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Abstract

Existence of von Neumann–Morgenstern solutions (stable sets) is proved for any
assignment game. For each optimal matching, a stable set is defined as the union
of the core of the game and the core of the subgames that are compatible with this
matching. All these stable sets exclude third-party payments and form a lattice with
respect to the same partial order usually defined on the core.
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1 Introduction

Von Neumann and Morgenstern (1944) introduced a main solution concept
for cooperative games with transferable utility. Their solution is based on
a dominance relation between imputations, that is allocations of the worth
of the grand coalition. One imputation dominates another if there exists a
coalition such that each of its members gets more in the first imputation
than in the second one, and this payoff is feasible for this coalition since it
does not exceed the worth it can obtain by its own. With this definition, a
von Neumann-Morgenstern solution (a stable set) V is a set of imputations
satisfying (i) internal stability, no two imputations in the set dominate one
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another, and (ii) external stability, every imputation outside V is dominated
by some imputation in V . These two conditions can be put together by saying
that V is a stable set if it is the set of imputations not dominated by any
element in V .

Nevertheless, the core and not the stable sets has become the most commonly
used set-solution concept applied to TU cooperative games. The reason may
be that while the core of a cooperative game can be easily defined by a set
of linear inequalities, what has prevented the theory of the stable sets from
being more successful is that it is so difficult to work with. Aumann (1985)
wrote that “finding stable sets involves a new tour de force of mathematical
reasoning for each game or class of games that is considered. And because
stable sets do not always exist, you cannot even be sure that you are looking
for something that is there”. The first examples of a game with no stable
set were provided by Lucas (1968, 1969). And some of these examples are in
fact related to market situations. We will show in this paper that bilateral
assignment markets do not present this drawback.

The core was also initially defined by means of the above dominance relation
(Gillies, 1959). Provided it is nonempty, the core is the set of undominated
imputations. Thus, when we choose the core as a set-solution concept we
exclude from the solution an imputation that is dominated by some other
imputation, although this other imputation may also be out of the core. In
that case, the argument for excluding the first imputation from our solution
is rather weak. Of course, this drawback is saved if the core is a stable set,
since then the core coincides with the set of imputations undominated by any
other core imputation. But, except for some particular classes of games, for
instance convex games, the core is not a stable set.

The aim of this paper is to prove the existence of von Neumann-Morgenstern
solutions for the class of assignment games. Assignment games were introduced
by Shapley and Shubik (1972) as a cooperative model for two-sided markets.
In this market each seller wants to sell one unit of an indivisible good, and
each buyer wants to buy at most one unit. Units are non-homogeneous and
thus buyers may value differently the units of the different sellers. From these
valuations, and the reservation prices of the sellers, an assignment matrix is
deduced which represents the profit that each mixed-pair can attain by the
trade of the object between the members of the pair. Then, the worth of the
grand coalition is the total profit that can be obtained by optimally matching
buyers to sellers, and the worth of any other coalition is similarly obtained,
just restricting to the corresponding submatrix.

In their paper “The Assignment Game I: The Core”, Shapley and Shubik
prove that the core of the assignment game is nonempty. Moreover, together
with efficiency, only coalitional rationality for mixed-pair coalitions is needed
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to define the core of the assignment game. As a consequence of that, although
the core definition allows side payments among all the participants, it turns
out that in the core of the assignment games transfers of money are only
made between optimally matched agents and thus third-party payments are
excluded. Then, the core is a lattice with respect to a defined partial ordering
on the set of imputations, and there are two special core elements: the buyers-
optimal core allocation, where each buyer gets her maximum core payoff and
each seller his minimum one, and the sellers-optimal core allocation where the
situation is reversed.

At the end of their paper, Shapley and Shubik point out that the core does
not recognize the bargaining power of all the agents, and a simple example of
this weakness of the core is provided by the glove market. A glove market is
an assignment game where units are homogeneous and agents on each side are
symmetric and thus the assignment matrix is a constant matrix. In any core
allocation all the profit is given to the short side of the market. For instance
in a glove market with one seller and two buyers, the unique core allocation
gives all the profit to the seller, while buyers get zero. Thus, the core does not
take into account the fact that the seller needs the cooperation of at least one
buyer to make any profit.

In 1959, Shapley describes most of the von Neumann–Morgenstern stable sets
of a symmetric market game (glove market). There exist stable sets where
only extra players on the large side of the market get zero, all matched pairs
share the profit in the same way and third-party payments are excluded. But
there also exist (infinitely many) stable sets where agents on the large side of
the market cooperate to get their bargaining power recognized by means of
side-payments. Again, the core gives no hint of this.

It is said that Shapley and Shubik planned to work on a second paper about the
assignment game, probably focused on the stable sets. At the end of Shapley
and Shubik (1972) the authors write: “It may not be possible to realize the
bargaining potentials described above within a given institutional form. When
we are conducting a general analysis of the abstract model, as here, it behooves
to us to explore and correlate a number of different solution concepts. This
we hope to do in subsequent papers.”

Although this second paper never appeared, they probably worked on the
subject since in Shubik (1984), and also in some personal notes of Shapley, a set
of imputations is proposed as a stable set for the assignment game. However,
this claim is not accompanied by a complete proof. As far as we know, proving
the existence of von Neumann–Morgenstern stable sets for the assignment
game is still an open problem (see for instance Solymosi and Raghavan, 2001),
and this is what we aim to close with the present paper.
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The set defined by Shubik consists of the union of the core of the assignment
market and the core of some selected submarkets that are compatible with an
optimal matching that has been fixed beforehand. Although our definition of
compatible subgame slightly differs from that of Shubik, the set we prove to
be a von Neumann and Morgenstern stable set is the same that he proposes.

In 2001, Solymosi and Raghavan characterized those assignment games with
a stable core. They proved that the core of an assignment game is a stable set
if and only if the assignment matrix has a dominant diagonal (each diagonal
entry is a row and column maximum). When the matrix did not satisfy this
property, it still remained to see what imputations should be added to the
core in order to obtain a stable set.

In Núñez and Rafels (2009) we show how to relate, to any assignment game,
another one (the related exact assignment game) with a dominant diagonal
matrix and a core that is a translation of the core of the initial game. Thus,
the related exact assignment game has a stable core, and this will be used in
this paper to dominate the imputations outside the core but still inside the
limits of the core bounds. The strategy to dominate the imputations outside
these limits will be totally different, but also makes use of other techniques
developed in the recent literature on assignment games.

Any payoff vector in the stable set we construct can be achieved without any
side payments other than the direct payments from each buyer to her assigned
seller. Thus, as it happens with the core, third-party payments are excluded.
The lattice structure is another property that the core shares with the stable
set.

In the last years, and for different cooperative settings, attention has turned to
von Neumann and Morgenstern stable sets. For instance, Ehlers (2007) gives a
characterization of stable sets in one-to-one matching problems (the marriage
problem). In this setting, as far as we know, the existence of a stable set is
still an open problem.

In Section 2 the basic definitions regarding cooperative games and assignment
games are given. For a given optimal matching µ , the µ-compatible subgames
and their properties are introduced in Section 3. In Section 4, and for each
optimal matching µ , the union of the core of the assignment market and
the cores of the µ-compatible subgames is proved to be a von Neumann and
Morgenstern stable set. To conclude this section, we prove the lattice property
of the stable set and remark that this stable set is the only one that excludes
third party payments.

4



2 Cooperative games and the assignment game

In a cooperative game with transferable utility (a game), a finite set of agents
N must share the profit of cooperation, v(N) ∈ R , by agreeing in a pay-
off vector x , where xi stands for the payoff to agent i ∈ N . To reach an
agreement, what each coalition S ⊆ N can attain by itself, v(S) ∈ R (with
v(∅) = 0 ), can be taken into account. The set of all coalitions of N is de-
noted by 2N . Thus, the game is defined by the pair (N, v) formed by the set
of players and the characteristic function.

If (N, v) is a game and S ⊆ N , the subgame (S, v|S) is the game with player
set S and characteristic function v|S(T ) = v(T ) for all T ⊆ S . Then we will
denote by x|S the restriction of the payoff vector x ∈ R

N to the agents in
coalition S and by x−S its restriction to the agents in N \S . Moreover, |S|
will stand for the cardinality of coalition S .

An imputation is a payoff vector that is efficient, x(N) =
∑

i∈N xi = v(N) ,
and individually rational, xi ≥ v(i) for all i ∈ N . The set of imputations is
denoted by I(v) . The core of the game, is the set of imputations that are coali-
tionally rational, C(v) = {x ∈ R

N | x(N) = v(N), x(S) ≥ v(S), for all S ⊆
N} . A game is exact if the worth of any coalition is attained at some core
allocation: for all S ⊆ N there exists x ∈ C(v) with x(S) = v(S) .

An imputation x dominates another imputation y via coalition S , x domv
S y ,

if x(S) ≤ v(S) and xk > yk for all k ∈ S . Then, a binary relation is defined
on the set of imputations: given x, y ∈ I(v) , we say x dominates y , and
write x domv y , if it does so via some coalition (we simply write x dom y ,
if no confusion arises regarding the game). With this definition, the core,
whenever it is nonempty, is proved to coincide with the set of undominated
imputations. This means that all allocations outside the core are dominated,
although not necessarily dominated by a core allocation.

A subset V of imputations is a stable set (von Neumann and Morgenstern,
1944) if it is internally stable (for all x, y ∈ I(v) , x does not dominate y ) and
externally stable (for all y ∈ I(v)\V , there exists x ∈ V such that x dom y ).

Since the core is the set of undominated imputations, all the stable sets of a
given game (N, v) contain its core. And when the core is a stable set, then
it is the unique stable set. But existence of stable sets is not guaranteed, as
shown in Lucas (1968, 1969).

The assignment game is a well-known cooperative game introduced by Shapley
and Shubik (1972) from the following market situation. In a two-sided assign-
ment market, the set of agents is partitioned into a finite set of buyers M and
a finite set of sellers M ′ , since the product on sale in this market comes in
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indivisible units and each agent either supplies or demands exactly one unit.
The units need not be alike, so let hij ≥ 0 be how much buyer i valuates
the unit of seller j , and let cj ≥ 0 be the reservation price of this seller. The
profit this mixed-pair coalition can attain is aij = max{0, hij − cj} , and let
us denote by A = (aij)(i,j)∈M×M ′ the assignment matrix.

A matching for the two-sided assignment market (M, M ′, A) is a bijection µ

between a subset of M and a subset of M ′ . We denote by M(M, M ′) this set
of matchings. An optimal matching is µ ∈ M(M, M ′) such that

∑

(i,j)∈µ aij ≥
∑

(i,j)∈µ′ aij for all other µ′ ∈ M(M, M ′) . We denote by M∗
A(M, M ′) the set

of optimal matchings for the market (M, M ′, A) . If (i, j) ∈ µ we say that i

and j are matched by µ and we also write j = µ(i) and i = µ−1(j) . If for
some buyer i ∈ M there is no j ∈ M ′ such that (i, j) ∈ µ we say that i is
unmatched by µ (and similarly for sellers).

Given S ⊆ M and T ⊆ M ′ , we denote by M(S, T ) and M∗
A(S, T ) the set

of matchings and optimal matchings of the submarket (S, T, A|S×T ) defined
by the subset S of buyers, the subset T of sellers and the restriction of A

to S × T . If S = ∅ or T = ∅ , then the only possible matching is µ = ∅ and
by convention

∑

(i,j)∈∅ aij = 0 .

The cooperative model for the assignment market is defined by the set of play-
ers N = M∪M ′ and the characteristic function wA(S∪T ) = max{

∑

(i,j)∈µ aij |
µ ∈ M(M ∩S, M ′∩T )} . Shapley and Shubik prove that an assignment game
(M ∪ M ′, wA) always has a non-empty core. Moreover, fixed any optimal
matching µ ∈ M∗

A(M, M ′) , a non-negative payoff vector (u, v) ∈ R
M
+ × R

M ′

+

is in the core if and only if ui +vj ≥ aij for all (i, j) ∈ M ×M ′ , ui +vj = aij

for all (i, j) ∈ µ , and all agents unmatched by µ get a null payoff. This means
that only coalitional rationality for mixed-pair coalitions is necessary to define
the core of this game, and thus the core can be obtained from the assignment
matrix, without needing to compute the whole characteristic function 2 .

The core of the assignment game (M ∪M ′, wA) is a lattice with respect to the
partial order defined by (u, v) ≤M (u′, v′) if and only if ui ≤ u′

i for all i ∈ M

(and also with the dual order defined by comparing the sellers’ payoffs). The
maximum element in this lattice is the buyers-optimal core allocation (uA, vA)
and the minimum element is the sellers-optimal core allocation (uA, vA) .

It is known from Demange (1982) and Leonard (1983) that the maximum core
payoff of an agent in the core of the assignment game is his or her marginal
contribution, that is,

2 Often in the literature, the core elements of an assignment game are called stable
allocations and the constraints ui + vj ≥ aij are referred to as pairwise stability
conditions. In this paper we will avoid this denominations, not to be confused with
von Neumann and Morgenstern stability.
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uA
i = wA(M ∪ M ′) − wA((M \ {i}) ∪ M ′), for all i ∈ M, (1)

vA
j = wA(M ∪ M ′) − wA(M ∪ (M ′ \ {j})), for all j ∈ M ′. (2)

Solymosi and Raghavan (2001) characterize some properties of the core of the
assignment game in terms of the assignment matrix. Among these properties
we point out stability of the core and exactness of the game.

An assignment game (M ∪ M ′, wA) with as many buyers as sellers has a
dominant diagonal 3 if and only if, for all µ ∈ M∗

A(M, M ′) , and all i ∈ M

assigned by µ , aiµ(i) ≥ aik for all k ∈ M ′ and aiµ(i) ≥ akµ(i) for all k ∈ M .
It is straightforward to see that having a dominant diagonal is equivalent to
uA

i = 0 for all i ∈ M and vA
j = 0 for all j ∈ M ′ . It turns out that an

assignment game has a stable core if and only if it has a dominant diagonal.
Notice that, given an assignment game where the sides of the market have
a different size, once its assignment matrix has been made square by adding
dummy agents to the short side of the market, it does not generally have a
dominant diagonal and consequently its core is not stable.

An assignment game (M∪M ′, wA) with as many buyers as sellers has a doubly
dominant diagonal if and only if, for all µ ∈ M∗

A(M, M ′) , all (i, j) ∈ M ×M ′

and all k ∈ M assigned by µ , we have aij + akµ(k) ≥ aiµ(k) + akj . Then,
Solymosi and Raghavan (2001) prove that an assignment game is exact if and
only if it has a dominant diagonal and a doubly dominant diagonal.

The alone property of having a doubly dominant diagonal characterizes those
assignment games that are buyer-seller exact, that is, that satisfy exactness
for mixed-pair coalitions: for all (i, j) ∈ M ×M ′ , there exists (u, v) ∈ C(wA)
such that ui + vj = aij . In Núñez and Rafels (2002) it is shown that given an
assignment game (M∪M ′, wA) , there exists another (and unique) assignment
game (M∪M ′, wAr) that is buyer-seller exact and has its same core, C(wA) =
C(wAr) . This game is defined by ar

ij = min(u,v)∈C(wA) ui + vj , for all (i, j) ∈
M ×M ′ but, when there are as many buyers as sellers, it can also be obtained
only in terms of the matrix entries: ar

ij = max{aij , ãij} where

ãij = max
k1,...,kr∈M\{i,µ−1(j)}

different

{aiµ(k1) + ak1µ(k2) + · · ·+ akrj − ak1µ(k1) − · · · − akrµ(kr)},(3)

and µ is an optimal matching that does not leave any agent unassigned.

Moreover, to any given assignment game we can associate an exact assignment

3 The name is justified by the fact that, when the optimal matching is placed on
the diagonal of the matrix, the assignment game has a dominant diagonal if and
only if every diagonal entry is a row and column maxima.
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game with a translated core (Núñez and Rafels, 2009). This related exact as-
signment game is (M ∪ M ′, wAe) where, for all (i, j) ∈ M × M ′ ,

ae
ij = ar

ij − uA
i − vA

j , (4)

and it satisfies C(wA) = {(uA, vA)} + C(wAe) . Notice that, since (M ∪
M ′, wAe) is exact, it has a dominant diagonal, and thus the core of this game
is stable. The stability of C(wAe) will be used to dominate some of the allo-
cations in the proof of the external stability of our stable set.

Finally, before proposing a stable set for the assignment game, we must analyze
some particularities of the dominance relation when applied to these games.
It is straightforward to see that, in an assignment game, only mixed-pair
coalitions are to be taken into account for domination. That is, if x, y ∈ I(wA) ,
we have x dom y , if and only if x dom y via some coalition S = {i, j} where
i ∈ M and j ∈ M ′ , that is to say, xi > yi , xj > yj and xi + yj ≤ aij .

3 The compatible subgames

We are interested in those imputations where, as it happens to the core, trans-
fers of money are only made between optimally matched agents and thus
third-party payments are excluded. Given an assignment game (M ∪M ′, wA)
and once fixed an optimal matching µ ∈ M∗

A(M, M ′) , the µ-principal section
Bµ(wA) is defined by, given (u, v) ∈ R

M
+ ×R

M ′

+ , (u, v) ∈ Bµ(wA) if and only
if ui + vj = aij for all (i, j) ∈ µ , while unmatched agents are paid zero.

Notice that, the µ-principal section is in between the core and the imputation
set: C(wA) ⊆ Bµ(wA) ⊆ I(wA) . The stable set we are going to introduce is
included in the µ-principal section, once fixed an optimal µ . So, in fact, we
are obtaining one stable set for each optimal matching of the market.

Remark: The domination between imputations in the µ-principal section is
preserved if we make the market square by adding dummy agents on the short
side. Assume |M | < |M ′| and define M̂ ⊇ M with |M̂ | = |M ′| and Â

by âij = aij if (i, j) ∈ M × M ′ and âij = 0 if (i, j) ∈ (M̂ \ M) × M ′ .

Take µ ∈ M∗
A(M, M ′) and any µ̂ ∈ M∗

Â
(M̂, M ′) such that the restriction

of µ̂ to M × M ′ coincides with µ . Then (u, v) ∈ Bµ(wA) if and only if
(û, v) ∈ Bµ̂(wÂ) , where ûi = ui for all i ∈ M and ûi = 0 for all i ∈ M̂ \M .
We have that, for all (u, v), (u′, v′) ∈ Bµ(wA) , (u, v)domwA(u′, v′) if and only
if (û, v)domw

Â(û′, v′) .

We are now in disposition of defining the compatible subgames, which were
already introduced in Shubik (1984).
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Definition 1 Let (M ∪ M ′, wA) be an assignment game, µ ∈ M∗
A(M, M ′)

and let I ⊆ M and J ⊆ M ′ . The subgame ((M \I)∪(M \J)), wA|(M\I)×(M\J)
)

is a µ-compatible subgame of (M ∪ M ′, wA) if and only if

wA((M \ I) ∪ (M ′ \ J)) +
∑

i∈I

i assigned by µ

aiµ(i) +
∑

j∈J

j assigned by µ

aµ−1(j)j = wA(M ∪ M ′) .(5)

Notice that taking I = J = ∅ the game (M ∪ M ′, wA) can be looked at
as a µ-compatible subgame. Notice also that taking I = M and J = ∅ (or
J = M ′ and I = ∅ ) we always have a µ-compatible subgame that is the null
game.

In the sequel, and to simplify notation, we will write wA−I∪J
for the charac-

teristic function of the subgame with player set (M \ I) ∪ (M ′ \ J) . To say
that ((M \ I) ∪ (M ′ \ J), wA−I∪J

) is a µ-compatible subgame is equivalent
to saying that the restriction of µ to (M \ I) × (M ′ \ J) is still optimal
for the resulting submarket and moreover I ∩ µ−1(J) ⊆ {i ∈ M | aiµ(i) =
0} (or equivalently µ(I) ∩ J ⊆ {j ∈ M ′ | aµ−1(j)j = 0} ). As a result,
when ((M \ I) ∪ (M ′ \ J), wA−I∪J

) is a µ-compatible subgame, all agents
in (M \ I) ∩ µ−1(J) or (M ′ \ J) ∩ µ(I) are unassigned by µ|(M\I)×(M ′\J) .

All this means that any payoff vector (u, v) in the µ-principal section of the
compatible subgame 4 can be lifted to a payoff vector (û, v̂) in the µ-principal
section of the initial market, only by paying ûi = aiµ(i) to all i ∈ I∩µ−1(M ′) ,
v̂j = aµ−1(j)j to all j ∈ J ∩µ(M) , and zero to all agents in I ∪J not assigned
by µ . In other words, Bµ(wA−I∪J

) can be seen as a facet of Bµ(wA) .

The next example illustrates the definition of a compatible subgame. The
assignment matrix is taken from Shapley and Shubik (1972), where a picture
of the core of this game is provided.

Example 2 Let M = {1, 2, 3} be the set of buyers, M ′ = {1′, 2′, 3′} be the
set of sellers, and the assignment matrix be

1’ 2’ 3’

1

2

3

5 8 2

7 9 6

2 3 0

4 Throughout the paper, and with some abuse of notation, when referring to the
µ|(M\I)×(M ′\J)-principal section of the µ-compatible subgame ((M \ I) ∪ (M ′ \
J), wA−I∪J

) we will simply write Bµ(wA−I∪J
)

9



The only optimal matching is µ = {(1, 2′), (2, 3′), (3, 1′)} and all the non-
trivial µ-compatible subgames wA−I∪J

are the ones defined by the following
pairs (I, J) :

I = {2} , J = ∅ I = ∅ , J = {1′}

I = {2, 3} , J = ∅ I = ∅ , J = {1′, 2′}

I = {2} , J = {1′}

To obtain a µ-compatible subgame, usually I and J cannot be simultane-
ously non-empty. The reason is that if agents of both sides of the market are
removed (and these are not unassigned agents), then their optimal partners
by µ tend to become matched in the submarket and this in general contra-
dicts that the restriction of µ is an optimal matching of the submarket. There
are, nevertheless, exceptions that occur either when the market is not square
and one of the removed agents is an unassigned agent on the large side of the
market, or also when i ∈ I ∩ µ−1(M ′) , j ∈ J ∩ µ(M) and aµ−1(j)µ(i) = 0 .
This is what happens in this example, where I = {2} and J = {1′} define a
µ-compatible subgame, since aµ−1(1′)µ(2) = a33′ = 0 .

Notice that while the core of (M ∪ M ′, wA) lies in R
M × R

M ′
, the core of

any of its compatible subgames ((M \ I) ∪ (M \ J), wA−I∪J
) lies in a lower

dimensional space. However, any core allocation of a µ-compatible subgame
can be extended to a payoff vector in the µ-principal section of the initial
game. Let us denote by Ĉ(wA−I∪J

) this extended core,

Ĉ(wA−I∪J
) :=



























(u, v) ∈ Bµ(wA)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(u−I , v−J) ∈ C(wA−I∪J
) ,

ui = aiµ(i) for all i ∈ I assigned by µ ,

vj = aµ−1(j)j for all j ∈ J assigned by µ .



























(6)

Taking (6) into account, the reader will easily check that

Ĉ(wA−I∪J
) ⊇











(u, v) ∈ C(wA)

∣

∣

∣

∣

∣

∣

∣

ui = aiµ(i) for all i ∈ I assigned by µ and

vj = aµ−1(j)j for all j ∈ J assigned by µ











(7)

In order to compare the above Definition 1 with Shubik’s definition of compat-
ible subgame, we need to assume for a moment that (M∪M ′, wA) has as many
buyers as sellers and µ ∈ M∗

A(M, M ′) does not leave agents unassigned. Then
the extended core of a µ-compatible subgame ((M \ I) ∪ (M ′ \ J), wA−I∪J

)
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turns out to coincide with the core of another game (M ∪M ′, vQ) defined by

vQ(S) = wA(S ∩ Q) +
∑

i∈S∩I

aiµ(i) +
∑

j∈S∩J

aµ−1(j)j , for all S ⊆ M ∪ M ′,(8)

with Q = (M \ I) ∪ (M ′ \ J) . This game (M ∪ M ′, vQ) , satisfying vQ(M ∪
M ′) = wA(M ∪ M ′) , is what Shubik (1984) names a compatible subgame,
although it is not strictly speaking a subgame of (M ∪ M ′, wA) , since it is
defined over the same set of agents, and in general it is no more an assignment
game. Trivially, if for some Q ⊆ M ∪ M ′ , (M ∪ M ′, vQ) is compatible à la
Shubik, then ((M \ I)∪ (M ′ \J), wA−I∪J

) , where I ⊆ M and J ⊆ M ′ satisfy
Q = (M \ I)∪ (M ′ \J) , is a µ-compatible subgame according to Definition 1.

This aforementioned core coincidence is stated in the next proposition, to-
gether with a relationship between the extended core of the compatible sub-
game and the core of the initial market that strengthes that of equation (7).

Proposition 3 Let (M ∪M ′, wA) be an assignment game with as many buy-
ers as sellers and µ ∈ M∗

A(M, M ′) such that µ(M) = M ′ . Let I ⊆ M and
J ⊆ M ′ be such that ((M \ I)∪ (M ′ \ J), wA−I∪J

) is a µ-compatible subgame.
Then

(1) Ĉ(wA−I∪J
) = C(vQ) where vQ , with Q = (M \ I) ∪ (M ′ \ J) , is defined

as in (8).
(2) If (M ∪ M ′, wA) has a dominant diagonal, then

Ĉ(wA−I∪J
) =











(u, v) ∈ C(wA)

∣

∣

∣

∣

∣

∣

∣

ui = aiµ(i) for all i ∈ I and

vj = aµ−1(j)j for all j ∈ J











.

PROOF. 1) We first prove the inclusion C(vQ) ⊆ Ĉ(wA−(I∪J)
) . Take (u, v) ∈

C(vQ) and recall the definition of vQ in (8). For all j∗ ∈ J , if we take
S = M ∪ (M ′ \ {j∗}) we get (u, v)(S) ≥ vQ(S) = wA((M \ I) ∪ (M ′ \ J)) +
∑

i∈I aiµ(i) +
∑

j∈J\{j∗} aµ−1(j)j = wA(M ∪M ′)−aµ−1(j∗)j∗ =
∑

j∈M ′\{j∗} aµ−1(j)j ,
where the second equality follows from the µ-compatibility of the subgame
((M \ I) ∪ (M ′ \ J), wA−I∪J

) . Together with efficiency of (u, v) , this implies
vj∗ ≤ aµ−1(j∗)j∗ . Since we also have vj∗ ≥ vQ({j∗}) = aµ−1(j∗)j∗ , we get
vj∗ = aµ−1(j∗)j∗ . Similarly we get ui∗ = ai∗µ(i∗) for all i∗ ∈ I .

Moreover, taking S = {i, j} with i 6∈ I and j 6∈ J , we have ui + vj ≥
vQ({i, j}) = wA({i, j}) = aij . Since

∑

i∈M

ui +
∑

j∈M ′

vj = vQ(M ∪M ′) = wA((M \I)∪(M ′\J))+
∑

i∈I

aiµ(i) +
∑

j∈J

aµ−1(j)j

and ui = aiµ(i) for all i ∈ I and vj = aµ−1(j)j for all j ∈ J , we have

11



that
∑

i∈M\I ui +
∑

j∈M ′\J vj = wA((M \ I) ∪ (M ′ \ J)) and together with
ui + vj ≥ aij for all (i, j) ∈ µ ∩ (M \ I) × (M ′ \ J) , implies ui + vj = aij for
all (i, j) ∈ µ ∩ (M \ I) × (M ′ \ J) and ui = vj = 0 for all i or j that are
unassigned by µ|(M\I)×(M ′\J) . Therefore, (u−I , v−J) ∈ C(wA−I∪J

) and, since

(u, v) ∈ Bµ(wA) also holds, we obtain (u, v) ∈ Ĉ(wA−(I∪J)
) .

To prove the converse inclusion, take (u, v) ∈ Ĉ(wA−I∪J
) and notice first that,

by (6) and (8), (u, v)(M ∪ M ′) = vQ(M ∪ M ′) . Also, for all S ⊆ M ∪ M ′ ,

(u, v)(S)=
∑

i∈S∩M

ui +
∑

j∈S∩M ′

vj =
∑

i∈S∩(M\I)

ui +
∑

i∈S∩I

ui +
∑

j∈S∩(M ′\J)

vj +
∑

j∈S∩J

vj

≥wA(S \ (I ∪ J)) +
∑

i∈S∩I

aiµ(i) +
∑

j∈S∩J

aµ−1(j)j = vQ(S)

and thus (u, v) ∈ C(vQ) .

2) One inclusion has already been stated in (7). Assume now that (M ∪
M ′, wA) has a dominant diagonal and let us prove the converse inclusion. We
only need to see that if (u, v) ∈ Ĉ(wA−I∪J

) , then (u, v) ∈ C(wA) . Notice

first that from (u, v) ∈ Ĉ(wA−I∪J
) we already have by definition that (u, v) ∈

Bµ(wA) .

If (i, j) 6∈ µ , then we consider three cases. If i ∈ M \ I and j ∈ M ′ \ J ,
then from (u−I , v−J) ∈ C(wA−I∪J

) we get ui + vj ≥ aij . If j ∈ J , then
vj = aµ−1(j)j and, taking into account that (M ∪ M ′, wA) has a dominant
diagonal, we get ui + vj ≥ vj = aµ−1(j)j ≥ aij for all i ∈ M . Similarly, if
i ∈ I we have that ui + vj ≥ ui = aiµ(i) ≥ aij for all j ∈ M ′ . 2

Solymosi and Raghavan (2001) prove that the core of an assignment game
is a von Neumann and Morgenstern stable set if and only if the assignment
game has a dominant diagonal. When this is not the case, we wonder which
imputations must be added to the core to obtain a stable set. We prove in the
next section that what we must add are the extended cores of the compatible
subgames, for some fixed µ ∈ M∗

A(M, M ′) . Notice now that, by the above
proposition, when the assignment game has a dominant diagonal, the extended
cores of all the compatible subgames are already included in the core of the
initial market, and thus we are not really adding any new imputation to the
set of core imputations.

The next proposition provides a sufficient condition for a subgame to be µ-
compatible. When only one agent is removed, this condition is also necessary.

Proposition 4 Let (M∪M ′, wA) be an assignment game and µ ∈ M∗
A(M, M ′) .

12



(1) If I ⊆ M and J ⊆ M ′ are such that there exists (x, y) ∈ C(wA) with
xi = aiµ(i) for all i ∈ I assigned by µ and yj = aµ−1(j)j for all j ∈ J

assigned by µ , then ((M\I)∪(M ′\J), wA−I∪J
) is a µ-compatible subgame

of (M ∪ M ′, wA) .
(2) If i∗ ∈ M is assigned by µ , the subgame ((M \ {i∗}) ∪ M ′, wA−{i∗}

) is

µ-compatible if and only if uA
i∗ = ai∗µ(i∗) .

(3) If j∗ ∈ M ′ is assigned by µ , the subgame ((M ∪ M ′ \ {j∗}), wA−{j∗}
) is

µ-compatible if and only if vA
j∗ = aµ−1(j∗)j∗ .

PROOF. 1) Since (x, y) ∈ C(wA) and xi = aiµ(i) for all i ∈ I assigned by
µ , we have that yj = 0 for all j ∈ µ(I) . Similarly, from yj = aµ−1(j)j for all
j ∈ J assigned by µ , we get xi = 0 for all i ∈ µ−1(J) . Moreover, xi = 0
and yj = 0 for any i ∈ M or j ∈ M ′ unmatched by µ . Then,

∑

(i,j)∈µ|(M\I)×(M′\J)

aij =
∑

i∈M\I

xi +
∑

j∈M ′\J

yj ≥ wA((M \ I) ∪ (M ′ \ J))

which implies that
∑

(i,j)∈µ|(M\I)×(M′\J)
aij = wA((M \ I)∪ (M ′ \J)) . Moreover,

if i ∈ I ∩ µ−1(J) (and similarly if j ∈ J ∩ µ(I) ), we have xi = aiµ(i) and
yµ(i) = aiµ(i) . Since (x, y) ∈ C(wA) , xi + yµ(i) = 2aiµ(i) = aiµ(i) implies that
aiµ(i) = 0 . As a consequence, ((M \ I) ∪ (M ′ \ J), wA−I∪J

) is a µ-compatible
subgame.

2) We only need to prove the “only if” implication since the other one is a
particular case of part 1). So assume that ((M \ {i∗}) ∪ M ′, wA−{i∗}

) is a µ-
compatible subgame and µ(i∗) exists. Then, by Definition 1, wA(M ∪M ′) =
wA((M \ {i∗}) ∪ M ′) + ai∗µ(i∗) , and, as a consequence, taking into account
expression (1),

ai∗µ(i∗) = wA(M ∪ M ′) − wA((M \ {i∗}) ∪ M ′) = uA
i∗ .

Finally, part 3) is proved analogously. 2

An immediate consequence is that for a given assignment game (M ∪M ′, wA)
and a fixed optimal matching µ, a proper µ-compatible subgame always exists.

Corollary 5 Let (M∪M ′, wA) be an assignment game and µ ∈ M∗
A(M, M ′) .

(1) If |M | ≤ |M ′| and M = µ−1(M ′) , there exists i∗ ∈ M such that uA
i∗ =

ai∗µ(i∗) .
(2) If |M | ≤ |M ′| , there exists ∅ 6= I ⊆ M such that ((M \ I) ∪ M ′, wA−I

)
is a µ-compatible subgame.

(3) If |M ′| ≤ |M | and M ′ = µ(M) , there exists j∗ ∈ M ′ such that vA
j∗ =

aµ−1(j∗)j∗ .
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(4) If |M ′| ≤ |M | , there exists ∅ 6= J ⊆ M ′ such that (M ∪ (M ′ \ J), wA−J
)

is a µ-compatible subgame.

PROOF. To prove statement 1) notice that if uA
i < aiµ(i) for all i ∈ M ,

then vA
j > 0 for all j ∈ µ(M) and then the payoff vector (u′, v′) ∈ R

M ×R
M ′

defined by u′
i = uA

i + ε for all i ∈ M , v′
j = vA

j − ε for all j ∈ µ(M) and
v′

j = 0 for all j ∈ M ′ \ µ(M) is in C(wA) for ε > 0 small enough. This
contradicts uA

i being the maximum core payoff of buyer i . All this means
that there exists i∗ ∈ M such that uA

i∗ = ai∗µ(i∗) .

Let us now prove statement 2). If M = µ−1(M) , then by 1) and part 2)
of Proposition 4 we have that, taking I = {i∗} with ui∗ = ai∗µ(i∗) , ((M \
I) ∪ M ′, wA−I

) is a µ-compatible subgame. Otherwise, that is if there exists
i ∈ M unmatched by µ , then it follows straightforwardly from Definition 1
that taking I = {i} the subgame ((M \ I) ∪ M ′, wA−I

) is µ-compatible. 2

In general, it is not true that a µ-compatible subgame of a µ-compatible
subgame is in its turn a µ-compatible subgame of the initial game, unless we
impose some additional condition. For instance, in Example 2, ((M \ {2}) ∪
(M ′ \ {3′}), wA−{2,3′}

) is a µ-compatible subgame of ((M \ {2})∪M ′, wA−{2}
)

but not of (M ∪ M ′, wA) .

Remark 6 Let (M ∪M ′, wA) be an assignment game, µ ∈ M∗
A(M, M ′) and

((M\I1)∪(M ′\J1), wA−I1∪J1
) a µ-compatible subgame of (M∪M ′, wA) , where

I1 ⊆ M and J1 ⊆ M ′ . Let it also be I ′
2 ⊆ M \ I1 and J ′

2 ⊆ M ′ \ J1 such that
µ(I1) ∩ J ′

2 ⊆ {j ∈ M ′ | aµ−1(j)j = 0} and I ′
2 ∩ µ−1(J1) ⊆ {i ∈ M | aiµ(i) = 0} ,

and take I2 = I1 ∪ I ′
2 and J2 = J1 ∪ J ′

2 . If ((M \ I2) ∪ (M ′ \ J2), wA−I2∪J2
)

is a µ-compatible 5 subgame of ((M \ I1) ∪ (M ′ \ J1), wA−I1∪J1
) , then ((M \

I2) ∪ (M ′ \ J2), wA−I2∪J2
) is a µ-compatible subgame of (M ∪ M ′, wA) .

To see that, let us first write µ1 = µ ∩ (M \ I1) × (M ′ \ J1) . Then, wA((M \
I2) ∪ (M ′ \ J2)) +

∑

i∈I2∩µ−1(M ′) aiµ(i) +
∑

j∈J2∩µ(M ′) aµ−1(j)j = wA((M \ I2) ∪
(M ′ \ J2)) +

∑

i∈I′2∩µ−1(M ′) aiµ(i) +
∑

j∈J ′
2∩µ(M) aµ−1(j)j +

∑

i∈I1∩µ−1(M ′) aiµ(i) +
∑

j∈J1∩µ(M) aµ−1(j)j = wA(((M\I1)\I
′
2)∪((M ′\J1)\J

′
2))+

∑

i∈I′2∩µ−1
1 (M ′\J1) aiµ1(i)+

∑

j∈J ′
2∩µ1(M\I1) aµ−1

1 (j)j +
∑

i∈I1∩µ−1(M ′) aiµ(i) +
∑

j∈J1∩µ(M) aµ−1(j)j = wA((M \

I1)∪(M ′\J1))+
∑

i∈I1∩µ−1(M ′) aiµ(i)+
∑

j∈J1∩µ(M) aµ−1(j)j = wA(M∪M ′) , where
the first equality follows from the definition of I ′

2 and J ′
2 and the assumptions

µ(I1) ∩ J ′
2 ⊆ {j ∈ M ′ | aµ−1(j)j = 0} and I ′

2 ∩ µ−1(J1) ⊆ {i ∈ M | aiµ(i) = 0} ,
the third equality follows from the fact that ((M \ I2)∪ (M ′ \ J2), wA−I2∪J2

) is

5 With some abuse of notation, when saying that ((M \ I2) ∪ (M ′ \ J2), wA−I2∪J2
)

is a µ-compatible subgame of ((M \ I1) ∪ (M ′ \ J1), wA−I1∪J1
) , we mean that it is

a µ|(M\I1)×(M ′\J1)-compatible subgame of ((M \ I1) ∪ (M ′ \ J1), wA−I1∪J1
) .
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a µ-compatible subgame of ((M \ I1)∪ (M ′ \ J1), wA−I1∪J1
) , and the forth one

from the µ-compatibility of ((M \ I1) ∪ (M ′ \ J1), wA−I1∪J1
) .

Now that the existence of µ-compatible subgames is guaranteed, we must
analyze the relative position of the cores of a game and those µ-compatible
subgames where only agents of one side of the market have been removed.
When passing from ((M \ I) ∪ M ′, wA−I

) to (M ∪ M ′, wA) , a new set of
buyers enters the market and thus, by the type-monotonicity of the sellers-
optimal core allocation (and also of the buyers-optimal core allocation), none
of the already existing buyers can be better off, and none of the sellers can be
worse off (Roth and Sotomayor, 1990):

u
A−I

i ≥ uA
i and u

A−I

i ≥ uA
i for all i ∈ M \ I , (9)

v
A−I

j ≤ vA
j and v

A−I

j ≤ vA
j for all j ∈ M ′ . (10)

Similarly, if J ⊆ M ′ , then

u
A−J

i ≤ uA
i and u

A−J

i ≤ uA
i for all i ∈ M, (11)

v
A−J

j ≥ vA
j and v

A−J

j ≥ vA
j for all j ∈ M ′ \ J . (12)

The following statement can be deduced as a consequence of a more general
result in Mo (1988) but we include a simpler proof for our particular frame-
work. What this proposition shows is that the cores of a game and some of its
µ-compatible subgames are connected in a particular way, and this fact will
be used in the proof of Lemma 15.

Proposition 7 Let (M∪M ′, wA) be an assignment game and µ ∈ M∗
A(M, M ′) .

(1) If I ⊆ M and uA
i = aiµ(i) for all i ∈ I , then the payoff vector (u, v) ,

where ui = u
A−I

i for i ∈ M \ I , ui = aiµ(i) for all i ∈ I and vj = v
A−I

j

for j ∈ M ′ , belongs to C(wA) .
(2) If J ⊆ M ′ and vA

j = aµ−1(j)j for all j ∈ J , then the payoff vector (u, v) ,

where ui = u
A−J

i for i ∈ M , vj = aµ−1(j)j for j ∈ J and vj = v
A−J

j for
j ∈ M ′ \ J , belongs to C(wA) .

PROOF. We prove part 1) since 2) is proved analogously. Since uA
i = aiµ(i)

for all i ∈ I (notice that by assumption all agents in I are assigned by µ ),
we have from Proposition 4 that ((M \ I) ∪ M ′, wA−I

) is a µ-compatible
subgame of (M ∪ M ′, wA) and, by (6) and (7), (uA

−I , v
A) ∈ C(wA−I

) . As a
consequence, since (uA−I , vA−I ) is the sellers-optimal core allocation of the

subgame ((M \ I) ∪ M ′, wA−I
) , it holds v

A−I

j ≥ vA
j for all j ∈ M ′ .
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Let us now check that (u, v) ∈ C(wA) . From (uA−I , vA−I ) ∈ C(wA−I
) we

have ui + vj ≥ aij if (i, j) ∈ (M \ I) × M ′ , ui + vµ(i) = aiµ(i) if (i, j) ∈
µ ∩ (M \ I) × M ′ . Also, from the µ-compatibility of ((M \ I) ∪ M ′, wA−I

)

we have vj = v
A−I

j = 0 for all j ∈ µ(I) and thus, since ui = aiµ(i) for all
i ∈ I , we get ui + vµ(i) = aiµ(i) for all i ∈ I . Moreover, if i ∈ M \ I or
j ∈ M ′ are unassigned by µ , they are also unassigned by µ|(M\I)×M ′ and
thus ui = vj = 0 . Finally, for i ∈ I and j ∈ M ′ we have

ui + vj = aiµ(i) + v
A−I

j ≥ uA
i + vA

j ≥ aij . 2

There is one more property of the set of µ-compatible subgames that will be
crucial to prove the stability of the set proposed in the next section: under the
assumption that aij > 0 for all (i, j) ∈ µ , if ((M\I1)∪(M ′\J1), wA−I1∪J1

) and
((M \ I2)∪ (M ′ \ J2), wA−I2∪J2

) , with I1 ⊇ I2 and J1 ⊇ J2 , are µ-compatible
subgames of (M ∪M ′, wA) , then the subgame ((M \ I1)∪ (M ′ \J2), wA−I1∪J2

)
is also µ-compatible for (M ∪ M ′, wA) .

The proof of this rather technical result has been consigned to the Appendix
(see Lemma 14). We are now prepared to prove the existence of stable sets for
the assignment game.

4 The stable set in the µ-principal section

Since a core allocation cannot be dominated by any imputation, a stable set
must always contain the core. From Solymosi and Raghavan (2001) we know
that the core of an assignment game forms a stable set if and only if the
assignment matrix has a dominant diagonal. Since the core is always internally
stable, when the matrix has not a dominant diagonal the core is not externally
stable. In this case we must add some imputations to the core in such a way
that the new set preserves the internal stability and at the same time the
additional imputations are enough to guarantee external stability.

For a fixed optimal matching µ of a given assignment game (M ∪ M ′, wA) ,
Shubik (1984) suggests to join to the core of the game the extended cores of
all its µ-compatible subgames, in order to obtain a stable set. If

Cµ
A = {(I, J) ∈ 2M × 2M ′

| ((M \ I) ∪ (M ′ \ J), wA−I∪J
) is a µ-compatible subgame}(13)

then consider

V µ(wA) =
⋃

(I,J)∈Cµ
A

Ĉ(wA−I∪J
) . (14)
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Notice first that taking I = J = ∅ , Ĉ(wA−I∪J
) = C(wA) and thus the set

V µ(wA) contains the core of the initial game. Moreover, by definition, V µ(wA)
is included in the µ-principal section. Before proving the stability of V µ(wA)
let us illustrate this set by means of an example.

Example 8 Let it be the assignment market with set of buyers M = {1, 2} ,
set of sellers M ′ = {1′, 2′, 3′} and defined by the matrix

1’ 2’ 3’

1

2

6 2 1

4 3 1

Notice first that there exists only one optimal matching and it is µ = {(1, 1′), (2, 2′)} .
Thus, v3′ = 0 in each core allocation and Figure 8 represents in dark grey
the projection of C(wA) to the space of the buyers’ payoffs. Since there are
agents with positive minimum core payoff, (u, v) = (1, 1; 1, 0, 0) , this core
is not a stable set. But there are several µ-compatible subgames, those ob-
tained by removing all the agents in one (and only one) of the following
sets: K1 = {2} , K2 = {1, 2} , K3 = {3′} , K4 = {2′, 3′} , K5 = {1′, 3′} ,
K6 = {1′, 2′, 3′} and K7 = {2, 3′} . The extended core of the compatible sub-
game ((M \K1)∪M ′, wA−K1

) is the segment with extreme points (2, 3; 4, 0, 0)
and (6, 3; 0, 0, 0) , while the extended core of (M ∪ (M ′ \K3), wA−K3

) adds to
C(wA) the area shadowed in light grey. The extended cores of the remaining
µ-compatible subgames are included in Ĉ(wA−K1

) ∪ Ĉ(wA−K3
) and thus the

union of all these cores is the set V µ(wA) that is a stable set for the initial
assignment market.

u2

u1(0, 0)

u = (1, 1)

u = (5, 3)u = (2, 3) a = (6, 3)

Fig. 1.

As also mentioned in Shubik (1984), it is straightforward to see that, given
an assignment game (M ∪ M ′, wA) , a payoff vector (u, v) in the µ-principal
section belongs to V µ(wA) if and only if for every pair (i, j) ∈ µ−1(M ′)×µ(M)
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one of the following holds:

(i) ui + vj ≥ aij ,

(ii) ui = aiµ(i) or

(iii) vj = aµ−1(j)j .

(15)

The internal stability of the set V µ(wA) is proved in Shubik (1984). What
is in fact proved is that V µ(wA) is undominated by any imputation in the
µ-principal section. We include it here for the sake of comprehensiveness.

Proposition 9 (Shubik, 1984) Let (M ∪ M ′, wA) be an assignment game
and µ ∈ M∗

A(M, M ′) . The set V µ(wA) is internally stable.

PROOF. Take (u, v), (u′, v′) ∈ V µ(wA) and assume (u′, v′)domwA

{i,j}(u, v) for
some (i, j) ∈ M × M ′ . Then , ui < u′

i , vj < v′
j and u′

i + v′
j ≤ aij . It must

be that i ∈ µ−1(M) because if i 6∈ µ−1(M) then from (u′, v′) ∈ Bµ(wA)
we get u′

i = 0 , which contradicts ui < u′
i . A similar argument shows that

j ∈ µ(M) . Again from (u′, v′) ∈ Bµ(wA) we obtain ui < aiµ(i) , vj < aµ−1(j)j

and ui + vj < aij , in contradiction with (u, v) ∈ V µ(wA) by (15). 2

The external stability of V µ(wA) will be proved in several steps. Notice first
that the two extreme imputations (a, 0) , where ai = aiµ(i) for all i ∈ µ−1(M ′)
and ai = 0 if i ∈ M \ µ−1(M ′) , and (0, a) , where aj = aµ−1(j)j for all
j ∈ µ(M) and aj = 0 if j ∈ M ′ \ µ(M) , must belong to any stable set
contained in a principal section. The reason is that such an imputation will
never be dominated by another imputation (u, v) ∈ Bµ(wA) since this would
imply ui > aiµ(i) for some i ∈ M , or vj > aµ−1(j)j for some j ∈ M ′ . Next
proposition proves that in fact this two points are connected through a curve
in V µ(wA) . Moreover, the imputations in this curve suffice to dominate all
the imputations outside the µ-principal section.

Proposition 10 Let (M ∪M ′, wA) be an assignment game with |M | = |M ′|
and µ ∈ M∗

A(M, M ′) that does not leave agents unassigned. Then,

(1) There exists a connected piecewise linear curve L in V µ(wA) passing
through (a, 0) and (0, a) .

(2) For all (u, v) ∈ I(wA) \ Bµ(wA) there exists (u′, v′) ∈ L such that
(u′, v′) domwA(u, v) .

Part 2) of the above proposition is proved in Shubik (1984), based on part 1)
that is also stated there but without a proof. For the sake of comprehensiveness
we include the complete proof of Proposition 10 in the Appendix.
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In order to continue proving the external stability of V µ(wA) , and since
C(wA) ⊆ V µ(wA) , we begin by analyzing which imputations are dominated
by some core allocation. To this end we define the subset Rµ(wA) of the
µ-principal section which is comprised inside the core bounds: given an as-
signment game (M ∪ M ′, wA) and µ ∈ M∗

A(M, M ′) ,

Rµ(wA) = {(u, v) ∈ Bµ(wA) | uA
i ≤ ui ≤ uA

i for all i ∈ M }. (16)

Consequently, for all (u, v) ∈ Rµ(wA) we also have vA
j ≤ vj ≤ vA

j for all
j ∈ M ′ .

Notice that,

C(wA) ⊆ Rµ(wA) ⊆ Bµ(wA) ⊆ I(wA) .

We find out that the only imputations in V µ(wA) that are inside the core
bounds are the core imputations, and that these imputations dominate any
imputation in Rµ(wA) .

Proposition 11 Let (M∪M ′, wA) be an assignment game and µ ∈ M∗
A(M, M ′) .

(1) V µ(wA) ∩ Rµ(wA) = C(wA) .
(2) For all (u, v) ∈ Rµ(wA) \C(wA) , there exists (u′, v′) ∈ C(wA) such that

(u′, v′) domwA(u, v) .

PROOF. 1) By (14) and (16), C(wA) ⊆ V µ(wA)∩Rµ(wA) . To prove the con-
verse inclusion, take (u, v) ∈ V µ(wA) ∩ Rµ(wA) and assume (u, v) 6∈ C(wA) .
Since (u, v) belongs to the µ-principal section Bµ(wA) it must be that
ui + vj < aij for some (i, j) ∈ M × M ′ . Then, since (u, v) ∈ V µ(wA) there
exists a µ-compatible subgame ((M \ I) ∪ (M ′ \ J), wA−I∪J

) such (u, v) ∈

Ĉ(wA−I∪J
) . Then, either i ∈ I or j ∈ J . Assume without loss of generality

that i ∈ I . If i is matched by µ , by (6) we have ui = aiµ(i) and thus, from
(u, v) ∈ Rµ(wA) , ui = uA

i and together with vA
j ≤ vj leads to the contradic-

tion uA
i + vA

j < aij . On the other hand, if i is not matched by µ , and taking
into account that (u, v) ∈ Bµ(wA) , we also obtain ui = uA

i and reach the
same contradiction.

2) We may assume without loss of generality that A is a square matrix (see
page 8), and that µ does not leave agents unassigned. 6 Let (M ∪ M ′, wAe)
be the related exact assignment game. Remember also from (4) that ae

ij =
ar

ij −uA
i − vA

j for all i ∈ M , j ∈ M ′ . Since µ is also an optimal matching for

6 Once A is square, if µ does leave agents i ∈ M and j ∈ M ′ unassigned,
it must be that aij = 0 . Then we consider µ′ = µ ∪ {(i, j)} and notice that
Bµ(wA) = Bµ′

(wA) and thus Rµ(wA) = Rµ′
(wA) .
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(M, M ′, Ae) and for (M, M ′, Ar) , and C(wA) = {(uA, vA)} + C(wAe) , given
(u, v) ∈ Rµ(wA) \ C(wA) , we have (u − uA, v − vA) ∈ Bµ(wAe) \ C(wAe) .

Since (M ∪ M ′, wAe) has a dominant diagonal, by Solymosi and Raghavan
(2001), there exists (u′, v′) ∈ C(wAe) , and there exists (i∗, j∗) ∈ M × M ′

such that (u′, v′) dom
wAe

{i∗,j∗}(u − uA, v − vA) .

This means that

u′
i∗ > ui∗ − uA

i∗ ,

v′
j∗ > vj∗ − vA

j∗ , and

u′
i∗ + v′

j∗ ≤ ae
i∗j∗ .

(17)

Let us now define

(ũ, ṽ) = (u′, v′) + (uA, vA) . (18)

Notice that (ũ, ṽ) ∈ C(wA) = C(wAr) and, by (17),

ũi∗ = u′
i∗ + uA

i∗ > ui∗ , ṽj∗ = v′
j∗ + vA

j∗ > vj∗ and

ũi∗ + ṽj∗ = u′
i∗ + v′

j∗ + uA
i∗ + vA

j∗ ≤ ae
i∗j∗ + uA

i∗ + vA
j∗ = ar

i∗j∗ ,
(19)

which implies (ũ, ṽ) dom
wAr

{i∗,j∗}(u, v) .

We must prove that (u, v) is also dominated by a core allocation in terms of
the game wA instead of wAr . From (3), we have that either ar

i∗j∗ = ai∗j∗ ,
and we are done, or

ũi∗ + ṽj∗ ≤ ar
i∗j∗ = ai∗µ(i1) +ai1µ(i2) + · · ·+airj∗ −ai1µ(i1)−ai2µ(i2)−· · ·−airµ(ir)

for some i1, i2, . . . , ir ∈ M \ {i∗, µ−1(j∗)} and different.

In this case, since (ũ, ṽ) ∈ Bµ(wA) , ũil + ṽµ(il) = ailµ(il) for l ∈ {1, 2, . . . , r}
and we obtain

ũi∗ + ṽj∗ + ũi1 + ṽµ(i1) + · · ·+ ũir + ṽµ(ir) ≤ ai∗µ(i1) + ai1µ(i2) + · · ·+ airj∗ .

Together with (ũ, ṽ) ∈ C(wA) , this implies

ũi∗ + ṽµ(i1) = ai∗µ(i1) ,

ũil + ṽµ(il+1) = ailµ(il+1), for all l ∈ {1, 2, . . . , r − 1} ,

ũir + ṽj∗ = airj∗ .
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• If ṽµ(i1) > vµ(i1) , and since ũi∗ > ui∗ , we are done because (ũ, ṽ) domwA

{i∗,µ(i1)}(u, v) .

• If ṽµ(i1) = vµ(i1) = vA
µ(i1) , then, since (ũ, ṽ) and (uA, vA) belong to C(wA) ,

uA
i∗ ≤ ũi∗ = ai∗µ(i1) − ṽµ(i1) = ai∗µ(i1) − vA

µ(i1) ≤ uA
i∗ .

But then, by (19), ui∗ < ũi∗ = uA
i∗ contradicts (u, v) ∈ Rµ(wA) .

• If ṽµ(i1) = vµ(i1) < vA
µ(i1) , define

uε
i = ũi − ε and vε

µ(i) = ṽµ(i) + ε for all i ∈ M such that ṽµ(i) < vA
µ(i) ,

uε
i = ũi and vε

µ(i) = ṽµ(i) for all i ∈ M such that ṽµ(i) = vA
µ(i) .

Notice that, for ε > 0 small enough (uε, vε) ∈ C(wA) . Indeed, if ṽµ(i) <

vA
µ(i) , we have ũi > uA

i ≥ 0 and thus, for ε small enough, uε
i ≥ 0 . Also,

uε
i = ũi ≥ 0 for all i ∈ M such that ṽµ(i) = vA

µ(i) , vε
j ≥ 0 for all j ∈ M ′

and uε
i + vε

µ(i) = aiµ(i) for all i ∈ M . If (i, j) ∈ M × M ′ , (i, j) 6∈ µ , is such

that either ṽµ(i) < vA
µ(i) and ṽj < vA

j or ṽµ(i) = vA
µ(i) and ṽj = vA

j , it holds

uε
i + vε

j = ũi + ṽj ≥ aij . If ṽµ(i) = vA
µ(i) and ṽj < vA

j , then uε
i + vε

j > ũi + ṽj ≥

aij . Finally, if ṽµ(i) < vA
µ(i) and ṽj = vA

j , we prove that ũi + ṽj > aij and
thus, for ε > 0 small enough we can guarantee uε

i + vε
j ≥ aij . The reason is

that if ũi + ṽj = aij , then

uA
i ≤ ũi = aij − ṽj = aij − vA

j ≤ uA
i

where the last inequality follows from (uA, vA) ∈ C(wA) . Thus ũi = uA
i , but

this implies ṽµ(i) = vA
µ(i) , in contradiction with the assumption. Moreover, for

ε > 0 small enough we can take (uε, vε) ∈ C(wA) satisfying vε
µ(i1) > ṽµ(i1) =

vµ(i1) and, by (19), also uε
i∗ > ui∗ , and therefore (uε, vε) domwA

{i∗,µ(i1)}(u, v) .

• If ṽµ(i1) < vµ(i1) , then, since both (ũ, ṽ) and (u, v) are in the µ-principal
section, we get ũi1 > ui1 , and we repeat the argument above with the mixed
pair {i1, µ(i2)} . Either we find that there exists (u′, v′) ∈ C(wA) such that
(u′, v′) domwA

{il,µ(il+1)}(u, v) for some l ∈ {1, 2, . . . , r− 1} or we reach ũir > uir

and, since ṽj∗ > vj∗ and ũir+ṽj∗ = airj∗ , we obtain (ũ, ṽ) domwA

{ir ,j∗}(u, v) . 2

The final (and most dificult) step is to prove that all imputations not in
V µ(wA) that are in the µ-principal section but outside the limits of the core
bounds, are also dominated by elements of V µ(wA) .

Theorem 12 Let (M∪M ′, wA) be an assignment game and µ ∈ M∗
A(M, M ′)

an optimal matching. Then V µ(wA) is a von Neumann-Morgenstern stable
set.
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PROOF. We first consider the case where there are as many buyers as sellers
and moreover aij > 0 for all (i, j) ∈ µ .

The internal stability of the set V µ(wA) is proved in Proposition 9 following
Shubik (1984). As for the external stability, Proposition 10, also based in
Shubik (1984), shows that for all (u, v) ∈ I(wA)\Bµ(wA) there exists (u′, v′) ∈
V µ(wA) such that (u′, v′) domwA(u, v) .

In Proposition 11 we show how to dominate the imputations in Rµ(wA) \
V µ(wA) , but it remains to prove that any imputation not in V µ(wA) that is
in the µ-principal section but outside the limits of the core bounds, is also
dominated by an element of V µ(wA) . This proof is rather large and technical,
and it is consigned to the Appendix.

We now consider the general case, that is when either aiµ(i) = 0 for some
i ∈ M or there exist unmatched agents. In this case, let it be I ′ = {i ∈ M |
aiµ(i) = 0} and J ′ = µ(I ′) , and define I = I ′ ∪ {i ∈ M | i unmatched by µ} ,
and also J = J ′∪{j ∈ M ′ | j unmatched by µ} . With some abuse of notation
we also denote by µ the restriction of µ to (M \ I) × (M ′ \ J) . Then, if we
consider the submarket ((M \ I)∪ (M ′ \ J), wA′) where A′ = A|(M\I)×(M ′\J) ,

we have just proved that V ′ = V µ(wA′) =
⋃

(R,S)∈Cµ

A′
Ĉ(wA′

−R∪S
) is a stable

set of ((M \ I) ∪ (M ′ \ J), wA′) . Notice also that

Bµ(wA) =











(u, v) ∈ R
M × R

M ′

∣

∣

∣

∣

∣

∣

∣

(u−I , v−J) ∈ Bµ(wA′) ,

ui = 0 for all i ∈ I, vj = 0 for all j ∈ J











.

We now claim that the set

V =











(u, v) ∈ R
M × R

M ′

∣

∣

∣

∣

∣

∣

∣

(u−I , v−J) ∈ V ′ ,

ui = 0 for all i ∈ I, vj = 0 for all j ∈ J











is a stable set for the initial market (M∪M ′, wA) . To prove the internal stabil-
ity of V , notice that if (u, v), (u′, v′) ∈ V are such that (u, v)domwA

{i,j}(u
′, v′) ,

for some (i, j) ∈ M×M ′ , then i 6∈ I and j 6∈ J , and thus (u−I , v−J)dom
wA′

{i,j}(u
′
−I , v

′
−J)

contradicts internal stability of V ′ .

To prove the external stability of V , take (u, v) ∈ I(wA)\V and consider two
different cases. Take first (u, v) ∈ I(wA) \ Bµ(wA) . Then it is immediate to
see that if L′ is a connected piecewise linear curve from (a−I , 0) to (0, a−J)
included in V ′ , then L = {(u, v) ∈ R

M × R
M ′

| (u−I , v−J) ∈ L′ , ui =
0 for all i ∈ I , vj = 0 for all j ∈ J} is a connected piecewise linear curve
from (a, 0) to (0, a) and contained in V . The existence of L′ guarantees
the existence of L and thus, as in Proposition 10, we obtain that there exists
(u′, v′) ∈ L such that (u′, v′)domwA(u, v) .
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Secondly, if (u, v) ∈ Bµ(wA)\V , then (u−I , v−J) ∈ Bµ(wA′)\V ′ and by the ex-
ternal stability of V ′ there exists (u′

−I , v
′
−J) ∈ V ′ such that (u′

−I , v
′
−J)dom

wA′

{i,j}(u−I , v−J) .
As a consequence, the payoff vector (x, y) ∈ V defined by (x−I , y−J) =
(u′

−I , v
′
−J) , xi = 0 for all i ∈ I and yj = 0 for all j ∈ J , satisfies

(x, y)domwA

{i,j}(u, v) , and this finishes the proof of the stability of V .

Finally we show that not only the assignment game (M ∪ M ′, wA) has a
stable set V but also that V = V µ(wA) =

⋃

(R,S)∈Cµ
A

Ĉ(wA−R∪S
) , as claimed

by the theorem. Notice first that, by Definition 1 and the definition of the
sets I and J , ((M \ I) ∪ (M ′ \ J), wA−I∪J

) is a µ-compatible subgame of
(M ∪M ′, wA) . Moreover, by Remark 6, any µ-compatible subgame of ((M \
I) ∪ (M ′ \ J), wA−I∪J

) is also a µ-compatible subgame of (M ∪ M ′, wA) .
This implies V ⊆ V µ(wA) . Now, if there existed (u, v) ∈ V µ(wA) \ V , then
the external stability of V would imply the existence of (u′, v′) ∈ V such
that (u′, v′)domwA(u, v) , but this would contradict the internal stability of
V µ(wA) , which has been established in Proposition 9. 2

An important consequence of the above proof is that given an assignment mar-
ket and an optimal matching µ , if there exist unassigned agents or matched
pairs with null profit, then all these agents can be removed and the stable
set associated to the corresponding submatrix provides an stable set of the
initial game that moreover coincides with the union of the extended cores of
the µ-compatible subgames of the initial market (see for instance Example 8).

As a final application, we now obtain a stable set for the assignment game
proposed in Shapley and Shubik (1972), already recalled in our Example 2:

V µ(wA) = C(wA)∪Ĉ(wA−{2}
)∪Ĉ(wA−{2,3}

)∪Ĉ(wA−{1′}
)∪Ĉ(wA−{1′2′}

)∪Ĉ(wA−{2,1′}
) .

Figure 2 illustrates this stable set.
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0 2 4 6 8
0

6

2

4

3 5

5

u3(= 2 − v1)

u1(= 8 − v2)

u2(= 6 − v3)

Fig. 2.
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The parallelepiped [0, 8]×[0, 6]×[0, 2] is the projection of the principal section
Bµ(wA) to the space of the buyers’ payoff. To obtain the sellers’ payoffs,
remember that µ = {(1, 2′), (2, 3′), (3, 1′)} , and ui+vµ(i) = aiµ(i) for all i ∈ M

and (u, v) ∈ Bµ(wA) . Inside this parallelepiped we represent the core C(wA)
in dark grey, with buyers-optimal core allocation (u, v) = (5, 6, 1; 1, 3, 0) and
sellers-optimal core allocation (u, v) = (3, 5, 0; 2, 5, 1) . The shadowed area in
the face u2 = a23 = 6 is the extended core of one µ-compatible subgame,
Ĉ(wA−{2}

) ; and the shadowed area in the face v1 = a31 = 2 (or equivalently

u3 = 0 ) is the extended core of another µ-compatible subgame, Ĉ(wA−{1′}
) .

Finally, the segment from (5,6,2;0,3,0) to (8,6,2;0,0,0) is Ĉ(wA−{2,3}
) , while

the segment from (0,4,0;2,8,2) to (0,0,0;2,8,6) is Ĉ(wA−{1′2′}
) . In this example,

Ĉ(wA−{2,1′}
) ⊆ Ĉ(wA−{1′}

) .

Let us now consider the usual partial order in the µ-principal section. Given
(u, v), (u′, v′) ∈ Bµ(wA) , we say (u, v) ≤M (u′, v′) if and only if ui ≤ u′

i for
all i ∈ M and vj ≥ v′

j for all j ∈ M ′ , and then define

u∗
i = max{ui, u

′
i} and u∗i = min{ui, u

′
i}, for all i ∈ M ,

v∗
j = max{vj, v

′
j} and v∗j = min{vj, v

′
j}, for all j ∈ M ′ .

(20)

It is known from Shapley and Shubik (1972) that if (u, v) and (u′, v′) are
core allocations, then the payoff vectors (u∗, v∗) and (u∗, v

∗) also belong to
the core, and this is why C(wA) is a lattice. Theorem 13 states that this is
also true regarding the stable set.

Theorem 13 Let (M∪M ′, wA) be an assignment game and µ ∈ M∗
A(M, M ′) .

If (u, v), (u′, v′) ∈ V µ(wA) , then (u∗, v∗) ∈ V µ(wA) and (u∗, v
∗) ∈ V µ(wA) .

PROOF. We will prove that (u∗, v∗) ∈ V µ(wA) , since (u∗, v
∗) ∈ V µ(wA) is

proved analogously and thus left to the reader.

If (u, v), (u′, v′) ∈ V µ(wA) , there exist I1, I2 ⊆ M and J1, J2 ∈ M ′ such
that ((M \ I1) ∪ (M ′ \ J1), wA−I1∪J1

) and ((M \ I2) ∪ (M ′ \ J2), wA−I2∪J2
) are

µ-compatible subgames of (M ∪M ′, wA) , (u, v) ∈ Ĉ(wA−I1∪J1
) and (u′, v′) ∈

Ĉ(wA−I2∪J2
) .

Let us see that (u∗, v∗) belongs to Bµ(wA) (this follows straightforwardly
from (u, v), (u′, v′) ∈ Bµ(wA) ) and moreover satisfies one of the conditions in
(15).
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Let us now take (i, j) ∈ µ−1(M)×µ(M) . From (6), for all i ∈ I1∪I2 assigned
by µ , we have u∗

i = max{ui, u
′
i} = aiµ(i) , and for all j ∈ J1 ∩ J2 assigned by

µ , it holds vj = v′
j = aµ−1(j)j and thus v∗j = min{vj, v

′
j} = aµ−1(j)j .

So let us assume that i 6∈ I1 ∪ I2 and j 6∈ J1 ∩ J2 . This means that i 6∈ I1 ,
i 6∈ I2 and either j 6∈ J1 or j 6∈ J2 . In the first case (i, j) ∈ (M\I1)×(M ′\J1) ,
and in the second case (i, j) ∈ (M \ I2)× (M ′ \ J2) . We will prove that in the
first case ui + vj ≥ aij holds (the proof in the second case is similar and left
to the reader). If v∗j = vj , then u∗

i +v∗j ≥ ui +vj ≥ aij , where the inequality

follows from (u, v) ∈ Ĉ(wA−I1∪J1
) . If vj∗ = v′

j < vj , we can guarantee that
j 6∈ J2 and then u∗

i + v∗j ≥ u′
i + v′

j ≥ aij , where the inequality follows from

(u′, v′) ∈ Ĉ(wA−I2∪J2
) . 2

Notice that the buyers-optimal and the sellers-optimal allocations of V µ(wA)
as a lattice are always (a, 0) and (0, a) .

Let us finally remark that the stable set V µ(wA) is the only one contained
in the µ-principal section, and thus, the only one that excludes third-party
payments (according to µ ). The reason is that, by the proof of Proposition
9, the elements in V µ(wA) cannot be dominated by any imputation in the
µ-principal section. Therefore, V µ(wA) must be included in any stable set
V contained in Bµ(wA) . But then, by the external stability of V µ(wA) , the
elements in V \ V µ(wA) would be dominated by elements in V µ(wA) in con-
tradiction with the internal stability of V . This fact was already mentioned
in Shubik (1984).

A Appendix

Lemma 14 Let (M∪M ′, wA) be an assignment game, µ ∈ M∗
A(M, M ′) and

aij > 0 for all (i, j) ∈ µ . If (I1, J1) ∈ Cµ
A and (I2, J2) ∈ Cµ

A , with I1 ⊇ I2

and J1 ⊇ J2 , then (I1, J2) ∈ Cµ
A .

PROOF. Let us assume that ((M \ I1)) ∪ (M ′ \ J2)), wA−I1∪J2
) is not a

µ-compatible subgame. From (I1, J1) ∈ Cµ
A and (I2, J2) ∈ Cµ

A , and taking
into account by assumption that {i ∈ M | aiµ(i) = 0} = ∅ , we have I1 ∩
µ−1(J1) = ∅ and I2 ∩ µ−1(J2) = ∅ . Now, since I1 ∩ µ−1(J2) ⊆ I1 ∩ µ−1(J1) ,
we obtain I1 ∩ µ−1(J2) = ∅ . Thus, (I1, J2) 6∈ Cµ

A means that there exists
µ′ ∈ M(M \ I1, M

′ \ J2) such that

∑

(i,j)∈µ′

aij >
∑

(i,j)∈µ|(M\I1)×(M′\J2)

aij .
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Notice that if for all (i, j) ∈ µ′ we had that (i, j) ∈ (M \ µ−1(J2)) ×
(M ′ \ µ(I1)) , then the matching obtained by the union of µ′ with the sets
{(i, µ(i)) | i ∈ I1} and {(µ−1(j), j) | j ∈ J2} would contradict that µ is an
optimal matching for the market (M, M ′, A) , since

∑

(i,j)∈µ′ aij +
∑

i∈I1 aiµ(i) +
∑

j∈J2
aµ−1(j)j >

∑

(i,j)∈µ|(M\I1)×(M′\J2)
aij+

∑

i∈I1 aiµ(i)+
∑

j∈J2
aµ−1(j)j =

∑

(i,j)∈µ aij ,

where the last equality follows from I1 ∩ µ−1(J2) = ∅ .

Thus, there exists (i, j) ∈ µ′ such that either j = µ′(i) ∈ µ(I1) or i =
µ′−1(j) ∈ µ−1(J2) .

Let us denote by µ1 the restriction of µ to (M \ I1) × (M ′ \ J1) , and by
µ2 the restriction of µ to (M \ I2) × (M ′ \ J2) . Notice that, by the µ-
compatibility of ((M \ I1) ∪ (M ′ \ J1), wA−I1∪J1

) , µ1 leaves unmatched the
agents in µ−1(J1)∩ (M \ I1) and also of µ(I1)∩ (M ′ \J1) . The same happens
with µ2 and the sets µ−1(J2) ∩ (M \ I2) and µ(I2) ∩ (M ′ \ J2) . Notice also
that

µ1 ⊆ µ|(M\I1)×(M ′\J2) ⊆ µ2 ⊆ µ . (A.1)

The two following subsets of players are defined:

K1 = {i ∈ M \ I1 | µ′(i) ∈ µ(I1)},

K2 = {j ∈ M ′ \ J2 | µ′−1(j) ∈ µ−1(J2)}.

and by the above argument, at least one of these sets must be non-empty.

a) If K1 6= ∅ , to each i ∈ K1 we associate a chain C(i) of agents in the
following way. Define i1 = i , and take also µ′(i1) . If i1 is not matched by µ1

or µ1(i1) is not matched by µ′ , then C(i) = (µ′(i1), i1) . Otherwise, let it be
i2 ∈ M \ I1 the unique agent such that µ′(i2) = µ1(i1) . Construct recursively
the chain 7

C(i) = (µ′(i1), i1, µ
′(i2), i2, . . . , µ

′(il), il, µ
′(il+1), il+1, · · · , µ

′(in), in)

where for all l ∈ {1, . . . , n− 1} , il+1 is the unique agent in M \ I1 such that
µ′(il+1) = µ1(il) , and either in is unmatched by µ1 or µ1(in) is unmatched
by µ′ .

Several properties are satisfied by the chain C(i) . First, taking into account
that µ1(il) = µ′(il+1) for l ∈ {1, 2, . . . , n − 1} and also that il ∈ M \ I1 for
l ∈ {1, 2, . . . , n} , we obtain C(i) ∩ µ(I1) = {µ′(i1)} .

7 With some abuse of notation, C(i) will also stand for the set of agents in the
chain.
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Notice secondly that if il, it ∈ C(i) , then il 6= it . Assume without loss of
generality that il = it and 1 ≤ l < t . If l = 1 , we reach a contradiction since
µ′(i1) ∈ µ(I1) and µ′(it) 6∈ µ(I1) . If 1 < l < t , then µ′(il) = µ′(it) implies
µ1(il−1) = µ1(it−1) and thus il−1 = it−1 . The repetition of this argument
leads to i1 = it−l+1 and the same argument above leads to a contradiction.
This property guarantees that the defined chains C(i) are always finite.

Moreover, if i, i′ ∈ K1 and i 6= i′ , then C(i) ∩ C(i′) = ∅ . Assume otherwise
that k ∈ C(i)∩C(i′) , where C(i) = (µ′(i1), i1, µ

′(i2), i2, . . . , µ
′(il), il, µ

′(il+1), · · · , µ
′(in), in)

and C(i′) = (µ′(i′1), i
′
1, µ

′(i′2), i
′
2, . . . , µ

′(i′t), i
′
t, µ

′(i′t+1), · · · , µ
′(i′s), i

′
s) , i1 = i

and i′1 = i′ . We may assume without loss of generality that k = il = i′t with
l ≤ t . If k = i1 = i′t , then µ′(i1) = µ′(i′t) and thus µ′(i′t) ∈ µ(I1) implies
i′t = i′1 and consequently i = i1 = i′1 = i′ . Assume now that l > 1 is minimal
such that il = i′t with l ≤ t . Then, µ1(il−1) = µ′(il) = µ′(i′t) = µ1(i

′
t−1)

implies il−1 = i′t−1 and contradicts the minimality of l .

Finally, if for some i ∈ K1 , il ∈ C(i)∩µ−1(J2) , then, since µ−1(J2) ⊆ µ−1(J1)
we have that il is not matched by µ1 and thus il = in is the last agent in
the chain.

b) If K2 6= ∅ and j ∈ K2 recall that, by definition of this set, j ∈ M ′ \ J2

and µ′−1(j) ∈ µ−1(J2) . Then, for all j ∈ K2 we define the chain C(j) by

C(j) = (i1, µ
′(i1), i2, µ

′(i2), . . . , il, µ
′(il), il+1, . . . , in, µ′(in))

where j = µ′(i1) , µ2(il+1) = µ′(il) for all l ∈ {1, 2, . . . , n − 1} and either
µ′(in) is unmatched by µ2 or µ−1

2 (µ′(in)) is unmatched by µ′ .

Notice first that, since µ′ is defined on (M \ I1) × (M ′ \ J2) , we have il ∈
M \ I1 and µ′(il) ∈ M ′ \ J2 for all l ∈ {1, 2, . . . , n} . As a consequence,
C(j) ∩ µ−1(J2) = {µ′−1(j)} = {i1} . Indeed, if il+1 ∈ µ−1(J2) for some l ∈
{1, 2, . . . , n−1} , since il+1 = µ−1

2 (µ′(il)) = µ−1(µ′(il)) by (A.1), then µ′(il) ∈
J2 , which implies a contradiction.

Secondly, if il, it ∈ C(j) , then il 6= it , and the proof is analogous to the one
in a).

Also, if j, j′ ∈ K2 , j 6= j′ , C(j)∩C(j′) = ∅ . To see that, let us denote these
two chains by C(j) = (i1, µ

′(i1), i2, µ
′(i2), . . . , il, µ

′(il), il+1, . . . , in, µ′(in)) and
C(j) = (i′1, µ

′(i′1), i
′
2, µ

′(i′2), . . . , i
′
l, µ

′(i′l), i
′
l+1, . . . , i

′
n, µ′(i′n)) and assume with-

out loss of generality that k = il = i′t with 1 ≤ l ≤ t . If l = 1 , then,
i′t ∈ µ−1(J2) implies i′t = i′1 and consequently i1 = i′1 implies j = j′

in contradiction with the assumption. Assume l > 1 is minimal such that
il = i′t with l ≤ t . Then, µ2(il) = µ2(i

′
t) and thus µ′(il−1) = µ′(i′t−1) implies

il−1 = i′t−1 and contradicts the minimality of l .
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Finally, if for some l ∈ {1, 2, . . . , n} we have µ′(il) ∈ C(j)∩µ(I2) , then µ′(il)
is unmatched by µ2 and thus il = in .

c) Moreover, if i ∈ K1 and j ∈ K2 , then either C(i) ∩ C(j) = ∅ or C(i) ⊆
C(j) . To prove this, let us write

C(i) = (µ′(i′1), i
′
1, . . . , µ

′(i′l), i
′
l, µ

′(i′l+1), i
′
l+1, . . . , µ

′(i′k), i
′
k),

C(j) = (i1, µ
′(i1), . . . , il, µ

′(il), il+1, µ
′(il+1), . . . , in, µ

′(in)),

where i′1 = i and µ′(i1) = j . If C(i) ∩ C(j) 6= ∅ , then i′r = is for some
r ∈ {1, 2, . . . , k} and s ∈ {1, 2, . . . , n} . Then µ′(i′r) = µ′(is) ∈ C(i)∩C(j) . If
r = k = 1 we are done. Otherwise, since 1 ≤ r ≤ k , either r < k or r > 1 .

If r < k , take i′r+1 and recall by the definition of C(i) in a) that µ′(i′r+1) =
µ1(i

′
r) . Now, from (A.1), µ′(i′r+1) = µ2(i

′
r) = µ2(is) and, by the construction

of chain C(j) in b), we obtain i′r+1 = is−1 and as a consequence both i′r+1

and µ′(i′r+1) = µ′(is−1) belong to C(j) . The repetition of the same argument
shows that for r ≤ l ≤ k , both i′l and µ′(i′l) belong to C(j) .

If r > 1 , again by the definition of C(i) we know that µ1(i
′
r−1) = µ′(i′r) , and

by (A.1) µ2(i
′
r−1) = µ′(i′r) = µ′(is) . This, by the construction of C(j) in b),

implies that i′r−1 = is+1 , and thus both i′r−1 and µ′(i′r−1) belong to C(j) .
The repetition of this argument guarantees that i′l and µ′(i′l) belong to C(j)
for all 1 ≤ l ≤ r . To sum up, we have proved that if C(i) ∩ C(j) 6= ∅ , where
i ∈ K1 and j ∈ K2 , then C(i) ⊆ C(j) .

Let us now define

C ′ =
⋃

k∈K2
C(k) ,

C =
⋃

k∈K′
1
C(k) where K ′

1 = {k ∈ K1 | C(k) ∩ C ′ = ∅} .

Let us now point out that the sets {(i, j) ∈ µ′ | i ∈ C} , {(i, j) ∈ µ′ | j ∈ C ′}
and {(i, j) ∈ µ′ | i 6∈ C and j 6∈ C ′} form a partition of µ′ ⊆ (M \ I1) ×
(M ′ \J2) . The reason is that if j ∈ C ′ , then j ∈ C(k) for some k ∈ K2 . But
then, by the definition of the chains, µ′−1(j) also belongs to C(k) ⊆ C ′ and
consequently, by the definition of K ′

1 , µ′−1(j) 6∈ C .

Similarly, the sets {(i, j) ∈ µ|(M\I1)×(M ′\J2) | i ∈ C} , {(i, j) ∈ µ|(M\I1)×(M ′\J2) |
j ∈ C ′} and {(i, j) ∈ µ|(M\I1)×(M ′\J2) | i 6∈ C and j 6∈ C ′} form a partition
of µ|(M\I1)×(M ′\J2) . If j ∈ C ′ , that is to say, j ∈ C(k) for some k ∈ K2 ,
then whenever j is matched by µ|(M\I1)×(M ′\J2) ⊆ µ2 it follows that either
µ−1

2 (j) ∈ C(k) ⊆ C ′ , and thus µ−1(j) 6∈ C , or µ−1
2 (j) is not matched by

µ′ . But in that last case µ−1
2 (j) 6∈ C , since each buyer in a chain C(k′) , for

k′ ∈ K1 , is preceded by his or her partner by µ′ .
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Then, since

∑

(i,j)∈µ′

aij =
∑

(i,j)∈µ′

i∈C

aij +
∑

(i,j)∈µ′

j∈C′

aij +
∑

(i,j)∈µ′

i6∈C, j 6∈C′

aij

>
∑

(i,j)∈µ|(M\I1)×(M′\J2)

aij =

=
∑

(i,j)∈µ
|(M\I1)×(M′\J2)

i∈C

aij +
∑

(i,j)∈µ
|(M\I1)×(M′\J2)

j∈C′

aij +
∑

(i,j)∈µ
|(M\I1)×(M′\J2)

i6∈C, j 6∈C′

aij .

one of the following cases must hold.

• There exists k ∈ K1 with C(k) ⊆ C and such that
∑

(i,j)∈µ′

i∈C(k)

aij >
∑

(i,j)∈µ

i∈C(k)

aij .

Then we define

µ̃ = {(i, µ′(i)) | i ∈ C(k)} ∪ {(i, µ1(i)) | i ∈ M \ (I1 ∪ C(k))}

and we check that this is a matching in M(M \ I1, M
′ \ J1) . First we prove

that µ̃ is included in (M \ I1)× (M ′ \J1) . Notice indeed that by definition of
µ1 , µ1(i) ∈ M ′\J1 . Also, if i ∈ C(k) then µ′(i) ∈ C(k) and thus there exists
µ−1

1 (µ′(i)) , which implies µ′(i) ∈ M ′ \ J1 , except if µ′(i) = µ′(k) . But then
µ′(i) ∈ µ(I1) and by the µ-compatibility of ((M \ I1) ∪ (M ′ \ J1), wA−I1∪J1

)
we have µ(I1) ∩ J1 ⊆ {j ∈ M ′ | aµ−1(j)j = 0} and this set is empty by
assumption. It now remains to prove that µ̃ is a matching. To see that, notice
that if i ∈ C(k) and µ′(i) = µ1(i

′) , then i′ ∈ C(k) .

Thus we get that
∑

(i,j)∈µ̃ aij >
∑

(i,j)∈µ1
aij , which contradicts that ((M \

I1) ∪ (M ′ \ J1), wA−I1∪J1
) is a µ-compatible subgame of (M ∪ M ′, wA) .

• There exists k ∈ K2 such that
∑

(i,j)∈µ′

j∈C(k)

aij >
∑

(i,j)∈µ

j∈C(k)
aij . Then we define

µ̃ = {(µ′−1(j), j) | j ∈ C(k)} ∪ {(µ−1
2 (j), j) | j ∈ M ′ \ (J2 ∪ C(k))}

and check that it is a matching in M(M \ I2, M
′ \ J2) . Notice first that

µ̃ ⊆ (M \ I2) × (M ′ \ J2) . Indeed, for all j ∈ M ′ \ (J2 ∪ C(k)) that is
assigned by µ2 , µ−1

2 (j) ∈ M \ I2 by definition of µ2 and, by definition of
µ′ , µ′−1(j) ∈ M \ I1 ⊆ M \ I2 for all j ∈ C(k) . Also, each j ∈ C(k) ∩ M ′

is matched by µ′ , and thus j ∈ M ′ \ J2 . Let us now see that µ̃ is really a
matching. It is enough to prove that if j ∈ C(k) ∩ M ′ then it does not hold
µ′−1(j) = µ−1

2 (j′) for some j′ ∈ M \ (J2 ∪C(k)) . Indeed, if µ′−1(j) = µ−1
2 (j′)

for some j′ ∈ M \ (J2 ∪ C(k)) , let us write i = µ′−1(j) and notice that from
j ∈ C(k)∩M ′ , we deduce i = µ′−1(j) ∈ C(k) . Now, if i = µ′−1(j) is matched
by µ2 , then µ2(i) = µ2(µ

′−1(j)) = j′ also belongs to C(k) , in contradiction
with j′ ∈ M ′ \ (J2 ∪ C(k)) .
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Once proved that µ̃ ∈ M(M\I2, M
′\J2) we get that

∑

(i,j)∈µ̃ aij >
∑

(i,j)∈µ2
aij ,

contradicts that ((M \ I2) ∪ (M ′ \ J2), wA−I2∪J2
) is a µ-compatible subgame

of (M ∪ M ′, wA) .

• Otherwise,

∑

(i,j)∈µ′

i6∈C, j 6∈C′

aij >
∑

(i,j)∈µ
|(M\I1)×(M′\J2)

i6∈C, j 6∈C′

aij . (A.2)

In this case, we define

µ̃= {(i, µ′(i)) | i 6∈ I1 ∪ C and µ′(i) 6∈ J2 ∪ C ′}

∪{(i, µ(i)) | i ∈ I1 ∪ C or µ(i) ∈ J2 ∪ C ′}

and will prove that µ̃ ∈ M(M, M ′) . Let us write A = {(i, µ′(i)) | i 6∈ I1 ∪
C , µ′(i) 6∈ J2 ∪ C ′} , B = {(i, µ(i)) | i ∈ I1 ∪ C or µ(i) ∈ J2 ∪ C ′} and prove
that if (i, µ(i)) ∈ B , then neither (i, µ′(i)) ∈ A nor (i′, µ(i)) ∈ A for any
i′ ∈ M \ (I1 ∪ C) . We distinguish two cases: i ∈ I1 ∪ C or µ(i) ∈ J2 ∪ C ′ .

If (i, µ(i)) ∈ B with i ∈ I1 ∪ C , then it is immediate that (i, µ′(i)) 6∈ A . On
the other hand, if (i′, µ(i)) ∈ A for some i′ ∈ M \(I1∪C) , then µ(i) = µ′(i′) .
Now, if i ∈ C , then µ(i) = µ′(i′) implies i′ ∈ C in contradiction with
(i′, µ(i)) ∈ A . Otherwise, i ∈ I1 , but then µ(i) = µ′(i′) ∈ µ(I1) implies
i′ ∈ K1 ⊆ C and also contradicts (i′, µ(i)) ∈ A .

If (i, µ(i)) ∈ B with µ(i) ∈ J2 ∪ C ′ , then it is immediate that (i′, µ(i)) 6∈ A

for any i′ ∈ M \ (I1 ∪ C) such that µ′(i′) = µ(i) . On the other hand, if
(i, µ′(i)) ∈ A , from µ(i) ∈ J2 ∪C ′ we get that either µ(i) ∈ C ′ or µ(i) ∈ J2 .
In the first case, that is µ(i) ∈ C ′ , by the definition of the chains in C ′ ,
µ(i) = µ′(i′) for some i′ ∈ M \ I1 . As a consequence we have i = µ−1(µ′(i))
where µ′(i′) is matched by µ and thus by µ2 and, moreover, µ−1(µ′(i)) is
matched by µ′ , since we are assuming (i, µ′(i)) ∈ A . All this, by the definition
of C ′ (in fact of the chains C(k) for k ∈ K2 ) implies that i ∈ C ′ and thus
µ′(i) ∈ C ′ , in contradiction with (i, µ′(i)) ∈ A . In the second case, that is,
µ(i) ∈ J2 , i = µ−1(µ(i)) ∈ µ−1(J2) and, since i = µ′−1(µ′(i)) , we obtain
µ′(i) ∈ M ′ \ J2 and µ′−1(µ′(i)) ∈ µ−1(J2) which implies µ′(i) ∈ K2 ⊆ C ′ , in
contradiction with (i, µ′(i)) ∈ A .

Once proved that µ̃ ∈ M(M, M ′) , we have

∑

(i,j)∈µ̃

aij =
∑

(i,j)∈A

aij +
∑

(i,j)∈B

aij
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>
∑

(i,j)∈µ

i6∈I1∪C, j 6∈J2∪C′

aij +
∑

(i,j)∈µ

i∈I1∪C or j∈J2∪C′

aij =
∑

(i,j)∈µ

aij,

where the inequality follows from (A.2), and this contradicts µ ∈ M∗
A(M, M ′) . 2

Proof of Proposition 10

1) Recall we are assuming that |M | = |M ′| and µ does not leave agents
unmatched. If (uA, vA) = (a, 0) and (uA, vA) = (0, a) , then L is the segment
between (uA, vA) and (uA, vA) , which we denote by L = [(uA, vA), (uA, vA)] ,
and we have L ⊆ C(wA) ⊆ V µ(wA) .

Assume now that (uA, vA) = (0, a) but (uA, vA) 6= (a, 0) . By part 1) of
Corollary 5 we know that the subset I1 ⊆ M such that I1 = {i ∈ M | uA

i =
aiµ(i) } is non-empty and, by and part 1) of Proposition 4, ((M\I1)∪M ′, wA−I1

)

is a µ-compatible subgame of (M∪M ′, wA) . Let (uA−I1 , vA−I1 ) be the buyers-
optimal core allocation of this subgame and let (uA−I1 , vA−I1 )e be its extension
to Bµ(wA) :

(uA−I1 , vA−I1 )e
k =



























u
A−I1
k if k ∈ M \ I1,

akµ(k) if k ∈ I1,

v
A−I1
k if k ∈ M ′ .

Consider now the piecewise linear curve

L1 = [(uA, vA), (uA, vA)] ∪ [(uA, vA), (uA−I1 , vA−I1 )e] .

Notice that [(uA, vA), (uA, vA)] ⊆ C(wA) and, since uA
i = aiµ(i), for all i ∈ I1 ,

trivially by (6) and (7) we have (uA, vA) ∈ Ĉ(wA−I1
) and thus [(uA, vA), (uA−I1 , vA−I1 )e] ⊆

Ĉ(wA−I1
) .

Then,

L1 ⊆ C(wA) ∪ Ĉ(wA−I1
) ⊆ V µ(wA) .

and, if (uA−I1 , vA−I1 )e = (a, 0) , we are done.

Assume there exists a chain I0 = ∅ ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ir ⊆ M such that,
for all k ∈ {1, 2, . . . , r} , ((M \ Ik) ∪ M ′, wA−Ik

) is a µ-compatible subgame
of ((M \ Ik−1)∪M ′, wA−Ik−1

) , and thus, by Remark 6, also of (M ∪M ′, wA) .
Then

Lr = [(uA, vA), (uA, vA)] ∪ [(uA, vA), (uA−I1 , vA−I1 )e] ∪
r

⋃

k=2

[

(uA−Ik−1 , vA−Ik−1 )e, (uA−Ik , vA−Ik )e
]

⊆ V µ(wA)
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If (uA−Ir , vA−Ir )e = (a, 0) we are done. Otherwise, let it be I = {i ∈ M \ Ir |
uA−Ir = aiµ(i)} and notice that again by Corollary 5 and Proposition 4, I

is nonempty and, if we write Ir+1 = Ir ∪ I , we have that ((M \ Ir+1) ∪
M ′, wA−Ir+1

) is a µ-compatible subgame of ((M \ Ir) ∪ M ′, wA−Ir
) and thus,

by Remark 6, also of (M ∪ M ′, wA) . Then, the piecewise linear curve

Lr+1 = Lr ∪
[

(uA−Ir , vA−Ir )e, (uA−Ir+1 , vA−Ir+1 )e
]

is contained in V µ(wA) . Since the inclusion between the sets Ik is strict, the
procedure will finish in a finite number s of steps and then we get a piecewise
linear curve Ls ⊆ V µ(wA) from (0, a) to (a, 0) .

Notice that if (uA, vA) 6= (0, a) we would analogously obtain a piecewise linear
curve from (uA, vA) to (0, a) , and contained in V µ(wA) .

2) Let it be (u, v) ∈ I(wA) \Bµ(wA) . This implies that there exists (i, j) ∈ µ

such that ui + vj < aij and, as a consequence, 0 ≤ ui < aij − vj . By the
construction of the curve L in part 1), we can find (u′, v′) ∈ L such that ui <

u′
i < aij − vj . Then, not only u′

i > ui but also, since (u′, v′) ∈ L ⊆ Bµ(wA) ,
we have u′

i+v′
j = aij and then v′

j = aij−u′
i > vj . Thus, (u′, v′) domwA

{i,j}(u, v) .
2

Before proving the Theorem 12 we need to prove the following statement.

Lemma 15 Let (M∪M ′, wA) be an assignment game, µ ∈ M∗
A(M, M ′) and

(u, v) ∈ Bµ(wA) .

(1) Let I ⊂ M and J ⊂ J ′ ⊂ M ′ , (J ′ \J)∩µ(I) ⊆ {j ∈ M ′ | aµ−1(j)j = 0} ,
such that ((M \ I) ∪ (M ′ \ J), wA−I∪J

) is a µ-compatible subgame of

(M ∪ M ′, wA) . If vj = v
A−I∪J

j = aµ−1(j)j for all j ∈ J ′ \ J and there

exists j∗ ∈ M ′ \ J ′ such that v
A−I∪J

j∗ ≤ vj∗ < v
A−I∪J′

j∗ , then there exists

(u′′, v′′) ∈ Ĉ(wA−I∪J
) such that (u′′, v′′)domwA(u, v) .

(2) Let J ⊂ M ′ and I ⊂ I ′ ⊂ M , (I ′ \ I) ∩ µ−1(J) ⊆ {i ∈ M | aiµ(i) = 0} ,
such that ((M \ I) ∪ (M ′ \ J), wA−I∪J

) is a µ-compatible subgame of

(M ∪ M ′, wA) . If ui = u
A−I∪J

i = aiµ(i) for all i ∈ I ′ \ I and there

exists i∗ ∈ M \ I ′ such that u
A−I∪J

i∗ ≤ ui∗ < u
A−I′∪J

i∗ , then there exists
(u′′, v′′) ∈ Ĉ(wA−I∪J

) such that (u′′, v′′)domwA(u, v) .

PROOF. We prove part 1), since 2) is proved analogously. By Proposition 4,
((M \ I)∪ (M ′ \ J ′), wA−I∪J′) is a µ-compatible subgame of ((M \ I)∪ (M ′ \
J), wA−I∪J

) , and, since (J ′ \ J) ∩ µ(I) ⊆ {j ∈ M ′ | aµ−1(j)j = 0} , by Remark
6, also of the initial game (M ∪ M ′, wA) .

Consider the oriented tight graph G∗ = G(uA−I∪J′ , vA−I∪J′ ) defined by the set
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of nodes (M \ I) ∪ (M ′ \ J ′) and the arcs i −→ j whenever (i, j) ∈ µ and

j −→ i whenever u
A−I∪J′

i + v
A−I∪J′

j = aij but (i, j) 6∈ µ . Since v
A−I∪J′

j∗ > 0 ,
following p. 213 of Roth and Sotomayor (1990) we know there exists a path
c∗ = (j∗, i∗1, j

∗
1 , i

∗
2, . . . , i

∗
s, (j

∗
s )) in G ending either at i∗s ∈ M \ I unmatched

by µ|(M\I)×(M ′\J ′) or at j∗s ∈ M ′ \ J ′ with v
A−I∪J′

j∗s
= 0 .

If v
A−I∪J′

j∗s
= 0 , from (12) we have v

A−I∪J

j∗s
≤ v

A−I∪J′

j∗s
, and thus we get v

A−I∪J

j∗s
=

0 and consequently, since i∗s = µ−1(j∗s ) , u
A−I∪J′

i∗s
= u

A−I∪J

i∗s
. But then we have

v
A−I∪J′

j∗s−1
= ai∗sj∗s−1

− u
A−I∪J′

i∗s
= ai∗sj∗s−1

− u
A−I∪J

i∗s
≤ v

A−I∪J

j∗s−1
,

where the last inequality follows from the fact that (uA−I∪J , vA−I∪J ) ∈ C(wA−I∪J
) .

This, taking into account that from (12) we have v
A−I∪J

j∗s−1
≤ v

A−I∪J′

j∗s−1
, leads to

v
A−I∪J

j∗s−1
= v

A−I∪J′

j∗s−1
and, repeatedly applying the same argument along the path

c∗ , we would deduce v
A−I∪J

j∗ = v
A−I∪J′

j∗ , in contradiction with the assumption.

Then the path c∗ must end at some i∗s ∈ M \I unmatched by µ|(M\I)×(M ′\J ′) .

If i∗s were also unmatched by µ|(M\I)×(M ′\J) , then u
A−I∪J

i∗s
= u

A−I∪J′

i∗s
= 0 and

following the same argument as in the paragraph above we reach again the

contradiction v
A−I∪J

j∗ = v
A−I∪J′

j∗ .

As a consequence of all that, the path c∗ ends at some i∗s unmatched by
µ|(M\I)×(M ′\J ′) , but that is matched by µ|(M\I)×(M ′\J) and so µ(i∗s) ∈ J ′ \ J

and by assumption in part 1) of the lemma, vµ(i∗s) = ai∗sµ(i∗s) . Then, since
(u, v) ∈ Bµ(wA) we get

ui∗s
= 0 . (A.3)

Let us now consider the µ-compatible subgame ((M \ I)∪ (M ′ \ J), wA−I∪J
) .

From part 2) of Proposition 7 applied to the game ((M\I)∪(M ′\J ′), wA−I∪J′) ,

the payoff vector obtained by completing (uA−I∪J′ , vA−I∪J′ ) with aµ−1(j)j for
all j ∈ J ′\J , that is (uA−I∪J′ , vA−I∪J′ , (aµ−1(j)j)j∈J ′\J) , belongs to C(wA−I∪J

) .
Let us denote by (u′, v′) this payoff vector and construct its oriented tight
graph, G(u′, v′) , now defined by the set of nodes (M \ I) ∪ (M ′ \ J) and the
arcs i −→ j whenever (i, j) ∈ µ and j −→ i whenever u′

i + v′
j = aij but

(i, j) 6∈ µ . Notice that all the nodes and arcs of the former graph G∗ also
belong to G(u′, v′) but this new graph may have some additional nodes and
arcs. In particular, c∗ is a path in G(u′, v′) .

Since, by assumption, v
A−I∪J

j∗ ≤ vj∗ < v
A−I∪J′

j∗ holds, we know there exists

(ũ, ṽ) ∈ C(wA−I∪J
) such that ṽj∗ < v

A−I∪J′

j∗ , let us say ṽj∗ = v
A−I∪J′

j∗ − ε =
v′

j∗ − ε for some ε > 0 . Take any path in G(u′, v′) starting at j∗ , let us say
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c = (j∗, i1, j1, i2, . . . , it, (jt)) , where the parenthesis in the last node indicates
that the path may end either at a buyer or at a seller. Since (ũ, ṽ) is in
C(wA−I∪J

) it must be that ũi1 = u′
i1
+ε1 for some ε1 ≥ ε . Then, ṽj1 = v′

j1
−ε1 ,

which implies ũi2 = u′
i2

+ ε2 for some ε2 ≥ ε1 . By repeatedly applying the
same argument we get that, for all il in this path, there exists εl ≥ εl−1 > 0
such that ũil = u′

il
+ εl and ṽjl

= v′
jl
− εl . This implies that v′

jl
> 0 for all

jl in the path c , and also that, since ũil > 0 , there is no il in c unmatched
by µ|(M\I)×(M ′\J) .

Let S be the set of i ∈ M \ I that can be reached from j∗ in G(u′, v′)
and T be the set of j ∈ M ′ \ J that can be reached from j∗ . Notice that
j ∈ T if and only if µ−1(j) ∈ S . Also, if j ∈ T and i ∈ M \ I is such that
u′

i + v′
j = aij , then i ∈ S . Define now

u′′
i = u′

i + ε, for all i ∈ S ∪ {µ−1(j∗)} , u′′
i = u′

i , for all i ∈ M \ (I ∪ S ∪ {µ−1(j∗)}),

v′′
j = v′

j − ε, for all j ∈ T , v′′
j = v′

j , for all j ∈ M ′ \ (J ∪ T ) .

For ε > 0 small enough we claim (and the proof is left to the reader) that

(u′′, v′′) ∈ C(wA−I∪J
) , vj∗ < v′′

j∗ (since vj∗ < v
A−I∪J′

j∗ = v′
j∗ ) and v′′

j∗
l
6= vj∗

l
for

all j∗l in the inicial path c∗ .

Recall from (A.3) that ui∗s
= 0 and notice that i∗s ∈ S and thus ui∗s

= 0 < u′′
i∗s

.
If vj∗s−1

< v′′
j∗s−1

we are done, since u′′
i∗s

+v′′
j∗s−1

= ai∗sj∗s−1
. Thus, the extension of

(u′′, v′′) by paying aiµ(i) to all i ∈ I ∩µ−1(M ′) , aµ−1(j)j to all j ∈ J ∩µ(M)

and zero to all agents in I ∪ J unassigned by µ , belongs to Ĉ(wA−I∪J
) ⊆

V µ(wA) and dominates (u, v) via coalition {i∗s, j
∗
s−1} . Otherwise, we have

vj∗s−1
> v′′

j∗s−1
and consequently ui∗s−1

< u′′
i∗s−1

. We then repeat the argument

replacing j∗s−1 with j∗s−2 and i∗s with i∗s−1 . In this way we will either get that
(u′′, v′′) dominates (u−I , v−J) via coalition {i∗l , j

∗
l−1} for some l ∈ {2, . . . , s}

or else we reach ui∗1
< u′′

i∗1
and since vj∗ < v′′

j∗ and u′′
i∗1

+v′′
j∗ = u′

i∗1
+v′

j∗ = ai∗1j∗

we obtain that the extension of (u′′, v′′) by paying aiµ(i) to all i ∈ I∩µ−1(M ′) ,
aµ−1(j)j to all j ∈ J ∩ µ(M) and zero to all agents in I ∪ J unassigned

by µ , belongs to Ĉ(wA−I∪J
) ⊆ V µ(wA) and dominates (u, v) via coalition

{i∗1, j
∗} . 2

Proof of Theorem 12 (Continuation)

PROOF. It remained to see that, under the assumption that µ(M) = M ′

and aij > 0 for all (i, j) ∈ µ , any element in Bµ(wA) \ (Rµ(wA) ∪ V µ(wA))
is also dominated by some element of V µ(wA) .
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Take (u, v) ∈ Bµ(wA)\(Rµ(wA)∪V µ(wA)) . Let us define the following subsets
of players.

Take first I0
0 = J0

0 = ∅ .

Recursively, for k ≥ 1 , define Ĩk
0 ⊆ M \ (Ik−1

0 ∪ µ−1(Jk−1
0 )) and J̃k

0 ⊆ M ′ \
(Jk−1

0 ∪ µ(Ik−1
0 )) in such a way that |Ĩk

0 | = |J̃k
0 | = 1 and there exists (x, y) ∈

C(wA
−I

k−1
0

∪J
k−1
0

) such that ui = xi = aiµ(i) for i ∈ Ĩk
0 and vj = yj = aµ−1(j)j

for all j ∈ J̃k
0 . Then we write Ik

0 = Ĩk
0 ∪ Ik−1

0 and Jk
0 = J̃k

0 ∪ Jk−1
0 .

By Proposition 4, ((M \ I1
0 )∪ (M ′ \J1

0 ), wA
−I1

0
∪J1

0

) is a µ-compatible subgame

of (M ∪M ′, wA) and by an induction argument, together with Proposition 4
and Remark 6, we obtain that, for all k ≥ 0 , ((M \ Ik

0 )∪ (M ′ \Jk
0 ), wA

−Ik
0
∪Jk

0

)

is a µ-compatible subgame of ((M \ Ik−1
0 ) ∪ (M ′ \ Jk−1

0 ), wA
−I

k−1
0

∪J
k−1
0

) and

thus of (M ∪ M ′, wA) . Moreover, (u−Ik
0
, v−Jk

0
) ∈ Bµ(wA

−Ik
0
∪Jk

0

) . Notice also

that, as an immediate consequence of the definition of Ĩk
0 and J̃k

0 , we have

that u
A

−I
k−1
0

∪J
k−1
0

i = aiµ(i) for i ∈ Ĩk
0 and v

A
−I

k−1
0

∪J
k−1
0

j = aµ−1(j)j for j ∈ J̃k
0 .

By the finiteness of M and M ′ , there exists d ≥ 0 such that Ĩd+1
0 ×J̃d+1

0 = ∅ .
Then, Id

0 × Jd
0 is the last subset of the sequence. To simplify notation, in the

sequel we write I0 = Id
0 and J0 = Jd

0 .

Once we have exhausted the possibility of building µ-compatible subgames
(related to the payoff vector (u, v) ) by removing one agent on each side of the
market, we continue the procedure but now removing several agents of only
one side, let us say the buyers’ side.

Now, let us define

Ĩ1 = {i ∈ M \ (I0 ∪ µ−1(J0)) | ui = u
A−I0∪J0
i = aiµ(i)} , I1 = Ĩ1 ∪ I0

and, for all k > 1

Ĩk = {i ∈ M \ (Ik−1 ∪ µ−1(J0)) | ui = u
A−Ik−1∪J0

i = aiµ(i)}

and, as long as Ĩk 6= ∅ , Ik = Ik−1 ∪ Ĩk .

By definition, I0 ⊂ I1 ⊂ · · · ⊂ Ik−1 ⊂ Ik and there exists r +1 ≥ 0 such that
Ĩr+1 = ∅ , which implies that the sequence 8 ends at Ir . Notice that M\Ir 6= ∅

8 Notice that the sequences of sets, I1
0 ×J1

0 ⊂ I2
0 ×J2

0 ⊂ · · · ⊂ Id
0 ×Jd

0 = I0×J0 and
I0 ⊂ I1 ⊂ · · · ⊂ Ir−1 ⊂ Ir depend on the allocation (u, v) we want to dominate.
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since otherwise we would have (u, v) = (a, 0) , and, by Proposition 10, (a, 0) ∈
V µ(wA) , in contradiction with (u, v) ∈ Bµ(wA) \ (Rµ(wA) ∪ V µ(wA)) .

By repeatedly applying part 1) of Proposition 4 and Remark 6 we obtain that,
for all k ∈ {0, 1, . . . , r} , ((M \Ik)∪(M ′\J0), wA−Ik∪J0

) is a µ-compatible sub-
game of (M ∪ M ′, wA) . Moreover, (u−Ir , v−J0) ∈ Bµ(wA−Ir∪J0

) and different
cases are considered.

Case 1: (u−Ir , v−J0) ∈ Rµ(wA−Ir∪J0
) .

In this case, since (u, v) 6∈ V µ(wA) , it must be the case that (u−Ir, v−J0) 6∈
C(wA−Ir∪J0

) and thus we can apply Proposition 11 to the game ((M\Ir)∪(M ′\
J0), wA−Ir∪J0

) and obtain there exists (u′, v′) ∈ C(wA−Ir∪J0
) that dominates

(u−Ir , v−J0) . We then define (u′′, v′′) by u′′
i = u′

i for all i ∈ M \Ir , u′′
i = aiµ(i)

for all i ∈ Ir , v′′
j = v′

j for all j ∈ M ′ \ J0 and v′′
j = aµ−1(j)j for all j ∈ J0 .

Then, (u′′, v′′) domwA(u, v) and, by (6) and (14), (u′′, v′′) ∈ Ĉ(wA−Ir∪J0
) ⊆

V µ(wA) .

Case 2: There exists i∗ ∈ M \ Ir such that ui∗ > u
A−Ir∪J0
i∗ .

Since (u−Ir , v−J0) ∈ Bµ(wA−Ir∪J0
) and ui∗ > 0 we can guarantee that i∗ is

matched by µ|(M\Ir)×(M ′\J0) . Then, the above statement is equivalent to

0 ≤ vj0 < v
A−Ir∪J0
j0

, for j0 = µ(i∗) . (A.4)

Since ((M\Ir)∪(M ′\J0), wA−Ir∪J0
) and ((M\Ik

0 )∪(M ′\Jk
0 ), wA

−Ik
0
∪Jk

0

) , for all

k ∈ {0, 1, . . . , d} , are µ-compatible subgames of (M ∪M ′, wA) , by Lemma 14
we obtain that ((M \Ir)∪(M ′\Jk

0 ), wA
−Ir∪Jk

0

) is also a µ-compatible subgame

of (M ∪M ′, wA) , and this for all k ∈ {0, 1, . . . , d} . Moreover, from (12), and
taking into account that J0

0 = ∅ and Jd
0 = J0 , it holds

v
A−Ir
j0

≤ v
A

−Ir∪J1
0

j0
≤ · · · ≤ v

A
−Ir∪J

d−1
0

j0
≤ v

A−Ir∪J0
j0

(A.5)

and thus, either v
A

−Ir∪J
k−1
0

j0
≤ vj0 < v

A
−Ir∪Jk

0
j0

, for some k ∈ {1, 2, . . . , d} or

vj0 < v
A−Ir
j0

.

Case 2.1: There exists k ∈ {1, 2, . . . , d} such that v
A

−Ir∪J
k−1
0

j0
≤ vj0 <

v
A

−Ir∪Jk
0

j0
.

Since both ((M\Ir)∪(M ′\Jk
0 ), wA

−Ir∪Jk
0

) and ((M\Ir)∪(M ′\Jk−1
0 ), wA

−Ir∪J
k−1
0

)

are µ-compatible subgames of (M ∪M ′, wA) , we obtain that ((M \Ir)∪(M ′\
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Jk
0 ), wA

−Ir∪Jk
0

) is a µ-compatible subgame of ((M\Ir)∪(M ′\Jk−1
0 ), wA

−Ir∪J
k−1
0

) .

To prove this, recall that J̃k
0 = Jk

0 \ Jk−1
0 and |J̃k

0 | = 1 , and write {j′} = J̃k
0 .

Notice then that

wA(M ∪ M ′) = wA((M \ Ir) ∪ (M ′ \ Jk
0 )) +

∑

i∈Ir

aiµ(i) +
∑

j∈Jk
0

aµ−1(j)j =

=
∑

(i,j)∈µ∩(M\Ir)×(M ′\Jk
0 )

aij +
∑

i∈Ir

aiµ(i) +
∑

j∈Jk
0

aµ−1(j)j =

=
∑

(i,j)∈µ∩(M\Ir)×(M ′\Jk
0 )

aij + aµ−1(j′)j′ +
∑

i∈Ir

aiµ(i) +
∑

j∈Jk−1
0

aµ−1(j)j ≤

≤wA((M \ Ir) ∪ (M ′ \ Jk−1
0 )) +

∑

i∈Ir

aiµ(i) +
∑

j∈Jk−1
0

aµ−1(j)j = wA(M ∪ M ′) .

where the inequality holds because µ−1(j′) 6∈ Ir
9 and thus µ ∩ ((M \ Ir) ×

(M ′ \ Jk
0 )) ∪ {(µ−1(j′), j′)} is a matching of (M \ Ir) × (M ′ \ Jk−1

0 ) .

As a consequence, wA((M \ Ir)∪ (M ′ \ Jk
0 )) + aµ−1(j′)j′ = wA((M \ Ir)∪ (M ′ \

Jk−1
0 )) , which means that ((M \ Ir) ∪ (M ′ \ Jk

0 ), wA
−Ir∪Jk

0

) is a µ-compatible

subgame of ((M \ Ir) ∪ (M ′ \ Jk−1
0 ), wA

−Ir∪J
k−1
0

) .

Then, since |J̃k
0 | = 1 , Proposition 4 guarantees that v

A
−Ir∪J

k−1
0

j′ = aµ−1(j′)j′ ,

and by definition of J̃k
0 we get vj′ = v

A
−Ir∪J

k−1
0

j′ = aµ−1(j′)j′ . We then are on the

assumptions of Lemma 15 taking I = Ir , J = Jk−1
0 and J ′ = Jk

0 , and thus ob-
tain that there exists (u′′, v′′) ∈ Ĉ(wA

−Ir∪J
k−1
0

) such that (u′′, v′′) domwA(u, v) .

Case 2.2: 0 ≤ vj0 < v
A−Ir
j0

.

We now construct G = G(uA−Ir , vA−Ir ) , the oriented graph related to the
core constrains of the µ-compatible subgame ((M \ Ir)∪M ′, wA−Ir

) that are
tight at (uA−Ir , vA−Ir ) : the set of vertices is (M \ Ir) ∪ M ′ and the arcs are

defined by: i −→ j if (i, j) ∈ µ , and j −→ i if u
A−Ir

i + v
A−Ir

j = aij but

(i, j) 6∈ µ . Since v
A−Ir
j0

> 0 , as proved in page 213 of Roth and Sotomayor
(1990), there exists a path starting at j0 and ending either at is ∈ M \ Ir

9 Since Ir = Ĩr−1 ∪ · · · ∪ Ĩl ∪ · · · ∪ Ĩ1 ∪ Ĩd
0 ∪ · · · ∪ Ĩk′

0 ∪ · · · ∪ I0
0 , if µ−1(j′) ∈ Ir ,

either µ−1(j′) ∈ Ĩl and thus by definition j′ 6∈ J0 , which contradicts j′ ∈ J̃k
0 , or

µ−1(j′) ∈ Ĩk′

0 for some k′ ∈ {1, . . . , d} . In this case, if k′ > k , then by definition of

Ĩk′

0 , j′ 6∈ Jk′−1
0 which contradicts j′ ∈ J̃k

0 ⊆ Jk
0 ⊆ Jk′−1

0 . If k′ < k , then µ−1(j′) ∈
Ĩk′

0 ⊆ Ik−1
0 and this contradicts j′ ∈ J̃k

0 . Finally, if k′ = k , then, by definition of Ĩk
0

and J̃k
0 , there exists (x, y) ∈ C(wA

−I
k−1
0

∪J
k−1
0

) such that xµ−1(j′) = aµ−1(j′)j′ and

yj′ = aµ−1(j′)j′ , which implies aµ−1(j′)j′ = 0 , in contradiction with the assumption.
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unmatched by µ|(M\Ir)×M ′ or at js ∈ M ′ with v
A−Ir

js
= 0 . Since µ(M) = M ′ ,

the first possibility cannot hold, and thus it must be the case that the path
ends at js ∈ M ′ with v

A−Ir

js
= 0 . Let c = (j0, i1, j1, . . . , is, js) be such a path

and assume without loss of generality that js is the first j ∈ M ′ in the path
such that v

A−Ir

j = 0 .

Since v
A−Ir

js
= 0 , we have that

u
A−Ir
is

= aisjs and uis ≤ u
A−Ir
is

. (A.6)

Now, several cases are to be considered:

• If ui1 < u
A−Ir
i1

we are done, since also vj0 < v
A−Ir
j0

and v
A−Ir
j0

+u
A−Ir
i1

= ai1j0

because j0 −→ i1 is an arc in the path c . This means that (uA−Ir , v−AIr )
dominates (u−Ir , v) via coalition {i1, j0} . We then define (u′, v′) by

u′
i = u

A−Ir

i for all i ∈ M \ Ir ,

u′
i = aiµ(i) for all i ∈ Ir

v′
j = v

A−Ir
j for all j ∈ M ′ .

(A.7)

By (6) and (14), (u′, v′) ∈ Ĉ(wA−Ir
) ⊆ V µ(wA) and moreover (u′, v′) domwA

{i1,j0}
(u, v) .

• If ui1 > u
A−Ir

i1
, then, since both (u−Ir , v) and (uA−Ir , vA−Ir ) belong to

Bµ(wA−Ir
) , vj1 < v

A−Ir

j1
and we can repeat the above argument, replacing

j0 with j1 . If at some step k ∈ {1, . . . , s − 1} we get vjk
< v

A−Ir

jk
and

uik+1
< u

A−Ir
ik+1

, we are done, since v
A−Ir
jk

+u
A−Ir
ik+1

= aik+1jk
(the arc jk −→ ik+1

belongs to the tight graph G ) and thus we have that (uA−Ir , vA−Ir ) dominates
(u−Ir , v) via coalition {ik+1, jk} . Then, the payoff vector (u′, v′) , as defined
in (A.7), dominates (u, v) via coalition {ik+1, jk} .

• Otherwise, for some k ∈ {1, . . . , s} we have uil > u
A−Ir

il
for all l ∈

{1, . . . , k − 1} and uik = u
A−Ir

ik
. (Recall that by (A.6) we can guarantee

that uis ≤ u
A−Ir

is
).

Since uik = u
A−Ir
ik

≤ aikjk
, we first analyze the case where uik = u

A−Ir
ik

=

aikjk
. In this case, either aikjk

= uik = u
A−Ir

ik
= u

A−Ir∪J0
ik

, which implies

that ik ∈ Ĩr+1
10 and contradicts that Ir is the last set in the sequence, or

aikjk
= uik = u

A−Ir
ik

> u
A−Ir∪J0
ik

. But then v
A−Ir
jk

≤ vjk
< v

A−Ir∪J0
jk

and as a

10 Notice that ik 6∈ µ−1(J0) since otherwise uik = 0 = aikjk
, in contradiction with

the assumption.
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consequence there exists t ∈ {1, . . . , d} such that v
A

−Ir∪J
t−1
0

jk
≤ vjk

< v
A

−Ir∪Jt
0

jk
.

Then, similarly to Case 2.1, we can apply Lemma 15 taking I = Ir , J = J t−1
0

and J ′ = J t
0 . To apply the aforementioned lemma, notice first that the same

argument in footnote 9 guarantees that (J t
0 \ J t−1

0 ) ∩ µ(Ir) = J̃ t
0 ∩ µ(Ir) = ∅ .

Also, it has been proved in page 37 that ((M \ Ir) ∪ (M ′ \ J t
0), wA

−Ir∪Jt
0

) is

a µ-compatible subgame of ((M \ Ir) ∪ (M ′ \ J t−1
0 ), wA

−Ir∪J
t−1
0

) and thus by

Proposition 4 we obtain v
A

−Ir∪J
t−1
0

j = aµ−1(j)j for j ∈ J t−1
0 \ J t

0 = J̃ t
0 and, by

definition of J̃ t
0 , vj = v

A
−Ir∪J

t−1
0

j = aµ−1(j)j . Then, Lemma 15 guarantees that

there exists (u′′, v′′) ∈ Ĉ(wA
−Ir∪J

t−1
0

) such that (u′′, v′′) domwA(u, v) .

Otherwise, it holds uik = u
A−Ir

ik
< aikjk

. Let it be I ′ = {i ∈ M \ Ir | u
A−Ir

i =
aiµ(i)} and I = Ir ∪ I ′ , and notice that, by (A.6), is ∈ I ′ and thus I ′ is
non-empty. Since, by Proposition 4, ((M \ I) ∪ M ′, wA−I

) is a µ-compatible
subgame of ((M \ Ir) ∪M ′, wA−Ir

) it follows from Remark 6 that ((M \ I) ∪
M ′, wA−I

) is a µ-compatible subgame of the initial game (M ∪ M ′, wA) .

Let us denote by G′ the restriction of G = G(uA−Ir , vA−Ir ) to the player set

(M \ I) ∪ M ′ . Notice also that, by the definition of I , u
A−Ir

i < aiµ(i) for all

i ∈ M \ I (and consequently v
A−Ir

µ(i) > 0 ).

Let S be the set of buyers in M \ I that can be reached from j0 in G′

(together with i∗ = µ−1(j0) ), and let T be the set of sellers that can be
reached in G′ from j0 . Both S and T are nonempty. Notice that if i ∈ S ,
then µ(i) ∈ T ; and if j ∈ T then µ−1(j) exists and belongs to S . Also, if

i 6∈ S and j ∈ T it cannot be that u
A−Ir

i + v
A−Ir

j = aij .

Define (u′
−I , v

′) by u′
i = u

A−Ir
i + ε for all i ∈ S ; u′

i = u
A−Ir
i for all i ∈

M\(I∪S) ; v′
j = v

A−Ir
j −ε for all j ∈ T and v′

j = v
A−Ir
j for all j ∈ M ′\T . It is

easy to check that, for ε > 0 small enough, (u′
−I , v

′) ∈ C(wA−I
) . 11 Moreover,

all buyer il in the chain c remains in S , for all l ∈ {1, . . . , k} , since we have

u
A−Ir
il

< uil ≤ ailjl
, for all l ∈ {1, . . . , k} , and uik = u

A−Ir
ik

< aikjk
. As a

consequence, for ε > 0 small enough, uil > u′
il

for all l ∈ {1, 2, . . . , k − 1}
and uik < u′

ik
. From uik−1

> u′
ik−1

, and taking into account that (u′
−I , v

′) ∈
C(wA−I

) and also uik−1
+ vjk−1

= aik−1jk−1
since (u, v) ∈ Bµ(wA) , we get

vjk−1
< v′

jk−1
. Then, from u′

ik
+ v′

jk−1
= u

A−Ir

ik
+ v

A−Ir

jk−1
= aikjk−1

, we obtain
that (u′

−I , v
′) dominates (u−I , v) via coalition {ik, jk−1} .

11 Notice that if j ∈ M ′ is not assigned by µ|(M\I)×M ′ , then j 6∈ T , which implies

v′j = v
A−Ir

j . Moreover, either j is not assigned by µ|(M\Ir)×M ′ and thus v′j =

v
A−Ir

j = 0 or µ−1(j) ∈ I ′ and also v′j = v
A−Ir

j = 0 .
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We only have to define (u′′, v′′) by u′′
i = u′

i for all i ∈ M \ I , u′′
i = aiµ(i)

for all i ∈ I and v′′
j = v′

j for all j ∈ M ′ . By (6) and (14), we have that

(u′′, v′′) ∈ Ĉ(wA−I
) ⊆ V µ(wA) and moreover (u′′, v′′) domwA

{ik,jk−1}
(u, v) .

If (u−Ir , v−J0) is neither in Case 1 nor in Case 2, that is to say, (u−Ir , v−J0) 6∈

Rµ(wA−Ir∪J0
) and ui ≤ u

A−Ir∪J0
i for all i ∈ M \ Ir , since by (9) we know that

u
A−I0∪J0
i ≤ u

A−I1∪J0
i ≤ · · · ≤ u

A−Ir∪J0
i for all i ∈ M \ Ir , we deduce that (u, v)

must be either in Case 3 or Case 4.

Case 3: r ≥ 1 and there exists i∗ ∈ M \ Ir and k ∈ {1, 2, . . . , r} such that

u
A−Ik−1∪J0

i∗ ≤ ui∗ < u
A−Ik∪J0
i∗ .

Lemma 15 in the Appendix guarantees that in this case there exists (u′′, v′′) ∈
Ĉ(wA−Ik−1∪J0

) such that (u′′, v′′) dominates (u, v) . We only must take I =

Ik−1 , I ′ = Ik and J = J0 , and recall that by definition of Ĩk = Ik \ Ik−1 ,

ui = u
A−Ik−1∪J0

i = aiµ(i) for all i ∈ Ik \ Ik−1 .

Case 4: There exists i∗ ∈ M \ Ir such that 0 ≤ ui∗ < u
A−I0∪J0
i∗ .

Since (u, v) ∈ Bµ(wA) \ (Rµ(wA) ∪ V µ(wA)) , let us define the following se-
quence of sets of players:

J̃1 = {j ∈ M ′ \ (J0 ∪ µ(I0)) | vj = v
A−I0∪J0
j = aµ−1(j)j} , J1 = J̃1 ∪ J0

and, for all k > 1 ,

J̃k = {j ∈ M ′ \ (Jk−1 ∪ µ(I0)) | vj = v
A−I0∪Jk−1

j = aµ−1(j)j}

and, as long as J̃k 6= ∅ , Jk = Jk−1 ∪ J̃k .

Also by definition, J0 ⊂ J1 ⊂ · · · ⊂ Jk−1 ⊂ Jk and there exists p ≥ 0 such
that J̃p+1 = ∅ , which implies that the sequence ends at Jp . Moreover, M ′ \
Jp 6= ∅ , because otherwise we would have (u, v) = (0, a) and, by Proposition
10, (0, a) ∈ V µ(wA) , in contradiction with (u, v) ∈ Bµ(wA) \ (Rµ(wA) ∪
V µ(wA)) .

By repeatedly applying part 1) of Proposition 4 and Remark 6 we obtain that,
for all k ∈ {0, 1, . . . , p} , ((M \ I0) ∪ (M ′ \ Jk), wA−I0∪Jk

) is a µ-compatible
subgame of (M ∪ M ′, wA) . Also, (u−I0, v−Jp) ∈ Bµ(wA−I0∪Jp

) and different
cases are considered.

Case 4.1 (u−I0, v−Jp) ∈ Rµ(wA−I0∪Jp
) . Then an argument analogous to that

of Case 1 shows that there exists (u′′, v′′) ∈ Ĉ(wA−I0∪Jp
) ⊆ V µ(wA) such that

(u′′, v′′) domwA(u, v) .
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Case 4.2 There exists j∗ ∈ M ′ \ Jp with vj∗ > v
A−I0∪Jp

j∗ . Then an ar-
gument analogous to that of Case 2 shows that there exists I ⊆ M and
J ⊆ M ′ such that ((M \ I) ∪ (M ′ \ J), wA−I∪J

) is a µ-compatible subgame

of (M ∪M ′, wA) , and there exists (u′′, v′′) ∈ Ĉ(wA−I∪J
) ⊆ V µ(wA) such that

(u′′, v′′) domwA(u, v) .

Case 4.3 p ≥ 1 and there exists j∗ ∈ M ′\Jp and k ∈ {1, 2, . . . , p} such that

v
A−I0∪Jk−1

j∗ ≤ vj∗ < v
A−I0∪Jk
j∗ . Then an argument analogous to that of Case 3

shows that there exists (u′′, v′′) ∈ Ĉ(wA−I0∪Jk−1
) ⊆ V µ(wA) that dominates

(u, v) .

Case 4.4 There exists j∗ ∈ M ′ \ Jp such that vj∗ < v
A−I0∪J0
j∗ .

Recall that, by the assumption in Case 4, there also exists i∗ ∈ M \ Ir such

that ui∗ < u
A−I0∪J0
i∗ , and as a consequence is matched by µ|(M\I0)×(M ′\J0) .

Also from v
A−I0∪J0
j∗ > 0 we deduce that µ−1(j∗) ∈ M \ I0 .

Notice first that if p = 0 then ui∗ < u
A−I0∪J0
i∗ implies vµ(i∗) > v

A−I0∪J0

µ(i∗) =

v
A−I0∪Jp

µ(i∗) where µ(i∗) ∈ M ′\J0 = M ′\Jp and we are in the Case 4.2. Similarly,

if r = 0 , then vj∗ < v
A−I0∪J0
j∗ implies uµ−1(j∗) > u

A−I0∪J0

µ−1(j∗) = u
A−Ir∪J0

µ−1(j∗) where

µ−1(j∗) ∈ M \ I0 = M \ Ir , and we are then in Case 2.

Let us then assume that r > 0 and p > 0 .

Let us now consider the buyer-seller exact representative (see (3)) of ((M \
I0) ∪ (M ′ \ J0), wA−I0∪J0

) . Since ((M \ I0) ∪ (M ′ \ J0), w(A−I0∪J0
)r) is buyer-

seller exact, there exists (x, y) ∈ C(w(A−I0∪J0
)r) = C(wA−I0∪J0

) such that
xi∗ + yj∗ = ar

i∗j∗ , and moreover

ui∗ < u
A−I0∪J0
i∗ ≤ xi∗ and vj∗ < v

A−I0∪J0
j∗ ≤ yj∗ . (A.8)

If ar
i∗j∗ = ai∗j∗ we obtain (u′′, v′′) domwA

{i∗j∗}(u, v) , where u′′
i = xi for all

i ∈ M \ I0 , u′′
i = aiµ(i) for all i ∈ I0 , v′′

j = yj for all j ∈ M ′ \ J0 and

v′′
j = aµ−1(j)j for all j ∈ J0 . Notice that (u′′, v′′) ∈ Ĉ(wA−I0∪J0

) ⊆ V µ(wA) .

If ar
i∗j∗ 6= ai∗j∗ , take µ′ ∈ M∗

A(M\I0, M
′\J0) defined by µ′ = µ|(M\I0)×(M ′\J0)∪

µ0 , where µ0 is any matching in M(µ−1(J0), µ(I0)) that does not leave agents
unmatched. Recall that aij = 0 for any (i, j) ∈ µ−1(J0) × µ(I0) and thus
all matchings are optimal for this submarket. Then, since any (u−I0, v−J0) ∈
Bµ(wA−I0∪J0

) satisfies ui = 0 for all i ∈ µ−1(J0) and vj = 0 for all j ∈ µ(I0) ,

we have Bµ(wA−I0∪J0
) = Bµ′

(wA−I0∪J0
) .

By the definition of (A−I0∪J0)
r in (3), there exist i1, i2, . . . , is in M \ I0 and
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different such that

xi∗+yj∗ = ar
i∗j∗ = ai∗µ′(i1)+ai1µ′(i2)+· · ·+ais−1µ′(is)+aisj∗−ai1µ′(i1)−· · ·−aisµ′(is) .

Since (x, y) ∈ C(wA−I0∪J0
) we have xil+yµ(il) = ailµ′(il) for all l ∈ {1, 2, . . . , s}

and thus

xi∗ + yµ′(i1) = ai∗µ′(i1),

xil + yµ′(il+1) = ailµ
′(il+1), for all l ∈ {1, 2, . . . , s − 1},

xis + yj∗ = aisj∗ .

(A.9)

Step 4.4.1 If vµ′(i1) < yµ′(i1) , since ui∗ < xi∗ , we define (x′, y′) ∈ Ĉ(wA−I0∪J0
)

by x′
i = xi for all i ∈ M \ I0 , x′

i = aiµ(i) for all i ∈ I0 , y′
j = yj for all j ∈

M ′\J0 , y′
j = aµ−1(j)j for all j ∈ J0 , and obtain that (x′, y′) domwA

{i∗,µ′(i1)}(u, v) ,
and this would finish the proof.

Step 4.4.2 If vµ′(i1) > yµ′(i1) , then ui1 < xi1 and we go to 4.4.1 replacing i∗

with i1 and µ′(i1) with µ′(i2) . If by repeting this procedure we do not finish,
it is because at some iteration we reach one of the two following steps (4.4.3
or 4.4.4).

Step 4.4.3 If vµ′(il) > yµ′(il) for all l ∈ {1, 2, . . . , k − 1} , for some k ∈
{1, . . . , s} , and vµ′(ik) = yµ′(ik) < aikµ′(ik)

12 , consider J ′ = {j ∈ M ′ \ (J0 ∪
µ(I0)) | yj = aµ−1(j)j} , and J = J ′ ∪ J0 . By Proposition 4 and Remark
6, the game ((M \ I0) ∪ (M ′ \ J), wA−I0∪J

) is a µ-compatible subgame of
(M ∪ M ′, wA) , and µ′(ik) belongs to M ′ \ J . Moreover, by (6) and (7),
(x, y−J ′) ∈ C(wA−I0∪J

) .

Define the oriented graph G = G(x, y) with set of vertices (M \I0)∪(M ′\J0)
and arcs j −→ i whenever (i, j) ∈ µ and i −→ j whenever xi + yj =
aij and (i, j) 6∈ µ 13 . Denote by G′ the restriction of G to the player set
(M \I0)∪ (M ′ \J) . Let S be the set of buyers i ∈ M \I0 that can be reached
from i∗ in G′ . Let T be the set of sellers j ∈ M ′ \ J that can be reached
from i∗ in G′ , together with µ(i∗) ∈ M ′ \ J . Both S and T are nonempty.
Moreover, if i ∈ S and j 6∈ T , then xi + yj > aij , since xi + yj = aij and
i ∈ S would imply j ∈ T .

Now, two cases are considered.

• If µ(I0)∩T = ∅ , then we define the payoff vector (x′, y′
−J ′) ∈ R

M\I0×R
M ′\J

12 The assumptions of this step trivially imply that xil > 0 for all l ∈ {1, 2, . . . , k}
and thus, for all l ∈ {1, 2, . . . , k} , il 6∈ µ−1(J0) , which implies µ(il) = µ′(il) .
13 Notice that the arcs in graph G are defined making use of µ, instead of µ′ .
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by

x′
i = xi − ε , for all i ∈ S ; x′

i = xi , for all i ∈ M \ (S ∪ I0) ;

y′
j = yj + ε , for all j ∈ T ; y′

j = yj , for all j ∈ (M ′ \ (T ∪ J)) .

and see that, for ε > 0 small enough, (x′, y′
−J ′) ∈ C(wA−I0∪J

) . Notice first
that xi > 0 for all i ∈ S . By (A.8), xi∗ > 0 . Moreover, if for some i ∈ S

we have xi = 0 then we know that µ(i) ∈ T and yµ(i) = aiµ(i) , and this
means that µ(i) ∈ J ′ and cannot be a node of graph G′ . This guarantees
that xi > 0 for all i ∈ S and thus, for ε > 0 small enough, x′

i ≥ 0 for
all i ∈ M \ I0 (and trivially y′

j ≥ 0 for all j ∈ M ′ \ J ). For ε > 0 , if
(i, j) ∈ µ , either i ∈ S and j ∈ T or else i 6∈ S and j 6∈ T , and in both
cases x′

i +y′
j = xi +yj = aij . Let us now consider the case (i, j) 6∈ µ . If i ∈ S

and j ∈ T or i 6∈ S and j 6∈ T , x′
i + y′

j = xi + yj ≥ aij . If i 6∈ S and j ∈ T ,
x′

i + y′
j = xi + yj + ε ≥ aij . And if i ∈ S and j 6∈ T , xi + yj > aij and so, for

ε > 0 small enough, x′
i+y′

j = xi−ε+yj ≥ aij . Notice that if i is not matched
by µ|(M\I0)×(M ′\J) , then i 6∈ S and thus x′

i = xi . Moreover, since i ∈ M \ I0

is not matched by µ|(M\I0)×(M ′\J) , either i ∈ µ−1(J0) and thus xi = 0 , or
µ(i) ∈ J ′ which implies yµ(i) = aiµ(i) and also xi = 0 . Finally, if j ∈ M ′ \ J

is not matched by µ|(M\I0)×(M ′\J) it must be the case that j ∈ µ(I0) and
thus yj = 0 . But then, by the assumption µ(I0) ∩ T = ∅ , j 6∈ T and thus
y′

j = yj = 0 .

Notice that, by the assumptions of this step 4.4.3, µ(il) ∈ M ′ \ J for all
l ∈ {1, 2, . . . , k} . Moreover, by (A.9), and taking into account footnote 11, we
have that ck = (i∗, µ(i1), i1, µ(i2), . . . , ik−1, µ(ik)) is a path in the graph G′ .

For ε > 0 small enough, not only (x′, y′
−J ′) ∈ C(wA−I0∪J

) , but also x′
ik−1

>

uik−1
, y′

µ(ik) > yµ(ik) = vµ(ik) , and x′
ik−1

+ y′
µ(ik) = xik−1

+ yµ(ik) = aik−1µ(ik) .
Then, the imputation (x′′, y′′) defined by x′′

i = x′
i for all i ∈ M \ I0 , x′′

i =
aiµ(i) for all i ∈ I0 , y′′

j = y′
j for all j ∈ M ′ \ J and y′′

j = aµ−1(j)j for all

j ∈ J , belongs to Ĉ(wA−I0∪J
) ⊆ V µ(wA) and (x′′, y′′) domwA

{ik−1,µ(ik)}(u, v) .

Notice that for k = 1 the domination would be through coalition {i∗, µ(i1)} .

• If µ(I0) ∩ T 6= ∅ , take such a j′m ∈ µ(I0) ∩ T .

From j′m ∈ T , there exists a path in G′ ⊆ G from i∗ to j′m . Let this path be
c′ = (µ(i∗), i∗, µ(i′1), i

′
1, . . . , µ(i′l), i

′
l, . . . , µ(i′m−1), i

′
m−1, j

′
m) . By the definition

of the graph G′ , with set of vertices (M \ I0) ∪ (M ′ \ J) , we know that
yµ(i′

l
) < ai′

l
µ(i′

l
) for l ∈ {1, 2, . . . , m − 1} . We are now on the assumptions of

Step 4.4.5, and thus go to 4.4.5.

Step 4.4.4 If vµ′(il) > yµ′(il) for all l ∈ {1, 2, . . . , k − 1} , for some k ∈
{1, . . . , s} , and vµ′(ik) = yµ′(ik) = aikµ′(ik) , steps analogous to 4.4.1 to 4.4.3 are
applied to the opposite end of the sequence i∗, µ′(i1), i1, µ

′(i2), i2, . . . , is−1, µ
′(is), is, j

∗

given in (A.9). That is:
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• If uis < xis , since vj∗ < yj∗ we define as usual (x′, y′) ∈ Ĉ(wA−I0∪J0
) by

x′
i = xi for all i ∈ M\I0 , x′

i = aiµ(i) for all i ∈ I0 , y′
j = yj for all j ∈ M ′\J0 ,

y′
j = aµ−1(j)j for all j ∈ J0 , and obtain that (x′, y′)domwA

{is,j∗}(u, v) .

• If uis > xis , then vµ′(is) < yµ′(is) and we repeat the same argument replacing
j∗ with µ′(is) and is with is−1 . If by repeating this procedure we do not
finish, we will find ourselves in one of the two following situations.

• If uil > xil for all l ∈ {t+1, . . . , s} , for some t ≥ 1 , and uit = xit < aitµ′(it) ,
similarly to step 4.4.3 we consider the set I ′ = {i ∈ M \ (I0 ∪ µ−1(J0)) |
xi = aiµ′(i)} , I = I ′ ∪ I0 , and the µ-compatible subgame ((M \ I) ∪ (M ′ \

J0), wA−I∪J0
) . Then either we prove the existence of (x′, y′) ∈ Ĉ(wA−I∪J0

) ⊆
V µ(wA) such that (x′, y′)domwA

{it,µ(it+1)}
(u, v) , or we are on the assumptions of

Step 4.4.6.

• If uil > xil for all l ∈ {t+1, . . . , s} , for some t ≥ 1 , and uit = xit = aitµ′(it) ,
remember that we also have vµ′(ik) = yµ′(ik) = aikµ′(ik) . Notice that in this case

uit = u
A−I0∪J0
it

= aitµ′(it) and vµ′(ik) = v
A−I0∪J0

µ′(ik) = aikµ′(ik) . Moreover, since
(x, y) ∈ C(wA−I0∪J0

) , from xik = yµ′(it) = 0 we have aikµ′(it) = 0 .

If µ′(ik) 6∈ µ(I0) and it 6∈ µ−1(J0) we can define Ĩd+1
0 = {it} and J̃d+1

0 =
{µ′(ik)} , which contradicts that the sequence I1

0 × J1
0 ⊆ I2

0 × J2
0 ⊆ · · · ⊆

Id
0 × Jd

0 = I0 × J0 finishes at Id
0 × Jd

0 .

Otherwise, either µ′(ik) ∈ µ(I0) or it ∈ µ−1(J0) . In the first case, taking
into account (A.9), (µ′(i∗), i∗, µ′(i1), i1, . . . , ik−1, µ

′(ik)) is a path in G , and
the fact that yµ′(il) > vµ′(il) ≥ 0 for l ∈ {1, 2, . . . , k − 1} guarantees that
µ′(il) = µ(il) for all l ∈ {1, 2, . . . , k − 1} . We are then on the assumptions of
Step 4.4.5 (with jm = µ′(ik) ). In the second case, that is when it ∈ µ−1(J0) ,
the path (µ′−1(j∗), j∗, is, µ

′(is), is−1, . . . , µ
′(it1), it) is in the assumptions of

Step 4.4.6, since from uil > xil for all l ∈ {t + 1, . . . , s} we obtain yµ′(il) > 0
for all l ∈ {t + 1, . . . , s} and thus µ′(il) = µ(il) .

Step 4.4.5 If there exists a path (µ(i∗), i∗, µ(i1), i1, . . . , µ(im−1), im−1, jm) in
the graph G = G(x, y) such that jm ∈ µ(I0) and yµ(il) < ailµ(il) for all
l ∈ {1, 2, . . . , m − 1} we proceed in the following way.

Since jm ∈ µ(I0) , jm is not assigned by µ|(M\I0)×(M ′\J0) and we have yjm =

v
A−I0∪J0
jm

= 0 . Now, the fact that (uA−I0∪J0 , vA−I0∪J0 ) ∈ C(wA−I0∪J0
) implies

u
A−I0∪J0
im−1

≤ xim−1 = aim−1jm − yjm = aim−1jm − v
A−I0∪J0
jm

≤ u
A−I0∪J0
im−1

.

Thus, xim−1 = u
A−I0∪J0
im−1

, and as a consequence yµ(im−1) = v
A−I0∪J0

µ(im−1) . The repe-
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tition of the same argument leads to

v
A−I0∪J0

µ(il)
= yµ(il) < ailµ(il) for all 1 ≤ l ≤ m − 1

u
A−I0∪J0
il

= xil > 0 for all 1 ≤ l ≤ m − 1 ,

u
A−I0∪J0
i∗ = xi∗ > 0 and v

A−I0∪J0

µ(i∗) = yµ(i∗) < ai∗µ(i∗) .

(A.10)

Since p > 0 , recalling the definition in page 40 of the chain of subsets J0 ⊂
J1 ⊂ · · · ⊂ Jp−1 ⊂ Jp ⊂ M ′ , from jm ∈ µ(I0) we obtain that jm is unmatched
by µ in all the µ-compatible subgames ((M \ I0) ∪ (M ′ \ Jl), wA−I0∪Jl

) , for
all l ∈ {0, 1, . . . , p} . As a consequence,

yjm = v
A−I0∪J0
jm

= v
A−I0∪J1
jm

= · · · = v
A−I0∪Jp

jm
= 0 . (A.11)

Consider the µ-compatible subgame ((M \ I0) ∪ (M ′ \ J1), wA−I0∪J1
) . Recall

that xi∗ > 0 and notice from the assumptions of this step that xil > 0 for
all l ∈ {1, 2, . . . , m− 1} . This implies µ(i∗) 6∈ µ(I0) and µ(il) 6∈ µ(I0) for all

l ∈ {1, 2, . . . , m − 1} . Also, from xi∗ > 0 we get yµ(i∗) = v
A−I0∪J0

µ(i∗) < ai∗µ(i∗)

which implies µ(i∗) 6∈ J1 . Similarly, from yµ(il) = v
A−I0∪J0

µ(il)
< ailµ(il) for l ∈

{1, 2, . . . , m − 1} we obtain µ(i1), . . . , µ(im−1) 6∈ J1 . Finally, jm 6∈ J1 , since
jm ∈ µ(I0) .

By the definition of J1 , and recall that J1 = J̃1 ∪ J0 , the restriction of
(uA−I0∪J0 , vA−I0∪J0 ) to the space of payoffs of (M \ I0) ∪ (M ′ \ J1) , that we

denote by (uA−I0∪J0 , v
A−I0∪J0

−J̃1
) , belongs to C(wA−I0∪J1

) . By, (12) and (11), we

know that v
A−I0∪J0
j ≤ v

A−I0∪J1
j for all j ∈ M ′ \ J1 and u

A−I0∪J0
i ≥ u

A−I0∪J1
i

for all i ∈ M \ I0 .

Let it be K = {i∗, i1, i2, . . . , im−1} . If u
A−I0∪J0
im−1

> u
A−I0∪J1
im−1

, then, taking (A.10)
and (A.11) into account, we obtain

aim−1jm = xim−1 + yjm = u
A−I0∪J0
im−1

+ v
A−I0∪J0
jm

> u
A−I0∪J1
im−1

+ v
A−I0∪J1
jm

which contradicts (uA−I0∪J1 , v
A−I0∪J1

−J̃1
) ∈ C(wA−I0∪J1

) . Thus, u
A−I0∪J0
im−1

= u
A−I0∪J1
im−1

and as a consequence also v
A−I0∪J0

µ(im−1) = v
A−I0∪J1

µ(im−1) .

By repeatedly applying the same argument we obtain that for all i ∈ K ,

u
A−I0∪J0
i = u

A−I0∪J1
i and also v

A−I0∪J0

µ(i) = v
A−I0∪J1

µ(i) , which, from (A.10), implies
µ(i) 6∈ J2 .

We now claim that for all k ∈ {1, 2, . . . , p} and for all i ∈ K , it holds

u
A−I0∪J0
i = u

AI0∪Jk
i and µ(i) 6∈ Jk .
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To prove the claim, assume by induction hypothesis that for 1 < k ≤ p we

have u
A−I0∪J0
i = u

A−I0∪Jk−1

i where µ(i) 6∈ Jk−1 for all i ∈ K . Then, for all

i ∈ K , v
A−I0∪J0

µ(i) = v
A−I0∪Jk−1

µ(i) and from (A.10) we get v
A−I0∪J0

µ(i) = v
A−I0∪Jk−1

µ(i) <

aiµ(i) . Thus, µ(i) 6∈ Jk for all i ∈ K .

It is known by (11) that u
A−I0∪J0
im−1

≥ u
A−I0∪Jk
im−1

, if we had u
A−I0∪J0
im−1

> u
A−I0∪Jk
im−1

,
then

aim−1jm = xim−1 + yjm = u
A−I0∪J0
im−1

+ v
A−I0∪J0
jm

> u
A−I0∪Jk
im−1

+ v
A−I0∪Jk
jm

,

where the first equality follows from (A.9), the second one by (A.10) and the in-
equality follows from the assumption and (A.11). This contradicts (uA−I0∪Jk , vA−I0∪Jk ) ∈

C(wA−I0∪Jk
) and consequently u

A−I0∪J0
im−1

= u
A−I0∪Jk

im−1
and v

A−I0∪J0

µ(im−1) = v
A−I0∪Jk

µ(im−1) .
By repeatedly applying the same argument we reach that for all i ∈ K , it

holds u
A−I0∪J0
i = u

A−I0∪Jk
i and thus v

A−I0∪J0

µ(i) = v
A−I0∪Jk

µ(i) .

Once proved the claim, from ui∗ < u
A−I0∪J0
i∗ (assumption of Case 4) we obtain

vµ(i∗) > v
A−I0∪J0

µ(i∗) = v
A−I0∪Jp

µ(i∗) , with µ(i∗) 6∈ Jp , and we can again reduce to
Case 4.2.

Step 4.4.6 Analogously to the previous step, let us consider the graph H =
H(x, y) with set of vertices (M \ I0)∪ (M ′ \J0) and arcs i −→ j if (i, j) ∈ µ

and j −→ i whenever xi + yj = aij but (i, j) 6∈ µ . Then, if there exists a
path

(µ−1(j∗), j∗, µ−1(j1), j1, . . . , µ
−1(jm−1), jm−1, im)

in the graph H such that im ∈ µ−1(J0) and xµ−1(jl) < aµ−1(jl)jl
for all

l ∈ {1, 2, . . . , m − 1} , we proceed in a way similar to Step 4.4.5 to show that

u
A−I0∪J0

µ−1(j∗) = u
A−Ir∪J0

µ−1(j∗) and µ−1(j∗) 6∈ Ir . Then, since by the assumptions of Case

4.4 we have uµ−1(j∗) > u
A−I0∪J0

µ−1(j∗) , we obtain uµ−1(j∗) > u
A−Ir∪J0

µ−1(j∗) and we can
thus reduce to Case 2.

This finishes the proof of Case 4.4 and of Theorem 12. 2

References

[1] Aumann, R. (1985) What is game theory trying to accomplish? In Frontiers
of Economics, edited by K. Arrow and S. Honkapohja, Basil Blackwell,
Oxford.

[2] Demange, G. (1982) Strategyproofness in the Assignment Market Game.
Laboratorie d’Econometrie de l’Ecole Politechnique, Paris. Mimeo.

[3] Ehlers, L. (2007) Von Neumann–Morgenstern stable sets in matching prob-
lems. Journal of Economic Theory, 134, 537–547.

46



[4] Gillies, D.B. (1959) Solutions to general non-zero-sum games, in Tucker,
A. W.; Luce, R. D., Contributions to the Theory of Games IV. Annals of
Mathematics Studies 40, 47-85

[5] Leonard, H.B. (1983) Elicitation of Honest Preferences for the Assignment
of Individuals to Positions. Journal of Political Economy, 91, 461–479.

[6] Lucas, W.F. (1968) A game with no solution. Bulletin of the American
Mathematical Society, 74, 1968, 237-239.

[7] Lucas, W.F. (1969) The proof that a game may not have a solution. Trans-
actions of the American Mathematical Society, 136, 219-229.
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[9] Núñez, M., Rafels, C. (2009) A glove market partitioned matrix related to
the assignment game. Games and Economic Behavior, 67, 598–610.

[10] Mo, J-P. (1988) Entry and structures of interest groups in assignment
games, Journal of Economic Theory, 46, 66–96.

[11] Roth, A., Sotomayor, M. (1990) Two-sided matching. Econometric Soci-
ety Monographs, 18. Cambridge University Press.

[12] Shapley, L.S. (1959) The solutions of symmetric market games. Annals
of Mathematics Studies, 40, 87–93.

[13] Shapley, L.S., Shubik, M. (1972) The Assignment Game I: The Core.
International Journal of Game Theory, 1, 111–130.

[14] Shubik, M. (1984) A Game Theoretical Approach to Political Economy.
MIT Press.

[15] Solymosi, T., Raghavan, T.E.S. (2001) Assignment games with stable
core. International Journal of Game Theory, 30, 177–185.

47


	412c
	412



