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Abstract 

 

Whereas much literature has documented difficulties in making probabilistic inferences, it has 

also emphasized the importance of task characteristics in determining judgmental accuracy. 

Noting that people exhibit remarkable efficiency in encoding frequency information sequentially, 

we construct tasks that exploit this ability by requiring people to experience the outcomes of 

sequentially simulated data. We report two experiments. The first involved seven well-known 

probabilistic inference tasks. Participants differed in statistical sophistication and answered with 

and without experience obtained through sequentially simulated outcomes in a design that 

permitted both between- and within-subject analyses. The second experiment involved 

interpreting the outcomes of a regression analysis when making inferences for investment 

decisions. In both experiments, even the statistically naïve make accurate probabilistic inferences 

after experiencing sequentially simulated outcomes and many prefer this presentation format. We 

conclude by discussing theoretical and practical implications. 
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“ I have come to feel that the only learning which significantly influences behavior is self-

discovered, self appropriated learning” (Carl Rogers, 1961, p.276).   

 

In the last five decades, many studies have documented difficulties people have in reasoning 

probabilistically (see, e.g., Cohen 1960; 1972; Edwards, 1968; Kahneman, Slovic, & Tversky, 

1982; Hogarth, 1975; 1987). One way of characterizing this literature is to note that whereas 

people have well-developed capacities for dealing with data in the form of frequencies and 

averages (Peterson & Beach, 1967; Nisbett, Krantz, Jepson, & Kunda, 1983), they have greater 

difficulty in understanding concepts of variability, the role of random error in phenomena such 

as regression toward the mean, and implications of probabilistic reasoning that involve 

combinations of events (see, e.g., Lathrop, 1967; Bar-Hillel, 1973; Cohen & Chesnik, 1970; 

Cohen, Chesnik, & Haran, 1971; Kahneman & Tversky, 1973; Tversky & Kahneman, 1974; 

1983). The human mind, it seems, is quite effective at aggregating information in an additive 

manner but the multiplicative demands of probability theory are hard to master (Juslin, Nilsson, 

& Winman, 2009).  

In considering this state of affairs, it is important to recall that, although humans have 

always faced uncertainty, probability theory itself only dates from the mid-17th century (Daston, 

1988), and is a discipline that requires considerable intellectual abstraction. It is thus not 

unreasonable to conjecture that probability theory solves some problems in ways that are foreign 

to the response tendencies that have been honed by human evolutionary forces. At the same time, 

however, the demands of our modern, technologically oriented society increasingly require the 

ability to understand the implications of statistical reasoning. In managing an investment 

portfolio, for example, it is essential to understand the distributional implications of potential 
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returns to assess tradeoffs between risks and returns. In the practice of medicine, failing to assess 

correctly the probabilistic implications of test results can have disastrous consequences. And yet, 

most of the time, people – including professionals – deal with statistical information in an 

intuitive manner that may or may not lead to appropriate inferences (Gigerenzer, Gaissmaier, 

Kurz-Milke, Schwartz, & Wolosihn, 2007).   

An argument can always be made for better teaching of statistical reasoning. However, 

whereas we are not against “better teaching” (who is?), we doubt whether this is a solution. The 

reason is that whatever is taught needs to be reinforced through practice and feedback and it is 

not clear that there will always be opportunities for all types of problems. What is needed is a 

general approach – based on well-established theoretical and empirical grounds – that can be 

easily adapted to specific situations. In fact, the main implication of this paper will be to suggest 

such an approach. 

 In an extensive review of issues of risk perception and communication in the medical 

domain, Gigerenzer et al. (2007) note that the ways in which statistical information is presented 

have large, and often predictable effects on the inferences people draw. For example, people are 

impacted far more by descriptions of risk reduction – due, say, to some intervention or treatment 

– when this is expressed in relative as opposed to absolute terms, e.g., as 50% instead of from 2 

in 1,000 to 1 in 1,000. Similarly, physicians show remarkable improvements in probabilistic 

reasoning – using Bayesian updating when interpreting test results (e.g., mammograms) – when 

data are presented in natural frequency format as opposed to the more typical probabilistic 

statements (Gigerenzer & Hoffrage, 1995; Cosmides & Tooby, 1966; Hoffrage & Gigerenzer, 

1998;  Hoffrage, Lindsey, Hertwig, & Gigerenzer, 2000; Brase, 2008). Indeed, frequency 

representations have also been observed to improve inferences in the famous “Linda” problem 
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(Tversky & Kahneman, 1983; Fiedler, 1988; Hertwig & Gigerenzer, 1999), “sample size” tasks 

(Sedlmeier, 1998)1, and the “Monty Hall” problem (Krauss & Wang, 2003). In summarizing 

these and other studies, Gigerenzer et al. (2007) wisely state  

….statistical literacy is largely a function of the outside world and …can be fostered by 
education and, even more simply, by representing numbers in ways that are transparent 
to the human mind (p. 54, italics added). 

 
 Unfortunately, it is not always clear how to define a priori what is “transparent to the 

human mind” in the presentation of statistical data.  For example, graphs may or may not be 

helpful in different circumstances (Soyer & Hogarth, 2010), and providing probabilistic 

information in frequency formats does not guarantee that people will make appropriate 

inferences (Griffin & Buehler, 1999; Mellers & McGraw, 1999; Hoffrage, Gigerenzer, Krauss, & 

Martignon, 2002). 

 Nonetheless, the work of Gigerenzer and his colleagues suggests a research strategy: first, 

identify the cognitive mechanisms that people perform well naturally (i.e., without specific 

training); and second, structure statistical inference tasks in a form that exploits these 

mechanisms.  

 In this paper, we follow this strategy. First, we identify one important mechanism that 

humans have been demonstrated to possess in terms of handling data; specifically, the ability to 

encode automatically in memory frequency information about events they experience across 

time.2 Second, by using simulations we provide statistical representations of problems that allow 

                                                           
1 The “hospital problem” (Tversky & Kahneman, 1974) that we present below is an example of a “sample size” task. 

2
 As an everyday example of this mechanism, imagine that you are asked how many times you have been to the 

cinema (or undertaken another similar activity) in the last three months. Most people have little difficulty in 
providing a rapid and fairly accurate answer to this question.  And yet, they do not consciously record the frequency 
of their visits to the cinema or make a mental note (of this or other frequencies) in case someone asks the question 
just posed. 
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people to exploit this mechanism, that is, by providing opportunities to experience sequentially 

generated frequency data.   

Whereas using simulated data in this general manner may seem “obvious” to statistical 

practitioners, there is a remarkable lack of systematic scientific evidence concerning its use as 

suggested here. In fact, we know of only two studies that have explicitly investigated effects on 

probabilistic inference of experiencing sequential frequency data. In the first, Christensen-

Szalanski and Beach (1982) investigated whether sequentially observing 100 instances of either 

base-rate or base-rate and diagnostic information would impact subsequent assessments of 

Bayesian posterior probabilities. They found no effect for base-rate information alone, but a 

favorable impact for base-rate and diagnostic information. In the second study, Betsch, Biel, 

Eddelbüttel, and Mock (1998) showed that, when people explicitly sampled frequency 

information, they were more appropriately sensitive to base rates in a Bayesian updating task 

than if provided with probabilistic information.  In a related investigation,  Sedlmeier (1999, Chs. 

10, 11) has used what he terms a “flexible urn model” in the shape of a computer simulation 

model that does allow participants to observe data dynamically and where their probabilistic 

inferences are quite accurate. (We consider Sedlmeier’s work again in the General Discussion.) 

The evidence on the natural encoding of frequency information is both uncontroversial 

and overwhelming. It has been summarized by, amongst others, Hasher and Zacks (1979; 1984) 

and Zacks and Hasher (2002). As their studies show, humans have a remarkable capacity for the 

accurate encoding of frequency information. Moreover, this cognitive activity demands little by 

way of attention, does not require intention, is invariant to learning, age, and many individual 

differences, and also involves recognizing the frequencies of subcategories of experienced 

events. That it is a basic cognitive mechanism that was probably developed through evolutionary 
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pressures is reinforced by the findings that several non-human species show similar capacities, 

e.g., in understanding frequency distributions associated with different sources of food. 

Moreover, consistent with this evidence is that accumulated by Fiedler and his colleagues 

concerning human sampling of data for inferential purposes (Fiedler, 2000; Fiedler, Brinkmann, 

Bestsch, & Wild, 2000; Fiedler & Juslin, 2006). These authors show that people are quite 

accurate in encoding the data they have observed; the blame for systematic inferential errors, 

they argue, lies with failures to exercise the meta-cognitive judgment necessary to offset biases 

in the sampling process.  

 Our suggestion, therefore, is to transform statistical reasoning problems into a form that 

exploits the ability to encode and interpret sequentially observed frequency information. That is, 

instead of asking people to solve statistical reasoning problems analytically, we propose having 

them experience frequency data sequentially thereby allowing their natural encoding capabilities 

to inform their answers. Before proceeding, however, we make three important remarks.  

 First, our work builds on the pioneering contributions of Gigerenzer and his colleagues 

who perceptively drew attention to the difference between representing probabilistic problems by 

natural frequencies as opposed to probabilities. Our innovation consists of extending their 

argument to what we consider its logical conclusion. Specifically, Gigerenzer and Hoffrage 

(1995, p. 686) defined natural frequencies as “actually experienced in a series of events” noting 

that “From animals to neural networks, systems seem to learn about contingencies through 

sequential encoding and updating of event frequencies…”. They further expanded on the 

meaning of natural sampling as involving the “sequential acquisition of information by updating 

event frequencies without artificially fixing the marginal frequencies” (p. 686).  On the other 

hand, as far as we can tell, participants in their experiments never actually experienced data 
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sequentially, that is, “as a series of events.” Instead, they observed totals. That is, Gigerenzer and 

his colleagues presented data in the form of summarized natural frequencies. 

This is an important point. Experience is typically not in the form of summed frequencies 

presented in some tabular format. Instead, frequencies (as described by Hasher and Zacks above) 

are characterized by being experienced sequentially – one-at-a-time – across some period of time 

and/or space. The foraging animal, for example, does not consult a table of data in a natural 

frequency format when deciding which of two potential sites has produced more food. Instead, 

across time it has accumulated experience – either directly or by observation – of how often the 

two sources have yielded food. To test, therefore, whether frequency data lead to accurate 

probabilistic inferences, one must allow the organism to experience the data in sequential format 

as opposed to simply providing a count.   

 Second, numerous studies conducted with animals have shown appropriate sensitivity to 

environmental probabilities and, for the most part, what could be considered rational behavior 

(see, e.g., Real, 1991; 1996; Weber, Shafir, & Blais, 2004). However, it is important to 

emphasize that to test animals’ response tendencies in these studies, it was necessary to have 

them first observe sequentially generated frequency data.3   

 Third, to provide somebody with a sequential frequency representation of a probabilistic 

problem requires the ability to construct an appropriate simulation model. This, it could be 

argued, implies a greater “input” on behalf of the person structuring the problem with the 

consequence that results should not be compared with attempts to answer problems in the usual 

probabilistic formats. We have three answers to this objection. One is that knowing how to 

present probabilistic information in natural frequency formats (see, e.g., Gigerenzer & Hoffrage, 
                                                           
3
 Alex Kacelnik, personal communication, April 2010. 
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1995) also requires more knowledge than just presenting respondents with the usual probabilistic 

format. The second is that allowing respondents to experience “raw” data seems the simplest test 

of human ability to handle statistical problems. And third, as noted above, the presentation of 

sequential frequency information is the norm in studies of rational behavior in animals. Thus, if 

it is legitimate to allow animals to use this form of data presentation, why deny humans? 

 In this paper, we test the effects on statistical inference of experiencing sequentially 

simulated outcomes in two experiments. In Experiment 1, we present participants with seven 

well-known problems from the literature. These concern (1) Bayesian updating, (2) the 

“birthday” problem, (3) the conjunction problem, (4) the Linda problem (Tversky & Kahneman, 

1983), (5) the hospital problem (Tversky & Kahneman, 1974), (6) regression toward the mean, 

and (7) the Monty Hall problem. Two groups of participants, familiar with statistical reasoning, 

answer these questions both with and without the aid of experience in the form of sequentially 

simulated outcomes in a design that permits both between- and within-subject comparisons. 

Participants are further required to provide a third answer to determine their remuneration. 

Finally, a further group of statistically naïve participants answers all questions without and then 

with the aid of experience. The results of Experiment 1 demonstrate that being exposed to 

sequentially experienced data leads to more accurate statistical inferences and judgments that 

benefit from experience are preferred over analytic responses when providing final answers. 

Moreover, these important results apply across the range of statistical sophistication that we 

investigate.  

 The task used in Experiment 2 is inherently more complicated than those in Experiment 

1. Specifically, we investigate effects of experiencing sequentially simulated outcomes on 

understanding the probabilistic implications of a regression model in the context of an economic 
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investment. Once again we compare responses of participants varying in statistical 

sophistication, and once again, we find that experience leads to accurate inferences for most of 

our participants. 

  

Experiment 1 

Design 

We varied two between-subject factors in an incomplete 2 x 2 design in which all 

participants gave three answers to each of seven questions (thereby also allowing within-subject 

comparisons). One between-subject factor was level of statistical sophistication. We compared 

responses of advanced undergraduate students who had taken classes in statistical reasoning and 

probability theory with those of a group of older, university-educated adults with less formal 

statistical knowledge. The second between-subject factor was whether participants first answered 

the questions before experiencing sequentially simulated outcomes, and then again after having 

done so, as opposed to the reverse, that is, first after having experienced sequentially simulated 

outcomes, and then without having done so. This second factor, however, was incomplete in that 

it was only varied for the advanced undergraduate students.   

The experimental design is illustrated in Table 1. As shown there, one group of advanced 

undergraduates first answered all seven questions without having experienced sequentially 

simulated outcomes. In contrast, the second group of undergraduates first answered after 

experiencing sequentially simulated outcomes. After each answer provided in the second task 

(with and without simulated outcomes, as appropriate), both groups were required to state a final 

answer that, if correct, would earn them € 1.00 (for each correct answer). We refer to these two 

groups as “Sophisticated A” and “Sophisticated B,” respectively. 
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The group of university-educated adults only answered the questions in one order: before 

and then after having experienced sequentially simulated outcomes. They also gave a final 

answer but were not remunerated financially for either their accuracy or participation. We refer 

to this group as “Naïve.”  

The particular questions used in the experiment were chosen because they represent a 

range of well-known problems that people typically answer incorrectly. 

 (Insert Table 1 about here) 

Participants 

Sixty-two undergraduate students were recruited from two classes at Universitat Pompeu 

Fabra and assigned at random to the Sophisticated A and Sophisticated B groups (31 to each). 

The students were in the 3rd/4th year of undergraduate studies in business and/or economics and 

had all taken courses in probability and statistics. When asked to indicate their level of comfort 

in probabilistic and statistical reasoning on a 5-point scale going from “does not know or 

remember anything” (1) to “expert and can teach others” (5) with a mid-point at “remembers 

some of the things and did well in related courses” (3), the mean self-reported rating for both 

groups was 3 (SD, 0.4). The average age of the Sophisticated groups was 22 and 52% were 

female. The mean remuneration participants received – for the correctness of their final answers 

– was € 4.51. 

   The Naïve group consisted of 20 university-educated adults recruited through personal 

contacts of one of the authors. Their mean age was 39 (range from 24 to 59) and 50% were 

female. In terms of statistical sophistication, the mean self-reported rating (using the same scale 

as the undergraduates above) was 2 (or “knows or remembers little” with a standard deviation of 

0.6).     
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Procedure 

 Participants made individual appointments to meet with the experimenter and were alone 

with him when answering questions.4 Experimental sessions lasted, on average, 42 minutes per 

participant.  

When responses were made without experiencing simulated outcomes, participants 

simply responded to the questions in written form. Participants were free to make calculations 

using paper and pencil and/or use calculators.       

 Prior to asking a participant to provide answers with the aid of simulated experience, the 

experimenter first explained the concept of simulation using the example of a coin toss. After the 

explanation, the participant was invited to participate in and experience the simulation of a coin 

toss by using a mouse to click on the screen of a personal computer. Each click resulted in one 

simulated outcome with the result that the participant could experience the string of outcomes 

produced (“heads” = 0, “tails” = 1) by successive trials.5 Any questions about simulation were 

then clarified by the experimenter. This exercise took approximately two minutes for each 

participant and is included in the time spent on the whole experiment.  

 When responses were made after experiencing simulated outcomes (after the coin toss 

example), the participants responded to each of the seven questions using simulations on a 

personal computer that followed the same modus operandi as the simulated coin toss.  After the 

participants had read each question, the experimenter informed them what the program was 

                                                           
4 For this experiment, we deemed it important to give individual attention to each participant to handle technical 
issues concerning the simulation technology. 

5 All the simulations used in this work were programmed in MS Excel. 
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doing in each simulation, e.g., for the birthday problem it was explained that each click resulted 

in seeing the outcome associated with a group of 25 randomly chosen individuals. Then 

participants started sampling by clicking with the mouse. The manner of sampling outcomes was 

left to each participant’s discretion, i.e., number of trials, time taken per trial, and even different 

numbers of samples. At any time during the sampling, participants were free to stop and 

summarize the data they had experienced up to that point, i.e., to visualize the size of the sample 

created and to assess outcomes. Occasionally, participants asked questions about the simulation 

mechanism and the experimenter answered in a standard manner to avoiding giving cues as to 

“correct” responses to the probabilistic inference questions.6 

 For those participants who answered first after experiencing simulated outcomes 

(Sophisticated B), the simulation methodology and questions were presented first (as just 

explained above); once this was completed, they answered all seven questions without 

experiencing simulated outcomes. All participants, in all conditions, answered the different 

problems in individually randomized orders.   

 Table 2 provides details of the seven problems respondents were required to answer. 

Answers to the seven problems are provided in Appendix A.  

(Insert Table 2 about here) 

 Finally, because the experiment was conducted in a multi-lingual environment, care was 

taken to ensure that the participants were fluent in the languages used, being Spanish (mainly), 

English, or Turkish.  

 

                                                           
6
  In each case, the experimenter responded saying: “The program simulates correctly the current situation/problem 

and provides you with an outcome each time you click.”   
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Results of Experiment 1 

Before discussing the main results, we first make a few comments about the participants’ 

simulation experiences. First, the mean sizes of samples (i.e., number of simulated outcomes) per 

problem were almost the same for the two Sophisticated groups, 66 (SD, 46) and 65 (SD, 52) for 

A and B, respectively, but lower in the Naïve group which had a mean of 49 (SD, 37). The 

Sophisticated-Naïve difference is significant (t = 3.67, p<.001). Second, when simulating, nearly 

80% of participants in Groups A and B took a small sample first and then gradually increased the 

sample size and updated their first impressions almost always toward the estimates they obtained 

from the larger sample. For the Naïve group this figure was 40%. Third, only four Sophisticated 

participants simulated multiple samples within a question. Finally, the groups differed in how 

long they took to answer the problems: members of Sophisticated A spent on average 19.6 

minutes (SD, 4.3) on the first task of solving the problems analytically and 23.1 minutes (SD, 

3.9) on the second task, whereas members of Sophisticated B spent on average 25.5 minutes 

(SD, 4.7) on the first task of experiencing the outcomes through simulation and 15.4 minutes 

(SD, 3.9) on the second task.   

Table 3 provides an overview of the percentage of correct responses to the seven 

problems broken down by experimental conditions and groups. Figures 1 through 7 provide full 

information on responses made in all conditions by all groups to the seven problems. To simplify 

presentation, we refer to answers made without having experienced simulated outcomes by the 

term “Analytic.” “Experience” refers to answers made after experiencing simulated outcomes. 

(Insert Table 3 and Figures 1 through 7 about here) 

Some general trends can be observed from Table 3. First, across all problems and groups, 

the percentage of correct answers after experience exceeds that of the analytic responses, and 
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typically by a large margin. Second, with one exception, the percentage of correct final answers 

lies between their experience and analytic counterparts (the exception is the Conjunction 

problem). This suggests that whereas participants were capable of interpreting their experience, 

they still wanted to give some weight to their analytic responses. Third, there are order effects. 

More participants in Sophisticated B (who answered after using experience first) gave accurate 

analytic responses than those in Sophisticated A. Experience clearly affected analytic responses. 

Finally, whereas the analytic responses of the Naïve group are generally less accurate than their 

Sophisticated counterparts, their post-experience and final answers are quite comparable. 

Statistical tests supporting all the above statements are provided in Appendix B. We now 

comment on each problem by referring to the appropriate figures. 

Figure 1 reports the result of the Bayesian updating task. As in all the other figures 

related to Experiment 1, we display nine graphs. The three graphs in the top row report the data 

for the analytic responses for the three groups (from left to right, Sophisticated A, Sophisticated 

B, and Naïve, respectively). The middle and bottom rows show the analogous data for the 

experience and final responses. 

The specific version of the Bayesian updating problem was taken from Gigerenzer et al. 

(2007). This was employed in a continuing education program in which 160 gynecologists were 

instructed how to use natural frequencies for solving Bayesian updating problems. The results of 

that session were quite successful. Whereas only 21% of the 160 gynecologists provided the 

correct answer before training, the percentage rose to 87% after training. 

The comparison with our results can be seen by looking down the left-most column of 

graphs in Figure 1. Only 5 out of 29 (17%) answer correctly initially (similar to Gigerenzer’s 

21%). However, after experience 28 out of 29 (97%) answer correctly although this figure drops 
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to 23 out of 29 (79%) for the final answer. In short, our results are comparable to those achieved 

with the natural frequency method. Moreover, it is probably as easy (or easier) to provide the 

instructions for experiencing simulated outcomes than to teach the calculations required to use 

natural frequencies.  

 Figure 2 displays results for the birthday problem. Here we note that analytic responses 

are skewed for all three groups toward incorrect, low values. Experience makes a dramatic 

difference. In this specific case it is obtained through simulating binary outcomes where “1” 

means there are at least two people with the same birthday in a group of 25 people and “0” 

otherwise. Whereas the actual percentage correct is less than in other problems, the answers of a 

clear majority are close to correct. This pattern is mainly maintained in the final response by the 

Sophisticated groups but here the Naïve group exhibits a quite wide dispersion of responses, 

sometimes preferring a “middle” solution between the outcomes of the two tasks. 

The results of the conjunction problem in Figure 3 are clear. The analytic responses are 

somewhat dispersed. But experience makes a big difference that is largely maintained by all 

groups in their final responses. 

For the Linda problem – Figure 4 – we consider only whether participants recognized that 

the event “bank teller and active in the feminist movement” could not be more likely than “bank 

teller.”  Parenthetically, for this problem participants experienced a vector of “1”’s and “0”’s for 

each of the outcomes simulated. These numbers indicated whether each simulated Linda 

character did or did not have the attributes that were to be ordered by probability.7 The analytic 

                                                           
7
 The text of our problem refers to Jessica as opposed to Linda to avoid the possibility that the Sophisticated 

participants might have heard of the “Linda problem.” 
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and experience–based responses are generally opposites for all groups (incorrect and correct, 

respectively). The majority responses for the final answer, however, are correct. 

In Figure 5, experience leads to almost 100% correct responses for the hospital problem 

and the majority of final answers are also correct. For this problem there is a striking order 

effect. In the Sophisticated B group, there is a majority of correct analytic responses. In this case, 

prior experience was probably particularly relevant because no calculations were needed to 

answer the analytic question.  

Figure 6 reports the results of the regression toward the mean problem. The modal 

responses of all groups to the analytic question are centered on the incorrect answer of “equal,” 

thereby suggesting that the respondents did not understand the principle behind the question. The 

effect of experience is to shift answers to being more correct. However, at the final stage the 

Naïve group is not convinced. 

Experience has a big impact for the Monty Hall problem – Figure 7.  Almost everybody 

chooses the correct answer of “change” after experience. However, a minority regress to the 

incorrect answer at the final stage. 

 

Discussion of Experiment 1 

The stimuli in Experiment 1 were chosen precisely because previous research has shown that 

responses to their presentation in a standard probabilistic format typically imply incorrect 

inferences. And yet, when we presented the problems to people in a form that allowed them to 

experience sequentially simulated outcomes, responses for all questions were remarkably 

accurate. To this we add three points.    
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First, training people to participate in the simulations by using the coin toss example was 

quite easy and took little time, on average some 2 minutes per person. Participants related easily 

to the task of experiencing the outcomes of simulations.    

Second, despite the fact that our participants varied on levels of statistical sophistication, 

the accuracy of all participants’ responses benefited from experience.  

Third, we allowed our participants to choose third, and final, answers thereby requiring 

them to express either a preference for answers achieved with/without the aid of simulated 

experience or some combination of the two. Whereas some participants did revert toward 

answers made without experience, a large majority gave more weight to those achieved through 

experience. 

It is important to emphasize that we did not give participants any indications as to how 

large their samples of experienced outcomes should be. What we found was that the 

Sophisticated participants sampled more than the Naïve and some problems involved 

systematically more sampling than others. For example, the Bayesian and birthday problems 

both involved the largest numbers of trials (means of approximately 80 to 90 for the 

Sophisticated groups) whereas the Linda problem stimulated far fewer trials (around 30 for all 

groups). However, in this problem, participants had to simulate multiple outcomes for each 

individual sampled thereby experiencing vectors of “1’s” or “0’s” and not just single “1’s” or 

“0’s.” Thus, the task was more cognitively taxing. 

An interesting benchmark for the amount of sampling undertaken by our participants is 

the behavior observed by Hertwig, Barron, Weber, and Erev (2004) in a paradigm where 

participants learned the features of two alternative choice options by active sampling of 

experience (in a manner quite similar to ours, i.e., by clicking a key on a personal computer). In 
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Hertwig et al.’s study, the median number of observations sampled was 15, far less than the 

medians we observed of 52, 51, and 30 (for Sophisticated A and B, and Naïve, respectively).  

The reason why our samples are bigger is unclear although it is interesting that Lejarraga (2010) 

– using the same paradigm as Hertwig et al. (2004) – found that more analytically oriented 

participants sampled more than the less analytical, a result that parallels our finding that the 

Sophisticated groups experienced larger samples than the Naïve. 8 

 Clearly, there are some normative principles that participants should follow in 

determining sample size. For example, if there are relatively few “1’s” or “0’s,” the distribution 

may well be skewed in which case a larger sample should be experienced than if the number of 

“1’s” or “0’s” is more equal. In our data, there are no hints of such awareness. 

 The seven inferential problems we chose to use as stimuli were selected for two reasons.  

The first (noted already above) was that we wanted to test our ideas on problems that were well-

known so that we could better assess improvements in the quality of statistical inferences 

achieved after participants had been exposed to experience. The second reason was that if our 

suggested “method” were to work well across a range of situations as opposed to within 

variations of the same problem (e.g., different Bayesian updating tasks), it would provide a 

stronger test of its efficacy. Indeed, as was noted, the methodology was successful across a range 

of problems.  

As noted before, Participants in B often transformed their calculations to obtain the result 

they had experienced in the simulation, using this as a cue to the answer. This suggests that 

                                                           
8 Lejarraga (2010) compared his participants using Pacini and Epstein’s (1999) scales of rational ability and 
engagement. 
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simulated experience can play an important role in providing insights to improve the quality of 

analytical thinking. 

However, despite these outcomes, one might still argue that in many cases an alternative 

method such as summarizing natural frequencies should still be preferred because it is simpler to 

implement. (For example, you don’t have to construct a simulation model.)  We therefore sought 

to examine the efficacy of experiencing simulated outcomes in a situation where it is less 

obvious how an alternative presentation could be achieved using a natural frequency presentation 

format. Experiment 2 was designed to do just this. 

   

Experiment 2 

Design 

 The design of Experiment 2 involved between-subject comparisons of two groups that  

were required to answer questions based either on the analytical description of a problem that 

used regression analysis or after gaining experience with a simulation tool. We label the groups 

as Analytic and Experience, respectively, except that there were two subgroups in the Experience 

condition. One involved statistically sophisticated, graduate students in economics whom we 

label Sophisticated, and who were similar to respondents in the Analytic group. The other was 

comprised of university-educated adults without advanced statistical knowledge whom we refer 

to as Naïve.9 We therefore make comparisons between three subgroups:  Analytic, Sophisticated, 

and Naïve.   

(Insert Figures 8 and 9 about here) 
 

  
                                                           
9
  Specifically, these participants did not know what “regression analysis” is. 
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The problem set-up and method 

 Figure 8 provides the wording of the problem set-up for participants in the Analytic 

condition. As can be seen, the problem involves an investment situation, which requires 

allocating funds (40 credits) across three alternatives: “Investment 1”, “Investment 2”, and “no 

investment.”  The profitability of the two investment opportunities are described by a regression 

model. The specific questions were:     

1. How would you allocate your 40 credits in order to expect an increase of 5 credits (obtain 

45 credits)? How much of 40 credits in Investment 1, how much in Investment 2, how 

much in N (no-investment)? 

2. Given your investment decision in (1), what would you say is the probability of your 

obtaining a final total credit amount that is below 40 (Y<40), i.e. less than what you have 

started with? 

3. Given your investment decision in (1), what would you say is the probability of your 

obtaining a final total credit amount that is below 45 (Y<45)? 

4. Given your investment decision in (1), what would you say is the probability that you 

will get a larger outcome with respect to a person who does not invest in Investments 1 

and 2 (someone with N=40)?      

 The statistical rationales for the answers are provided in Appendix C. 

 Figure 9 depicts the simulation interface for the Experience group. When conducting the 

experiment, we sat down one-by-one with the participants in this group, explained briefly how 

the tool works, and then asked them to choose an investment plan so that they can expect to 

increase their 40 credits to 45 (the same as question 1 above). We allowed them to experience as 

many choice options as they wished. Once they made their decisions, we asked them to answer 



EXPERIENCING SIMULATED OUTCOMES  

22 

 

questions 2, 3, and 4 above. Once again, we allowed them to utilize the simulation tool and they 

could experience the outcomes of their choices as many times as they desired. Moreover, we 

made sure that the participants could see all their choices and outcome histories and even 

calculate and compare averages of their past outcomes. 

 

Participants 

The Analytic group consisted of 26 graduate students in economics at Universitat 

Pompeu Fabra in Barcelona who had at least completed their first and second semesters. This 

ensures that all of them had taken at least one graduate course in econometrics and were 

knowledgeable about linear regression analysis and its interpretation. They did not have a time 

limit. Participation was voluntary and anonymous. Participants could use any tools they wanted 

and, upon completion of the survey, they slid the questionnaire into a sealed box in front of an 

office. The average age of this group was 25 and 30% were female. Of 35 surveys distributed, 26 

were completed.  

The Sophisticated participants within the Experience group consisted of 28 graduate 

students in economics drawn from the same population as the Analytic group. The Naïve 

participants were 18 members of the general public having university degrees but no knowledge 

of regression analysis. They were recruited from the contacts of one of the authors. Their mean 

age was 35 (range from 23 to 60) and 40% were female.  

Before participating in the experiment, a chocolate bar was donated to each of the 

participants. 
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Results of Experiment 2 

Table 4 documents the means (standard deviations) of different variables – the decisions taken, 

and answers to the required probabilistic inferences – for the different experimental conditions.   

The first two rows of the table (labeled I1 and I2) indicate the mean amounts invested in 

Investments 1 and 2, respectively, by the different subgroups. According to the regression 

results, these two investments differ in the expected level and variability of their returns – 

Investment 1 having both greater expected return and more variability than Investment 2. On 

average, therefore, it can be observed that the Analytic participants adopt less risky strategies 

than their Sophisticated counterparts but that all three subgroups select investment strategies that 

essentially meet the demands of the first question, i.e., to achieve an expected target of 45.  

(Insert Table 4 about here) 

 Question 2 asks for the probability that the investment strategies will lead to outcomes of 

less than 40 (i.e., the amounts participants started with). The accuracy of each participant’s 

response can be assessed by calculating the difference between the response itself and its 

normative counterpart (i.e., the correct response implied by the regression analysis).  Using this 

measure, we note that whereas the Analytic group seriously underestimates the probability that Y 

is less than 40 (the average deviation from the correct answer is -16% with standard deviation 

9%) this is not the case for the Experience group: 0% for Sophisticated (SD, 11%) and 5% for 

Naïve (SD, 9%). The difference between the Analytic and Experience conditions is significant (t 

= 7.1, p < 0.001).    

Question 3 asks for the probability that the investment strategies will lead to outcomes of 

less than 45 (i.e., the investment target). On average, answers to this question are all quite 

accurate. In fact, these responses are consistent with answers to the first question that lead to 
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expectations of, on average, about 45, that is, with a symmetric predictive distribution there is as 

much chance of exceeding as falling short of the target. 

 Question 4 asks for the probability that the chosen investment strategy will lead to 

outcomes superior to a strategy of no investment. The Analytic group overestimates this 

probability (the average deviation from the correct answer is 24% with standard deviation 10%) 

while this is again not the case for the two subgroups in the Experience condition: 1% for 

Sophisticated (SD, 16%) and 3% for Naïve (SD, 8%). Again, the difference between the Analytic 

and Experience conditions is significant (t = 7.7, p < 0.001).10    

 

Discussion of Experiment 2 

Unlike the specific probabilistic inference tasks of Experiment 1, Experiment 2 required 

participants to choose an investment plan and make probabilistic inferences based on their own 

idiosyncratic decisions. Also unlike several tasks of Experiment 1, it is unclear how one could 

have provided alternative representations of the questions asked in the form of natural 

frequencies. However, like the representations of all tasks in Experiment 1, participants in the 

Experience group experienced data in the form of sequentially generated outcomes. 

Experiment 2 only permitted between-subject comparisons. In brief, we found – holding 

analytical ability constant – that Sophisticated participants gave more accurate probabilistic 

inferences when allowed to experience simulated outcomes than those who were required to 

solve problems analytically. Second, there was little or no difference in accuracy of probabilistic 

inferences between the groups of Sophisticated and Naïve participants who experienced 

                                                           
10 For questions 3 and 4, there are no significant differences between the (response-correct) measures of the two 
subgroups in the Experience condition.  
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simulated outcomes. These results are important. They suggest that the ability to encode 

frequencies in the form of sequentially experienced frequency data can be harnessed to improve 

probabilistic inferences across a wide range of tasks. 

We note also that the questions posed in Experiment 2 are important for decision makers 

considering investment plans. In such situations, individuals would primarily base their decisions 

on the chances of being worse off with respect to their starting point, to their goal and to other 

individuals who do not make these particular investments.  In a recent survey (Soyer & Hogarth, 

2010); we posed a simpler (univariate) version of this problem to economic scholars from 

prestigious universities. These respondents made the same kinds of mistake as the Analytic 

group in Experiment 2.  

  Finally, we note that for both the Experience subgroups, we collected data on numbers of 

simulations for each choice. Before deciding on a final investment plan, the Sophisticated 

simulated an average of 7 different strategies some 19 times each. The Naïve simulated an 

average of 5 strategies about 8 times each. Thus, as in Experiment 1, we find that more 

statistically sophisticated participants choose to experience more outcomes than the less 

sophisticated.  

 

General Discussion 

  

The main theoretical concept underlying our work is simple. People can successfully perform 

complex intellectual tasks if these are presented in a format that exploits their natural abilities for 

processing information. In Experiment 1, we investigated seven probabilistic inference problems 

that have a long history of eliciting erroneous responses. The human ability we identified was the 
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capacity to encode the outcomes of sequentially generated outcomes experienced across time.  

Thus, when we presented problems in a format that allowed participants to use this natural 

ability, we observed vastly more accurate probabilistic inferences than those elicited after 

presentation of the standard probabilistic format. Moreover, this result held for both between- 

and within-subject comparisons and across participants varying in statistical sophistication.  In 

Experiment 2, we obtained similar results using what are arguably more complex problems 

involving inferences from a regression equation modeling investment decisions. Taken together, 

our work suggests a strategy for a general approach to help people make appropriate probabilistic 

inferences. 

It is important to stress that our work builds on the illuminating contribution of 

Gigerenzer and his colleagues (notably Gigerenzer & Hoffrage, 1995) who showed how the use 

of natural frequencies – as opposed to probabilities – leads to simpler and more accurate 

calculations in probabilistic inference (notably for Bayesian updating). We reasoned, however, 

that Gigerenzer and his colleagues did not take their own arguments about human abilities to 

handle frequency data to their logical conclusion. Instead of presenting people with problems 

framed in terms of aggregated frequencies (that still require some calculations), we advocate 

letting people experience the raw data as generated from the underlying process or, if not 

possible, from a simulation model. Indeed, this is essentially the same technique that is used to 

provide non-human animals with information in investigations of their reasoning skills except, of 

course, that the animals do not typically intervene and determine the number of trials. Moreover, 

the animals are seen to be quite skilled (Weber, Shafir, & Blais, 2004).  

At one level, our work can be viewed through the perspective that has recently been 

popularized by the expression “choice architecture” (Thaler & Sunstein, 2008). This is a 
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recognition that, since the variety of tasks the human mind confronts is much larger than the 

variety of responses that humans can make, much can be gained by designing tasks in ways that 

allow humans to make appropriate choices.  Of course, this is not a new principle. In psychology 

it can be traced to the work of Brunswik (1952) and was further elaborated by Simon (1978) and 

Tversky and Kahneman (1981) (see also Hogarth, 1982). However, it is one thing to elaborate 

such a principle at a general level; it is quite another to demonstrate how it works in specific 

situations and to define boundary conditions. 

A number of questions can be raised about the boundary conditions of our proposal. We 

consider five issues: (1) How much and what kind of experience do people need to make 

appropriate responses?  (2) Do people trust simulation mechanisms?  Why or why not? (3) How 

general is the simulation technique or, in other words, can models be easily constructed for all 

types of situations? (4) How does experience in the form of simulated outcomes solve the 

problem of understanding probabilities of unique events?  (5) How does simulated experience 

relate to the distinction sometimes made between intuitive and analytic processes?  We now 

consider each of these questions. 

(1) In our experiments, we deliberately let participants determine the amount of 

information – in terms of number of trials – that they wanted to experience. This procedure raises 

two issues. First, how much experience – that is number of trials – do people need to reach 

conclusions with which they feel comfortable? Second, does being actively involved in the 

sampling process make a difference compared to simply observing outcomes?   

Our data did show a relation between statistical sophistication and sample size with the 

more sophisticated requiring larger samples. Thus, we suspect that individual differences could 

play a role in the answers to both questions. We also believe that the two questions are important 
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and demand further research. For example, it would be relatively easy to conduct experiments 

varying both sample size and active intervention in as opposed to passive observation of the 

sampling process and to elicit not only probabilistic inferences but measures of confidence in 

such assessments. We suspect that active participation is an important factor – possibly 

interacting with sample size – but reserve judgment in that, in animal studies, the organisms 

typically do not intervene in the sampling process. 

(2) The degree of transparency of the sampling mechanism is clearly important. This may 

have several dimensions. One is the level of the participant’s familiarity with the data generating 

process. For instance, it is probably easy for the participant to understand the coin toss example 

with which we introduced the simulation technique in Experiment 1, and particularly since the 

evidence would typically confirm prior beliefs that there should be roughly as many “heads” as 

“tails.” On the other hand, simulating birthdates of different groups of 25 people in the birthday 

problem might seem odd as well as the fact that the experiential evidence typically runs counter 

to prior intuitions. At the same time, when people have little insight into the structure of a 

problem – as occurs in both the hospital and Monty Hall problems – living the experience of 

many outcomes can be quite illuminating.   

However, if the participant already understands the structure of the problem – as happens 

in the conjunction problem – and recognizes that her capacity for calculation is deficient, she 

might welcome the simulation tool. In fact, Lejarraga (2010) essentially tested this hypothesis by 

letting people decide whether they wanted to choose between gambles based on description (i.e., 

where probabilities of different branches leading to outcomes were indicated) or experience 

(after simulating outcomes). The same pairs of gambles were presented to three different groups 

of participants but varied in the complexity (number of branches) used to describe them. As 
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problem complexity increased, groups displayed a greater tendency to make their choices after 

experiencing outcomes as opposed to trusting their analytical abilities to figure out the 

implications of the presentation by description. 

Finally, it is easy to dismiss simulated experience as simply being the outcome of a 

“black box.” However, we believe a more appropriate metaphor is that of a “grey box” where 

individuals experience outcomes generated by a computer as opposed to those arising from the 

naturally occurring environment. But much research is needed to determine what affects the 

different shades of grey and thus the conditions under which people do or do not feel 

comfortable in relying on outcomes of simulated experience. 

(3) Our third question centers on limits to the generality of the simulation technique 

itself. At a conceptual level, and given sufficient ingenuity on the part of the investigator, there is 

almost no technical limit to the probabilistic situations that can be constructed. Whether they are 

meaningful, however, is another issue that can be viewed from two perspectives: the reality 

being modeled and the experience of the user. For the latter, the critical issue is that already 

discussed above, namely the shade of grey of the box. For the former, it should be clear that the 

models are only as good as the fit of their assumptions to reality. As we see it, the goal of 

simulated experience is not necessarily to reach a precise probabilistic answer to a problem but 

more a means of gaining insight into effects of assumptions made about the structure of the 

problem as well as reaching an approximate answer. Thus, it would be illuminating to employ 

techniques of sensitivity analysis and to experience, say in a Bayesian updating task, how 

different assumptions concerning prior probabilities or base-rates result in different sequences of 

outcomes.    
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(4) Our fourth issue speaks to the meaning of probability. The main distinction is whether 

the concept is something that applies to unique events (e.g., the probability that a particular 

person has a certain disease) or classes of events (e.g., that people that belong to a particular 

group have the disease). This distinction has been given different names in the literature, for 

example, epistemic as opposed to aleatory, or singular versus distributional (Reeves & Lockhart, 

1993). Although from the subjectivist or Bayesian perspective a probability simply measures a 

degree of belief such that the distinction is irrelevant, there is much evidence that people’s 

intuitions of the probability concept are more clearly aligned with the distributional perspective 

(see Gigerenzer & Hoffrage, 1995). For example, people relate more easily to a statement that a 

fair coin tossed 100 times is expected to show heads roughly 50% of the time than the statement 

that the probability of heads on a single toss of the coin is 0.5. For the former, there is some 

informational “certainty” in the 50%.  For the latter, 0.5 is a statement of total uncertainty. The 

experience of simulated outcomes clearly taps into people’s distributional intuitions about the 

meaning of probability and this, in part, may explain why they find it illuminating. 

 (5) If experience is so powerful, why, it can be asked, did our participants not all state 

that their final answers were the same as those reached after experiencing simulated outcomes?  

Indeed, by failing to do so, participants in the Sophisticated group in Experiment 1 actually lost 

money. One reason has already been alluded to above, namely, participants may not have always 

trusted experience in the form of simulated outcomes. Another and related reason could be what 

might be called a clash of intuitions.    

 Although we referred to answers given by participants without experience in Experiment 

1 as being “analytic,” it should be clear that many of these responses were driven by intuitive 

reactions. Indeed, the problems are interesting precisely because past studies have shown that 
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people’s intuitive reactions are typically contrary to analytic principles. The Linda problem is a 

prime example. When unaided by formal analysis or simulated experience, people are strongly 

drawn by intuition to believe that it is more likely that Linda is “a bank teller and active in the 

feminist movement” than that she is “a bank teller.”  Now, reactions to experience in the form of 

sequential frequency data could also be classified as intuitive (Hogarth, 2001). Thus, in many 

cases, our respondents faced a conflict between two intuitions, one being their reactions to the 

analytic presentation format, the other being their feelings after the experience they sampled.  As 

the evidence shows, the latter form of intuition did not always overcome the former. 

 That there should be a link between sequentially encoded frequency information and 

intuition has been emphasized by Sedlmeier (2005; 2007) who, in addition, modeled this as a 

process of associative learning (Sedlmeier, 1999). Moreover, in exploring different ways to train 

people to reason probabilistically, his 1999 “flexible urn” concept is perhaps closest to our 

suggestions in that it involves both perceiving simulated data dynamically and some active 

involvement with a computer interface. However, most of his work – and suggestions – have 

focused on different ways of presenting information in the form of aggregate natural frequencies 

as opposed to sequentially observed frequency data (see, e.g., Sedlmeier, 2000; Sedlmeier & 

Gigerenzer, 2001).   

Our work also speaks to the issue of whether and when to trust intuition or analysis in 

making a judgment (Hogarth, 2001; 2005; Kahneman & Klein, 2009). If we classify the analytic 

responses as being “analysis and intuition” and the experience judgments as “intuition,” it is 

clear that intuition alone is better in that the latter produced the highest proportions of correct 

responses. However, it would be erroneous to draw any general conclusions from our study 

largely because our stimuli in Experiment 1 were specifically chosen for their history of 
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inappropriate responses. What we have shown is that intuitive processes based on experiencing 

simulated frequency data result in quite accurate probabilistic inferences across a range of 

problems (i.e., in both Experiments 1 and 2). 

Our investigation raises an important practical issue: What advice might one give, say, to 

a physician who should be using Bayesian updating to assess how likely a patient is to have a 

specific disease following a positive test result? Should you just give her the correct Bayesian 

answer? The answer is probably no because unless she fully understands how the number is 

calculated, she is unlikely to believe it. 

The classic advice would be to teach the physician Bayes’ theorem but, unless this is 

replicated on many occasions, it is unlikely that she will be able to reproduce accurate answers in 

the future. A better approach would be instruction using the natural frequency approach but, once 

again, how well this would be recalled on future occasions is unclear. (However, see Sedlmeier 

& Gigerenzer, 2001.) We believe that simulated experience provides a level of understanding 

that would help the physician understand why the standard Bayesian and natural frequency 

approaches are correct. In fact, our position is to advocate using simulated experience as a means 

to reinforce understanding the natural frequency approach. In this way, the physician could reach 

conclusions that do not involve any conflict between intuition (based on experiencing simulated 

outcomes) and analysis (based on natural frequency calculations). In time, this would allow the 

physician to use the natural frequency approach directly (and particularly if there is no available 

simulation technology). As an additional point, we see potential in the idea that simulated 

experience could provide a useful way of communicating statistical information. For example, 

physicians might use simulated experience to provide patients with a better understanding of the 

probabilities of different outcomes. That is, letting patients experience simulated outcomes based 
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on analyses and past data could lead to more accurate calibration of expectations and 

consequently better decisions.  

In related work, we have shown that knowledgeable economists have difficulties in 

making correct inferences given the standard presentation modes in the economics literature 

(Soyer & Hogarth, 2010). In this case, economists’ inferences are blind to different levels of 

uncertainty as they tend to rely disproportionately on the statistical significance of regression 

coefficients. The results of Experiment 2 provide insight into how simulated experience might be 

used to aid decision makers in interpreting statistical outcomes. It could help in taking different 

levels of risk into account and in identifying variables that are not only statistically significant 

but economically important. The distinction between statistical significance and economic 

importance is discussed in Ziliak and McCloskey (2008). 

 These last points speak to the importance of using simulated experience for teaching 

probability and statistics at all levels – from grade school through university and beyond. 

Nowadays, it is relatively simple to build simulation models for all kinds of applications and 

problems and with the widespread availability of personal computers – linked by the internet – 

there is no reason why the simple idea championed in this paper could not have wide application. 

Indeed, the Statistics Online Computational Resource (SOCR) website – www.socr.ucla.edu – 

provides a repository of elegant simulations and applets for many probabilistic problems, 

including several featured in Experiment 1. Moreover, Dinov, Sanchez, and Christou (2008) 

have shown that using the website while teaching statistics enhances students’ understanding and 

retention of concepts.    

One could also envisage a computer tool in the form of an expert system that could aid 

people with little statistical sophistication to build their own simulation models and thereby gain 
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insight into a variety of inferential problems. Indeed, one could even imagine such programs 

being developed for cell phones such that they could be almost as common as calculators.  

 At the head of this article is a quote from Carl Rogers (1961). At first sight, this might 

appear odd for research developed from a cognitive view of psychology.  However, what Rogers 

was emphasizing – and where we concur – is that the understanding that really changes behavior 

is that which comes through self-directed and experienced learning. For this and other reasons 

already enumerated, we maintain that simulated experience can be an effective route to gain 

insight into the nature of probabilistic reasoning and thereby guide behavior to meet the demands 

of today’s technological society. 
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Table 1. Design for Experiment 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group 1st Task 2nd Task 3rd Task
*
 Remuneration 

Sophisticated A Answer Analytically 
Coin toss 
example 

Answer with 
Experience 

Final Answer 
1 Euro / Correct 
Final Answer 

Sophisticated B 
Coin toss 
example 

Answer with 
Experience 

Answer Analytically Final Answer 
1 Euro / Correct 
Final Answer 

Naïve Answer Analytically 
Coin toss 
example 

Answer with 
Experience 

Final Answer None 

(*) Final answers were given to each problem right after the 2nd task for that problem was completed.  
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Table 2. The seven probabilistic inference problems 

 

 

 
1. Bayesian updating 
 
Assume you conduct breast cancer screening using mammography in a certain region. You know 
the following information about the women in this region: 
 
The probability that a woman has breast cancer is 1% (prevalence) 
If a woman has breast cancer, the probability that she tests positive is 90% (sensitivity) 
If a woman does not have breast cancer, the probability that she nevertheless tests positive is 9% 
(false-positive rate) 
 
A woman – chosen at random – gets breast screening and the test results show that she has cancer. 
What is the probability that she has cancer?  
 
a) The probability that she has breast cancer is about 81%. 
b) Out of 10 women with a positive mammogram, about 9 have breast cancer. 
c) Out of 10 women with a positive mammogram, about 1 has breast cancer. 
d) The probability that she has breast cancer is about 1%.   

 

 
2. Birthday problem 
 
In a group that has 25 people in it, what is the probability that 2 or more people have the same 
birthday? 

 

 
3. Conjunction problem 
 
A project has 7 parts. The success of the project depends on the success of these parts. In order to 
be successful, all its parts need to be successful. 
 
Assume that each part is independent from the others and each has a 75% success rate.  
 
What is the probability that the project will be successful? 
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Table 2. Cont’d 

 

 

 

 

 
4. Linda problem (Tversky & Kahneman, 1983) 
 
Jessica is 31 years old, single, candid, and very promising. She graduated in philosophy. As a 
student, she was anxious about discrimination issues and social justice, and also took part in anti-
nuclear demonstrations.  
 
Assign a rank to the following statements from most probable to least probable: 
 
a) Jessica works in a bookstore and takes Yoga classes. 
b) Jessica is active in the feminist movement. 
c) Jessica is a psychiatric social worker. 
d) Jessica is a member of the League of Women Voters. 
e) Jessica is a bank teller. 
f) Jessica is an insurance salesperson. 
g) Jessica is a bank teller and is active in the feminist movement. 

 

 
5. The hospital problem  (Tversky & Kahneman, 1974) 
 
A certain town is served by two hospitals. In the larger hospital about 45 babies are born each day. 
In the smaller hospital about 15 babies are born each day. As you know, about 50 percent of all 
babies are girls. However, the exact percentage varies from day to day. Sometimes it may be 
higher than 50 percent, sometimes lower. For a period of 1 year, each hospital recorded the days 
on which more than 60 percent of the babies born were girls. 
 
Which hospital do you think recorded more such days? 
 
a) the larger hospital? 
b) the smaller hospital? 
c) about the same for both hospitals? 
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Table 2. Cont’d 

 

 

 

 

 

 
6. Regression toward the mean 
 
A class of students enters in a TOEFL exam (it is a standardized test of English language). One of 
the students gets a better result than 90% of the class.  
 
The same class, including the person who had done better than 90% of his class, enters another 
TOEFL exam.  Past data suggest that the correlation between the scores of the different exams is 
about 0.8.  
 
Which statement is correct?  
 
a) It is more likely that the student in question now gets a better ranking. 
b) It is more likely that the student in question now gets a worse ranking. 
c) The chances that he gets a better ranking or a worse one are approximately equal.  

 

 
7. Monty Hall problem 
 
There are three doors A, B and C. We randomly selected one of them and put a Ferrari behind it. 
Behind the remaining two doors there is nothing.  
 
You will select a door and we will open it. You will win the game if there is Ferrari behind it. 
  
Now select a door. (The participant makes a selection, say A). 
 
Before we open the door you selected, we open B and show you that there is nothing behind it. 
Now two doors remain: A and C. Behind one of them is a Ferrari. Given this situation, please state 
if you would like to 
 
a) Stay with your original selection 
b) Change to the other door  
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Table 3. Percentages of correct answers to inferential problems by experimental conditions 
         
         Sophisticated Naive  Mean  

  A  B     

1. Bayesian updating        

Analytic   17  42 20  27  

Experience   97  97 100  98  

Final   79  58 70  69  

          

2. Birthday problem         

Analytic   3  13 0  6  

Experience   55  61 65  60  

Final   35  61 30  44  
         

3. Conjunction problem          

Analytic   55  52 25  47  

Experience   74  77 75  75  

Final   77  77 75  77  
         

4. Linda problem          

Analytic   10  32 10  18  

Experience   97  97 90  95  

Final   65  71 60  66  
         

5. Hospital problem         

Analytic   39  61 25  44  

Experience   97  97 100  98  

Final   81  68 65  72  
         

6. Regression toward mean         

Analytic   32  45 25  35  

Experience   68  90 70  77  

Final   55  65 35  54  

           

7. Monty Hall        

Analytic   31  48 15  34  

Experience   93  97 95  95  

Final   69  58 55  61  

 n =  31 (29)  31 20     
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Table 4. Means <std. devs> for conditions in Experiment 2 
 
  

 

 Condition:  Analytic Experience 

    Sophisticated Naive 
 (n=  26 28 18) 
Decisions      
 I1  3.5 5.7 6.7 
   <4.6> <3.9> <5.9> 
       
 I2  12.3 7.8 9.8 
   <7.0> <4.5> <7.7> 
      
Expected outcome     
 Y  45.5 45.2 46.3 
   <0.9> <1.6> <2.1> 
      
Prob (Y<40)      
Question 2: Response - Correct -16% 0% 5% 
   <9%> <11%> <9%> 
      
Prob (Y<45)      
Question 3: Response - Correct 2% 1% 6% 
   <2%> <12%> <9%> 
      
Prob(Y|I1,I2) > Prob(Y|no investment)     
Question 4: Response - Correct 24% 1% 3% 
   <10%> <16%> <8%> 
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Figure 1. Histograms of answers given to the Bayesian updating problem 

Sample sizes for Sophisticated A, Sophisticated B and Naïve are 29, 31 and 20 respectively. 
The numbers on the columns represent the number of answers.  
The green (dashed) column represents the correct answer.  
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Figure 2. Histograms of answers given to the birthday problem 

Sample sizes for Sophisticated A, Sophisticated B and Naïve are 31, 31 and 20 respectively. 
The numbers on the columns represent the number of answers.  
The green (dashed) column represents the correct answer.  
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Figure 3. Histograms of answers given to the conjunction problem 

Sample sizes for Sophisticated A, Sophisticated B and Naïve are 31, 31 and 20 respectively. 
The numbers on the columns represent the number of answers.  
The green (dashed) column represents the correct answer.  
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Figure 4. Histograms of answers given to the Linda problem 

Sample sizes for Sophisticated A, Sophisticated B and Naïve are 31, 31 and 20 respectively. 
The numbers on the columns represent the number of answers.  
The green (dashed) column represents the correct answer.  

 

2 
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Figure 5. Histograms of answers given to the hospital problem 

Sample sizes for Sophisticated A, Sophisticated B and Naïve are 31, 31 and 20 respectively. 
The numbers on the columns represent the number of answers.  
The green (dashed) column represents the correct answer.  
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Figure 6. Histograms of answers given to the regression toward the mean problem 

Sample sizes for Sophisticated A, Sophisticated B and Naïve are 31, 31 and 20 respectively. 
The numbers on the columns represent the number of answers.  
The green (dashed) column represents the correct answer.  
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Sample sizes for Sophisticated A, Sophisticated B and Naïve are 29, 31 and 20 respectively. 
The numbers on the columns represent the number of answers.  
The green (dashed) column represents the correct answer.  

Figure 7. Histograms of answers given to the Monty Hall problem 
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Figure 8:  Experiment 2 Analytic group set-up 

 
Thank you for participating in this experiment. It is anonymous, please do not write you name. 
 
Here you will be asked to make an investment decision. You are given 40 credits. You can allocate these 
40 credits in 3 ways:  
 
I1 : You can invest some in “Investment 1” 
I2 : You can invest some in “Investment 2” 
N   : You can choose not to invest some of it. 
 
You can choose how much to put in each of these 3 options, provided that your choices add up to 40. The 
relationship between the investments and their effect on the outcome is given by the following linear 
equation: 

iiii eY +Ι+Ι+=∆ ,22,11 ββα  

Where “ Y∆ ”  is the change in resulting credits, “I1”   is the amount invested in investment 1, “I2“  is the 
amount invested in investment 2,  “β1“ and “β2“ are the effects of investments on the change in credits and 
“e” is the random perturbation.  
 
The return to each investment is estimated through historical data. Past 1000 investments were taken into 
account for each investment and an OLS regression was conducted to compute the relationship between 
each investment and its return 
 
The sample statistics for the data are as follows: 
 
 
 
 
 
 
The OLS estimation results are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
This means that both the investments are estimated to have positive and significant effects on the change 
in one’s returns. Specifically, in the average, “Investment 1” is expected to generate a 50% increase and 
“Investment 2” is expected to generate a 30% increase over the invested amount.  

Variable Mean Std. Dev. 
∆Y 8.4 7.9 
I1 11.1 5.8 
I2 9.6 5.2 

 

 Dependent Variable: ∆Y 

                          I1            0.5         (0.20)** 
                          I2            0.3         (0.05)** 
            Constant           -0.1         (0.15) 
                          R2            0.21 
                          N          1 000 
       Standard errors in parentheses 
      ** Significant at 95% confidence level 
        N is the number of observations 
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Figure 9:  Simulation interface used in the frequency condition 
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Appendix A. Answers to the seven probabilistic inference problems in Experiment 1 
 
1. Bayesian updating 
 

p (C) = 1% 
p (+ | C ) = 90% 
p (-- | C ) = 9% 

 
p (C | +) =  
{p (C) * p (+ | C)}/{ p (C) * p (+ | C) + (1- p (C)) * p (-- | C) } ≅ 10% 

 
Thus, the answer is: 

 
c) Out of 10 women with a positive mammogram, about 1 has breast cancer. 

    
 
2. Birthday problem 
 

There are 365 days in a year. 
The approximate probability of a birthday MATCH between any two people is 1/365. The 
probability of a NO MATCH is thus 364/365. 
The probability of 2 NO MATCHES in a row is (364/365)2 = 0.9972. 
The probability of n NO MATCHES in a row is (364/365)n 
There are 300 different combinations of 2 people in a group of 25. 
The probability of 300 NO MATCHES in a row is (364/365)300 = 44% 
The probability that there is at least one MATCH = 1 – 44% = 56% 

 
Answer is approximately 56%. 

 
 
3. Conjunction problem 
 

p (parti) = 75% , i = 1, 2, 3, …, 7  
p (success) = p (part1) * p (part2) * … * p (part7) = [p (parti)]

7 = 13.3%    
Approx. 13.3% 

  
 
4. Linda problem (Tversky & Kahneman, 1983) 
 

p(e) ≥ p(g) by conjunction rule. 
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5. The hospital problem  (Tversky & Kahneman, 1974) 
  

b) the smaller hospital…… 
…because smaller sample sizes exhibit more variability. 
 
 

6. Regression toward the mean 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) It is more likely that the student in question now gets a worse ranking.   
  
 
7. Monty Hall problem 

  
The a priori probability that the prize is behind door i (Di ; i = 1, 2, 3) is:  
 
p (Di) = 1 / 3 
 
Assuming that the participant has selected door 1 (D1), the probability that Monty opens door 2 
(O2) is 
 

- if the prize were behind D1; p (O2 | D1) = 1 / 2  
- If the prize were behind D2; p (O2 | D2) = 0  
- if the prize were behind D3; p (O2 | D3) = 1  

 
So, the probability that Monty opens door 2 is: 
 
 
  
 
 

 

 

A > B  
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Using Bayes Theorem, we have: 
 
  
  
 
 
and  
 
 
 
 
 
Therefore, the probability of winning is higher (2 / 3) if one changes the door, which implies that 
the optimal strategy is to change the initial choice, so: 
 
b) Change to the other door 
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Appendix B. Statistical tests on differences between proportions of correct answers in 
Experiment 1 

 
Table B1. Difference between the proportions of correct answers in Experience and Analytic 
 

 Sophisticated A Sophisticated B Naïve 

 ∆   t ∆   t ∆   t 

Bayesian updating 0.79 10.1* 0.55 5.8* 0.80 8.9* 

Birthday problem 0.52 5.4* 0.48 4.6* 0.65 6.1* 

Conjunction problem 0.20 1.6 0.23 2.2* 0.50 3.6* 

Linda problem 0.87 14.1* 0.65 7.2* 0.80 8.4* 

Hospital problem 0.58 6.2* 0.36 3.8* 0.75 7.7* 

Regression toward the mean 0.36 3.0* 0.45 4.3* 0.45 3.1* 

Monty Hall problem 0.62 6.3* 0.49 5.1* 0.80 8.6* 

   (*) indicates significantly positive difference at 95% confidence level 

 
 
Table B2. Difference between the proportions of correct Analytic answers in Sophisticated B and A 
 

 ∆   t 

Bayesian updating 0.25 2.2* 

Birthday problem 0.09 1.4 

Conjunction problem -0.03 -0.3 

Linda problem 0.23 2.3* 

Hospital problem 0.23 1.8* 

Regression toward the mean 0.13 1.1 

Monty Hall problem 0.19 1.4 

  (*) indicates significantly positive difference at 95% confidence level 
 
 
Table B3. Difference between the proportions of correct answers in Sophisticated A and Naïve   
 

 Analytic Experience Final 

 ∆   t ∆   t ∆   t 

Bayesian updating -0.03 -0.2 -0.03 -0.2 0.09 0.7 
Birthday problem 0.03 0.2 -0.10 -0.7 0.06 0.4 

Conjunction problem 0.30 2.3* -0.01 -0.1 0.02 0.2 
Linda problem 0.00 0.0  0.07 0.9 0.05 0.3 

Hospital problem 0.13 1.05 -0.03 -1.0 0.16 1.2 
Regression toward the mean 0.07 0.6 -0.02 -0.2 0.19 1.4 

Monty Hall problem 0.16 1.4 -0.02 -0.3 0.14 1.0 

  (*) indicates significantly positive difference at 95% confidence level 
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Appendix C: Rationale for answers to the four questions in Experiment 2 

Question 1  

This question was posed to elicit an answer from the participants. We wanted them to make an 

investment decision with a particular expectation about the results it would lead to. The answers 

given suggested that the participants in all groups identified average effects quite accurately.       

Question 2 

This question reflects the desire to obtain a positive outcome given any investment decision. The 

most popular answer for this question in the Analytic group was I1=0 and I2=16.7. We therefore 

base the calculations in this section on these particular values. Answers associated with other 

choices can be calculated analogously.  

The answer to Question 2 depends on the standard deviation of the estimated residuals 

(SDER). In a linear regression analysis, SDER2 corresponds to the variance of the dependent 

variable that is unexplained by the independent variables and is captured by the statistic (1-R2). 

In the set-up, this is given as 21%. One can compute the SDER using the (1-R2) statistic and the 

variance of ∆Y: 

                                                            (A1) 

Given I1=0 and I2=16.7 the answer to Question 2 becomes: 

 

 

                                                                                                                               

          (A2) 

7)21.0)(9.7()1)((()ˆ( 22 ≅=−∆= RYVarese  
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Question 3 

Here, one needs to make similar calculations as for the answer to Question 2. Given I1=0 and 

I2=16.7 the answer to Question 3 becomes: 

  

 

 

    (A3) 

 

Question 4 

This question reflects the desire to be better off with respect to an alternative of no-action in 

terms of Investment 1 and 2. Finding the answer requires making one additional calculation. 

Specifically, we need to know the standard deviation of the difference between two random 

variables, that is 

                  (Yi | X1,i =x1, X2,i =x2 ) – (Yj | X1,j =0, X2,j =0), where x1 > 0 and/or x2 > 0                  (A4)          

We know that (Yi | X1,i =x1, X2,i =x2) is an identically, independently and normally 

distributed random error with an estimated standard deviation of again 7. Given that a different 

and independent shock occurs for different individuals and actions, the standard deviation of 

(A4) becomes: 
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                (A5) 

 

Given I1=0 and I2=16.7 the answer to Question 4 becomes: 

 

 

 

 

 

                        (A6) 

 

 

[ ]0)  0,|(-)  ,|( ,2,12,21,1 ==== jjjiii XXYxXxXYVar = 

9.9)77(0)  0,|()  ,|( 22
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