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Abstract. There is ample evidence to show that choice behavior often deviates from

the classical principle of maximization. This evidence raises at least two important

questions: (i) how severe the deviation is and (ii) which method is the best for ex-

tracting relevant information from the choices of the individual for the purposes of

welfare analysis. In this paper we address these two questions by proposing a set

of foundational conditions on which to build a proper measure of the rationality of

individuals, and enable individual welfare analysis of potentially inconsistent sub-

jects, all based on standard revealed preference data. In our first result, we show

that there is a unique measure of rationality that satisfies all of the proposed axioms:

the weighted-loss indices. In the second part of the paper, we study some relevant

properties of weighted-loss indices.
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1. Introduction

The maximization principle in the classical theory of choice has two principal fea-

tures. The first is that it provides a simple and versatile account of individual behavior.

In other words, the alternative chosen by the individual is the one that maximizes a

well-behaved preference relation over the menu of available alternatives. It is difficult

to conceive of a simpler and more operational model. Its second feature is that it sug-

gests the maximized preference relation as a tool for individual welfare analysis. That

is, the standard approach involves the policy-maker aiming to reproduce the decisions

that, given the opportunity, the individual would have made of her own volition.
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Over the last decades, however, the research has produced increasing amounts of

evidence documenting systematic and predictable deviations from the notion of ratio-

nality implied in the classical theory of choice. Some phenomena that have attracted

a great deal of attention, both empirical and theoretical, and prove difficult, if not

impossible, to accommodate within the classical maximization principle are framing

effects, menu effects, the importance of reference points, cyclic choice patterns, choice

overload effects, etc.1 The violation in some instances of the principle of maximization

raises at least two important questions:

Q.1: how severe are the deviations from the classical theory?

Q.2: what is the best way to extract relevant information from the choices of the

individual for the purposes of welfare analysis.

By properly addressing Q.1, it would be possible to determine whether the classical

maximization principle is a reasonable way to describe behavior. That is, the question

is not whether or not individuals violate the maximization principle in a given situa-

tion, but how close their behavior is with respect to this benchmark. Moreover, the

availability of a reliable tool to assess the distance between actual behavior and behav-

ior consistent with the maximization of a preference relation will enable interpersonal

comparisons. This, in turn, may improve our understanding of individual behavior and

may also prove crucial in the development of future choice models, which may take the

distribution of the degree of consistency of the individuals as one of their fundamen-

tal primitives. Furthermore, the possibility of performing meaningful comparisons of

rationality will allow comparison of deviations between various alternative models of

choice and, hence, provide a tool to give some structure to the rapidly growing litera-

ture on alternative individual decision-making models that are expanding the classical

notion of rationality (see footnote 1).

As for Q.2, if the behavior of the individual is incompatible with the maximization

principle, it immediately follows that there is no single preference relation that ex-

plains the behavior and thus, it is difficult, from an external perspective, to identify

the good or bad alternatives for the individual. In this case, therefore, the possibility

of conducting welfare analysis from revealed choices is not immediate.

1 As with the empirical findings see, respectively, Tversky and Kahneman (1981), Tversky and

Simonson (1993), Thaler (1980), May (1954), and Iyengar and Lepper (2000). Some theoretical ac-

counts inspired by the above findings expanding the classical notion of rationality and adopting a

revealed preference approach are Bossert and Sprumont (2003), Masatlioglu and Ok (2005), Manzini

and Mariotti (2007), Salant and Rubinstein (2008), Masatlioglu and Nakajima (2008), and Masatli-

oglu, Nakajima and Ozbay (2009).
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In this paper we address these two questions by suggesting a set of foundational

conditions on which to build a proper measure of the rationality of individuals, and en-

able individual welfare analysis using potentially inconsistent subjects. Our approach

retains the following features of the classical theory of choice: (i) the maximization

principle as the benchmark of reference, and (ii) the standard revealed preference data

as the primitives of the model. In other words, behavior is judged on the basis of its

closeness to the maximization of a preference relation, and all that has to be observed

are the menus of alternatives and the corresponding choices. The presence of potentially

inconsistent individuals, however, raises the issue of which preference relation provides

the best approximation of the revealed choices, and how close the approximation can

be. That is, when the decision-maker is inconsistent, no matter which preference re-

lation is used to represent the decision-maker, there will inevitably be some decisions

that cannot be explained as the maximization of that preference relation. It is crucial

to notice, however, that the use of one preference relation or another to summarize the

choices of the inconsistent decision-maker still matters. Different preference relations

explain different choices, and lead to mistakes of a very different nature. In order to

properly address this issue, we introduce the notion of an inconsistency index. An in-

consistency index evaluates how well a preference relation explains observed behavior.

The problem that now arises is that there is a wide range of different possible inconsis-

tency indices. Hence, a clear choice is difficult a priori. Therefore, in order to obtain

a sound basis for selecting a particular inconsistency index, we propose a number of

desirable conditions that an inconsistency index I should satisfy. Then, in our first

result, we show that there is a unique class of inconsistency indices satisfying all the

proposed axioms. We call them weighted-loss indices.

A weighted-loss index measures the inconsistency between a preference relation and

revealed choices by additively considering every menu of alternatives when there is a

divergence between the choice of alternative dictated by the maximization principle,

and the one actually chosen by the individual, and weighting the divergence by means

of a collection of weights that assigns higher values to the alternatives that are higher

in the order determined by the preference relation. The weights may represent, for

example, the utility values associated to the different alternatives, according to their

position in the ranking. That is, the severity of the inconsistency is measured not only

in terms of the number of menus in which the individual deviates from the maximization

principle, but also by how far the chosen alternative is from the maximal alternative

in each instance.

Taking the weighted-loss index as the inconsistency index of reference, and given

the revealed choices of the individual, the minimization of the index over the set of
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possible preference relations gives the preference relation that best explains observed

choices and the inconsistency level associated to it. The latter provides a measure

of the rationality of the individual, while the former gives a preference relation that

enables classical welfare analysis.

Given our characterization result, the second part of the paper focuses on some

properties of weighted-loss indices for a domain of menus of alternatives satisfying a

regularity condition. The observed domains include standard cases, such as the univer-

sal domain, which includes all possible menus of alternatives; the binary domain, which

consists exclusively of menus presenting only two alternatives; etc. We first show that

the preference relation minimizing the weighted-loss index is a very basic one: it simply

places the mostly frequently chosen alternatives higher in the ranking. That is, the

preference relation that best explains behavior is invariant with respect to the vector of

weights and, hence, depends only on choice behavior and is extremely easy to compute.

Therefore, the proposed model can easily deal with both issues: measuring the degree

of rationality of an individual and conducting welfare analysis. We next address the

comparison of degrees of rationality between different individuals or different models

of choice. Based on the previous result, we know that the only relevant data for such

comparisons is the vector that gives the number of menus from which each alternative

is chosen. We then show that the welfare-loss index is a Schur-convex function over

such vectors, which enables the use of well-known standard majorization techniques,

often used in, for example, the literature on income inequalities. Finally, we show the

feasibility of a choice pattern in which all the alternatives are chosen roughly the same

number of times, and that provides a tight upper bound for the maximum attainable

degree of irrationality.

We conclude this part of the introduction by illustrating our framework and results

with two simple examples involving three alternatives: (i) a simplified version of the

attraction effect, and (ii) a pairwise cycle. To this end, denote by (A, a) an observation

where A represents the available menu of alternatives and a ∈ A the alternative chosen

from the menu A. Starting with the attraction effect, suppose that alternative a is

regarded as better than alternative b and that c is undoubtedly dominated by b but not

by a. By the attraction effect, the availability of alternative c induces the individual

to choose the dominant alternative b rather than a in the menu {a, b, c}. Thus, an

individual trapped by the attraction effect may exhibit the following behavior in a

universal domain: [({a, b, c}, b), ({a, b}, a), ({a, c}, a), ({b, c}, b)].2 We first obtain the

optimal preference relation, that is, the one that minimizes the inconsistency value

2Singletons can clearly be ignored.
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associated to a weighted-loss index. For this, we simply need to count the number of

times the different alternatives are chosen. Since both a and b are chosen twice, while c

is never chosen, the preference that minimizes the weighted-loss index is either aPbPc

or bP ′aP ′c. For any given vector of weights w with w1 > w2 > w3, the inconsistency

value is, in either case, w1 −w2. This follows because both preference relations P and

P ′ fail to explain one observation where the maximal alternative is top in the preference

relation but the chosen alternative is in the middle. That is, in the case of preference P

the observation ({a, b, c}, b) cannot be rationalized, since alternative b, which is ranked

second, is chosen in the presence of alternative a, which is ranked first. Similarly, with

P ′, observation ({a, b}, a) cannot be rationalized, in this case because alternative a,

which is ranked second, is chosen in the presence of b, which is ranked first. In both

cases, the degree of inconsistency is w1 − w2.

In a pairwise cycle, the individual chooses a over b, b over c and c over a in pairwise

comparisons and, let us say, a when all three alternatives are available. Thus, in

a universal domain, the following is a pairwise cyclical choice pattern: [({a, b, c}, a),

({a, b}, a), ({a, c}, c), ({b, c}, b)]. Notice that a is chosen twice, while b and c are chosen

only once. Consequently, the preference that minimizes the weighted-loss index is

either aPbPc or aP ′cP ′b. In both cases, the inconsistency value is w1 − w3. To see

the latter, note that the preference P fails to explain observation ({a, c}, c), where the

maximal alternative is at the top of the preference relation but the chosen alternative is

at the bottom, and hence the total inconsistency value according to the weighted-loss

index is w1 − w3. In terms of the preference P ′ there are two observations, ({a, c}, c)
and ({b, c}, b), where the choices do not match the corresponding maximal alternatives.

The additive nature of the weighted-loss index results in a total inconsistency value of

(w1 − w2) + (w2 − w3) = w1 − w3.

Finally, we can use the above analysis to compare the degrees of inconsistency in

the two examples. It immediately emerges that, since for every vector of weights w,

w1 − w3 > w1 − w2, the example involving the pairwise cycle has a greater degree of

inconsistency than the one featuring the attraction effect.

1.1. Related Literature. This paper draws on two significant strands of literature.

The first is the literature on revealed preference tests of the maximization principle.

These tests are typically run on consumer behavior data, with no axiomatic foundation.

The first to propose this type of test was Afriat (1973), that suggested to measure the

amount of adjustment required in each budget constraint to avoid any violation of

the maximization principle. Chalfant and Alston (1988) and Varian (1990) further

developed Afriat’s approach. Another proposal is to count the number of violations of
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consistency with the maximization principle detected in the data. In this respect, see

the work of Swofford and Whitney (1987) and Famulari (1995). Yet a third approach

computes the maximal subset of the data that is consistent with the maximization

principle. Papers following this approach are Houtman and Maks (1985) and Banker

and Maindiratta (1988). In a recent paper, Dean and Martin (2010) provide an efficient

algorithm to compute the maximal acyclic subset.

The second is the growing number of papers proposing models enabling individual

welfare analysis, even when the individual’s behavior is inconsistent. Bernheim and

Rangel (2009) add to the standard revealed choice data the notion of ancillary con-

ditions, or frames. Ancillary conditions are assumed to be observable and may affect

individual choice, but are irrelevant in terms of the welfare associated with the chosen

alternative. Bernheim and Rangel suggest a Pareto-type welfare preference relation

that ranks an alternative as welfare-superior to another only if the former is chosen

over the latter in every single ancillary condition. It is clear that this method will typi-

cally provide an incomplete preference relation, and hence will be often uninformative.

Chambers and Hayashi (2009) characterizes an extension of Bernheim and Rangel’s

model to probabilistic settings, providing a complete welfare ranking. Manzini and

Mariotti (2009) offer a critical assessment of Bernheim and Rangel and suggest some

generalizations. Rubinstein and Salant (2009) also adopt the view that a decision-

maker may be affected by frames, but deviate from the above models in several ways.

Rubinstein and Salant require information regarding the cognitive process that dis-

torts the unobservable welfare relation. Then, a welfare relation is consistent with a

data set made up of framed preference relations, if any preference relation in the data

set could have been generated by the cognitive process. Green and Hojman (2009)

adopt a multiple-selves model. Given a set of standard revealed choices, Green and

Hojman suggest identifying a list of conflicting selves, which, when aggregated, in-

duce the revealed choices, and then using the aggregation rule to make the individual

welfare-analysis. Finally, Baldiga and Green (2010) analyze the conflict between pref-

erence relations in terms of their disagreement on choice. They then use their measures

of conflict between preference relations together with Green and Hojman’s notion of

multiple-selves to find the list of multiple-selves with the minimal internal conflict that

explain a given choice data.

2. Notation

Let X be a finite set of k alternatives. An observation consists of a non-empty menu

of alternatives A ⊆ X and an element a that is chosen from A. A = [(Ai, ai)
n
i=1]

denotes a collection of n observations. We allow for the possibility that the same
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menu A may be in A more than once, with the same or different associated cho-

sen elements. That is, a collection of observations is simply a set of observations

that allows for repetition of observations. The conjunction of two collections of ob-

servations A = [(Ai, ai)
n
i=1] and B = [(Bj, bj)

m
j=1] is the collection of observations

A ⊕ B = [(A1, a1), . . . , (An, an), (B1, b1), . . . , (Bm, bm)]. Let d > 0 be an integer, then

dA denotes the d-fold conjunction of the collection of observations A.

A preference relation P ⊆ X ×X is a strict linear order over X, that is, an asym-

metric, transitive, and connected binary relation over X. Given a preference relation

P and a menu of alternatives A, the maximal element in A under P is denoted by

m(P,A). The preference relation P determines a ranking of the alternatives in X from

1, which denotes the most preferred alternative, to k, which denotes the least preferred

alternative. Given a preference relation P and an observation (A, a), we denote by

m̂(P,A) the position of the maximal element m(P,A) in the preference relation P , and

by â(P ) the position of the chosen element a in the preference relation P . We say that

the preference relation P rationalizes the collection of observations A = [(Ai, ai)
n
i=1]

whenever the chosen element and the maximal element coincide in every single ob-

servation, that is, whenever m(P,Ai) = ai for all 1 ≤ i ≤ n. For any two menus of

alternatives, A and B, we write APB whenever every alternative in A is preferred,

under P , to any alternative in B.

Given a preference relation P and a collection of observations A, denote by λts(P,A),

1 ≤ t ≤ s ≤ k, the number of observations (A, a) that are in A, such that t is

the rank of the maximal element and s is the rank of the chosen element, that is,

m̂(P,A) = t and â(P ) = s. The vector of all the possible combinations is λ(P,A) =

(λ11(P,A), . . . , λ1k(P,A), λ22(P,A), . . . , λ2k(P,A), . . . , λkk(P,A)). Denote by δt(P,A)

the number of observations (A, a) in A where t is the rank of the maximal element,

that is, δt(P,A) =
∑k

s=t λts(P,A). The vector of all possible such entries is denoted

by δ(P,A) = (δ1(P,A), . . . , δk(P,A)). Finally, denote by ρs(P,A) the number of ob-

servations (A, a) in A where s is the rank of the chosen alternative, that is, ρs(P,A) =∑s
t=1 λts(P,A), and denote the associated vector by ρ(P,A) = (ρ1(P,A), . . . , ρk(P,A)).

In sum, λ refers to the (mis)matches between the chosen and the maximal alternatives,

δ to the maximal alternatives, and ρ to the chosen alternatives.

Let σ : X → X denote a permutation. Given a collection of observations A, the

permuted collection of observations is denoted by σ(A) = [(σ(Ai), σ(ai))
n
i=1]. Similarly,

given a preference relation P , σ(P ) denotes the permuted preference relation, that is,

xPy ⇔ σ(x)σ(P )σ(y).
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3. The Model

We now introduce a key concept into our analysis, an inconsistency index I. The

mapping I evaluates the inconsistency incurred by a preference relation P in explaining

a collection of observations A.

Definition 1. An inconsistency index I assigns to each preference relation P and

each collection of observations A a non-negative real number I(P,A).

Given an inconsistency index I and a collection of observationsA, different preference

relations may incur in different inconsistencies. Hence, we are interested in: (1) the

minimum value of I across all preference relations, which we denote by I∗(A); and

(2) the preference relation that provides that minimal inconsistency level I∗(A). The

former measures the irrationality of an individual, while the latter provides a tool for

the welfare analysis of possibly inconsistent individuals.

3.1. Properties on Inconsistency Indices. In principle, there is a wide range of

possible different inconsistency indices and hence, a clear choice is problematic a pri-

ori. Therefore, to create a sound basis for the selection of a particular inconsistency

index, we now suggest a number of conditions that an inconsistency index I should

desirably satisfy. Then, in section 3.3, we show that, in fact, the five properties we

now suggest uniquely identify a particular family of inconsistency indices.

Neutrality (NEU). For any permutation σ, for any preference relation P , and for

any collection of observations A, I(P,A) = I(σ(P ), σ(A)).

Neutrality imposes that the inconsistency index should be independent of the names

of the alternatives. That is, any relabeling should have no effect on the level of incon-

sistency. This is a standard axiom in various areas of research, such as the foundations

of voting rules, for example.

Rationality (RAT). For any preference relation P , and for any collection of obser-

vations A, I(P,A) = 0 if and only if P rationalizes A.

Since an inconsistency index assigns non-negative numbers, this condition imposes a

weak monotonicity requirement. In line with the maximization principle, the minimal

inconsistency level is reached only when every single choice in the collection of obser-

vations can be explained by maximizing the preference relation, and any other case

gives a strictly higher inconsistency level. The property also normalizes the minimal
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inconsistency level by assigning a value of 0.

Separability (SEP). For any preference relation P and for any three collections of

observations A,B and C, I(P,A) ≥ I(P,B) if and only if I(P,A⊕ C) ≥ I(P,B ⊕ C).

Recall that a collection of observations is a set that allows for repetition of obser-

vations. Then if, under the preference relation P , the inconsistency index judges A
to be more inconsistent than B, then separability imposes that the addition of the

same collection of observations C to both cases, A and B, should not reverse the order

of inconsistency. That is, two collections of observations maintain the same order of

inconsistency when the same extra collection of observations is added to both sides.

Composition (COM). For any preference relation P , and any two menus A and B,

such that APB, I(P, [(A, x), (B ∪ {x}, y)]) = I(P, [(A ∪B, y)]).

Composition implies that to the inconsistency index I it is equivalent to observe a

given inconsistency at once, or separated into two very particular hypothetical stages.

That is, given a preference P , and an observation (A, x), it may be the case that x is

different from the maximal element in A, which would imply an inconsistency. Now

suppose that we observe the menu {x} ∪ B, where all of the alternatives in the set

B are worse than x under P . Clearly, it follows that x is the maximal alternative in

the menu {x} ∪ B. It may be the case that the chosen alternative in this menu, y, is

different from x, again implying a inconsistency in the preference relation P . If, on the

other hand, all of the alternatives A ∪ B are presented simultaneously and the choice

is y, Composition implies that the two possible inconsistencies in the previous scenario

are equivalent to the one in the latter.

Archimedean property (ARCH). For any preference relation P and for any four

collections of observations A,B, C and D, if I(P,A) > I(P,B) then there is an integer

d > 0 such that I(P, dA⊕ C) ≥ I(P, dB ⊕D).

The Archimedean property imposes that there is no level of inconsistency that can-

not be reversed, if sufficient data are added in the opposite direction. That is, if given

the preference relation P , the inconsistency index judges the collection of observations

D to be more inconsistent than the collection C, the judgment can be reversed by

adding a collection of observations A to C a sufficient number of times, and a collec-

tion of observations B to D the same number of times, such that the inconsistency
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index judges A to be more inconsistent than B.

3.2. Weighted-loss Indices. We now signify a particular class of inconsistency in-

dices, which we call weighted-loss indices, that will play a key role in this paper. When

judging the inconsistency of a collection of observations in terms of a preference relation

P , a weighted-loss index additively considers every single observation in which there

is a divergence between the maximal element and the chosen element. It then weights

each divergence using a set of weightings that assigns higher values to the alternatives

that come higher in the order determined by the preference relation. The weights

may represent, for example, the utility values associated to the different alternatives,

according to their position in the ranking. More precisely:

Definition 2. Denote byW the class of vectors of weights w = (w1, . . . , wk) such that

w1 > w2 > · · · > wk. We say that an inconsistency index is a weighted-loss index

associated to w ∈ W and denoted by Iw, if, for any preference relation P and for any

collection of observations A = [(Ai, ai)
n
i=1], Iw(P,A) =

∑n
i=1(wm̂(P,Ai)−wâi(P )). Denote

the class of weighted-loss indices by IW .

For those observations (Ai, ai) for which the chosen element is the maximal element

in Ai, that is m(P,Ai) = ai, the weighted-loss index Iw assigns an inconsistency value

of 0. Any other observation receives a positive inconsistency value, which varies ac-

cording to how much higher or lower the preference relation ranks the chosen element

in comparison to the maximal element. The further apart these two elements are in the

preference relation, the greater the inconsistency in the explanation of the observation

by the preference relation. Then, the inconsistency incurred by the preference relation

over the whole set of observations is the sum of the inconsistency values obtained in

the individual observations. Notice, therefore, that in terms of the weighted-loss index,

it is not only the number of inconsistencies that matters, but also their significance in

the preference relation P .

The following immediate lemma shows two alternative equivalent formulations of

weighted-loss indices.

Lemma 1. For any w ∈ W, any preference relation P , and any collection of observa-

tions A = [(Ai, ai)
n
i=1], Iw(P,A) =

∑k
t=1

∑k
s=t λts(P,A)(wt − ws) =

∑k
t=1 δt(P,A)wt −∑k

s=1 ρs(P,A)ws.

To grasp the first formulation in Lemma 1, Iw(P,A) =
∑k

t=1

∑k
s=t λts(P,A)(wt−ws),

note that, in a weighted-loss index, those observations that have both the same maximal

element and the same chosen element can be regarded as indistinguishable. This shows
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that in a weighted-loss index, the inconsistency of a collection of observations may be

fully captured by the vector λ.

With regard to the second formulation in Lemma 1, Iw(P,A)
∑k

t=1 δt(P,A)wt −∑k
s=1 ρs(P,A)ws, simply note that

∑k
t=1

∑k
s=t λts(P,A)wt =

∑k
t=1 δt(P,A)wt and that∑k

t=1

∑k
s=t λts(P,A)ws =

∑k
s=1

∑s
t=1 λts(P,A)ws = ρs(P,A)ws. That is, a weighted-

loss index can also be understood as the difference between two components, one

depending only on the maximal alternatives and the other depending only on the

chosen alternatives.

For the sake of illustration, in the remainder of this subsection, we compare the

degrees of inconsistency assigned by weighted-loss indices to collections of observations

that violate one of the following two classical properties in the choice theory literature:

No Binary Cycles and Always Chosen.

No Binary Cycles: For all a1, . . . , ar ∈ X and any collection of observations A, if

({aj, aj+1}, aj) ∈ A, j = 1, . . . , r − 1, then ({a1, ar}, ar) 6∈ A.

Always Chosen: For all a1, . . . , ar ∈ X and any collection of observations A, if

({a1, aj}, a1) ∈ A, j = 2, . . . , r, then ({a1, . . . , ar}, aj) 6∈ A with j 6= 1.

The interpretation of the two properties is immediate. No Binary Cycles imposes

consistent behavior in binary problems by forbidding a pairwise cycle of choice. Ac-

cording to Always Chosen, if an alternative a is chosen in pairwise choices involving it

and all the other alternatives in a set, the only possible choice from the set is alternative

a itself. Manzini and Mariotti (2007) show that, in a universal choice domain, choice

behavior that cannot be rationalized by the maximization of a single preference rela-

tion violates either No Binary Cycles, or Always Chosen, or both. That is, irrational

behavior is fully characterized by the violation of either or both of these properties.

Now, we use weighted-loss indices to evaluate the severity of the departure from

rationality of a violation of No Binary Cycles versus a violation of Always Chosen. To

this end, consider two collections of observations A and B, where A is composed of a

pairwise cycle involving all the alternatives in X, while B is composed of a violation of

Always Chosen in the same menu of alternatives X. That is, r = k in both cases.3

Proposition 1 shows that, from the point of view of weighted-loss indices, a decision-

maker violating No Binary Cycles incurs in a higher degree of irrationality than one

violating Always Chosen. Therefore, although inconsistent behavior necessarily implies

3The arguments that follow can be immediately extended to any violation of No Binary Cycles or

Always Chosen involving any subset of alternatives from X.
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a violation of Always Chosen or of No Binary Cycles, weighted-loss indices unambigu-

ously discriminate between violating one property or another.

Proposition 1. For any vector of weights w ∈ W,

• I∗w(A) = w1 − wk, and

• I∗w(B) = w1 − w2

The intuition for the first claim of the proposition is a generalization of the argu-

ment used in the pairwise cycle example in the introduction.4 The preference relation

a1Pa2P · · · ak−1Pak, for example, gives the minimum inconsistency value associated

with A, w1 − wk. In the case of B, the collection of observations involving a viola-

tion of Always Chosen, it is easy to see that any preference relation where the top

two alternatives are a1 and the alternative chosen from menu X, provides the minimal

inconsistency value, namely, I∗w(B) = w1 − w2.

3.3. The Characterization Result. Our first result shows that an inconsistency

index satisfies the five properties proposed in subsection 3.1 above if and only if the

inconsistency index is a weighted-loss index.

Theorem 1. An inconsistency index I satisfies (NEU), (RAT), (SEP), (COM) and

(ARCH) if and only if it is a weighted-loss index I ∈ IW .

The main steps of the proof of Theorem 1 are as follows. We focus on the ‘only-if’

part. First, we show that for any preference relation P , the degree of inconsistency of

any collection of observations A, is equivalent to the degree of inconsistency involved

in two particular collections of observations B and R, that is, I(P,A) = I(P,B ⊕R).

Collection B consists of binary menus of alternatives where the maximal alternative

is not chosen, while collection R consists of menus of alternatives where the maximal

alternative is in fact chosen.

The next step uses the previous one to show that an inconsistency function is fully

characterized by the vector λ(P,A). Consequently, we can define the binary relation �
over Nk(k+1)/2 in order to compare the associated λ-vectors of two preference relations

P and P ′, and two collections of observations A and A′. We then show that the triple

(Nk(k+1)/2,�,+) is a closed extensive structure, hence we can use known results in

the foundations of measurement to conclude that there exists a real-valued function φ

on Nk(k+1)/2 representing� such that λ(P,A) � λ(P ′,A′)⇔ φ(λ(P,A)) ≥ φ(λ(P ′,A′))
and furthermore, φ is additive, that is φ(λ(P,A)+λ(P ′,A′)) = φ(λ(P,A))+φ(λ(P ′,A′)).

It follows immediately that I = φ up to a scalar transformation, and I(P,A) =∑k
t=1

∑k
s=t θtsλts(P,A), where θts is the canonical value assumed by φ over the vector

4The formal proof of Proposition 1, and all the results to come, can be found in Appendix A.
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with value 1 for the component ts and value 0 for all the other components. That is, θts
is the inconsistency value associated with an observation where the maximal element

is ranked at t, but the chosen element is ranked at s.

Finally, we show that θtt = 0 for every t, θts > 0 whenever t < s, and that θth =

θts+θsh, and therefore, we define wt =
∑k−1

s=t θs,s+1 and wk = 0, and hence we can write

the inconsistency index as I(P,A) =
∑k

t=1

∑k
s=t λts(P,A)(wt − ws), as desired.

4. Discussion

Theorem 1 identifies weighted-loss indices as especially prominent inconsistency in-

dices since these are the only ones that satisfy the set of properties here proposed.

Therefore, we now take a more detailed look at various important aspects of the

class of weighted-loss indices. We first characterize the preference relation minimizing

weighted-loss indices. We argue that such a preference relation may be of importance

in conducting welfare analysis with inconsistent individuals. We then provide a sound

tool for comparing the degree of irrationality of two individuals. Finally, we close this

section by characterizing the maximum degree of inconsistency that can actually be

attained. We study these issues on a particular domain of collections of observations

satisfying a regularity condition.

Definition 3. The collection of observations A is a balanced collection of obser-

vations if all the menus of alternatives in A with the same cardinality are observed

the same number of times.

The class of balanced collections of observations encompasses classical domains, such

as the universal domain, where all possible menus are observed once, or the binary

domain, where all possible menus of two alternatives are observed once, etc. It also

includes replicas of these domains, thus enabling the study of variability in choices

from the same menu.

4.1. Individual Welfare. If an individual is inconsistent it immediately implies that

there is no single preference relation explaining her choices, and hence welfare analysis

becomes problematic. It is difficult in such a case to elucidate what the individual

would choose for herself, and hence it is problematic for the policy to choose on the

individual’s behalf. Our approach, in this respect, is to focus on the preference relation

that minimizes the inconsistency with the data as measured by the class of weighted-loss

indices, and take this preference relation as the best approximation of the individual’s

actual choices. The advantages of such an approach are that the relevant preference

relation is identified from a foundational analysis, and that the preference relation is

well-behaved in the sense of being a linear order and hence its maximization offers
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a unique alternative in any possible menu of alternatives, thus providing the policy

maker with a clear guideline.

Intuitively, the more often an alternative is chosen, the higher it should be placed in

the preference relation. This is certainly true in the rational case, where the maximiza-

tion of a preference relation accounts for all choices. The following definition formally

states the preference relations that place the more frequently chosen alternatives higher

in the ranking.

Definition 4. Given a collection of observations A = [(Ai, ai)
n
i=1], a basic preference

relation PB(A) is any preference relation such that |{i : ai = x}| > |{i : ai = y}| ⇒
xPB(A)y.

It turns out that, when the collection of observations is balanced, our intuition that

the weighted-loss index is minimized with basic preference relations is correct. Since

basic preference relations do not depend on the vector of weights w, this implies that the

preference relations that minimize the weighted-loss index are invariant with respect

to w.

Theorem 2. For any vector of weights w ∈ W and any balanced collection of ob-

servations A, any basic preference relation PB(A) minimizes the weighted-loss index

Iw.

The main steps in the proof of Theorem 2 are as follows. We first show that the

weighted sum of the number of observations in A with maximal elements in the various

positions t in the ranking
∑k

t=1 δt(P,A)wt does not depend on the preference relation

P . That is, for a given w, for any balanced collection of observations A, and for any

two preference relations P and P ′,
∑k

t=1 δt(P,A)wt =
∑k

t=1 δt(P
′,A)wt = K(A, w),

where K(A, w) is a function that depends only on A and the vector of weights w.

Hence, the vector δ referring to the maximal alternatives can be ignored.

Next, we use the above result together with Lemma 1 to obtain a useful expression

for the comparison of the irrationality incurred by two preference relations P and

P ′, explaining a given collection of observations A, that depends only on the vector

ρ measuring the number of times each alternative is chosen. Namely Iw(P,A) ≤
Iw(P ′,A)⇔

∑k−1
s=1

(∑s
l=1 ρl(P,A)

)
θs,s+1 ≥

∑k−1
s=1

(∑s
l=1 ρl(P

′,A)
)
θs,s+1.

Finally, the definition of a basic preference relation PB(A) guarantees precisely that∑s
l=1 ρs(P,A) is maximized at PB(A). Then, given the positivity of θ, PB(A) maxi-

mizes
∑k−1

s=1

(∑s
l=1 ρl(P,A)

)
θs,s+1 and therefore, by the expression above, I(PB(A)) ≤

I(P,A), as desired.
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4.2. Comparing the Level of Rationality. We now address the question of com-

paring two collections of observations in terms of their rationality levels. This is an

important question, both for the analysis of different theoretical models of bounded

rationality, and for establishing meaningful interpersonal comparisons of rationality

in empirical applications. The former provides a natural tool to give structure to the

rapidly growing literature on alternative models of choice, while the latter may serve as

the basis for a better understanding of individual behavior in certain environments, and

may also provide the primitives for the development of potential new choice theories

relying on the distribution of individuals by rationality levels.

Consider two balanced collections of observations with the same menus of alterna-

tives. By Theorem 2, we know that for each of the balanced collections, the preference

relation that minimizes the weighted-loss index is a basic preference relation, which

is fully determined by the vector ρ reporting the number of times each alternative is

chosen. Corollary 1 below, complements this result by showing that the decision as to

which behavior is more rational is also exclusively determined by the vector ρ of chosen

alternatives. Hence, again, the comparison between different collections of observations

is invariant with respect to the vector of weights w.

Furthermore, Corollary 1 identifies a simple test for comparing collections of observa-

tions. It shows that, whenever the vector ρ associated to one collection of observations

majorizes the vector ρ associated to another collection of observations, we can con-

clude that the former is more rational than the latter. That is, weighted-loss indices

are Schur-convex functions for collections of observations with the same menus of al-

ternatives. This leads to the use of techniques developed in the majorization literature

becoming standard in the income inequality literature.

Corollary 1. For any vector of weights w ∈ W and any two balanced collections of

observations A and A′ with the same menus of alternatives, I∗w(A) ≤ I∗w(A′) if and

only if
∑k

s=1 ρs(P
B(A),A)ws ≥

∑k
s=1 ρs(P

B(A′),A′)ws. In particular, if ρ(PB(A),A)

majorizes ρ(PB(A′),A′) then I∗w(A) ≤ I∗w(A′). That is, I∗w is a Schur-convex function

for collections of observations with the same menus.

The proof of Corollary 1 follows from Theorem 2 by imposing the condition that the

two collections of observations A and A′ must have the same menus of alternatives.

4.3. Maximum Degree of Inconsistency. We now address the question of what

maximal degree of irrationality can actually be reached. Corollary 1 above shows

that if it were possible to construct a balanced collection of observations in which all

the alternatives were chosen roughly the same number of times, it would provide the
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highest level of inconsistency. Theorem 3 below shows that the construction of such a

collection is feasible.

First, consider the following notation. Recall that k denotes the number of alter-

natives in the grand set X. Given a collection of n observations A, denote by a(n, k)

and b(n, k) the unique positive integers such that (1) n = a(n, k)k + b(n, k), and (2)

b(n, k) < k. Theorem 3 shows that it is possible to construct a collection of n observa-

tions in which each of the k alternatives is chosen roughly a(n, k) ≈ n/k times.

Theorem 3. For any vector of weights w ∈ W and any balanced collection of n

observations A, I∗w(A) ≤ K(A, w) − a(n, k)
∑k

s=1ws −
∑b(n,k)

s=1 ws, and the bound is

tight.

The structure of the proof is as follows. Given a balanced collection of n observations

A, we construct another balanced collection of n observations B with the same menus as

A, and such that I∗w(B) = K(A, w)− a(n, k)
∑k

s=1ws −
∑b(n,k)

s=1 ws. Thus constructed,

B satisfies that ρ(PB(A),A) majorizes ρ(PB(B),B), and hence, the application of

Corollary 1 concludes the proof.

5. Final Remarks

It is now widely accepted that individuals often deviate from the maximization

principle when making choices. It is therefore crucial to assign a proper meaning

to such deviations from the maximization principle. A deep understanding of such

deviations would not only give a sense of the reliability of classical choice theory in

different environments, but would also provide useful information to theorists for the

future development of the field. In this paper we propose a particular measure of the

rationality of individuals. Our approach is axiomatic, and keeps as close as possible

to the classical framework. Thus, we need only observe standard revealed preference

data, and we retain the maximization principle as the benchmark for rationality.

Our characterization exercise obtains that the family of weighted-loss indices is the

unique inconsistency functions that satisfies a set of properties. Weighted-loss indices

have several attractive characteristics. A weighted-loss index weights each observation

in which the individual’s revealed choice does not correspond to the maximization of a

given preference relation by how far the preference relation ranks the chosen alternative

from the maximal alternative. The greater the distance between these two alternatives

in the order of preference, the greater the inconsistency incurred in explaining the

observation by the preference relation. Then, the sum of the inconsistency values ob-

tained in all such observations gives the total inconsistency level. We further show that

weighted-loss indices are very manageable in certain general domains. In particular,
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we show that identifying the optimal preference relation that minimizes the level of

inconsistency involved in a set of observations is as simple as computing a basic pref-

erence relation, that is, one that places the more frequently chosen alternatives higher

in the ranking. We argue that such a preference relation may serve as a sound tool for

welfare economics, even with inconsistent decision-makers. Interpersonal comparison

is also very simple, since weighted-loss indices respect the majorization relation, and

hence are Schur-convex functions.

Appendix A. Proofs

Proof of Proposition 1: For the first claim, we first show that for any preference P ,

the inconsistency is equal to or greater than w1−wk. Consider any preference P . Let ap
be the alternative ranked in position k in P . Clearly, observation ({ap, ap+1}, ap) ∈ A
(with the convention ak+t = at) is not rationalized by P . Let l1 be the position of

alternative ap+1 in P . The inconsistency of this observation is wl1 − wk. If l1 = 1,

the inconsistency index is equal to or greater than w1 − wk, and we are done. If

l1 > 1, find the first alternative ap+r, with r ≥ 1, such that ap+r+1 is ranked higher

than l1. Since l1 > 1, this alternative must exist. Denote the position of ap+r+1

in P by l2. Clearly, observation ({ap+r, ap+r+1}, ap+r) ∈ A is not rationalized by P .

The inconsistency of this observation is greater than or equal to wl2 − wl1 . Repeat

this process until the alternative ranked in the first position in P is reached. The

inconsistency index of the collection of observations is thus greater than or equal to

w1 − wk. Now, consider the preference a1Pa2P . . . Pak. This preference explains all

observations except ({ak, a1}, ak) ∈ A, giving an inconsistency value of w1 − wk.

For the second claim, if a1 is placed in position l 6= 1 in P , the inconsistency value

associated with P is at least w1 − wl, since a1 is chosen in the pairwise comparison

with the alternative ranked in the first position in P . This is equal to or greater than

w1 − w2. Now, place a1 at the top of the ranking. The placing of a1 at the top of the

ranking rationalizes all the observations except the choice from menu X. If the alter-

native chosen in X is placed in position l, there is an inconsistency value of w1 − wl

that is equal to or larger than w1 − w2. Now, place the alternative chosen in X in

second place and the result follows.�
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Proof of Theorem 1: It is easy to see that any weighted-loss index Iw satisfies the

axioms. We prove the converse statement by way of four lemmata.

Lemma 2. For any preference relation P and for any collection of observations A,

there exist two collections of observations B (not necessarily non-empty) and R (non-

empty) such that I(P,A) = I(P,B ⊕ R) where for all (B, b) ∈ B, |B| = 2 and b 6=
m(P,B) and for all (R, r) ∈ R, r = m(P,R).

Proof of Lemma 2: Consider a preference relation P and a collection of observations

A. Let A = A1 ⊕A2 ⊕A3, where for all (A, a) ∈ A1, |A| = 2 and a 6= m(P,A); for all

(A, a) ∈ A2, a = m(P,A); and for all (A, a) ∈ A3, |A| > 2 and a 6= m(P,A). That is,

observations in A1 are binary menus of alternatives where the maximal alternative is

not chosen. Observations inA2 are menus of alternatives where the maximal alternative

is chosen. Observations in A3 are menus with at least 3 alternatives where the maximal

alternative is not chosen.

First, we show that for any collection of observations A where A3 is empty, we

can construct collections of observations B and R, as defined in the statement of the

lemma, such that I(P,A) = I(P,B ⊕ R). Suppose, then, that A3 is empty. If A2

is non-empty, simply take B = A1 and R = A2, and we are done. If A2 is empty,

then A1 is non-empty. In this case, consider an observation (A, a) ∈ A1. Obviously,

{m(P,A)} and {a} constitute a partition of A such that m(P,A)Pa. By (COM),

I(P, [(A, a)]) = I(P, [({m(P,A)},m(P,A)), (A, a)]). If A1 contains more observations

than (A, a), by (SEP) we know that I(P,A1) = I(P,A1 ⊕ [({m(P,A)},m(P,A))]).

Then, take B = A1 and R = [({m(P,A)},m(P,A))], and we are done.

Second, suppose that A3 is non-empty. Consider an observation (A, a) ∈ A3. If

|{x ∈ A : xPa}| > 1, then partition A into the sets B = {x ∈ A : xPa} and

A \ B. By (COM), I(P, [(A, a)]) = I(P, [(B,m(P,A)), ({m(P,A)} ∪ A \ B, a)]). We

have decomposed the observation (A, a) into two observations such that the first is of

the class A2 type and the second is either of the class A1 type or the class A3 type.

Note that in the latter case, the menu of alternatives {m(P,A)} ∪ A \ B has strictly

fewer alternatives than the original menu, A.

If |{x ∈ A : xPa}| = 1, then it must be that {x ∈ A : aPx} 6= ∅. Partition the

menu of alternatives A into the sets {m(P,A), a} and {x ∈ A : aPx}. By (COM),

I(P, [(A, a)]) = I(P, [({m(P,A), a}, a), ({a} ∪ {x ∈ A : aPx}, a)]). Note that we have

decomposed (A, a) into two observations such that the first is of the class A1 type and

the second is of the class A2 type.

Given that X is finite, one can iterate the above argument until the class A3 is

exhausted. Using (SEP), the new collection of observations has the same inconsistency
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index I as the original one. Thus, for any collection of observations where A3 is non-

empty, we can also construct collections of observations B (not necessarily non-empty)

and R (non-empty) as desired, which concludes the proof of the lemma.�

Lemma 3. For any two preference relations P and P ′ and for any two collections of

observations A and A′, λ(P,A) = λ(P ′,A′)⇒ I(P,A) = I(P ′,A′).

Proof of Lemma 3: Given Lemma 2, we can assume that A = B⊕R and A′ = B′⊕R′

where the collections of observations B and B′ consist of binary menus of alternatives in

which the maximal alternative is not chosen, the non-empty collections of observations

R and R′ consist of menus of alternatives in which the maximal alternative is chosen,

and I(P,A) = I(P,B ⊕R) and I(P ′,A′) = I(P ′,B′ ⊕R′).
Note that the construction of B and R in the proof of Lemma 2 guarantees that

λts(P,A) = λts(P,B ⊕R) for all t < s (note that the equality does not necessary hold

for t = s). Hence, λ(P,A) = λ(P ′,A′) implies that B is empty if and only if B′ is

empty. If B and B′ are empty, then I(P,R) = I(P ′,R′) = 0, and the claim follows. If,

on the contrary, B and B′ are both non-empty, it follows that λ(P,B) = λ(P ′,B′).
Consider a permutation σ such that σ(P ) = P ′. The application of (NEU) guar-

antees that I(P,B ⊕ R) = I(σ(P ), σ(B ⊕ R)) = I(P ′, σ(B) ⊕ σ(R)). Given that

λ(P,B) = λ(P ′,B′), we can consider, without loss of generality, that σ(B) = B′ and

then I(P,A) = I(P ′,B′ ⊕ σ(R)). Since all the observations in σ(R) and R′ are ratio-

nalized by P ′, it follows that I(P ′, σ(R)) = I(P ′,R′) = 0. By (SEP), the addition of

observations B′ gives I(P ′,B′ ⊕ σ(R)) = I(P ′,B′ ⊕R′), and the claim follows.�

Lemma 3 implies that I induces a real function (which we denote by I to simplify

the notation) from the k(k+1)
2

-cartesian product of non-negative integers, Nk(k+1)/2.

Consider the binary relation � over Nk(k+1)/2 defined by α � β if and only if there

are preference relations P and P ′ and collections of observations A and A′ such that

λ(P,A) = α, λ(P ′,A′) = β and I(P,A) ≥ I(P ′,A′). The strict part of � is denoted

by �. Also, denote by + the usual addition operator on Nk(k+1)/2.

We now need to introduce the notion of a closed extensive structure. We say that the

triple (Nk(k+1)/2,�,+), where Nk(k+1)/2 is clearly a non-empty set, � is a binary relation

on Nk(k+1)/2 and + is a closed binary operation on Nk(k+1)/2, is a closed extensive

structure whenever the following four properties hold:

(1) Complete Preorder: � is a complete preorder on Nk(k+1)/2.

(2) Weak Associativity: For all α, β, γ ∈ Nk(k+1)/2, α + (β + γ) ∼ (α + β) + γ.
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(3) Monotonicity: For all α, β, γ ∈ Nk(k+1)/2, α � β ⇔ α + γ � β + γ ⇔ γ + α �
γ + β.

(4) Archimedean: For all α, β, γ, µ ∈ Nk(k+1)/2, if α � β, then there exists a positive

integer d such that dα+ γ � dβ + µ where dα is defined inductively as 1α = α

and (d+ 1)α = dα + α.

Lemma 4. The triple (Nk(k+1)/2,�,+) is a closed extensive structure.

Proof of Lemma 4: First, given that for all α ∈ Nk(k+1)/2 there exists a preference

relation P and a collection of observations A such that λ(P,A) = α, and given that

I : Nk(k+1)/2 → R+ is a real function, � is a complete preorder on Nk(k+1)/2.

Second, notice that the usual addition operator + on Nk(k+1)/2 is an associative

binary operation and therefore weakly associative.

Third, consider α, β, γ ∈ Nk(k+1)/2 and let α � β. By definition, there exist preference

relations P and P ′ and collections of observations A and A′ such that λ(P,A) =

α, λ(P ′,A′) = β and I(P,A) ≥ I(P ′,A′). By (NEU), we can assume, w.l.o.g., that

P = P ′. Furthermore, we can construct a collection of observations A′′ such that

λ(P,A′′) = γ. Using (SEP) and the fact that I(P,A) ≥ I(P,A′), we obtain that

I(P,A ⊕ A′′) ≥ I(P,A′ ⊕ A′′), or, equivalently, α + γ � β + γ. Similarly, it can be

proved that α + γ � β + γ implies α � β, and therefore Monotonicity is satisfied.

Finally, consider α, β ∈ Nk(k+1)/2 such that α � β and consider any γ, µ ∈ Nk(k+1)/2.

By the definition of �, and by (NEU) and (ARCH), there exists a strictly positive

integer d such that dα + γ � dβ + µ and thus the triple (Nk(k+1)/2,�,+) satisfies

Archimedean.�

By Theorem 1 in Krantz, Duncan Luce, Suppes, and Tversky (1971, p. 74), Lemma

4 guarantees that there exists a real-valued function φ on Nk(k+1)/2 such that for all

α, β ∈ Nk(k+1)/2:

(1) α � β ⇔ φ(α) ≥ φ(β).

(2) φ(α + β) = φ(α) + φ(β).

Furthermore, another function φ′ satisfies conditions (1) and (2) if and only if there

exists a strictly positive real value ψ such that φ′ = ψφ. Therefore, given the definition

of �, it follows immediately that I = φ up to a scalar transformation, and I(P,A) =∑k
t=1

∑k
s=t θtsλts(P,A), where θts is the canonical value of φ over the vector whose

value is 1 at component ts and 0 elsewhere.

The following lemma states some properties of the parameters θts.
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Lemma 5.

(1) For all 1 ≤ t ≤ k, θtt = 0.

(2) For all 1 ≤ t < s ≤ k, θts > 0.

(3) For all 1 ≤ t ≤ s ≤ h ≤ k, θth = θts + θsh.

Proof of Lemma 5: The first two claims follow immediately from the fact that I sat-

isfies (RAT). For the third claim, consider any preference relation P , and alternatives

a, b and c, such that the number of alternatives strictly preferred to a, b and c accord-

ing to P is t− 1, s− 1 and h− 1, respectively. Consider the observation ({a, b, c}, c).
Clearly, {a, b} and {c} constitute a partition of {a, b, c} where {a, b}P{c}. Therefore,

by (COM), θth = I(P, [({a, b, c}, c)]) = I(P, [({a, b}, b), ({b, c}, c)]) = I(P, [({a, b}, b)])+

I(P, [({b, c}, c)]) = θts + θsh.�

To conclude the proof of the theorem, define wt =
∑k−1

s=t θs,s+1 and wk = 0. Then,

for any collection of observations A, and for any preference relation P , I(P,A) =∑k
t=1

∑k
s=t λts(P,A)(wt − ws), and I is a weighted-loss index associated to w, as

desired.�

Proof of Theorem 2: We prove the claim of the theorem by way of two lemmata.

Lemma 6. For any balanced collection of observations A, and for any two preference

relations P and P ′,
∑k

t=1 δt(P,A)wt =
∑k

t=1 δt(P
′,A)wt = K(A, w), where K(A, w) is

a function that depends only on A and w.

Proof of Lemma 6: Consider a balanced collection of observations A, and two pref-

erence relations P and P ′. Select a permutation σ, such that P ′ = σ(P ). Then, it

must be that
∑k

t=1 δt(P,A)wt =
∑k

t=1 δt(σ(P ), σ(A))wt =
∑k

t=1 δt(P
′, σ(A))wt. Since

A is balanced, the menus observed in σ(A) are exactly the same as in A. Given that∑k
t=1 δt(P

′, σ(A))wt does not depend on the chosen elements in σ(A), but only on the

menus observed, then
∑k

t=1 δt(P
′, σ(A))wt =

∑k
t=1 δt(P

′,A)wt. Hence,
∑k

t=1 δt(P,A)wt

=
∑k

t=1 δt(P
′,A)wt.�

Lemma 7. For any balanced collection of observations A, and for any two pref-

erence relations P and P ′, Iw(P,A) ≤ Iw(P ′,A) ⇔
∑k−1

s=1

(∑s
l=1 ρl(P,A)

)
θs,s+1 ≥∑k−1

s=1

(∑s
l=1 ρl(P

′,A)
)
θs,s+1.
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Proof of Lemma 7: Consider a collection of observations A, and two preference

relations P and P ′. Given Lemma 6, we can conclude that

Iw(P,A) ≤ Iw(P ′,A) ⇔
k∑

t=1

δt(P,A)wt −
k∑

s=1

ρs(P,A)ws ≤
k∑

t=1

δt(P
′,A)wt −

k∑
s=1

ρs(P
′,A)ws

⇔
k∑

s=1

ρs(P,A)ws ≥
k∑

s=1

ρs(P
′,A)ws.

By way of the inverse construction of ws used in the proof of Theorem 1, that is,

θs,s+1 = ws − ws+1, we can conclude that

k∑
s=1

ρs(P,A)ws ≥
k∑

s=1

ρs(P
′,A)ws ⇔

k−1∑
s=1

( s∑
l=1

ρl(P,A)
)
θs,s+1 ≥

k−1∑
s=1

( s∑
l=1

ρl(P
′,A)

)
θs,s+1,

and thus,

Iw(P,A) ≤ Iw(P ′,A)⇔
k−1∑
s=1

( s∑
l=1

ρl(P,A)
)
θs,s+1 ≥

k−1∑
s=1

( s∑
l=1

ρl(P
′,A)

)
θs,s+1,

, which concludes the proof of the lemma.�

Now, the definition of a basic preference relation PB(A) guarantees that, for any s,

and for any preference relation P ,
∑s

l=1 ρs(P
B(A),A) ≥

∑s
l=1 ρs(P,A). Since θs,s+1 > 0

for every s,
∑k−1

s=1

(∑s
l=1 ρl(P

B(A),A)
)
θs,s+1 ≥

∑k−1
s=1

(∑s
l=1 ρl(P,A)

)
θs,s+1 and there-

fore, by Lemma 7, I(PB(A)) ≤ (P,A).�

Proof of Corollary 1: The proof follows immediately by extending Lemmata 6 and 7

to the case where the collections of observationsA andA′, have the same menus of alter-

natives. Then, the fact that ρ(PB(A),A) majorizes ρ(PB(A′),A′) simply means that∑s
l=1 ρs(P

B(A),A) ≥
∑s

l=1 ρs(P
B(A′),A′). Then

∑k−1
s=1

(∑s
l=1 ρl(P

B(A),A)
)
θs,s+1 ≥∑k−1

s=1

(∑s
l=1 ρl(P

B(A′,A′)
)
θs,s+1, and consequently I∗w(A) ≤ I∗w(A′).�

Proof of Theorem 3: Denote the alternatives in X by 1, 2, . . . , k. Consider the

permutation σ given by σ(h) = h + 1 whenever h < k and σ(k) = 1. For any positive

integer q denote by σq the composition of σ with itself q times, with the convention

σ0 = σk equal to the identity mapping. Also, given any positive integer q and the

number of alternatives in X, k, denote by a(q, k) and b(q, k) the unique positive integers

such that (1) q = a(q, k)k + b(q, k), and (2) b(q, k) < k.

Consider the menu A1 observed in A. Consider all the menus Ai ∈ A such that there

exists 0 ≤ r ≤ k with Ai = σr(A1). Denote this collection by Ψ1. Pick any menu B1
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in Ψ1 such that 1 ∈ B1. The existence of such a menu is guaranteed by the fact that

A is balanced. Clearly, for every 0 < r ≤ k, k ∈ σr−1(B1) whenever b(r, k) = 0 and

b(r, k) ∈ σr−1(B1) whenever b(r, k) > 0. Hence, we can design k or b(r, k), respectively,

to be the chosen alternative in menus that take the form σr−1(B1), 0 < r ≤ k.

Suppose that we have defined collections of menus Ψ1,Ψ2, . . . ,Ψv−1 and the corre-

sponding chosen alternatives. If n > |Ψ1| + |Ψ2| + · · · + |Ψv−1|, select one menu Av

observed in A, but not present in Ψ1,Ψ2, . . . ,Ψv−1. Consider all the menus Ai ∈ A
such that there exists 0 ≤ r ≤ k with Ai = σr(Av). Denote this collection by Ψv.

Let b(|Ψ1| + |Ψ2| + · · · + |Ψv−1|, k) = bv−1. Pick any menu Bv in Ψv such that

bv−1 + 1 ∈ Bv. Clearly, for every 0 < r ≤ k, k ∈ σr−1(Bv) whenever b(bv−1 + r, k) = 0

and b(bv−1 + r, k) ∈ σr−1(Bv) whenever b(bv−1 + r, k) > 0. Hence we can design k or

b(bv−1 + r, k), respectively, to be the chosen alternative in menus that take the form

σr−1(Bv), 0 < r ≤ k.

This process inductively defines a collection of observations B with the same menus

as A. By Theorem 2, I∗w(B) = K(B, w) −
∑k

s=1 ρs(P
B(B),B). Given that B has

the same menus as A, it follows that K(B, w) = K(A, w). Furthermore, given the

construction of B, it follows that 1, 2, . . . , b(n, k) are chosen in exactly a(n, k)+1 menus,

while b(n, k) + 1, . . . , k are chosen in exactly a(n, k) menus. Hence, ρs(P
B(B),B) =

(a(n, k) + 1, a(n, k) + 1, . . . , a(n, k) + 1, a(n, k), a(n, k), . . . , a(n, k)). Thus,

I∗w(B) = K(A, w)−
b(n,k)∑
s=1

(a(n, k) + 1)ws −
k∑

s=b(n,k)+1

a(n, k)ws

= K(A, w)− a(n, k)
k∑

s=1

ws −
b(n,k)∑
s=1

ws.

It follows immediately that ρ(PB(A),A) majorizes ρ(PB(B),B). Thus, the application

of Corollary 1 concludes the proof.�
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