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Abstract

Whereas much literature has documented difficuitievaking probabilistic inferences, it has
also emphasized the importance of task charadbsristdetermining judgmental accuracy.
Noting that people exhibit remarkable efficiencyeimcoding frequency informaticequentially,

we construct tasks that exploit this ability byug&ong people to experience the outcomes of
sequentially simulated data. We report two expenisieT he first involved seven well-known
probabilistic inference tasks. Participants diftene statistical sophistication and answered with
and without experience obtained through sequeyntsathulated outcomes in a design that
permitted both between- and within-subject analy$he second experiment involved
interpreting the outcomes of a regression analyBsn making inferences for investment
decisions. In both experiments, even the statiticaive make accurate probabilistic inferences
after experiencing sequentially simulated outcoaresmany prefer this presentation format. We

conclude by discussing theoretical and practicalications.
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“1 have come to feel that the only learning which significantly influences behavior is self-

discovered, self appropriated learning” (Carl Rogers, 1961, p.276).

In the last five decades, many studies have doctedefifficulties people have in reasoning
probabilistically (see, e.g., Cohen 1960; 1972; &dls, 1968; Kahneman, Slovic, & Tversky,
1982; Hogarth, 1975; 1987). One way of charactegizhis literature is to note that whereas
people have well-developed capacities for dealiith data in the form of frequencies and
averages (Peterson & Beach, 1967; Nisbett, Krdefzson, & Kunda, 1983), they have greater
difficulty in understanding concepts of variabilithe role of random error in phenomena such
as regression toward the mean, and implicatioqsaifabilistic reasoning that involve
combinations of events (see, e.g., Lathrop, 196r:Hllel, 1973; Cohen & Chesnik, 1970;
Cohen, Chesnik, & Haran, 1971; Kahneman & Tverd®y3; Tversky & Kahneman, 1974;
1983). The human mind, it seems, is quite effecivaggregating information in an additive
manner but the multiplicative demands of probaptliteory are hard to master (Juslin, Nilsson,
& Winman, 2009).

In considering this state of affairs, it is impartéo recall that, although humans have
always faced uncertainty, probability theory itswify dates from the mid-17century (Daston,
1988), and is a discipline that requires considerattellectual abstraction. It is thus not
unreasonable to conjecture that probability thesmlyes some problems in ways that are foreign
to the response tendencies that have been honeghign evolutionary forces. At the same time,
however, the demands of our modern, technologicaignted society increasingly require the
ability to understand the implications of statiaticeasoning. In managing an investment
portfolio, for example, it is essential to undenstdhe distributional implications of potential
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returns to assess tradeoffs between risks ancheetiir the practice of medicine, failing to assess
correctly the probabilistic implications of tessudts can have disastrous consequences. And yet,
most of the time, people — including professioratieal with statistical information in an

intuitive manner that may or may not lead to appgetg inferences (Gigerenzer, Gaissmaier,
Kurz-Milke, Schwartz, & Wolosihn, 2007).

An argument can always be made for better teaatfistatistical reasoning. However,
whereas we are not against “better teaching” (wR9 we doubt whether this is a solution. The
reason is that whatever is taught needs to beorerd through practice and feedback and it is
not clear that there will always be opportunitiesdll types of problems. What is needed is a
general approach — based on well-established thesrand empirical grounds — that can be
easily adapted to specific situations. In fact,rtte@n implication of this paper will be to suggest
such an approach.

In an extensive review of issues of risk percepdad communication in the medical
domain, Gigerenzer et al. (2007) note that the vilyghich statistical information is presented
have large, and often predictable effects on tfexemces people draw. For example, people are
impacted far more by descriptions of risk reductiotue, say, to some intervention or treatment
— when this is expressed in relative as opposetbsolute terms, e.g., as 50% instead of from 2
in 1,000 to 1 in 1,000. Similarly, physicians shiesnarkable improvements in probabilistic
reasoning — using Bayesian updating when interpyegst results (e.g., mammograms) — when
data are presented matural frequency format as opposed to the more typiaabgilistic
statements (Gigerenzer & Hoffrage, 1995; Cosmidd®&by, 1966; Hoffrage & Gigerenzer,
1998; Hoffrage, Lindsey, Hertwig, & Gigerenzer0P0Brase, 2008). Indeed, frequency
representations have also been observed to impgnterences in the famous “Linda” problem
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(Tversky & Kahneman, 1983; Fiedler, 1988; Hertwigxggerenzer, 1999), “sample size” tasks
(Sedimeier, 1998) and the “Monty Hall” problem (Krauss & Wang, 200B summarizing
these and other studies, Gigerenzer et al. (20&8lystate

....Statistical literacy is largely a function of thatside world and ...can be fostered by

education andgven more simply, by representing numbers in ways that are transparent

to the human mind (p. 54, italics added).

Unfortunately, it is not always clear how to defapriori what is “transparent to the
human mind” in the presentation of statistical ddfar example, graphs may or may not be
helpful in different circumstances (Soyer & Hoga2010), and providing probabilistic
information in frequency formats does not guarathet people will make appropriate
inferences (Griffin & Buehler, 1999; Mellers & Mc@&w, 1999; Hoffrage, Gigerenzer, Krauss, &
Martignon, 2002).

Nonetheless, the work of Gigerenzer and his cgllea suggests a research strategy: first,
identify the cognitive mechanisms that people penfavell naturally (i.e., without specific
training); and second, structure statistical inieestasks in a form that exploits these
mechanisms.

In this paper, we follow this strategy. First, dentify one important mechanism that
humans have been demonstrated to possess in telrasdling data; specifically, the ability to
encode automatically in memory frequency informagdout events they experience across

time? Second, by using simulations we provide statiktigresentations of problems that allow

! The “hospital problem” (Tversky & Kahneman, 197Hat we present below is an example of a “sampie’ sask.

% As an everyday example of this mechanism, imagdiaeytou are asked how many times you have bedreto t
cinema (or undertaken another similar activity)hia last three months. Most people have littleidiffy in
providing a rapid and fairly accurate answer te tiuestion. And yet, they do not consciously réd¢be frequency
of their visits to the cinema or make a mental rfofethis or other frequencies) in case someone tekquestion
just posed.
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people to exploit this mechanism, that is, by padow) opportunities to experiensequentially
generated frequency data.

Whereas using simulated data in this general managrseem “obvious” to statistical
practitioners, there is a remarkable lack of systirscientific evidence concerning its use as
suggested here. In fact, we know of only two staidmat have explicitly investigated effects on
probabilistic inference of experiencing sequerftiedjuency data. In the first, Christensen-
Szalanski and Beach (1982) investigated whetheresglly observing 100 instances of either
base-rate or base-rate and diagnostic informatmuidvmpact subsequent assessments of
Bayesian posterior probabilities. They found n@efffor base-rate information alone, but a
favorable impact for base-rate and diagnostic médron. In the second study, Betsch, Biel,
Eddelbuttel, and Mock (1998) showed that, when [geepplicitly sampled frequency
information, they were more appropriately sensitvdase rates in a Bayesian updating task
than if provided with probabilistic informationn b related investigation, Sedimeier (1999, Chs.
10, 11) has used what he terms a “flexible urn rfiadeéhe shape of a computer simulation
model that does allow participants to observe dgtemically and where their probabilistic
inferences are quite accurate. (We consider Seditaavork again in the General Discussion.)

The evidence on the natural encoding of frequenfoyiination is both uncontroversial
and overwhelming. It has been summarized by, amargers, Hasher and Zacks (1979; 1984)
and Zacks and Hasher (2002). As their studies shamans have a remarkable capacity for the
accurate encoding of frequency information. Morepthas cognitive activity demands little by
way of attention, does not require intention, igaimant to learning, age, and many individual
differences, and also involves recognizing thedesgies of subcategories of experienced

events. That it is a basic cognitive mechanismlest probably developed through evolutionary
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pressures is reinforced by the findings that sévema-human species show similar capacities,
e.g., in understanding frequency distributions eissed with different sources of food.
Moreover, consistent with this evidence is thauawglated by Fiedler and his colleagues
concerning human sampling of data for inferentiaigoses (Fiedler, 2000; Fiedler, Brinkmann,
Bestsch, & Wild, 2000; Fiedler & Juslin, 2006). Bkeauthors show that people are quite
accurate in encoding the data they have obserliedjlame for systematic inferential errors,
they argue, lies with failures to exercise the rugtgnitive judgment necessary to offset biases
in the sampling process.

Our suggestion, therefore, is to transform siatisteasoning problems into a form that
exploits the ability to encode and interpsequentially observed frequency information. That is,
instead of asking people to solve statistical reampproblems analytically, we propose having
themexperience frequency data sequentially thereby allowing theitural encoding capabilities
to inform their answers. Before proceeding, howewer make three important remarks.

First, our work builds on the pioneering contribas of Gigerenzer and his colleagues
who perceptively drew attention to the differenedéween representing probabilistic problems by
natural frequencies as opposed to probabilities.idovation consists of extending their
argument to what we consider its logical conclustpecifically, Gigerenzer and Hoffrage
(1995, p. 686) defined natural frequencies as ‘@lgt@experienced in a series of events” noting
that “From animals to neural networks, systems siel@arn about contingencies through
sequential encoding and updating of event freqesnci. They further expanded on the
meaning ohatural sampling as involving the “sequential acquisition of infation by updating
event frequenciesithout artificially fixing the marginal frequencies” (686). On the other

hand, as far as we can tell, participants in teegeriments never actually experienced data
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sequentially, that is, “as a series of events.” Instead, tHeseoved totals. That is, Gigerenzer and
his colleagues presented data in the forsuoimarized natural frequencies.

This is an important point. Experience is typicalbt in the form of summed frequencies
presented in some tabular format. Instead, freqasrfas described by Hasher and Zacks above)
are characterized by beiegperienced sequentially — one-at-a-time — across some period of time
and/or space. The foraging animal, for examplesam consult a table of data in a natural
frequency format when deciding which of two potahsites has produced more food. Instead,
across time it has accumulated experience — diiheetly or by observation — of how often the
two sources have yielded food. To test, therefotether frequency data lead to accurate
probabilistic inferences, one must allow the organtoexperience the data in sequential format
as opposed to simply providing a count.

Second, numerous studies conducted with animais $tzown appropriate sensitivity to
environmental probabilities and, for the most pattat could be considered rational behavior
(see, e.g., Real, 1991, 1996; Weber, Shafir, &Bla004). However, it is important to
emphasize that to test animals’ response tendeimctasse studies, it was necessary to have
them first observe sequentially generated frequeiats’

Third, to provide somebody with a sequential fieagy representation of a probabilistic
problem requires the ability to construct an appedp simulation model. This, it could be
argued, implies a greater “input” on behalf of gegson structuring the problem with the
consequence that results should not be comparadattémpts to answer problems in the usual
probabilistic formats. We have three answers t® ¢hijection. One is that knowimgw to

present probabilistic information in natural freqag formats (see, e.g., Gigerenzer & Hoffrage,

* Alex Kacelnik, personal communication, April 2010.
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1995) also requires more knowledge than just ptasgrespondents with the usual probabilistic
format. The second is that allowing respondenexfeerience “raw” data seems the simplest test
of human ability to handle statistical problemsdAhird, as noted above, the presentation of
sequential frequency information is the norm irdsts of rational behavior in animals. Thus, if
it is legitimate to allow animals to use this foaindata presentation, why deny humans?

In this paper, we test the effects on statistitf@rence of experiencing sequentially
simulated outcomes in two experiments. In Experindiemve present participants with seven
well-known problems from the literature. These @nd1l) Bayesian updating, (2) the
“birthday” problem, (3) the conjunction problem) (e Linda problem (Tversky & Kahneman,
1983), (5) the hospital problem (Tversky & Kahnemb®i74), (6) regression toward the mean,
and (7) the Monty Hall problem. Two groups of pagants, familiar with statistical reasoning,
answer these questions both with and without thebexperience in the form of sequentially
simulated outcomes in a design that permits botivden- and within-subject comparisons.
Participants are further required to provide adtlainswer to determine their remuneration.
Finally, a further group of statistically naive fi@pants answers all questions without and then
with the aid of experience. The results of Expentriedemonstrate that being exposed to
sequentially experienced data leads to more aastatistical inferences and judgments that
benefit from experience are preferred over anahgsponses when providing final answers.
Moreover, these important results apply acrossdhge of statistical sophistication that we
investigate.

The task used in Experiment 2 is inherently mamulicated than those in Experiment
1. Specifically, we investigate effects of expeciag sequentially simulated outcomes on
understanding the probabilistic implications oegnession model in the context of an economic
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investment. Once again we compare responses atipartts varying in statistical
sophistication, and once again, we find that exgpee leads to accurate inferences for most of

our participants.

Experiment 1
Design

We varied two between-subject factors in an incatgp? x 2 design in which all
participants gave three answers to each of sevestiqus (thereby also allowing within-subject
comparisons). One between-subject factor was t&vathtistical sophistication. We compared
responses of advanced undergraduate students wlitaken classes in statistical reasoning and
probability theory with those of a group of oldeniversity-educated adults with less formal
statistical knowledge. The second between-subgatbf was whether participants first answered
the questions before experiencing sequentially lsitad outcomes, and then again after having
done so, as opposed to the reverse, that isaftest having experienced sequentially simulated
outcomes, and then without having done so. Thisrekéactor, however, was incomplete in that
it was only varied for the advanced undergraduiatgests.

The experimental design is illustrated in Tabl&4 shown there, one group of advanced
undergraduates first answered all seven questigdhswt having experienced sequentially
simulated outcomes. In contrast, the second groupdaergraduates first answered after
experiencing sequentially simulated outcomes. Adtash answer provided in the second task
(with and without simulated outcomes, as approgyjdioth groups were required to state a final
answer that, if correct, would earn them € 1.00 €mch correct answer). We refer to these two

groups as “Sophisticated A” and “Sophisticated i@spectively.
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The group of university-educated adults only ansdéhe questions in one order: before
and then after having experienced sequentially Isited outcomes. They also gave a final
answer but were not remunerated financially fdnesitheir accuracy or participation. We refer
to this group as “Naive.”

The particular questions used in the experimenewhbsen because they represent a
range of well-known problems that people typicalhswer incorrectly.

(Insert Table 1 about here)
Participants

Sixty-two undergraduate students were recruiteshfiwo classes at Universitat Pompeu
Fabra and assigned at random to the Sophisticagetl/ASophisticated B groups (31 to each).
The students were in th&2™" year of undergraduate studies in business andémoenics and
had all taken courses in probability and statisMieen asked to indicate their level of comfort
in probabilistic and statistical reasoning on aotpscale going from “does not know or
remember anything” (1) to “expert and can teackeih(5) with a mid-point at “remembers
some of the things and did well in related cour¢8},’the mean self-reported rating for both
groups was 3 (SD, 0.4). The average age of theiStaqated groups was 22 and 52% were
female. The mean remuneration participants receied the correctness of their final answers
—was € 4.51.

The Naive group consisted of 20 university-eteetadults recruited through personal
contacts of one of the authors. Their mean age3@dsange from 24 to 59) and 50% were
female. In terms of statistical sophistication, thean self-reported rating (using the same scale
as the undergraduates above) was 2 (or “knowsnoemeoers little” with a standard deviation of
0.6).

11
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Procedure

Participants made individual appointments to me#t the experimenter and were alone
with him when answering questioh&xperimental sessions lasted, on average, 42 esmer
participant.

When responses were made without experiencing atedibutcomes, participants
simply responded to the questions in written foRarticipants were free to make calculations
using paper and pencil and/or use calculators.

Prior to asking a participant to provide answeith whe aid of simulated experience, the
experimenter first explained the concept of simatatising the example of a coin toss. After the
explanation, the participant was invited to pap@te in and experience the simulation of a coin
toss by using a mouse to click on the screen @rsomal computer. Each click resulted in one
simulated outcome with the result that the paréinipcould experience the string of outcomes
produced (“heads” = 0, “tails” = 1) by successital$> Any questions about simulation were
then clarified by the experimenter. This exercaaktapproximately two minutes for each
participant and is included in the time spent anwiinole experiment.

When responses were made after experiencing sedubautcomes (after the coin toss
example), the participants responded to each afelien questions using simulations on a
personal computer that followed the samaglus operandi as the simulated coin toss. After the

participants had read each question, the experenerformed them what the program was

* For this experiment, we deemed it important tegndividual attention to each participant to hanichnical
issues concerning the simulation technology.

® All the simulations used in this work were prograed in MS Excel
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doing in each simulation, e.g., for the birthdaglgem it was explained that each click resulted
in seeing the outcome associated with a group eé@8omly chosen individuals. Then
participants started sampling by clicking with theuse. The manner of sampling outcomes was
left to each participant’s discretion, i.e., numbetrials, time taken per trial, and even diffdren
numbers of samples. At any time during the samppagticipants were free to stop and
summarize the data they had experienced up tgthat, i.e., to visualize the size of the sample
created and to assess outcomes. Occasionallyipartis asked questions about the simulation
mechanism and the experimenter answered in a sthndner to avoiding giving cues as to
“correct” responses to the probabilistic infereqoestion<.

For those participants who answered first aftgreeiencing simulated outcomes
(Sophisticated B), the simulation methodology andsgions were presented first (as just
explained above); once this was completed, thewaresl all seven questions without
experiencing simulated outcomes. All participamtsll conditions, answered the different
problems in individually randomized orders.

Table 2 provides details of the seven problemsaredents were required to answer.
Answers to the seven problems are provided in AgpeA.

(Insert Table 2 about here)

Finally, because the experiment was conductedmuléi-lingual environment, care was

taken to ensure that the participants were fluethe languages used, being Spanish (mainly),

English, or Turkish.

® In each case, the experimenter responded sayiing: program simulates correctly the current siawiroblem
and provides you with an outcome each time yowk¢lic
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Results of Experiment 1

Before discussing the main results, we first makmaacomments about the participants’
simulation experiences. First, the mean sizesmpses (i.e., number of simulated outcomes) per
problem were almost the same for the two Sophisticgroups, 66 (SD, 46) and 65 (SD, 52) for
A and B, respectively, but lower in the Naive grouuch had a mean of 49 (SD, 37). The
Sophisticated-Naive difference is significant @.67, p<.001). Second, when simulating, nearly
80% of participants in Groups A and B took a sreafhple first and then gradually increased the
sample size and updated their first impressionesialways toward the estimates they obtained
from the larger sample. For the Naive group tlyare was 40%. Third, only four Sophisticated
participants simulated multiple samples within @sfion. Finally, the groups differed in how
long they took to answer the problems: membersophiticated A spent on average 19.6
minutes (SD, 4.3) on the first task of solving gieblems analytically and 23.1 minutes (SD,
3.9) on the second task, whereas members of Smaitést B spent on average 25.5 minutes
(SD, 4.7) on the first task of experiencing thecomtes through simulation and 15.4 minutes
(SD, 3.9) on the second task.

Table 3 provides an overview of the percentageoakect responses to the seven
problems broken down by experimental conditionsgnodips. Figures 1 through 7 provide full
information on responses made in all conditiongalbgroups to the seven problems. To simplify
presentation, we refer to answers made withoutggekperienced simulated outcomes by the
term “Analytic.” “Experience” refers to answers neaalter experiencing simulated outcomes.

(Insert Table 3 and Figures 1 through 7 about here)
Some general trends can be observed from TabliesB. &cross all problems and groups,

the percentage of correct answers after experiexceeds that of the analytic responses, and
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typically by a large margin. Second, with one exicey the percentage of correct final answers
lies between their experience and analytic couatésthe exception is the Conjunction
problem). This suggests that whereas participarte wapable of interpreting their experience,
they still wanted to give some weight to their gtialresponses. Third, there are order effects.
More participants in Sophisticated B (who answeaker using experience first) gave accurate
analytic responses than those in Sophisticatedkpeiience clearly affected analytic responses.
Finally, whereas the analytic responses of the &lgifoup are generally less accurate than their
Sophisticated counterparts, their post-experiencefiaal answers are quite comparable.
Statistical tests supporting all the above statésnare provided in Appendix B. We now
comment on each problem by referring to the appaitgfigures.

Figure 1 reports the result of the Bayesian updatsk. As in all the other figures
related to Experiment 1, we display nine graph® fhnee graphs in the top row report the data
for the analytic responses for the three groums(fieft to right, Sophisticated A, Sophisticated
B, and Naive, respectively). The middle and bottoms show the analogous data for the
experience and final responses.

The specific version of the Bayesian updating problvas taken from Gigerenzer et al.
(2007). This was employed in a continuing educapicgram in which 160 gynecologists were
instructed how to use natural frequencies for sgl\Bayesian updating problems. The results of
that session were quite successful. Whereas oy &lhe 160 gynecologists provided the
correct answer before training, the percentagetm8&% after training.

The comparison with our results can be seen byimgo#town the left-most column of
graphs in Figure 1. Only 5 out of 29 (17%) answerectly initially (similar to Gigerenzer’s

21%). However, after experience 28 out of 29 (9@#gwer correctly although this figure drops
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to 23 out of 29 (79%) for the final answer. In ghour results are comparable to those achieved
with the natural frequency method. Moreover, plisbably as easy (or easier) to provide the
instructions for experiencing simulated outcomestto teach the calculations required to use
natural frequencies.

Figure 2 displays results for the birthday prohlétare we note that analytic responses
are skewed for all three groups toward incorrexst, Values. Experience makes a dramatic
difference. In this specific case it is obtainestilgh simulating binary outcomes where “1”
means there are at least two people with the santieldy in a group of 25 people and “0”
otherwise. Whereas the actual percentage corréetisshan in other problems, the answers of a
clear majority are close to correct. This pattermainly maintained in the final response by the
Sophisticated groups but here the Naive group é@sghalyuite wide dispersion of responses,
sometimes preferring a “middle” solution betweea tlutcomes of the two tasks.

The results of the conjunction problem in Figura@ clear. The analytic responses are
somewhat dispersed. But experience makes a beyelif€e that is largely maintained by all
groups in their final responses.

For the Linda problem — Figure 4 — we consider avitgther participants recognized that
the event “bank teller and active in the feministivement” could not be more likely than “bank
teller.” Parenthetically, for this problem parpants experienced a vector of “1”’s and “0™'s for
each of the outcomes simulated. These numbersatediavhether each simulated Linda

character did or did not have the attributes therevio be ordered by probabilitythe analytic

” The text of our problem refers to Jessica as opgpdseLinda to avoid the possibility that the Sopibited
participants might have heard of the “Linda prohlem
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and experience—based responses are generally tgspfmsiall groups (incorrect and correct,
respectively). The majority responses for the fevawer, however, are correct.

In Figure 5, experience leads to almost 100% coresponses for the hospital problem
and the majority of final answers are also corrEot.this problem there is a striking order
effect. In the Sophisticated B group, there is gonitg of correct analytic responses. In this case,
prior experience was probably particularly relevaetause no calculations were needed to
answer the analytic question.

Figure 6 reports the results of the regression tdwze mean problem. The modal
responses of all groups to the analytic questiercantered on the incorrect answer of “equal,”
thereby suggesting that the respondents did narstahd the principle behind the question. The
effect of experience is to shift answers to beirayarcorrect. However, at the final stage the
Naive group is not convinced.

Experience has a big impact for the Monty Hall peatb— Figure 7. Almost everybody
chooses the correct answer of “change” after egped. However, a minority regress to the

incorrect answer at the final stage.

Discussion of Experiment 1

The stimuli in Experiment 1 were chosen precis@gause previous research has shown that
responses to their presentation in a standard pilegiec format typically imply incorrect
inferences. And yet, when we presented the probtemsople in a form that allowed them to
experience sequentially simulated outcomes, regsdios all questions were remarkably

accurate. To this we add three points.
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First, training people to participate in the sintidas by using the coin toss example was
guite easy and took little time, on average sommerflites per person. Participants related easily
to the task of experiencing the outcomes of sinuriat

Second, despite the fact that our participantsedaon levels of statistical sophistication,
the accuracy of all participants’ responses begebfitom experience.

Third, we allowed our participants to choose thadd final, answers thereby requiring
them to express either a preference for answeis\athwith/without the aid of simulated
experience or some combination of the two. Whesease participants did revert toward
answers made without experience, a large majoate gnore weight to those achieved through
experience.

It is important to emphasize that we did not giegtigipants any indications as to how
large their samples of experienced outcomes shHmulilVhat we found was that the
Sophisticated participants sampled more than theed\and some problems involved
systematically more sampling than others. For exanipe Bayesian and birthday problems
both involved the largest numbers of trials (meafrspproximately 80 to 90 for the
Sophisticated groups) whereas the Linda problemussted far fewer trials (around 30 for all
groups). However, in this problem, participants tadimulate multiple outcomes for each
individual sampled thereby experiencing vectorsled” or “0’s” and not just single “1's” or
“0's.” Thus, the task was more cognitively taxing.

An interesting benchmark for the amount of samplindertaken by our participants is
the behavior observed by Hertwig, Barron, Webed, rev (2004) in a paradigm where
participants learned the features of two altermativoice options by active sampling of

experience (in a manner quite similar to ours, bg.clicking a key on a personal computer). In
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Hertwig et al.’s study, the median number of obaBons sampled was 15, far less than the
medians we observed of 52, 51, and 30 (for Soghigd A and B, and Naive, respectively).
The reason why our samples are bigger is uncldaowah it is interesting that Lejarraga (2010)
— using the same paradigm as Hertwig et al. (26ddund that more analytically oriented
participants sampled more than the less analytcadsult that parallels our finding that the
Sophisticated groups experienced larger samplesthigaNaive®

Clearly, there are some normative principles gaaticipants should follow in
determining sample size. For example, if thereralaively few “1's” or “0’s,” the distribution
may well be skewed in which case a larger samplaldibe experienced than if the number of
“1's” or “0’s” is more equal. In our data, thereearo hints of such awareness.

The seven inferential problems we chose to ustimsili were selected for two reasons.
The first (noted already above) was that we wartdedst our ideas on problems that were well-
known so that we could better assess improvemaertkeiquality of statistical inferences
achieved after participants had been exposed terexce. The second reason was that if our
suggested “method” were to work well across a rariggtuations as opposed to within
variations of the same problem (e.g., differenté&agn updating tasks), it would provide a
stronger test of its efficacy. Indeed, as was ndteglmethodology was successful across a range
of problems.

As noted before, Participants in B often transfairtesir calculations to obtain the result

they had experienced in the simulation, usingakig cue to the answer. This suggests that

8 Lejarraga (2010) compared his participants usiagjri? and Epstein’s (1999) scales of rational gbéind
engagement.
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simulated experience can play an important rolgraviding insights to improve the quality of
analytical thinking.

However, despite these outcomes, one might sgjli@athat in many cases an alternative
method such as summarizing natural frequenciesddistill be preferred because it is simpler to
implement. (For example, you don’t have to congteusimulation model.) We therefore sought
to examine the efficacy of experiencing simulatattomes in a situation where it is less
obvious how an alternative presentation could leaed using a natural frequency presentation

format. Experiment 2 was designed to do just this.

Experiment 2

Design

The design of Experiment 2 involved between-sulgemparisons of two groups that
were required to answer questions based eithareartalytical description of a problem that
used regression analysis or after gaining expegienth a simulation tool. We label the groups
as Analytic and Experience, respectively, exceat tihere were two subgroups in the Experience
condition. One involved statistically sophisticagtgtaduate students in economics whom we
label Sophisticated, and who were similar to reslgois in the Analytic group. The other was
comprised of university-educated adults withoutaabed statistical knowledge whom we refer
to as Naivé.We therefore make comparisons between three supsgroAnalytic, Sophisticated,
and Naive.

(Insert Figures 8 and 9 about here)

° Specifically, these participants did not know wtagression analysis” is.
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The problem set-up and method

Figure 8 provides the wording of the problem sefarparticipants in the Analytic
condition. As can be seen, the problem involvesaastment situation, which requires
allocating funds (40 credits) across three altéraat “Investment 1”7, “Investment 27, and “no
investment.” The profitability of the two investmteopportunities are described by a regression
model. The specific questions were:

1. How would you allocate your 40 credits in ordeeipect an increase of 5 credits (obtain
45 credits)? How much of 40 credits in Investmerttdw much in Investment 2, how
much in N (no-investment)?

2. Given your investment decision in (1), what woutdiysay is the probability of your
obtaining a final total credit amount that is beld(Y<40), i.e. less than what you have
started with?

3. Given your investment decision in (1), what woutdiysay is the probability of your
obtaining a final total credit amount that is beld%(Y<45)?

4. Given your investment decision in (1), what woutdiysay is the probability that you
will get a larger outcome with respect to a perstio does not invest in Investments 1
and 2 (someone with N=40)?

The statistical rationales for the answers areigeal in Appendix C.

Figure 9 depicts the simulation interface for Engerience group. When conducting the
experiment, we sat down one-by-one with the paaicts in this group, explained briefly how
the tool works, and then asked them to chooseasiment plan so that they can expect to
increase their 40 credits to 45 (the same as que$tabove). We allowed them to experience as
many choice options as they wished. Once they rtiededecisions, we asked them to answer
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guestions 2, 3, and 4 above. Once again, we alltkerd to utilize the simulation tool and they
could experience the outcomes of their choicesasyrtimes as they desired. Moreover, we
made sure that the participants could see all timirces and outcome histories and even

calculate and compare averages of their past osom

Participants

The Analytic group consisted of 26 graduate stuglaneconomics at Universitat
Pompeu Fabra in Barcelona who had at least conajlle&r first and second semesters. This
ensures that all of them had taken at least ordugta course in econometrics and were
knowledgeable about linear regression analysistandterpretation. They did not have a time
limit. Participation was voluntary and anonymouartRipants could use any tools they wanted
and, upon completion of the survey, they slid thesgionnaire into a sealed box in front of an
office. The average age of this group was 25 afd @@re female. Of 35 surveys distributed, 26
were completed.

The Sophisticated participants within the Expergegmoup consisted of 28 graduate
students in economics drawn from the same populaisathe Analytic group. The Naive
participants were 18 members of the general piialiecng university degrees but no knowledge
of regression analysis. They were recruited froendbntacts of one of the authors. Their mean
age was 35 (range from 23 to 60) and 40% were f=mal

Before participating in the experiment, a chocolsewas donated to each of the

participants.
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Results of Experiment 2
Table 4 documents the means (standard deviatidrbff@rent variables — the decisions taken,
and answers to the required probabilistic infereneéor the different experimental conditions.
The first two rows of the table (labeled I1 anditicate the mean amounts invested in
Investments 1 and 2, respectively, by the diffesertgroups. According to the regression
results, these two investments differ in the exgatdvel and variability of their returns —
Investment 1 having both greater expected retudnaore variability than Investment 2. On
average, therefore, it can be observed that théyfnaarticipants adopt less risky strategies
than their Sophisticated counterparts but thahadle subgroups select investment strategies that
essentially meet the demands of the first questien,to achieve an expected target of 45.
(Insert Table 4 about here)

Question 2 asks for the probability that the itnent strategies will lead to outcomes of
less than 40 (i.e., the amounts participants stavith). The accuracy of each participant’s
response can be assessed by calculating the difeetetween the response itself and its
normative counterpart (i.e., the correct respong@ied by the regression analysis). Using this
measure, we note that whereas the Analytic groupusty underestimates the probability that Y
is less than 40 (the average deviation from theecbanswer is -16% with standard deviation
9%) this is not the case for the Experience gr@&pfor Sophisticated (SD, 11%) and 5% for
Naive (SD, 9%). The difference between the Analgtid Experience conditions is significant (t
=7.1, p <0.001).

Question 3 asks for the probability that the inrestt strategies will lead to outcomes of
less than 45 (i.e., the investment target). Onaeranswers to this question are all quite

accurate. In fact, these responses are consisignamswers to the first question that lead to
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expectations of, on average, about 45, that i$y assymmetric predictive distribution there is as
much chance of exceeding as falling short of thgeta

Question 4 asks for the probability that the chasgestment strategy will lead to
outcomes superior to a strategy of no investmem. Analytic group overestimates this
probability (the average deviation from the corr@tswer is 24% with standard deviation 10%)
while this is again not the case for the two subpgsoin the Experience condition: 1% for
Sophisticated (SD, 16%) and 3% for Naive (SD, 884pin, the difference between the Analytic

and Experience conditions is significant (t = % 0.001)"°

Discussion of Experiment 2
Unlike the specific probabilistic inference task€Eaperiment 1, Experiment 2 required
participants to choose an investment plan and rpeaabilistic inferences based on their own
idiosyncratic decisions. Also unlike several tagsk&xperiment 1, it is unclear how one could
have provided alternative representations of thestjons asked in the form of natural
frequencies. However, like the representationdlaésks in Experiment 1, participants in the
Experience group experienced data in the form géieetially generated outcomes.
Experiment 2 only permitted between-subject conspas. In brief, we found — holding
analytical ability constant — that Sophisticatedipgants gave more accurate probabilistic
inferences when allowed to experience simulatedaroeés than those who were required to
solve problems analytically. Second, there wak ldt no difference in accuracy of probabilistic

inferences between the groups of Sophisticated\aiice participants who experienced

9 For questions 3 and 4, there are no significaferdinces between the (response-correct) measfites two
subgroups in the Experience condition.
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simulated outcomes. These results are importamty $hggest that the ability to encode
frequencies in the form of sequentially experieniteduency data can be harnessed to improve
probabilistic inferences across a wide range dstas

We note also that the questions posed in Experidané important for decision makers
considering investment plans. In such situatiomdividuals would primarily base their decisions
on the chances of being worse off with respechédr tstarting point, to their goal and to other
individuals who do not make these particular inresits. In a recent survey (Soyer & Hogarth,
2010); we posed a simpler (univariate) versiorhaf problem to economic scholars from
prestigious universities. These respondents magsame kinds of mistake as the Analytic
group in Experiment 2.

Finally, we note that for both the Experiencegobps, we collected data on numbers of
simulations for each choice. Before deciding omalfinvestment plan, the Sophisticated
simulated an average of 7 different strategies sb@nt@mes each. The Naive simulated an
average of 5 strategies about 8 times each. Thus,EBxperiment 1, we find that more
statistically sophisticated participants choosexperience more outcomes than the less

sophisticated.

General Discussion

The main theoretical concept underlying our workimple. People can successfully perform
complex intellectual tasks if these are presemeaformat that exploits their natural abilities fo
processing information. In Experiment 1, we invgatied seven probabilistic inference problems
that have a long history of eliciting erroneougesses. The human ability we identified was the
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capacity to encode the outcomes of sequentiallggéed outcomes experienced across time.
Thus, when we presented problems in a format flat@d participants to use this natural

ability, we observed vastly more accurate probstiilinferences than those elicited after
presentation of the standard probabilistic forrvadreover, this result held for both between-
and within-subject comparisons and across parti¢goearying in statistical sophistication. In
Experiment 2, we obtained similar results usingténa arguably more complex problems
involving inferences from a regression equation eliod investment decisions. Taken together,
our work suggests a strategy for a general apprtwabblp people make appropriate probabilistic
inferences.

It is important to stress that our work builds ba tlluminating contribution of
Gigerenzer and his colleagues (notably Gigerenzeio#&rage, 1995) who showed how the use
of natural frequencies — as opposed to probalsilitieeads to simpler and more accurate
calculations in probabilistic inference (notably Bayesian updating). We reasoned, however,
that Gigerenzer and his colleagues did not takie tlven arguments about human abilities to
handle frequency data to their logical concluslostead of presenting people with problems
framed in terms of aggregated frequencies (thihratjuire some calculations), we advocate
letting people experience the raw data as genefiadedthe underlying process or, if not
possible, from a simulation model. Indeed, thisssentially the same technique that is used to
provide non-human animals with information in intigations of their reasoning skills except, of
course, that the animals do not typically intervand determine the number of trials. Moreover,
the animals are seen to be quite skilled (WebafiSi& Blais, 2004).

At one level, our work can be viewed through thespective that has recently been

popularized by the expression “choice architect(fdialer & Sunstein, 2008). This is a
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recognition that, since the variety of tasks thenao mind confronts is much larger than the
variety of responses that humans can make, muchegained by designing tasks in ways that
allow humans to make appropriate choices. Of @ulss is not a new principle. In psychology
it can be traced to the work of Brunswik (1952) aras further elaborated by Simon (1978) and
Tversky and Kahneman (1981) (see also Hogarth,)198%vever, it is one thing to elaborate
such a principle at a general level; it is quitetaer to demonstrate how it works in specific
situations and to define boundary conditions.

A number of questions can be raised about the karyrwbnditions of our proposal. We
consider five issues: (1) How much and what kinéxgderience do people need to make
appropriate responses? (2) Do people trust simonlatechanisms? Why or why not? (3) How
general is the simulation technique or, in otherdspcan models be easily constructed for all
types of situations? (4) How does experience irfdh@a of simulated outcomes solve the
problem of understanding probabilities of uniquergg? (5) How does simulated experience
relate to the distinction sometimes made betwetitive and analytic processes? We now
consider each of these questions.

(2) In our experiments, we deliberately let pap#cits determine the amount of
information — in terms of number of trials — thia¢y wanted to experience. This procedure raises
two issues. First, how much experience — that mbr of trials — do people need to reach
conclusions with which they feel comfortable? Sef;aoes being actively involved in the
sampling process make a difference compared tolgiofyserving outcomes?

Our data did show a relation between statisticehmtication and sample size with the
more sophisticated requiring larger samples. Timessuspect that individual differences could

play a role in the answers to both questions. We bélieve that the two questions are important
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and demand further research. For example, it wbeltklatively easy to conduct experiments
varying both sample size and active interventioasropposed to passive observation of the
sampling process and to elicit not only probabdisiferences but measures of confidence in
such assessments. We suspect that active parcipstan important factor — possibly
interacting with sample size — but reserve judgnietitat, in animal studies, the organisms
typically do not intervene in the sampling process.

(2) The degree of transparency of the sampling @r@sm is clearly important. This may
have several dimensions. One is the level of titggaant’s familiarity with the data generating
process. For instance, it is probably easy fopdndéicipant to understand the coin toss example
with which we introduced the simulation techniganéExperiment 1, and particularly since the
evidence would typically confirm prior beliefs tithere should be roughly as many “heads” as
“tails.” On the other hand, simulating birthdatésldferent groups of 25 people in the birthday
problem might seem odd as well as the fact thaesperiential evidence typically runs counter
to prior intuitions. At the same time, when pedpéee little insight into the structure of a
problem — as occurs in both the hospital and Métal problems — living the experience of
many outcomes can be quite illuminating.

However, if the participant already understandssthgcture of the problem — as happens
in the conjunction problem — and recognizes thathpacity for calculation is deficient, she
might welcome the simulation tool. In fact, Lejayaa(2010) essentially tested this hypothesis by
letting people decide whether they wanted to chbe$e&een gambles based on description (i.e.,
where probabilities of different branches leadio@titcomes were indicated) or experience
(after simulating outcomes). The same pairs of dasWere presented to three different groups

of participants but varied in the complexity (humbébranches) used to describe them. As
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problem complexity increased, groups displayedeatgr tendency to make their choices after
experiencing outcomes as opposed to trusting émailytical abilities to figure out the
implications of the presentation by description.

Finally, it is easy to dismiss simulated experieasesimply being the outcome of a
“black box.” However, we believe a more appropriaetaphor is that of a “grey box” where
individuals experience outcomes generated by a atenps opposed to those arising from the
naturally occurring environment. But much reseasaleeded to determine what affects the
different shades of grey and thus the conditiordeumwhich people do or do not feel
comfortable in relying on outcomes of simulatedengnce.

(3) Our third question centers on limits to the gatity of the simulation technique
itself. At a conceptual level, and given sufficiamjenuity on the part of the investigator, there i
almost no technical limit to the probabilistic sitions that can be constructed. Whether they are
meaningful, however, is another issue that canidged from two perspectives: the reality
being modeled and the experience of the user.Hediatter, the critical issue is that already
discussed above, namely the shade of grey of theHuw the former, it should be clear that the
models are only as good as the fit of their assiongtto reality. As we see it, the goal of
simulated experience is not necessarily to regumeeise probabilistic answer to a problem but
more a means of gaining insight into effects otiagstions made about the structure of the
problem as well as reaching approximate answer. Thus, it would be illuminating to employ
techniques of sensitivity analysis and to experesay in a Bayesian updating task, how
different assumptions concerning prior probab#itte base-rates result in different sequences of

outcomes.
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(4) Our fourth issue speaks to the meaning of gtiba The main distinction is whether
the concept is something that applies to uniquatsve.g., the probability that a particular
person has a certain disease) or classes of €ieegisthat people that belong to a particular
group have the disease). This distinction has beemn different names in the literature, for
example gpistemic as opposed taleatory, or singular versus distributional (Reeves & Laoakh
1993). Although from the subjectivist or Bayesiangpective a probability simply measures a
degree of belief such that the distinction is gv@nt, there is much evidence that people’s
intuitions of the probability concept are more chealigned with the distributional perspective
(see Gigerenzer & Hoffrage, 1995). For examplepfeerelate more easily to a statement that a
fair coin tossed 100 times is expected to show ©ieaaghly 50% of the time than the statement
that the probability of heads on a single tosdefdoin is 0.5. For the former, there is some
informational “certainty” in the 50%. For the katt 0.5 is a statement of total uncertainty. The
experience of simulated outcomes clearly tapspetaple’s distributional intuitions about the
meaning of probability and this, in part, may explahy they find it illuminating.

(5) If experience is so powerful, why, it can Is&ed, did our participants not all state
that their final answers were the same as thosheelaafter experiencing simulated outcomes?
Indeed, by failing to do so, participants in theBisticated group in Experiment 1 actually lost
money. One reason has already been alluded to abanely, participants may not have always
trusted experience in the form of simulated outcem@other and related reason could be what
might be called a clash of intuitions.

Although we referred to answers given by partiotpavithout experience in Experiment
1 as being “analytic,” it should be clear that mafhyhese responses were driven by intuitive

reactions. Indeed, the problems are interestinggely because past studies have shown that
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people’s intuitive reactions are typically contrémyanalytic principles. The Linda problem is a
prime example. When unaided by formal analysisraukated experience, people are strongly
drawn by intuition to believe that it is more ligghat Linda is “a bank teller and active in the
feminist movement” than that she is “a bank telléMow, reactions to experience in the form of
sequential frequency data could also be classifgeituitive (Hogarth, 2001). Thus, in many
cases, our respondents faced a conflict betweemtwitions, one being their reactions to the
analytic presentation format, the other being tfesifings after the experience they sampled. As
the evidence shows, the latter form of intuitiod dot always overcome the former.

That there should be a link between sequentiabpded frequency information and
intuition has been emphasized by Sedimeier (20087 2who, in addition, modeled this as a
process of associative learning (Sedimeier, 1998)eover, in exploring different ways to train
people to reason probabilistically, his 1999 “fldei urn” concept is perhaps closest to our
suggestions in that it involves both perceivingdated data dynamically and some active
involvement with a computer interface. However, tadshis work — and suggestions — have
focused on different ways of presenting informatimthe form ofaggregate natural frequencies
as opposed teequentially observed frequency data (see, e.g., Sedimeied, B¥timeier &
Gigerenzer, 2001).

Our work also speaks to the issue of whether arehvit trust intuition or analysis in
making a judgment (Hogarth, 2001; 2005; Kahnemdf{&n, 2009). If we classify the analytic
responses as being “analysis and intuition” ancettperience judgments as “intuition,” it is
clear that intuition alone is better in that thiéedaproduced the highest proportions of correct
responses. However, it would be erroneous to dramganeral conclusions from our study

largely because our stimuli in Experiment 1 werec#cally chosen for their history of
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inappropriate responses. What we have shown isrthative processes based on experiencing
simulated frequency data result in quite accuradeabilistic inferences across a range of
problems (i.e., in both Experiments 1 and 2).

Our investigation raises an important practicalésdVhat advice might one give, say, to
a physician who should be using Bayesian updatiragsess how likely a patient is to have a
specific disease following a positive test res@lt®uld you just give her the correct Bayesian
answer? The answer is probably no because unledsilshunderstands how the number is
calculated, she is unlikely to believe it.

The classic advice would be to teach the physiBiayes’ theorem but, unless this is
replicated on many occasions, it is unlikely tHa will be able to reproduce accurate answers in
the future. A better approach would be instructismg the natural frequency approach but, once
again, how well this would be recalled on futureasions is unclear. (However, see Sedlmeier
& Gigerenzer, 2001.) We believe that simulated exgpee provides a level of understanding
that would help the physician understand why theddrd Bayesian and natural frequency
approaches are correct. In fact, our position sdwocate using simulated experience as a means
to reinforce understanding the natural frequengy@gch. In this way, the physician could reach
conclusions that do not involve any conflict betwa#uition (based on experiencing simulated
outcomes) and analysis (based on natural frequeadcuylations). In time, this would allow the
physician to use the natural frequency approadctyr (and particularly if there is no available
simulation technology). As an additional point, se= potential in the idea that simulated
experience could provide a useful way of commumgastatistical information. For example,
physicians might use simulated experience to peopatients with a better understanding of the

probabilities of different outcomes. That is, llettipatients experience simulated outcomes based
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on analyses and past data could lead to more deatakbration of expectations and
consequently better decisions.

In related work, we have shown that knowledgeabtmemists have difficulties in
making correct inferences given the standard ptaien modes in the economics literature
(Soyer & Hogarth, 2010). In this case, economisif€rences are blind to different levels of
uncertainty as they tend to rely disproportionateiythe statistical significance of regression
coefficients. The results of Experiment 2 providsight into how simulated experience might be
used to aid decision makers in interpreting staisbutcomes. It could help in taking different
levels of risk into account and in identifying \asles that are not only statistically significant
but economically important. The distinction betwegattistical significance and economic
importance is discussed in Ziliak and McCloskeyO@&0

These last points speak to the importance of usimglated experience for teaching
probability and statistics at all levels — from dgaschool through university and beyond.
Nowadays, it is relatively simple to build simutatimodels for all kinds of applications and
problems and with the widespread availability ofgo@al computers — linked by the internet —
there is no reason why the simple idea champiomélis paper could not have wide application.

Indeed, the Statistics Online Computational Res(B©OCR) website www.socr.ucla.edy

provides a repository of elegant simulations anuletp for many probabilistic problems,
including several featured in Experiment 1. Moragp@nov, Sanchez, and Christou (2008)
have shown that using the website while teachiatyssics enhances students’ understanding and
retention of concepts.

One could also envisage a computer tool in the fofrian expert system that could aid
people with little statistical sophistication toilotheir own simulation models and thereby gain
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insight into a variety of inferential problems. &etl, one could even imagine such programs
being developed for cell phones such that theydcbalalmost as common as calculators.

At the head of this article is a quote from Caog@rs (1961). At first sight, this might
appear odd for research developed from a cognitewe of psychology. However, what Rogers
was emphasizing — and where we concur — is thaitderstanding that really changes behavior
is that which comes through self-directed and erpeed learning. For this and other reasons
already enumerated, we maintain that simulatedresqgee can be an effective route to gain
insight into the nature of probabilistic reasonargl thereby guide behavior to meet the demands

of today’s technological society.
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Table 1. Design for Experiment 1

EXPERIENCING SIMULATED OUTCOMES

Group 1% Task 2" Task 3 Task Remuneration
Sophisticated Al Answer Analytically Coin toss Answe.r with Final Answer ! Euro / Correct
example Experience Final Answer
- Cointoss | Answer with . . 1 Euro / Correct
Sophisticated B} I W . W Answer Analytically Final Answe .u /
example | Experience Final Answer
Naive Answer Analytically Coin toss Answe'r with Final Answer None
example Experience

(*) Final answers were given to each problem riglerafte 2° task for that problem was completed.
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Table 2. The seven probabilistic inference problems

1. Bayesian updating

Assume you conduct breast cancer screening usimgnmgraphy in a certain region. You know
the following information about the women in thégion:

The probability that a woman has breast canceékigrevalence)

If a woman has breast cancer, the probability shattests positive is 90% (sensitivity)

If a woman does not have breast cancer, the prilgabiat she nevertheless tests positive is 9
(false-positive rate)

A woman — chosen at random — gets breast screanthghe test results show that she has cang
What is the probability that she has cancer?

a) The probability that she has breast cancerasteil %.

b) Out of 10 women with a positive mammogram, alohave breast cancer.
c¢) Out of 10 women with a positive mammogram, aldobias breast cancer.
d) The probability that she has breast cancerasitalfo.

er.

2. Birthday problem

In a group that has 25 people in it, what is thebpbility that 2 or more people have the san
birthday?

e

3. Conjunction problem

A project has 7 parts. The success of the projgends on the success of these parts. In orde
be successful, all its parts need to be successful.

Assume that each part is independent from the stnedl each has a 75% success rate.

What is the probability that the project will becsassful?

[ to
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Table 2. Cont'd

S

4. Linda problem(Tversky & Kahneman, 1983)

Jessica is 31 years old, single, candid, and vemsyniging. She graduated in philosophy. As

student, she was anxious about discrimination gsanel social justice, and also took part in anti

nuclear demonstrations.
Assign a rank to the following statements from mmsbable to least probable:

a) Jessica works in a bookstore and takes Yogaedas

b) Jessica is active in the feminist movement.

c) Jessica is a psychiatric social worker.

d) Jessica is a member of the League of Women ¥.oter

e) Jessica is a bank teller.

f) Jessica is an insurance salesperson.

g) Jessica is a bank teller and is active in tharfest movement.

D

5. The hospital problen{Tversky & Kahneman, 1974)

A certain town is served by two hospitals. In theger hospital about 45 babies are born each d
In the smaller hospital about 15 babies are booh eay. As you know, about 50 percent of a
babies are girls. However, the exact percentages/drom day to day. Sometimes it may b
higher than 50 percent, sometimes lower. For aogdesf 1 year, each hospital recorded the da
on which more than 60 percent of the babies bome wels.

Which hospital do you think recorded more such @ays
a) the larger hospital?

b) the smaller hospital?
¢) about the same for both hospitals?

1)

yS
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Table 2. Cont'd

S

6. Regression toward the mean

A class of students enters in a TOEFL exam (itstaadardized test of English language). One
the students gets a better result than 90% ofl#ss.c

The same class, including the person who had detterlthan 90% of his class, enters anoth
TOEFL exam. Past data suggest that the correlagbtween the scores of the different exams
about 0.8.

Which statement is correct?
a) It is more likely that the student in questi@mwgets a better ranking.

b) It is more likely that the student in questi@wngets a worse ranking.
¢) The chances that he gets a better ranking arsesone are approximately equal.

7. Monty Hall problem

There are three doors A, B and C. We randomly tedleane of them and put a Ferrari behind i
Behind the remaining two doors there is nothing.

You will select a door and we will open it. You luiin the game if there is Ferrari behind it.

Now select a door. (The participant makes a selectay A).

Before we open the door you selected, we open Bshod you that there is nothing behind it

Now two doors remain: A and C. Behind one of thera Ferrari. Given this situation, please sta
if you would like to

a) Stay with your original selection
b) Change to the other door

t.

e
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Table 3. Percentages of correct answers to infetgmbblems by experimental conditions

_Sophisticated Naive Mean

A B
1. Bayesian updating
Analytic 17 42 20 27
Experience 97 97 100 98
Final 79 58 70 69
2. Birthday problem
Analytic 3 13 0 6
Experience 55 61 65 60
Final 35 61 30 44
3. Conjunction problem
Analytic 55 52 25 47
Experience 74 77 75 75
Final 77 77 75 77
4. Linda problem
Analytic 10 32 10 18
Experience 97 97 90 95
Final 65 71 60 66
5. Hospital problem
Analytic 39 61 25 44
Experience 97 97 100 98
Final 81 68 65 72
6. Regression toward mean
Analytic 32 45 25 35
Experience 68 90 70 77
Final 55 65 35 54
7. Monty Hall
Analytic 31 48 15 34
Experience 93 97 95 95
Final 69 58 55 61

n= 31 (29) 31 20
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Table 4. Means <std. devs> for conditions in Experit 2

Condition: Analytic Experience
Sophisticated  Naive
(n= 26 28 18)
Decisions

11 35 5.7 6.7
<4.6> <3.9> <5.9>

12 12.3 7.8 9.8
<7.0> <4.5> <7.7>

Expected outcome

Y 45.5 45.2 46.3
<0.9> <1.6> <2.1>
Prob (Y<40)
Question 2: Respons&orrect -16% 0% 5%
<9%> <11%> <9%>
Prob (Y<45)
Question 3: Response&orrect 2% 1% 6%
<2%> <12%> <9%>

Prob(Y|k.1,) > Prob(Y|no investment)

Question 4: Respons&orrect 24% 1% 3%
<10%> <16%> <8%>
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Figure 2. Histograms of answers given to the bathgroblem
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Figure 3. Histograms of answers given to the castjon problem
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Figure 4. Histograms of answers given to the Lipasblem
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Figure 5. Histograms of answers given to the hakpiibblem
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Figure 6. Histograms of answers given to the regpesoward the mean problem
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Figure 7. Histograms of answers given to the Mdtdll problem
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Figure 8. Experiment 2 Analytic group set-up

Thank you for participating in this experimentislianonymous, please do not write you name.

Here you will be asked to make an investment detisfou are given 40 credits. You can allocateghes
40 credits in 3 ways:

I, : You can invest some in “Investment 1”
I, : You can invest some in “Investment 2"
N : You can choose not to invest some of it.

You can choose how much to put in each of thegatiBrts, provided that your choices add up to 4& Th
relationship between the investments and theiceffe the outcome is given by the following linear
equation:

AY, =a+ Bl + B, +&

Where “AY " is thechange in resulting credits, 9I' is the amount invested in investment 1, “is the
amount invested in investment 24,“and “f," are the effects of investments on the changeedits and
“€” is the random perturbation.

The return to each investment is estimated thrdusforical data. Past 1000 investments were takien i
account for each investment and an OLS regressasncenducted to compute the relationship between
each investment and its return

The sample statistics for the data are as follows:

Variable Mean Std. Dev.
AY 8.4 7.9
11 11.1 5.8
12 9.6 52
The OLS estimation results are as follows:
Dependent VariableAY
I, 0.5 (0.20)**
I, 0.3 (0.05)**
Constant -0.1 (0.15)
R? 0.21
N 1 000

Standard errors in parentheses

** Significant at 95% confidence level
N is the number of observations

This means that both the investments are estintatkdve positive and significant effects on thengjea
in one’s returns. Specifically, in the average yatment 1" is expected to generate a 50% incraade
“Investment 2" is expected to generate a 30% irsgeser the invested amount.
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Figure 9: Simulation interface used in the freayecondition
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Appendix A. Answers to the seven probabilistic iefece problems in Experiment 1

1. Bayesian updating

p(C)=1%
p(+|C)=90%
p(-1C)=9%

p(Cl+)=
PO*pEHICOMHPC)*p(+[C)+(1-p(C) *p({C)} T10%

Thus, the answer is:

c) Out of 10 women with a positive mammogram, aldoh&s breast cancer.

2. Birthday problem

There are 365 days in a year.

The approximate probability of a birthday MATCH Wween any two people is 1/365. The
probability of a NO MATCH is thus 364/365.

The probability of 2 NO MATCHES in a row is (36486= 0.9972.

The probability of n NO MATCHES in a row is (36456

There are 300 different combinations of 2 peopla group of 25.

The probability of 300 NO MATCHES in a row is (36865)%° = 44%

The probability that there is at least one MATCH = 44% = 56%

Answer is approximately 56%.

3. Conjunction problem

p (parf) =75%,i=1,2,3,...,7
p (success) = p (pa)t* p (part) * ... * p (part) = [p (parf)]’ = 13.3%
Approx. 13.3%

4. Linda problem(Tversky & Kahneman, 1983)

p(e)= p(g) by conjunction rule.
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5. The hospital problem(Tversky & Kahneman, 1974)

b) the smaller hospital......
...because smaller sample sizes exhibit more vaitiabil

6. Regression toward the mean

A>B

b) It is more likely that the student in questimwngets a worse ranking.

7. Monty Hall problem

The a priori probability that the prize is behimabdi (D;;i =1, 2, 3) is:
p(d)=1/3

Assuming that the participant has selected do@s3}), (he probability that Monty opens door 2
(Oy) is

- if the prize were behind Dp (G, | Dy) /2
- If the prize were behind Dp (O, | Dy)
- if the prize were behind D3; p ¢PDs)

1
0
1
So, the probability that Monty opens door 2 is:

3
p(0,) =_§] p(D) p(0;|D)=1/6+0+1/3=1/2

58
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Using Bayes Theorem, we have:

: i
plD. |0} = p(D,) p(O, | Dy) _ 1/3x1 _ 2
. ) F(OE:} f."z 1
and

plD,) p(O, | D) = 1/3x1/2 = F_'E‘_l
p(0,) Y2 12 3

p(D, | 0,) =
Therefore, the probability of winning is higher/(2) if one changes the door, which implies that
the optimal strategy is to change the initial ckom®o:

b) Change to the other door
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Appendix B. Statistical tests on differences bemwpmportions of correct answers in
Experiment 1

Table B1. Difference between the proportions of@cranswers in Experience and Analytic

Sophisticated A Sophisticated B Naive

A t A t A t
Bayesian updating 0.79 10.1* 0.55 58* 0.80 89*
Birthday problem 0.52 5.4* 0.48 4.6* 0.65 6.1*
Conjunction problem 0.20 1.6 0.23 2.2¢ 0.50 3.6*
Linda problem 0.87 14.1* 0.65 7.2* 0.80 84"
Hospital problem 0.58 6.2* 0.36 3.8* 0.75 1.7*
Regression toward the mean0.36 3.0* 0.45 43" 0.45 3.1*
Monty Hall problem 0.62 6.3* 0.49 517 0.80 86"

(*) indicates significantly positive differene¢ 95% confidence level

Table B2. Difference between theportionsof correctAnalytic answers irSophisticated3 and A

A t

Bayesian updating 0.25 2.2*
Birthday problem 0.09 14
Conjunction problem -0.03 -0.3
Linda problem 0.23 2.3*

Hospital problem 0.23 1.8*
Regression toward the mean0.13 1.1
Monty Hall problem 0.19 1.4

(*) indicates significantly positive difference 256% confidence level

Table B3. Difference between the proportions ofecranswers in Sophisticated A and Naive

Analytic Experience Final

A t A t A t
Bayesian updating -0.03 -0.2 -0.03 -0.2 0.09 0.7
Birthday problem 0.03 0.2 -0.10 -0.7 0.06 0.4
Conjunction problem 0.30 2.3* -0.01 -0.1 0.02 0.2
Linda problem 0.00 0.0 0.07 0.9 0.05 0.3
Hospital problem 0.13 1.05 -0.03 -1.0 0.16 1.2
Regression toward the mean0.07 0.6 -0.02 -0.2 0.19 1.4
Monty Hall problem 0.16 1.4 -0.02 -0.3 0.14 1.0

(*) indicates significantly positive difference 256% confidence level
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Appendix C: Rationale for answers to the four gioastin Experiment 2

Question 1

This question was posed to elicit an answer froenpidrticipants. We wanted them to make an
investment decision with a particular expectatibowd the results it would lead to. The answers

given suggested that the participants in all gradpstified average effects quite accurately.

Question 2

This question reflects the desire to obtain a pasiiutcome given any investment decision. The
most popular answer for this question in the Analgtoup was{=0 and $=16.7. We therefore
base the calculations in this section on thesecpéat values. Answers associated with other
choices can be calculated analogously.

The answer to Question 2 depends on the standaratide of the estimated residuals
(SDER). In a linear regression analysis, SBE&responds to the variance of the dependent
variable that is unexplained by the independeriafes and is captured by the statistic &-R
In the set-up, this is given as 21%. One can coenthig SDER using the (12Rstatistic and the

variance ofAY:

se(8) = /(Var (AY)(1- R?) =/ (7.9%)(021) O7 (A1)
Given k=0 and }=16.7 the answer to Question 2 becomes:

Pr(Y, <0|X,, =0, X,, =16.7)= PrC+ X, +& < 0|X,, = 0, X,, =16.7)=

A

o~ e o-é-/i’x.
=Prie <0-C-pBX, X, =0, X,, =16.7)=Pr(——< -|X,; =0, X,, =16.7)=
(| ﬂ>(|| 1, 2, ) (Seéi) Seéi) | 1, 2, )

_ %
=201 3'3 104y - o(-07) D 024 (A2)
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Question 3

Here, one needs to make similar calculations ag#answer to Question 2. Givar0 and

1,=16.7 the answer to Question 3 becomes:

Pr(Y, <5|X,, =0, X,, =16.7)= PrC+ X, +& <5|X,, =0, X,, =16.7)=

” a & 5-C-pX
=Pre <5-C-pX. |X, =0, X, =16.7)=Pr(———< -|X,; =0, X,, =16.7)=
(| ﬁ)(|| 1 2 ) \Seéi) Seéi) | 1, 2, )

5+0.1-0.316.7
= o( - ) = d(-001) 0 050 (A3)

Question 4

This question reflects the desire to be bettenith respect to an alternative of no-action in
terms of Investment 1 and 2. Finding the answeuireg making one additional calculation.
Specifically, we need to know the standard dewviatibthe difference between two random

variables, that is

i |X1,i =X1, X2, =X2 ) — (YJ |X1’j =0, Xzyj =0), wherex; > 0 and/ox; > 0 (A4)

We know that i | X1, =x1, X2 =X2) is an identically, independently and normally
distributed random error with an estimated standasdation of again 7. Given that a different
and independent shock occurs for different indigidiand actions, the standard deviation of

(A4) becomes:
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\/Varl_(Yi | Xy =%, Xy =%,)-(Y; [ Xy; =0, Xy, :O)]:

= MVar (Y1 X, =%, X, =% ) +Var (Y[ X,; =0, X, =0) =/(7°+7%) 099 (A5)

Given k=0 and }=16.7 the answer to Question 4 becomes:

Pr(Y, | X, =0, X,; =167>Y,|X,; =0, X,, =0)=
=PrC+pX, +& -C-BX,-& >0|X,, =0, X,, =167, X,, =0, X,, =0) =
=Pr@ -& >0-8X, +BX, |X, =0, X,; =167, X,, =0, X,, =0)=

8 -8 _0-JX +pX

Seéi 'éj) Seéi 'éj)

= Pr( LIX, =0, X, =167, X,; =0, X,, =0) =

- 3
-1 cb(%gm'?) =1- ®(-051) [ 069 (A6)
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