctly superior, from theeaghviewpoint, to the recommendation
of the discounted utilitarian.

Finally, we note that the case of divergence may be the satiea. By definition,¢& =
X /X5 1 = %/ (t°%-1), wherer® is the fraction of the labor force of generationl that is devoted
to teaching. As a rough approximation, assume that populaiowth is zero and that skill
growth is zero; therx; = x._; and so, ifr® ~ 0.05, we have® ~ 20. Since we have suggested,
following Stern (2007), thap = 0.999 is appropriate, we have thatis substantially larger than
one.

5. Conclusion

In the cake-eating problem, we showed that two Ethical Qlessrfacing uncertain possible
future worlds, who have utilitarian and Rawlsian von Neum&forgenstern preferences over
risk, respectively, would recommend the same allocatich@f®exhaustible resource over future
generations. At first blush, it seems surprising that these@bservers, with apparently very
different preferences, would agree on the recommended pathbéBh@nalogy we can think
of is with the solution to the problem witho uncertaintyconcerning the existence of future
generations, and finite horizon. The utilitarian and the Rawlsian will recommend game
allocation of the exhaustible resource in this case —narsgliy it equally among all generations.
This solution is unique only ifiis strictly concave —ifi is linear, then the utilitarian is infferent
among all possible distributions of the resource.

We then introduced a generalization of the classical gramdhel, which includes an educa-
tion sector. Moreover, we postulated that welfare dependasumption and educated leisure.
Now, the program of the utilitarian Ethical Observer, in fhresence of uncertainty, does not
always converge, while the program of the sustainabiéitafi. e., Rawlsian) does. We charac-
terized when the former program converges (Theorem 5), anshewed that when it doe®t
converge, the (extended) sustainabilitarian proposesahe path as she would if there were
no uncertainty (Theorem 6). We believe this is an importasult, as parameter values in the
real world are likely to be such that the discounted util#arprogram does not converge (see
Section 4.6). Moreover, we argued that if this is the casn the most desirable paths accord-
ing to the discounted-utilitarian objective would leave #arly generations with very low utility.
(This conclusion is very dlierent from the recommendation of discounted utilitariamis the
convergent case.) In contrast, when the discounted ulliitgporogram diverges, as we said, the
sustainabilitarian recommends equal welfare for all gathens.
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Finally, we showed that when the discounted utilitariargpaon converges, it is not generally
the case that the two Ethical Observers will recommend theesaaths, although they do if
the capital-labor ratio of the initial endowment vector ighi€iently large (Theorem 8 and its
Corollary).

In our companion paper Llavador et al. (2009), we study a metih is a ramification of
the model of Section 4 of the present paper, one which astieslithe issue of global warming.
In that model, production of the consumption-investmermtdyetects negatively the quality of
the biosphere (carbon emissions increase global tempeya&ind the quality of the biosphere
enters into the utility of individuals. As well as a productiand education sector, that model
also contains an R&D sector, where research produces kdge/ltat both improves the tech-
nology of commodity production, and enters directly inte thility of people. (Knowledge and
biospheric quality are global public goods.) We know thathvéppropriate parameter values,
the discounted utilitarian program of the more ramified midderges; we do not know whether
analogues of the theorems presented here continue to hatdrally, we would be interested in
eventually extending the present analysis to that modeprnapose to think of the central results
of the model of Section 4 as conjectures concerning the ghwbeming model. In particular, if
the discounted-utilitarian objective function divergestbe set of paths defined for the global-
warming model, then we conjecture that the sustainabaitazan ignore the kind of uncertainty
studied in the present paper (Theorem 6). However, we mysthsé there is another kind of
uncertainty, not discussed here, which is more the focusiwént discussions of global warm-
ing: the uncertainty about the relationship between atinesp carbon and global temperature
(biospheric quality). That kind of uncertainty involvesitgudifferent considerations from those
studied here.

Appendix A. Proofs and Examples

Proof of Lemma 3

We claim that for everyl, y} = min{yR v, ...
for someT. Then lets = Y} — min{yf,y5, ...
(Y1,¥2,...) as follows:

,y$}. For suppose this were not the case,
,y.Fr{l}. By hypothesisg > 0. Define the path

— &
%:yﬁ+ﬁ, fOflStST—l,
Vi = YR fort>T.

Obviously /1, Y>, .. .) is feasible for PrograrR,. In the move fromyR,y%,...) to (V1. V2, . ..),
the firstT terms in the objective function of Progrdra all (strictly) increase. Furthermore, all
terms greater than thith term either increase or stay the same. Noticeyhaemains at leas}
greater than the minimum ¢§1,y>,....,y;} forall t > T, since that minimum is bounded above
by min{ys,...,yr_1}. Sou(yr) is never the minimum in any of the terms of the objective with
t > T. Consequently, the objective function of ProgrBm(obviously bounded) attains a higher
value at §1, Y, ...) thanat ¢} y5,...) , a contradiction. O
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Proof of Theorem 2
Step 0 Sinceu(0) is finite, w.l.0.g., we take(D) = 0.

Step 1 Let (y°U,y2!,...) solve ProgranDU;. Suppose there isksuch thay?” = 0. Then

T must be greater than one. FoyfY = 0, simply define a new patly(y>,...) by y; = y2Y for
allt = 1,2,... This path increases the value of the objective functioDl, an impossibility.
Thereforel > 1.

Step 2 Now let T be the smallest date for whig?¥ = 0. Then it must be the case that for
any suficiently smalle > 0, we haveu(y?Y, - £) + ¢li(e) < TU(y2Y)), for otherwise, a transfer of
e from dateT — 1 to dateT would increase the value of the objective function in Pragkl;.
But this inequality can be writteqli(z) < T(y?Y,) — U(Y2Y, — £). Dividing both sides by and
letting € approach zero, this implies thatim @ < G’(y?ﬁ’l). But Iirra@ = oo, which gives the
desired contradiction. : O

Example 1

This is an example of a functiomfor which ProgramDU; has no solution. Consider the
functiond: R, — R : U(y) = [eVdy-y. We havar(y) = eV -1, U’(y) = —& Thus,

i is an increasing, concave function on the positive real, lared the Inada concﬁtion holds.
The functionu’cannot be continuously defined at zero, as it approachegiveg#inity asy
approaches zero.

If the path(leU YoU L ) solves problenDU; for this, then(ylDU YoYU, ) must be strictly
positive because the domainwfs™R ., . It follows that the first-order Kuhn-Tucker conditions
hold —there is a numbet > 0 such thae™ = 1+ (1/¢'%) for all t. But this implies that
v =1/ Iog[l + /l/(ptfl], and so it must be the case t@tl{l/ (Iog [1 + /l/gotfl])} = 1. For
larget, we can approximate the denominator in the terms in thigsday logl/¢'* = log1 +
(t — 1)log(1/¢). But these terms grow lik&(t — 1), wherek = log(1/¢), and so the series
grows like ¥ (k(t — 1)), and therefore it does not converge, a contradiction. Toex¢here is no
solution to progranbU;, and hence to the PrograRa, for this .

The intuition here is that the derivative ofiS increasing too fast (exponentially) gsp-
proaches zero. Le¥R(y1,y»,...) be the value of the objective function of Progrdry at
path (y1,¥2,...). The result is perhaps surprising, because it is easy tohsgdhe function
VR(y1, Yo, ...) is bounded on the feasible set. Hence, it must be the cashia that the fi-
nite supremum ofVR(yl,yz, ) (YL Ye,. L) is feasibl# is never attained. It is easy to check

that if G(y) = % for anyr € (-0, 1), then ProgranbDU; has a solution. The Inada condition
holds for these functions, and the first order-conditiorrsloa solved for a positive path whose
components sum to unity.

Proof of Theorem 3
Step 1 We introduce the following sequence of programs. DefingRrmDUT as:

)
max " ¢ i(ye)
t=1

T
subject toZ v <1,
t=1
Vi > 0,Vt> 1.
17



530 Step 2 Note that for sfficiently largeT, it must be the case that the solutian, &, . . ., zr)

s to ProgramDUT, which of course exists, hag = 0. For if not, and 1,2, ..., zr) >> 0, then
s2  there are first order conditions of the form:

¢l (z) = A, some positive numbet.

ss3  Of course it follows, from the usual argument, that, &, ..., zr) is a weakly decreasing se-
s quence, and consequently, by choosing a Idrgee can guarantee that is bounded above by
s an arbitrarily small number, because of the cake-eatingtcaimt. Consequently must be very
s close top' 1y, and hence must be arbitrarily small. But siné&zy) = A, this implies thatz
s7  becomes arbitrarily large, contradicting the fact thigty = 1. Thus there is a dafg such that
s the solution to ProgrardUT haszr = 0.

530 Step 3 Now let T be the smallest date such tlzat= 0; denote the solution to PrograbiJ T

s0 by (z1,2,...,2r). We will assume that; > 0 fort < T, but the proof can be modified in an
sa  Obvious way if this is not the case. Then the following KuhueRer (K-T) conditions must hold
sz for the (concave) ProgramU" :

543 There are non-negative numbergr such that:

$ i (@Z)-1=0, fort<T,
@'ty —A+pur =0.
saa Step 4.We claim that the patla™* = (z, ..., zr,0) is the solution to Progra@U™*. To

ss  See this, write down the K-T conditions for this program, edm
546 There are non-negative numbetsyt, ur.1) such that:

G (@) -1=0, fort<T,
@'ty —A+ur =0,
@'y —A+pri1 =0.
547 We note that the values afandur continue to solve these FOCs, for the vedabr!, and
ss  We define the new shadow price by
prea=A-¢'y>0.

s Thus, since we have a concave program, we have shown'tHas its solution.
550 Step 5 We continue in this manner to show that the veatos (z 0,0, ..., 0) is the solution

s for ProgramDUS for anyS > T. The new Lagrangian multiplier at each step is defined by:

ps = A- >y,
2 and so we note, for use below, that §m, us = A.
553 Step 6 We now claim that the vectozf,z’,...) = (z0,0,....) solves ProgranDU;.
s« \We proceed by contradiction. Denote BV (y1,y»,...) the value of the objective function
s Of ProgramDU; at the path ¥y, Vy,,...). Suppose the claim were false, and there is a path
sss (Y1, Y2, . ..) whichVPY (y,y,,...) > VPY (z;",z;c, ) ) Write y; = z° + g for all t; of course,
ss2 >, g = 0. We define a functioll : R — R as follows:

T-1 oo oo oo
He) = )| o107 +200) + ) ¢ M0 + £gr) + A [1 D A ego) + > m(0+ &),
t=1 t=T t=1 t=T

18
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Verify that H(0) = VPY(z°) and thatH(1) > VPY(y1, s, ...), which follows from the fact
that @1, 2, . ..) is feasible and that the Lagrangian multipliers are all-negative. Suppose we
can show thaH is maximized at zero: then we will know thgit(0) > H(1), which implies that
VPY (2°) > VPY (y4,y,,...), which is the desired contradiction.

Step 7 It therefore remains to show that zero maximit¢s Note thatH is a concave
function, so it sifices to show thatl’(0) = 0. We compute:

T-1 S o0 o
H'(0) = Z (B + Z ¢ lyg - 4 Z O + Zﬂtgt-
t=1 =T t=1 t=T

Grouping together all terms associated with the sgmeve see that fot < T, the codficient
of g is "1’ (z°) — A = 0, and fort > T the codficient ofg; is "1y — 2 + i = 0. Thus the
derivative vanishes at zero, as required.

Step 8 There is a final, transversality condition: We must showt tha functionH is well-
defined on the interval [0,1]. The only term that might causecern is the last one, which is
e Y2, G Butsinceyy — dandg — 0andY2r g = — Y1 O, it follows that 32, o
converges, and the proof is complete.

Step 9 The uniqueness of the solution follows from the strict @ity of G. O

Proof of Theorem 4 (The Turnpike Theorem)
The program

Recall that we aim at finding the maximum level of sustainalikty for a fairly simple
infinitely lived economy. Formally:

ProgramSUS

maxA subject to
(P1) ()Y >A, t>1,
(P2) &, >x+x+x, t>1,
(P3) ()" >c+iy t>1,
(P4) (1-0),+ir>s t>1

The initial endowment is a vectoxg, %).

Thevalue functiorof the program maps the initial endowment into the valyéhus we write
VOE, ) = A.

DefineFA = (X5 §5) |V(xg, §5) = A}. This is the set of initial endowments that generate
the same value faBUS.

We define deasible pattas a set of sequence§}i-o12.., {#‘}t:ql’zu__ and all other variables
beginning at = 1, such that inequalities@), (P3), and P4) hold. Denote the set of feasible
paths byP.

Denote the set of feasible paths beginning at a given iniéiator (g, §5) by P(x5, %).

Proposition 1. The setP is a closed convex cone. The sexg?ég) is closed and convex.
Proof. Easy. O

Proposition 2. At any solution to Program SUSall the constraints (B)-(P4) bind at all dates.
The solution to SUSs unique.
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Proof. Step 1 It is obvious that P2)-(P4) bind. What requires proof is thatc, x}) = A for all

t. We first prove this is the case foe= 1. Suppose, to the contrary, that at an optimal solution,
u(cy, X;) > A. Reducex| by £ and increase each &f andx by £ so thatu(cy, X, —&) = A’ > A.
Now define(i’l, sifL) to be the simultaneous solution of the two equations:

cl+i'l:f(§f,x§+g),
(1-0)s+iy = <.

Obviously,s > s therefore € + £, s€) >> (¢, <). It follows that, with this altered vector

of endowments,»§ + 3, éf) , for the program beginning at date 2, the value of the pnogra
beginning at date 2 is greater than since the value function of the program is homogeneous
of degree one in its endowment vector. Let the value of thgnam, beginning at date 2, be
A* > A. We have now produced a feasible path where far;, al(é;, &) > min(A’, A*) > A. This
contradiction proves thai(cy, x'l) = A.

Step 2 Assume now that in any optimal solution, for<lt < T, u(ct, %) = A, but there

is an optimal solution for whichu(cr, x'T) > A. Reducex;_; by /¢ and increase('Tfl by the
same amount, increasing utility at dafe— 1, which is now greater than. This decreases
xr = x¢ + X +x¢ by &, and let this decrease be implemented by decreadirtyy &, which
may be chosen small enough that utility at datis still greater tha\. We have now produced
an optimal path for the program for whielfcr_4, X!I'—l) > A, which contradicts the induction
hypothesis. This proves that for &llu; = A.

Step 3 We next show that the solution 8US is unique. Any two solutions must have the

same values dfc, x{)}: for if not, take any non-trivial convex combination of thvea solutions,
producing another optimal solution for which the consti®i{1) do not bind (using the Cobb-
Douglas form ofu); this contradicts what has been proved above. In like marthe values
{5, §<)} must be the same in the two solutions, since otherwise a gamworabination of them
would produce an optimal solution in which the constraif3)(do not bind. But if the dated
capital-stocks are identical in the two solutions, so msthe dated investments. Since the
values{(xf, x{)} are identical in the two solutions, we see, by iterationt tha values ofxt} are
also identical. This proves the claim. O

Proposition 3.

A. Let(, &) >> (¢, ). Then (E, &) >> VE, ).
B. Along the optimal path beginning @€, <), there is no T such th&t¢, s) >> (¢, <).

C. Let (xgj, %j) € F* be an infinite sequence of points irf,For some fixed, such that
X(k)j — 0. Then gj - 0.

Proof. A If (5, &) >> (3¢, s, then there is a positive numhgrsuch tha(f(g, §{§) >> (1+6%) (xg s{§)
Since® is a cone, and the utility of Generatibis homogenous of degree 1 in its arguments, it
follows immediately thaW (%, &) > (1+6") V (xS, ).

B. Suppose that there isTasuch that X3, é}) >> (X3 éé). Let the value of the program be
k. By PartA, the value of the sub-prograthat begins at date Ts strictly greater thar. This
contradicts the fact that the constrair®®y ] are binding for alt.

20



627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

C. Suppose the premise were false; then there is a subseqsﬁ‘anees > 0, someS. We
can choose a numb&r> S and a numbex 8uch thatV/(%, S) = & > x. We can also choose an
index j such that the program beginning with the endowmexgis%j) possesses a feasible path
that, at its first step, has three properties:

iy s>8
i)y xX>%
(i) )Y >k

(This is obvious from examining the technology.) It thereféollows thatv (xS, éfl) > k. invoke
PartA of this proposition. But this is a contradiction, becaVséxgj, égj) =Kk <Kk O

Since all the constraints &US bind, we can write down the Kuhn-Tucker conditions for this
concave program. It turns out that these conditions imply three new pieces of information,

which are: | .
X l-a X )
(Dl) Ct - a/(l— 9) Ct + it’ tz1;
XLrl:ﬁl & 1_9(Ct+it)
Ci+1 cl-6 §( ’

t
(D3) Z(é) X converges

t

(D2) t>1.

The other Kuhn-Tucker conditions just define the variousraagian multipliers, which are
all non-negative.

It follows that: A feasible path and a numberfor which all the primal constraints bind at
all't, and for which (1) ,(D2) and (D8) hold, is an optimal solutioA.

The stationary ray

We ask: Is there a ray of initial endowments®t for which the optimal solution istation-
ary, that is, for which all variables are constant over time? Welgtthis by writing down the
primal constraints and equatiorid3X) and O2) for a hypothetical stationary ray, and see what
they imply. Indeed, we can solve them: there is a unique sagffiar the initial condition. The
ray passes through the following point:

=155 e
a(l-0)(¢+6-1)

wherex™ = a1-0)E+0-1)+(1-a)(E+6-1-&06)

Indeed, we can compute the values of all the variables omdli<Call these thetationary state
values.Of course they are defined up to a multiplicative constantulsedenote this ray by.

“One may ask, conversely: Does the optimal solution havetisfgshese equations? The answer to this must be
affirmative: there is an infinite dimensional version of the Kdfutker theorem, using the Hahn-Banach theorem, which
tells us that this is so.
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The Turnpike Theorem

It is very difficult to actually compute the optimal path, if we begin fromerdowment
vector df the stationary ray’. We shall, however, prove (Proposition 4 below) that frong an
initial vector (x5, %), the optimal solution t&US converges to a point an

In the following, given any two variables andb, we use the notation for ratio%: = (%)t

Lemma 6. Suppose that, in the optimal solution, the limit of the saatqm%(x'/c)t:l2 } exists
and is finite. Then the solution converges to the stationtatg values.

Proof. Step 1 Denote the limit of the sequen{éx'/c)t=12 } by 1. We first argue that = 0. If
A =0, then |im(c/x')t = c0. By (D1), lim (x¢/ (c + 1)), = 0, and so Iin{xc/sk)t = 0, by invoking
(P3). Nowd(c; +ir) /s = a(xg/ﬁ)l’e, so limé (¢, +it) /s = 0, which means, by§2), that

(c/x')Hl/(c_/x')t — ((1-6)/€) <1, becausé > 1. Itis therefore impossible that Ii(%)t = oo.

Thereforel > 0. Y _ _
Step 2 By (P1), X (ct/x{) = « for all t. Therefore linx = kA% and so limg; = k1%~X. From

(D2), it also follows that lim (1 - %) = 1; therefore lin{(c +1i) /§‘) has the value of the

ratio of (c + i)/s¢ in the stationary state. Therefore I(lx‘r‘/§‘) has the same value as the ratio of

those variables in the stationary state. B it now follows thatt is also the ratio oi! /c in
the stationary state.
Step 3 Suppose that there were a subsequencgsigfthat diverged to infinity. Since

lim x°/§‘ is finite, it follows that the same subsequence\xj} diverges to infinity. It fol-
lows from (P2) that the same subsequencdxg} diverges to infinity. In particular, there exists
a T such that &3, é}) >> (X5, éé) But this contradicts PamB of Proposition 3. Therefore
the sequences’} is bounded. It immediately follows that the sequefx® is bounded, since
lim x°/§‘) exists and is finite; and since I|(t5+ |)/§‘) also exists and is finite, the sequence
{it} is bounded.

Thus all the sequences of variables, except possibly¥x@r are bounded. Therefore we
can choose a single subsequence of all the variables (gxasgibly of{xf}) which converges to
values €5, 3¢, i) and we have already shown thal, {c;} converge to valueg andc. Furthermore
we know that{s'{} converges to a positive number, because(d:’l(q + it)/s'{) has the value of the
same ratio in the stationary state gund converges to a positive number.

It now follows, by invoking Proposition 3, Pa@, that{x¢} does not diverge to infinity —since
(¢, &) e F~ for all t. So there is a subsequence of the original sequence suchllthatiables
converge.

We proceed to show that this subsequence of variables @ewér stationary state values.
Denote the limits:

T = lim C‘;‘ _ Jim E;;Ci‘, (A1)
- (s
B = lim (;)t (A2)

We have shown that; and .1, are the values of the corresponding ratios in the stationary
22
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state. Now fromP3) we have: _
XA — it - C. (A.3)
Note that equations (A.1) and (A.3) comprise two simultarsssguations, in the limit, for the
limits of the variablex® andi. Hence the sequencgg§} and{i;} must converge, and to stationary
state values, since these same two equations hold for tenstey state variables. We therefore
have, by (A.2), thats} also converges to the appropriate stationary state valikewise with

DEL.

Finally, indeed thevholesequence of variables converges to the same stationagy fiatf
not, there would be another limit point approached simaltarsly by some other subsequence
of the variables, to a stationary state. But since the statioray is unique, that limit ofx€, )
must also be on the rdy. However, we cannot have two subsequences approactiegedit
points on the ray: that would violate Proposition 3, Fart O

Proposition 4. From any initial vector(xg, sg), the optimal solution to SUYSonverges to a point
onT.

Proof. &

Step 1 On the optimal path, the sequer{tﬁ%)tzl,z,,_,} does not diverge to infinity. Suppose it
did diverge to infinity. Then from1), the sequenck/ (c; + i) diverges to infinity also. But,
invoking (P3), X/ (c; + it) = (/") and so¢/s — co. Now (G +ir) /s = 0(>¢/) ", and
so it follows thatd (¢; + i) /s diverges to infinity. But this contradict®@), for it would mean
that eventually the rati&{/ct is negative.

Step 2 Hence it follows that, on the optimal path, the sequdm§et:1,2,,_,} has a (finite)

limit point. If the sequencq%)t:u,_,_} indeed converges to this limit point, then the theorem is
proved, by Lemma 6.
Step 3 Thus, the remainder of the proof will show that the limit poof the sequence

{(%)tzl,g,_,_} is unique, and hence it is the limit of the sequence.
By exploiting equations1) and P3), we can rewrite2) as follows:

i X X\ & a(l—6) 10 (X o
(DZ) (E)Hl_ (E)t 1_6[1_9( l1-a ) (E)t .
It will be convenient to define the functionf*(x) = ax(1 — bxX), wherea = % b=
1-0
0(“=2)", andr = (1-6)/6. Thus 02) says that

1-a
f*(ﬁ) _ K for all t.
Ct Ct+1

Compute tha% = —rab(1+r)x~%, and sof* is a concave function o , . Let A* be the value

of the ratio%I in the stationary state. Then we havé(A*) = A* and f*(0) = 0. The first claim
follows since the equatiorD2*) holds, of course, at the stationary state as well.

Finally, note that another root df is given byx* = (1/b)Y". Concavity implies that* has
only the two fixed points 0 and".

8Thanks to Cong Huang, who completed and simplified this proof
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715 Because{(%)tfl 5 } is bounded, it possesses a liminf and a lim sup. For conveajeienote

ne Vi = (X?l)t and define
o =liminfy, o =limsupy.

n7 - Sincef*(y;) = Y1, Wwe have inff*(y;) = o, and by the continuity of*, inf f*(y;) = f*(infy) =
ns  f*(0) = o, soo is a fixed point off*. In like mannerg™ is a fixed point off*.

719 If we can establish that # 0, then we must have = A* = ¢*, and hence the limit offy;}
720 €Xxists. But this is established by an argument that mimiep $tof the proof of Lemma 6, as
= follows.

If o = 0, then, by D1), liminf (x*/(c+1i)), = 0, and so liminf(x’/s") = 0, by invoking

2 (P3). Nowé (¢ + i) /< = 9(x§/§)1_6, so liminfé (¢ + i) /s = 0, which means, by[§2), that
2e  liminf yga/yr = €/ (1-6) > 1, becausé > 1. But this immediately implies that liming > O,

725 a contradiction. Therefore # 0, and Proposition 4 is proved. O
726 The proof of the Turnpike Theorem follows from the previoiscdssion, in particular from
27 propositions 2 and 4. O

=s  Proof of Theorem 5

e Part A

730 Step 1Let xg = 1. We claim that for any smadl > 0, we can find values andi such that:
i=(E-¢e+6-1)o,
i=f(&-¢8)ae).

731 By plotting the graphs of these two functions in {) space, we can observe that they cross

2 at the origin and at some positive value ofby assumptior\(b).
733 Step 2 Lete < (¢€ — 1)/¢, and leto- be chosen to satisfy the equations in Step 1, thus
724 defining investment at date 1 when

=g X=¢-5 € =0=xX.

735 Note from Step 1 that we may tald = (¢ — g)o. Let V(x¢, <) be the value function of
76 ProgramDUz[ x5, ég], if it converges. Then we must have, by consideration ofcthaice of date
7z 1 values abovey (L,0) > 0+ (- &)V (L,0). But(éE—g)¢ > &p — (£p — 1) = 1, implying

zs  that the last equation stated cannot hold, and hence Prdgtéynmust diverge beginning with
720 endowment (1o).

740 Step 3 Itimmediately follows that Prograf@U, diverges foro"> o-. (Just throw away some
1 capital at date 1 and reduce the capital-labor ratio.JaMoreover, the program must diverge for
w2 0< 6 <o aswell (atdate 1, invest very little in education, thus @aging the capital-labor ratio
« atdate 2 to a valug/x¢ > o). O

i Part B
75 Step 1 Letx§ = 1. The largest possible investment that can be made at d&m% Eiois
us  given byl (o), defined by the equation:

f((1 = 6)o +1(0),8) = (o),
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because] < ¢. Defineo™ such that:

(-0 )/ - - = 1- 1(@- )", 2),

wherefi(s X) = Z—L(s X). A monotonicity argument, invoking the intermediate \eatheorem,
shows that™ exists uniquely.

Letm= f1((1 - 6)o™, &) and note that & m < 1.

Step 2 The graph of the function

2i) = f(A-8)0" +i,8
lies everywhere on or below the graph of the function

y(i) = (1= 06)a". &) + mi,

andy(0) = z(0) (by the concavity off). The second graph meets the4ay in (i, y) space at the
pointi = f (1 - 6)c*, &) /(1 - m). Therefore

f(2-0).8)

I(o") < -m

Step 3 Hence, beginning &{; ="

é{ <@A-8)c"+l(c) < (1= + f(1L-06)c",&/(A-m)
<(@A-8)c" +0"(E-(1-9)) =&
Therefore:
u(cL, Xp) < U(f(S5,6),€) < u(f(éo™,£).6) < €N,

whereN = u(f(c*, 1), 1).
Step 4 For any numbey > 1, we have:

f((L =)o +yl(07), &) < F((1 = oo™ +yl(07), yé) = Yl (07).

Consider the functio?(x) = x — f((1 - d)yc* + X, &); note that¥’(x) > 0 (sincem < 1).
We have (from the above) th&#t(y1(c*)) > 0, and by definition'¥(l (¢c™*)) = 0. It follows that

[(yo*) < yl(o).
Step 5 Now compute that

S<@-O)L+1(S) <@-8)éo* +1(E0™) < L-68)éc + (o),
=&§((1-0)0" +1(07) <&,
which follows by invoking the definition off(-), and steps 3 and 4.
By induction we haves‘ < ¢'o*. Butxf < & andx < & as well, and sai(c, x) <

u(f(s.€).€) < &N. it follows that X ¢ tuy < € 3 (9€) ™ N < oo
Step 6 Now suppose that > o*; leto = yo*, > 1. Then beginning ai{() =0

L<@-08)o+1(0) = A=) + (o)
<y((L-6)o" + (o)) [by Step 4]

<yéo" = éo.
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And sou(c, X}) < u(f(s, £, &Y < £u(f(o, 1), 1), and as before:
Z(‘Pf ly < oo

Step 7 ThereforeDU, converges foo- > o*. A fortiori, it converges forr < o, by the free
disposal of capital. O

Proof of Lemma 4
For any (i1, Uz, ...), min{uy,..., W} > min{uy,..., Uy1}. Therefore

DA+ - DB MU, w < Y@L+ (- 1))
1 1
=u[e®+ ot + P+ 5+ ...
+BoY + Be? + B + . ..
+ﬂ<p2+ﬂ<p3+...

+B0> + ...
+...]

- - - 1
:ul[zl:¢t‘l+ﬁ[22:¢t‘l+23:¢pt‘l+...)=u1(1_¢+,8(1f‘p + 1"i(p+...))

: 1 B ®
_ul(l—so ’ 1—¢(1—¢))<m'

Hence, the sumy2; @11 + (t — 1)8] min{uy, .. ., u} of nonnegative terms converges. O

Proof of Theorem 6

Consider theonstrained discounted utility program CR[, X3, éa] (which specializes pro-
gramCDU in the proof of Lemma 1 to the education and capital econoas/jollows.

Program CDU;[¢, X¢, st

maxz ¢ tu(ct, X) subject to :
t=1

(1_5)4(_1"‘ it > éﬁ
f(g(’xf) 2 C + it,
X1 2 X+ X+ %,
u(e, ¥) = (e, X,), t=1
Note that Progran€DU5 is not concave, because of the last constraint, which is nasie

concave. (The last constraint is quasi-concave onlyisflinear.) Hence we cannot immediately
use concave optimization theory to analyze Prog@idt,.

Lemma 7. The solution to Hy, ¢, <] is also the solution to CD&ly, xS, <].
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Proof. Immediate from Lemma 5. O

But the solution toCDU;, is in generaldifferentfrom the solution toDU,, the last being
sometimes unbounded, whikDUs is surely bounded.

Now if DU2[¢, X5, %] diverges, then utility is unbounded above over time. Itnseeeason-
able to conjecture that, in this case, the last constrai®f,[¢, X3, §5] will bind at every date.
But if this is the case, then the solution@DU,[¢, X¢, s is just the solution tSUS[XE, i,
which means that the egalitarian ethical observer in thie@mment with uncertain worlds will
behave just as if there were no uncertainty.

We now prove that this conjecture is true. To do so we make tifedollowing program.

Program PP[y, x¢, <].

max{%(p = Zzl cp“l/lt} subject to:
A11=0,
W) ulc,X)=A—-A, t=1,
(M) Apr>A, t>1
@ fEx)zc+i, t=1,
(b) (-0, +i>s, t>1,
() 62X +x+Xt>1
Dual variables are stated to the left of the constraints. drimaal variables in Prograr®P
are all the usual economic variables, plus the variahles, 13, . ... We call the usual economic

variables of a feasible path in Progrd®® the economic parbof the path. Note thaPP is a
concave program, so it may be solved with traditional meshod

Lemma 8. Let (3¢, ) € I'° If @& > 1, then the solution to Program S[S, ] forms the
economic part of the solution to Program R2Xxg, §(§].

Proof.
Step 1.We first write down the Kuhn-Tucker conditions which chaeaizie the solution to Pro-
gramsSuS [xg §5] These are:

(sug) ©A): 1= ivt,
1

(SU) (@) : wult] = a,

(SUS) (5)4) Doi[t] = d,

(SUSH) @) : afilt] +ba(l-6)—b =0,
(SUS) (@i : a=h,

(SUS) (0%): afft] =d,

(SUS) (0%): &g =dh,

9Recall the definition of in the statement of the Turnpike Theorem.
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where we use the notatian[t] = ;Zu(ct. X)), W[t] = aixlu(ct,x{), etc. At the solution t8US,
non-negative dual variables satisfying the above conubtiexist and all the primal constraints
are binding. Denote the primal (economic) variables at thiation by (A, {(‘:t,f(t,...}{jl). If

(xg, %) e I, then, because the solution is stationakyt] = u;[1] for all t, and likewise for the
other derivatives ofl. andf.

Step 2 Definell; = 0, for allt > 1. We wish to show thab = ([\,{f‘:t, )“(t,...}{’zl,{flt}zl) is
the solution to PrograrRP[¢p, X3, %]. Let ® = (A, {Ct, %, ...};24. {t)o,) be the purported optimal
path for ProgranPP[e, X5, 5'5]. Denote the dierence between these two paths by:

AN=A—-A, A =C—&, A =X —Rt,..., Ay = A — A = 4,

that is, schematicallp\® = @ — .
Define:
a=all-¢). t=1
br=b/(1-¢), t=1,
\7t=Vt/(1—tp), t>1,
d=d/(1-¢), t>1

Now define the following function of a real variable:

o)

=1, - ZZ“ eI + eAL) + 21: U (u( + eAC, & + eAX) — (A + £AA) + (4 + £Ay))

+ Z M((er + A1) — (A + 8AL)) + Z & (F(& +£AS, & + eAX — (& + eAcr) — (It + £Ai))
1 1
+

+

br ((1- 0)(8, + 2AS ) + (it + £Air) — (& + £AS))
dl

1
DG (£, + eAX ) — (R + 2AX) — (K + £0%) — (X + £AX))..
1
All the variables in this function are defined except for thguence of numbersy, my, .. .).
Note that® is a concave function, a consequence of the concavityarid f. Note that® is
defined on [01], since the feasible set of Progrd® is convex. Suppose we can produce a non-
negative sequencey, m, ...) such that the derivative @ exists and is zero at= 0. Then®

will be maximized at zero, and so in particulé(0) > ®(1). Now note tha®(0) = 1%4}, which
is the value of the objective function of Progrd®® at the pathd; all the other terms vanish,
since all the primal constraints of Progr&8t/$ are binding on this path, and = 0 for all t.

We also have®(1) = ﬁ - >3 ¢ 1A+ non-negative terms. It will therefore follow that

A A N

proving that the value of the objective function of Prografat ® weakly dominates the value
at any other feasible path, and hedeés a solution to Prograr®P.
Step 3 We now evaluate®’(0), by taking the derivative o® w. r. t. & term by term,
gathering terms together. Indeed, what we are doing is rigidg the Kuhn-Tucker conditions:
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s21  We are going through this process because there is a stejcit w must deviate from the usual
e2 procedure. We compute:

©'(0) = AA (ﬁ = ot) + ) Ac (rualt] - &)+ > A (wuelt] - &)
1 1 1
+ Z A (8fo[t] - di) + Z AXE (€ — d) + Z Ai (br - &)
1 1 1

+ ) A (L= 0)bya — b + & fa[]) + {Z M (Adia — AL) - Y @ A%+ Y \Mﬂt} :
1 1 2 1

823 Notice that all terms on the r. h. s. of this equation exceptidist bracketed term vanish by
s2s conditions BUR)-(SUT) of Step 1, and the definition of the ™ dual variables. Furtiwe, it is
@5 legitimate to collect and recombine terms as we have, becallthe relevant series converge.
@s  The point at which care must be takemiz to attempt to recombine terms in the bracketed term,
ez because the series in the bracketed term may not converge.
Step 4.1t follows that we will have showr®’(0) = 0 if we can produce a non-negative
sequencenfy, My, ...) such that

Z my (A/lprl - A/lt) - Z (,Ot_lA/lt + Z vtA/lt =0,
1 2 2
@s  Which is the same equation as:

Z M(Arr — ) — Z ¢+ Z Vidy =0, (A.4)
1 2 2

s SinceAd; = A; forall t > 1.

830 If the sequencelg, A, .. .) isidentically zero, then obviously any choice ofy( my, .. .) will
s guarantee (A.7). So suppose this is not the case. Then farsoml, (Ar,1— A7) > 0 (recall
w2 thatd; = 0) and all terms 4.1 — At) > O (see the constraint in Prograd). Consequently, by
s Choosingmy > 0 appropriately, andy = O for allt # T, we can make the supi;” M1 — At)
sa  €qualanydesired non-negative number. Hence we can solve (A.4) & Gty if):

— Z (,Otil/lt + Z \”/t/lt = Z /lt(\?t - (,Otil) < 0. (A5)
2 1 2

835 Note that both series on the |. h. s. of (A.5) converge, singelf, . ..) is bounded above by
s A (Since ifA; > A for anyt, then one can replack with A, and the new path remains feasible
sz While the objective function of PrograRP increasep andyv; is a geometric series converging to
ws  Zero (see below), so it is permissible to add these two serigther term-wise.

839 We now invoke the premise that the solutibris stationary. Using this fact, we can solve the
" . t el

s Kuhn-Tucker conditions in Step 1 and compute that {1) £=.

sa1 Now observe that

v - S

2
&-1 16 o 1E ¢ _o

1-9)1-1 1-¢ 1-¢ 1-
El-9¢) 29/)6 ¢ ¢ ¢
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855
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857

858

859

860

861

862

863

864

865

866

where the last inequality follows becauge > 1.1° Note that the terms in this sum are surely
positive for small values of (at least fort = 1), but eventually they turn negative and stay
negative forever. This is clear if we note that the sign oftttreterm is the same as the sign of

&-1
(1-¢)
which becomes negative at sogecausedy)* grows without bound.
Let us denote; = ((Z{)t el ¢t*1). We have shown that; ¢ < 0. Let T be the largest

1-¢
integer for which¢; is non-negative. Then we may write:

o T oo T o o
D= D Mt DAL Y Al Y Arli=ar ) ir <0,
2 2

T+1 2 T+1 2

- ),

where we have invoked the fact that (1, ...) is a weakly increasing non-negative sequence.
This proves (A.5), and hence the lemma, except for the gasel.
If & =1, then; = 0 for allt, and (A.5) obviously holds. O

Lemma 9. If the solution to Program SU$xs, %]) is the economic part of the solution to Pro-
gram PP[cp, X, éé] then it is also the solution to Program CQ‘P,&, X, éé]

Proof. Denote the solution to PrograBiuS by @, as in the proof of Lemma 8. Denote the
solution to Progran€DU, by&) = {C, %, ...}. We can extend the paﬁ] to a feasible path for
ProgramPP by definingf\ =@y and A = Uy — G. The pathti) is extended in like manner to a
feasible path for Prograi8US (and in fact its solution path, by the premise) by lettihg= 0

for all t. If the solution to PrograrDU; were not the economic part of the solution to Program
PP, then we would have:

Oy 0y N t-1r~ o~ N t-1n~
> =D (- =) ¢ T,

for the left-hand side of this inequality is the valueRIP, by the premise of the lemma, and the
right-hand side is the value of the objectiveRIP at a non-optimal, feasible solution. But note
that this inequality says:

01 - t—1n~
> @ Ut

However the solution t&US —~path<i>— is a feasible path fo€DU,; thus, the last equation
contradicts the optimality of thé path forCDU, . This contradiction proves the lemma. O

Lemma 10. Let(x5, ) € I'. If ¢ > 1, then the solution to ProgramzRp, X3, éé] is the solution
to Program SUg x;, S5

Proof. Follows immediately from lemmas 7-9. O

10we deal with the boundary cage = 1 below.
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We now proceed to the proof of Theorem 6.
Stepl From Lemma 5, we can write Progrd® as follows:

max > ¢ M1+ (t- 1)) u
t=1
subject tou € P,
U > Upq, fort> 1

Since the value of the program is finite (by Lemma 4), we camlbrg the series in the
objective function, and write it as:

Up + @ + ¢%U3 + @oUg + . ..
+BpUs + LUz + BpUs + . . .
+B%Uz + BoUs + . . .
+Bo%Us + . ..

[oe] (o8] [oe] (o9
-1 t-1 t—1 t-1
= > ¢ M+ B e T e Y .
1 2 3 7

Step 2 Suppose, contrary to the claim, that,(us,...) solves PrograniR’[y, x5, %] but
not ProgranSUS[xg, sg] whose solution has constant utilities at the level dethdeA*. Be-
cause PrograrDU;[x, %] diverges, we know by lemmas 4 and 10 that the solution to arag
SUS is the same as the solution to progr&n which, by Lemma 5, is equivalent to Program

CDU,[E, &:

(A.6)

-1

max_z‘io V"

subjecttou € P,
Ut > Uiy1-

Hence, the solution to Progra@DU; is (A", A%,...). The assumption thatf, u,...) is
not the solution to PrograrBUS then implies thatij, u;, .. .) is not the solution to Program
CDU;[¢, § either, i. e.,

) o A*
t—1, * t—1 A% _
zl:cp us <zl:tp A = 1o (A.7)

(since (3, u;, . ..) is feasible for PrograrBUS and the solution to that program is unique), i. e.,
the first term in (A.6) evaluated aty, u;, ...) is less thaF{‘—
Step 3 The proof will be completed after showmg that (A.7) implignat the value of the

objective function ofR? at (A*, A*,...) is higher than atyj, us,...), and, hence,ug, u, ...)
does not solvé?®, contrary to hypothesis. § = 0, then from (A.6) the value of the objective
function of R at (Uj, uj,...) is X3 ¢ 1u;, by (A.7) less tharyy ¢ *A*, which is the desired
contradiction. So leg > 0. Again by (A.7), the first term of (A.6) is less thsﬁﬁ&. Suppose now
that the second term in (A.6) evaluated af, (i, ...) is greater thanﬂﬁA*, which, because

B > 0, implies that
PRI (A.8)
2 1
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Ifwe had that; > A, then, by (A.8)L;+ X5 ¢ U > A"+ X7 ¢'A* = A"+ A" = sE A%,

contradicting (A.7). Thusy; < A* and, therefore, by Lemma & < uj < A*wfor all t,¢and

so (A.8) would be false. Therefore the second term of (A.6¢nvhvaluated atug, u;, .. .) is
B, ¢ tur, which is less than or equal %A*. By induction, we see that for all values

T>2:
B e <py oA
t=7 t=1

Hence, A*, A%, ...) dominates;, u;, .. .) in ProgramR’ while satisfying its constraints, a
contradiction which establishes the theorem. O

Proof of Theorem 7

Step 1 Itis obvious that ifp = 0, then the solution to PrograRy requires simply maximiz-
ing the utility of the first generation. In particular, thisiwequire x§ = 0 and hences, = 0.
Step 2.More generally, suppose that in the solution to ProgRymwe haveu; = up > 0.

Then if we reduce<'2 by &g, we can increasez'1 by £. This leaves all variables after date 2
unchanged, since Generation 2 continues to pass down tfeesadowment to Generation 3. It
therefore must be the case that this change does not indreagalue ofu; + ¢u,; therefore we
must have:

au(cy, X au(cy, X
(1|1) y (2I 2)530.
oxy X,
Choosing
_ou(c, X)) J(du(ca, X)
T /( ¢
X 9%,
therefore proves the theorem. O

Proof of Theorem 8

Step 1. Without loss of generality, we assume thgt= 1, and sos‘{) = 0. Since the set of
feasible paths is a convex cone, the primal variables atttien of the general problem where
x5 # 1 are simply the ones computed here, multipliedgy

We write theDU, program with its dual variables:

maxi ¢'u(c, x) subject to
1

Cl): @(1-0),+it>2s, (&)
C2): f(& ) >c+in, (o)
(C3): &, =2xX+x+X,  (d)
(C4): ii=0. (e)
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010 The Kuhn-Tucker conditions for a solution to this progranendall the constraints bind are:

(KT1) @) : ¢ 'wlt] = by,

(KT2) @%): ¢ 'l =d,

(KT3) @%): d= (/&) dy,

(KT4) (@0x): bef[t] = di,

(KT5) (@) : (1-06)aus = a -~ bfit],
(KT6) (): a=b-e,

s« Where all equations hold fdr= 1,2,3,.... Again,u;[t] and f;[t] are thejth partial derivatives
a2 Of the utility functionu and the production functiohfor j = 1, 2.

013 We will show that there exist non-negative dual variablehghat the proposed path satisfies
as  all the Kuhn-Tucker constraints. All the relevant infinigries converge, so that the satisfaction
as  Of the K-T constraints dfices to prove optimality of this infinite program.

016 Step 2 Our method will be to substitute the values on the proposédisn path into the
a7 primal and dual constraints, and to show that non-negati@es of all dual variables can be
s computed. To this end, the educational constrdd)(gives us:

E-E=x +X, (A.9)

9

2

o recalling thatx§ = 1.
920 Step 3.The dual K-T constraints imply the following:

uzlt] = f[tug[t], (A.10)

@éUz[t + 1] = wp[t], (A.11)

& - (1-dew=(1- faft])br — (1 - 5)brsa. (A.12)
021 The remaining dual constraints simply define (non-negatigkies of the dual variables.

022 Step 4 Equation (A.11) says that

#q _ (1_9)((1—5)t0'0).

Et—l)((l: !

e Substitutingcf for ¢; allows us to reduce this equation to:

1-a)
i X (A.13)

« Equations (A.12) and (A.13) comprise two linear equation&, x'l), which solve to give

9

]

C_ g | _ gl
X =%, X =%,

es as required.
926 Step 5 We next analyze equation (A.12), which says:

(03 | \@
ol (] -
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Substituting in the values andx gives us an equation in the variatie
1-6 af
- | =1
=
which solves to give the prescribed value EarNote thatE < 1 sincepé < 1.

Step 6 The prescribed values of all primal variables have beeffi®gr The Kuhn-Tucker
equationsKT1-3) give us non-negative solutions figarandd;. It is left only to solve forg, and
to show that for alt, b; > €, which will give non-negative values fak.

Step 7 Define the new variables:

m = (1 - fu[t) " uaft] — (1 - 6)¢'uaft + 1].

We show in this step that there exists a numdesuch that ifeg > &, thenm > 0 for all
t > 1. The desired result is equivalent to:

)'ziEt—l

E (1-a)
o(1-06)t )

1-6
) >? (1-8)p (— (A.14)

(vt > 1) 1—9( —

Since% < 1,thel. h. s. of (A.14) is increasing inthus we need only verify (A.14) fdr= 1,
which is to say, to verify that:

X?I:. 1-0 ’ E 0(1-a)
1‘9((;(1—5)) 2 a-oe(i=;)

an inequality which holds for sficiently largeo- if and only if:

bl

E )6’(1—01)

l>(1—5)tp(r§

which is immediately seen to be true from the definitiorof
Step 8 Now note that equation (A.12) can be written

g-(1-d6)e=m, t>1

This system of dference equations yields the following solution:

€1

o T

T-1
—Zm[(l—é)“T, T=23,...
t=1

Now chooseg; = Y2, (1 - 6)"*m. (We note that this series converges.) To verify that>
O forall T > 1 we must show that

T-1
T>2=6> Zm(l—é)t*l,
t=1

a fact which follows from the definition of; and the fact thatnfy, my,...) is a non-negative
sequence.
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Step 9 The final step is to show that > 0 wherea; = b; — . It suffices to show that for all
T>1,(1-6)"1r > (1-06)""er, orthat:

(1-6)"tor 27 )" m(1-6)",
=T
The r. h. s. of this inequality can be shown (with some alggtoraqual

(1-0)¢) (L~ A[TDHw[T] - Z ftI(L ~ 8)¢)'  ualt];

T+1

sincebr = ¢"1uy[T], our desired inequality reduces to showing that
(1= 6)9) " tug[T] =27 (1 - 6)e) (1 - f1[T])us[T] - a positive term

which is surely true. This concludes the demonstrationdldhe K-T conditions hold with the
dual variables as defined.

Step 10 Finally, we derive the critical value*. The infinite-series expression fey can be
expanded and reduced (with much algebra) to show that

l1-a
1-a6’

ei(oo) = (1 - fa[1])ua[1] - (%) Z—i(sof)“_l‘* (A.15)

1
which we write as a function of the initial capital-laboricat The reader should note, from
the K-T conditions KT1-6) in Step 1 that the dual variables are functions only efntlarginal
utilities and productivities at the various dates, which, dor the Cobb-Douglas case, functions
of ratios of the primal variables. Therefore the dual variables adejiendent of the scale of the
endowment vector (i. e., the value xg).

The critical value ofog is that number* for which e;(c*) = 0: for if e(09) > 0 then a
slight decrease imrg will still deliver a positive value og;, and all the otheg. But this would
mean that investment is identically zero on the optimal patie zero of equation (A.15) is the
solution to the equation in the statement of the theoremghvboncludes the proof. O

Example 2

This is an example of an education and capital economy wiadéwag the solution path to
ProgramDU,, u, > u;, whereas the utilities from date 2 onwards decay geoméyricahe
example is presented in lemmas 11 and 12 below.

Lemma 11. Let(«, 6, 6, £, ¢) = (0.66,0.25,0.1, 1.1,0.9) and (g, %) = (1,0.15). In particular,
¢& < 1. Theno* = 0.186198and soop = 0.15 < o*. The solution to DY is given by(cs,
x'l, X, X, i, §I) = (0.1922940.04829430.8709890.1543750.07463610.114795) We have
o1 = 0.1979> o* and the variables from date 2 onwards are given by:

t>2: i =09 =, % =%, ¢ = x¢&. In particular, i, = 0.1138and = 0.1169> u;.
The utilities from date 2 onwards decay geometrically astiedrem 8.

Proof. Stepl We will produce the example by finding an initial endowmesdttor (x5, éé) such

thatoo < o* and the solution t®U;[¢p, X3, %] has the following property: on the optimal path,
at date 1, we have; = éfl/x‘; > ¢*. For we then know what the optimal path is from date 1
onwards: it is just the path stipulated in Theorem 8. Outtatpawill be to find such values of
(X5, %), where, on the optimal path, we hawe< us,.
We write down the program we wish to solve, whexg 65) is now an unknown endowment.
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Program PP*[¢, ¢, 5.
maxz ¢ 2u(ct, X) subject to :
1

(&) (1-0)s,+ik>s, t=1,
(b) (&) >c+in, t>1,

d) O =x=x+x+x, t=1
(&) >0, t>1.

Note that we have factored outfrom the usual statement of the objective function. Of
course this makes noftirence to the solution. The reason for doing so will beconpauamnt
momentarily.

We are searching for a solution such that > o*, i; > 0, and it follows (by Theorem 8)
thati; = 0,t > 2. Hence all constraints of prograP* will bind except for the first investment
constraint. This gives the following K-T conditions:

@Oc): ¢ Puftl=by, t>1,
0x):  ¢Pwll=a, t>1,
0%): bfftl=d, t=1,
(0%) oy =d, t>1,
(aiy) - ap = by,
a=bh-a t>1,
@)  (1-Oaw=a-bhlt], t>1

Step 2 In Theorem 8, we solved thi2U, problem with the normalizatior§ = 1,00 = §5
Recall from Step 10 of the proof of Theorem 8 that the valuethefdual variables of that
program are functionsnly of o: that is, they depend only on the capital-labor ratio at @ate
not on the scale of the initial endowment vector.

Step 3 ProgramPP* beginning at date 1 (not date O)dgactlythe program solved in The-
orem 8. (That is why we factored outfrom the objective.) Since; > o* in the solution
we are looking for, it follows that the dual variables frontela on in PrograniPP* are exactly
the dual variables computed in Theorem 8, where the initipital — labor ratio isr;, and the
primal variables from date 1 are exactly the tilde primaiafles of Theorem 8, multiplied by
x{, whatever that turns out to be. B

Denote the dual variables computed in the proof of Theorentt8tildes -&(o), b(o), etc.,
whereo is the initial capital-labor ratio of that program.

Step 4 We now compute what information is contained in the K-T d¢raists for Program

PP*. First, we know thatl, = dl(o-l): this follows from the above discussion. Bt = Zlfdl =
¢~ tu,[1] and therefore:

Up[1] = ¢éda (o). (A.16)

From Theorem 8, we know thak(o1) = to[1] = (1 - @) (%%g) , and we therefore can
1
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write, manipulating equation (A.16):

G _ (sof)”“[M], (A17)
X3 Xl(o'l)

wherec;, x'l are the date 1 values on the optimal path for ProgiPdh
Our second equation is

Up[1]
—— = fp[1],
] 2[1]
which comes from the first three K-T constraints of Progia. This gives:
lac (6 Y
Tx—ll_(l—e) X =(1-90) ?l . (A.18)
The next three equations simply restate the primal comésai
(1-0)sy+i1=sf, (A.19)
66 =26+ + 6. (A20)
f(,X6) = ¢1 +iy. (A.21)

Equation (A.21) comes from théﬁ) K-T condition. As before, we know thék = by(c1)
ande; = & (o1) and soa; = by — & = by(o1) — &(01). Thus, we may write that K-T condition
as: ) ) ) x'l - ‘ o

(1-06)(bi(c1) — B1(01)) = ¢ 1((:—1) [1—9(5) ) (A.22)

The six equations (A.17)-(A.22) are equations in the sixnawknsx?, x'l, X{, i1, C1, éfl when
the endowmentg, §5) is given. Of coursay; = sii/x‘;. We know the expressions for all the tilde
variables from Theorem 8, as functionscof.

Indeed, these six equations contain all the new informatimrut the solution to PrograRP*
—the remaining K-T conditions simply emulate the solutibthe program from date 1 onwards,
which we know from Theorem 8.

We now show how to solve these six equations. Define two neiablas:

A= 5o
X X3
Note that equations (A.17), (A.18) and (A.22) above are #angous equations in the three
unknownsA, B ando;. Hence we can solve for these three variables (which we wilihdan
example, given below). Now, knowing these three variabilesgan write all the information re-
maining in the six equations as the following system of siedir equations in the six unknowns:

s = 01X,
1L-0) +iy = &,
X(l:f(B, 1) =Cy+i,
CL = A)dl,
£ = + X+ %,

<=8

Xz
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We write these equations in matrix forkwhz = Q, where

00 0 -y 0 1 0
o0 0 0 -1 1 (1-8)
|10ty 0 -1 0| _ | o
M=l 1A 0 o0 o ol o
o1 1 1 0 0 ¢
o0 B 0 0 -1 0

(The order of the variables iy, x',xC X5, i1, éfL)) Hence we can compute the solutian=
M~1Q. If we insert an endowment vect()cg éé) with o9 < o* and the solution Q generated is

a positive vector, an% > o, then we have a solution to P®f the required formFor it will
immediately follow that all the dual variables are non- riaga from the K-T conditions, and so
we have produced a path where all the K-T conditions hold —gajrainvoking Theorem 8.

Step 5 Examine theMathematicgprogram (available from the authors) which calculates this
solution for several numerical values. In particular, astance is provided in whicty < u; on
the optimal path, which proves the lemma. O

Lemma 12. The solution to K¢, X5, %] with the data of the premise of Lemma 11 is given

by: (i1, c1. X X, X, 1) = (0.1675830.03258280.131227 0.847974 0.162572 0.894544
0.197627)and for t> 1: iy = 0, & = X¢&, % = X¢%, ¢ = X¢C;. At the solution, u= w,. Indeed,

the utilities at the solutions of Ddand R for this economy are given by:

Uy uy U,t>2
DU, | 0.1138| 0.1169 | geometric decay
R, | 0.1152| 0.1152 | geometric decay

Proof. Step 1 We will find a solution to Prograrn®P[e, X3, %]: this will also be a solution to
CDUa[p, X¢ %] and hence t&;[¢, X, si]. Recall that Prograr®Ply, X, sis:

A - :
max {——ngt‘l/lt} subject to

V) ulc,X)=>A-A, t>1,
(M) A=A, t>1,

(b) f(Sx)>c+i, t=>1,
(&) (1-6)s,+it>2s, t=1,
(d) & =X +x+x, t=1
(@ ;>0 t>1,

whered; = 0. For the specified economy, we conjecture a solution whgee u; > uz > ...
and where the geometric-decay solution begins at date X, Difithe set ofry constraints, only
the my constraint will bind, and sony = O fort > 1. Thee; constraint will be slack, since we
conjecture that; > 0. All other constraints will bind at the solution. The K-Tratitions are
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therefore:

1 (o9
(0A) : r(p = leVt,

(012) : —o+m +Vv, =0,

Or):  vi=¢"t t>2

(e ww=b, tx>1

(0%) : Vilk =d;, t>1,

(0X5) bfo[t] =d, t>1,

(0%):  édyi=d, t>1,

0):  aw(d-0)-a+bff]=0 t>1,
(0in) . ar=bhy,

(0iy) : a=b-¢e t>1

Step 2 We can reduce the first three dual K-T conditions to the égusit
V2=1+£,D—V1, m=vy—1,

thus eliminating the variables andm;. We must, after finding a value fei, check that, and
my are non-negative.

Fort > 2, we define all the dual variables to equal the dual variatfi#ise geometric-decay
solution which begins at date 2 with the endowme@l@, multiplied byA. Denoting the latter
variables with tildes, we therefore define for 2:

a =@ 1, b=¢b 1, =g, a=¢d

Then all the dual constraints which involve these variables satisfied where the primal
variables for dates > 2 are given by the geometric-decay solution to Theorem 8.tlerto
be a solution, we must check thaf = ﬁ/x‘j > o*. We are left only with the dual constraints
associated with date 1, which are:

viUg[1] = by,
ViUp[1] = dy,

uz[1] = f2[1]ua[1],
£dp = dy,

ax(1-0) = by(1 - fy[1]).

The first two of the above constraints simply defimeandd;. Thus we are left with three
substantive equations. Substituting in for the valued@fnda,, these become:

Up[1] = fo[1]uy[1], (A.23)
édy = viup[1], (A.24)
(b1 — &) (1 - 6) = vua[1] (1 - fa[1]). (A.25)
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Recall from the proof of Theorem 8 that the expressionsT{oIBl, &, are known functions of
o1 = /€. In particular, we have:

~ a-1 ~ @
612(1’(%?1)] ,d‘]_:(l—a’)(%ii)] B

while the expression fog is given as equation (A.15) in Step 10 of the proof of Theorem 8
In addition we have the primal constraints:

u(c, X)) = X¢u@(o1), %) (. e.,up = uy), (A.26)
X F(s{/x4. 1) = c1 + 1y, (A27)
(1-0)s = st — i, (A.28)
EE = +xE + X, (A.29)

The seven equations (A.23)-(A.29) define a system of sevaations in the seven unknowns
(éi, i1, C1, XE, Xi, Xll, Vl).

Step 3 We proceed to solve these equations as follows. Recallthatc; /X, B = #/xg
Rewriting equation (A.23) as

SN0 (A.30)
07
allows us expresA as a function oB:
AB] = =g (A.31)
1-a

We define the following mapping. Begin with an arbitrary pesivalue forB. Then compute
Aby (A.31). Now equations (A.24) and (A.25) comprise two sitaoeous equations i, vy).
Solve them. This leaves us with the four equations (A.2628) which are now linear equations
in the primal variables, onck, B ando-; are specified constants. To these, append the equations:

O'1Xi=Sli, AX11=C1.

We now have a linear system of six equations in the six datepsimal variables. Solve
them, and defin® = ﬁ/xﬁ A fixed point of the mappin@® — B generates a solution to the
seven equations (A.23-A.29) in the six primal variablespiu

We find the fixed point of this mapping for the stipulated eqogo(See the availablglath-
ematicaprogram.) We find that; = 1.01304, and it follows that, andm, are positive and
o1 = 0.1976 > o*. Hence we have a solution to all the Kuhn-Tucker conditiamg] hence,
sincePP is a concave program, to Progrd®®. The solution is reported in the lemma’s state-
ment. O

Proof of Theorem 9
Step 1.We first write down the Kuhn-Tucker conditions for a solutiorPrograng-SUS

OA): 1=37r(d+9"",

(0c) :  nwft] = a,

((9X{) Doruft] = dy,

(axf) . fdt+1 = dt,

(0x9) 1 afoft] =di,

O afit] + (1-6)bu1 = by,
(Gi): a= bt-4o
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In addition, let all the primal constraints hold with eqtaliWe shall attempt to solve all
these equations for a balanced growth path.

On such a pathy;[t] = uj[1] and f;[t] = f;[1] for j = 1,2 andt > 1. The primal and dual
equations yield the following substantive relations on kbeed growth path for the economic
variables:

i1 = (g+9)s5, (A:32)

E-(1+0) =2 +x, (A.33)
_ wfl]

RlL) = (A.34)

&= 1_1;{[51], (A.35)

f(1+09)s5.55) = ¢ + i1 (A.36)

The other dual constraints simply define non-negative dadhklles in terms of the primal
variables, with one exception: we must verify that the seiiethe A) constraint converges.
Thus, givery, if we can solve the five equations (A.32)-(A.36) fsg,(xi, x'l, C1,i1) and the series
in (0A) converges, then the balanced growth path atgaiefined by these values, along with the
associated dual variables, solves the Kuhn-Tucker canttraModulo transversality conditions,
which we will comment upon below, and singeSUSis a concave program, the theorem will be
demonstrated.

Step 2 From the dual K- T conditions, we deduce that %[11] (Zlf

series in thedA) K- T condition defines a value fal; if and only if % < 1. Thisis true because
by hypothesisg < £ — 1.

Step 3 Thus, it remains to solve the five equations (A.32)-(A.3Bpecializing to Cobb-
Douglas, we re-write the five equations as follows.

)t_l. Consequently the

i1 = (9+ )5, (A.37)
E-(1+9) =X+ Xy, (A.38)
0
(1—0)((“?)55) - d-aa (A.39)
X ax;
X 7 _e-@-9)
S A.40
%u+@%) ¢ (A-40)
(1+9)s)' ()" = c1 + (g + 0. (A.41)

Step 4 Now denoteX = 3, Y = % Solve (A.39) and (A.40) foK andY:

X
&

_(1-5)\1/(1-6)
X=(1+g)(Z2) 7,

_ o(1-6) (¢-(1-6)\~0/(A-6)
Y= 1« ( BE ) .

Next, divide equation (A.41) through kﬂg giving:
% = (1+9) X" - (g+0), (A.42)
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which generates mecessary conditian
1+9)Xx¥ > (g+9). (A.43)

C:

A

;X:%, and using (A.43), we have:

Now, noting thatXY =

s

Z-1 = XY, whereZ = (1 + g)’X*? — (g + ),

225

orxf = Xll%( Using (A.38), and substituting this value f&f, we can solve for('l:

|
X = 5L~ (L-0).

Consequently, from (A.38); = xv+z Y_(¢ - (1-96)). Thus bothx] and xI are positive numbers.

We can now use the equations to solve quickly for posﬂwaembfsg i1 andc;.

Step 5 We now verify (A. 43) Deflne the functioii(g) = (1 + g)'f (1-9) — (g + ). Check

that(0) > 0 if and only if ¢ > %, but this is true becausg > 1. Check thatr(¢ - 1) =
¢ -10-9)75 L6 5 0. Since is linear, it follows thatY(g) > O on the interval [0¢ — 1],
demonstratlng (A.43).

Step 6 We finally remark that all the transversality conditionghmecause each sequence of
dual variables (e. g(a1, az, . . .)) converges to zero geometrically. This proves the firstotiia
of the theorem.

Step 7 To prove the converse, Igt= £ — 1. On a balanced growth path, we therefore require

= (L + g)x = éx3, which implies thats{ = x'1 = 0. So no balanced growth path can be
supported at the ratg= £ — 1. Itis obviousa fortiori, that no such path exists fgr> ¢-1. O

References

Arrow, K. J., 1973. Rawls’s principle of just saving. The Sligh Journal of Economics 75 (4), 323-335.

Asheim, G. B., 2007. Justifying, Characterizing and IntiicaSustainability. Berlin: Springer Verlag.

Basu, K., Mitra, T., 2007. Utilitarianism for infinite utili streams: A new welfare criterion and its axiomatic chac
ization. Journal of Economic Theory 133 (1), 350-373.

Dasgupta, P., 1974. On some alternative criteria for jadtietween generations. Journal of Public Economics 3 (4),
405-423.

Goldin, C., Katz, L. F., 2008. The Race Between EducationTaathnology. Cambridge, MA: Harvard University Press.

Llavador, H., Roemer, J. E., Silvestre, J., 2009. A dynamadysis of human welfare in a warming planet. Tech. rep.

Neumayer, E., 2003. Weak versus Strong Sustainabilityidexyg the Limits of Two Opposing Paradigms. Cheltenham,
UK: Elgar.

Nordhaus, W. D., 2008. A Question of Balance: Weighing théigdg on Global Warming Policies. New Haven, CT:
Yale University Press.

Parfit, D., 1982. Future generations: Further problemdoBbphy and Public &airs 11 (2), 113-172.

Parfit, D., 1984. Reasons and Persons. Oxford: Clarenda@s.Pre

Phelps, E. S., Riley, J. G., 1978. Rawlsian growth: Dynamagmmming of capital and wealth for intergeneration
‘maximin’ justice. Review of Economic Studies 45 (1), 10201

Ramsey, F. P., 1928. A mathematical theory of saving. Ecimdournal 38 (152), 543-559.

Solow, R. M., 1974. Intergenerational equity and exhalestibsources. Review of Economic Studies 41, 29-45, Sym-
posium on the Economics of Exhaustible Resources.

Stern, N., 2007. The Economics of Climate Change: The SteuelR. Cambridge: Cambridge University Press.

Wolf, M., February 1st 2007. Education is a worthwhile endself. Financial Times.

42



