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1. Introduction 

The development and application of Generalised Methods of Moments (GMM) estimation 

for panel data has been extremely fruitful in the last decade. For instance, Arellano and 

Bond (1991), who pioneered the applied GMM estimation for panel data, have more than 

1,200 citations according to ISI Web of Knowledge as of July 2009. 

In the empirical growth literature, GMM estimation has become particularly popular. The 

Arellano and Bond (1991) estimator in particular initially benefited from widespread use in 

different topics related to growth1. Subsequently the related Blundell and Bond (1998) 

estimator has gained an even grater attention in the empirical growth literature2. 

However, these GMM estimators were designed in the context of labour and industrial 

studies. In such studies the number of individuals N is large, whereas the typical number of 

cross-units in economic growth samples is much smaller. Indeed, availability of country 

data limits N to at most 100 and often to less than half that value. 

The lack of knowledge about the properties of GMM estimators when N is small renders 

them a sort of a black box. Moreover, a practical problem not addressed in the earlier 

literature refers to fact that the low number of cross-units may prevent the use of the full 

set of instruments available. This implies that, in order to make estimation possible, the 

number of instruments must be reduced. The performance of the various GMM estimators 

in panel data is not well known when only a partial set of instruments is used for 

estimation. 

This paper analyses through Monte Carlo simulations the performance of the system 

GMM and other standard estimators when the number of individuals is small. The 

simulations follow closely those made by Blundell et al (2000) in the sense that the 

structure of the model simulated is exactly the same as theirs. The only difference is that 

Blundell et al. chose N=500, while this paper reports results for N more adapted to the 

actual sample size of growth regressions in a panel of countries (N=100, 50, 35). A small N 

constrains the researcher to limit the number of instruments used for estimation, which 

may also have a consequence on the properties of the estimators. The paper studies the 

behaviour of the estimators for different choices on the instruments. 

                                                 

1 For instance Caselli et al (1996) use it to test the Solow model; Greeanway et al (2002) for 
analysing the impact of trade liberalisation in developing countries; and Banerjee and Duflo (2003) 
to investigate the effect of income inequality on growth. 
2 Some examples are studies on aid and growth (Dalgaard et al, 2004); education and growth 
(Cohen and Soto, 2007); and exchange rate volatility and growth (Aghion et al, 2009). 
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The next section depicts the econometric model under consideration. Section 3 presents 

the estimation results obtained by Monte Carlo simulations. Section 4 concludes. 

2. The econometric model 

We will consider an autoregressive model with one additional regressor: 

itiit1itit uηβxαyy     (1) 

for i = 1,…, N and t = 2,…, T, with 1α .The disturbances iη  and uit have the standard 

properties. That is, 

       uη u η itiiti 0,0,0  EEE  for i = 1,…, N and t = 2,…, T. (2) 

Additionally, the time-varying errors are assumed uncorrelated: 

  0itisuuE  for i = 1,…, N and  t  s. (3) 

Note that no condition is imposed on the variance of uit, hence the moment conditions 

used below do not require homoskedasticity. 

The variable xit is also assumed to follow an autoregressive process: 

ititi1itit eθuτηxx    (4) 

for i = 1,…, N and t = 2,…, T,  with 1 . The properties of the disturbance eit are 

analogous to those of uit. More precisely, 

     eη e itiit 0,0  EE  for i = 1,…, N and t = 2,…, T. (5) 

Two sources of endogeneity are present in the xit process. First, the fixed-effect component 

i has an effect on xit through a parameter  implying that yit and xit have both a steady 

state determined only by i. And second, the time-varying disturbance uit impacts xit with a 

parameter . A situation in which the attenuation bias due to measurement error 

predominates over the upward bias due to simultaneity determination may be simulated 

with < 0. 

For simplicity, it is useful to express xit and yit as deviations from their steady state values. 

Under the additional hypothesis that (4) is a valid representation of xit for t = 1,…,  , xit 
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may be written as a deviation from its steady state: 

it
i

it ξ
1
τη

x 


  (6) 

where the deviation from steady state itξ  is equal to 

   itit
1

it eθuL1ξ  
. 

In this last expression L is the lag operator and so, for any variable wit and parameter , (1 

 L)1wit is defined as 

...2-it
2

1-ititit
1 wλλwwwλL)(1     

Similarly, assuming that (1) is a valid representation of yit for t = 1,…,  , we have, 

it
1

it
1i

it uαL)(1xαL)β(1
α1

η
y  


   

After substituting in this last expression xit by (6), yit may be written as 

 
   itiit ζη

1α1

βτ1
y 




  (7) 

with its deviation from steady state given by, 

  it
1

itit
11

it uαL)(1eθuL)(1αL)β(1ζ   . 

Hence, the deviation it from the steady state is the sum of two independent AR(2) 

processes and one AR(1) process. 

3. Monte Carlo simulations 

This section reports Monte Carlo simulations for the model described in (1) to (5) and 

analyses the performance of different estimators. To summarise, the model specification is: 

itiit1itit uηβxαyy     (8) 
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ititi1itit eθuτηxx    (9) 

with 

);0(~);;0(~);;0(~ 2
eit

2
uit

2
ηi σe  σu   ση NNN . 

We will consider three different cases for the autoregressive processes: no persistency (= 

 = 0), moderate persistency (=  = 0.5) and high persistency (=  = 0.95). The other 

parameters are kept fixed in each simulation as follows3: 

 = 1;  = 0.25;  = 0.1; . 0.16σ 1;σ 1;σ 2
e

2
u

2
η 

The parameter  is negative in order to emulate the effects of measurement error in xit
4. 

The hypothesis of homoskedasticity is dropped in subsequent simulations. Initially, the 

sample size considered is N = 100 and T = 5. In later simulations N is set at 50 and 35 

with T=12, in order to illustrate the effects of a low number of individuals (relative to T). 

Each result presented below is based on a different set of 1000 replications, with new initial 

observations generated for each replication. The appendix A explains with more details the 

generation of initial observations. 

The estimators analysed are OLS, fixed-effects, difference GMM, level GMM and system 

GMM. One and two-step results are reported for each GMM estimation. All the 

estimations are performed with the program DPD for Gauss (Arellano and Bond, 1998). 

3.1 Accuracy and efficiency results 

The main finding is that, provided that some persistency is present in the series, the system 

GMM estimator yields the results with the lowest bias. Consider Table 1, which presents 

results for N=100 and T=5. The performance of each estimator varies according to the 

degree of persistency in the series. For instance, when  and  are both equal to zero, OLS 

estimates wrongly assign a highly significant coefficient to the lagged dependent variable, 

whereas the Within estimator provides a negative and significant coefficient5. However, 

                                                 
3 These values are the same as those selected by Blundell et al (2000) 
4 Hauk and Wacziarg (2009) carry out Monte Carlo simulations for the convergence equation 
derived from the Solow model by directly introducing noise in the variables. 
5 Recall that the OLS coefficient on yit1 is biased towards 1 and the Within groups coefficient is 
biased downwards (with a bias decreasing with T). 
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OLS provides estimates for  with the lowest root mean square error (RMSE) in the no-

persistency case6. The high RMSE on  displayed by all GMM estimates is a consequence 

of the weakness of the instruments for xit discussed in appendix B when  = 0. 

In the moderate persistency case ( and  equal to 0.5), the OLS estimator has again a 

strong upwards bias for  and a downwards bias for . The Within estimator is strongly 

biased downwards in both cases. The difference GMM estimator results in coefficients 

between 60% and 70% the real parameter values and presents the highest RMSE for . 

This shows that lagged levels are weak instruments for variables in differences even in a 

moderate-persistency environment. As to the level and system GMM estimates, they 

display systematically the lowest bias for both  and . In addition, these estimators result 

in the lowest RMSE for . 

In the high persistency case ( and  equal to 0.95), the system GMM estimator 

outperform all the other estimators in terms of bias and efficiency. Note however that the 

bias in the lagged dependent variable of the OLS estimator is considerably reduced. This is 

due to the fact that this coefficient is biased towards 1. 

One well known caveat of GMM estimators refers to their reported two-step standard 

errors, which systematically underestimate the real standard deviation of the estimates 

(Blundell et al, 2000). For instance, standard errors of system GMM are 62% to 74% lower 

than the standard deviation of the estimates of  and 70% to 83% lower in the case of . 

This result suggests taking the one-step estimates for inference purposes, since accuracy 

and efficiency (measured by the RMSE) are similar to those of the two-steps. The variance 

correction suggested by Windmeijer (2005) is implemented in the current simulations. 

The next step is to replicate the Monte Carlo experiments by changing the sample sizes. 

Results are now obtained by setting N = 50 and T = 12. The reduction of N relative to T 

precludes the use of the full set of instruments derived from conditions (10) and (10). 

Indeed, if all those moment conditions were exploited the number of instruments would be 

(T2)(T+1), which exceeds N. On the other hand, the optimal weighting matrix WS 

defined in (10) has a rank of N at most. Therefore, if the number of instruments exceeds 

N, WS is singular and the two-step estimator cannot be computed. In order to make 

estimation possible only the most relevant (i.e. the most recent) instruments are used in 

                                                 

6 The RMSE on  is defined as  



R

1j
j ββ

R
1 2

 where R is the total number of replications. 
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each period. That means that only levels lagged two periods are used for the equation in 

differences and, as before, differences lagged one period are used for the equation in levels. 

This procedure results in 4(T2) instruments. The results are presented in Table 2. 

The main conclusions are the same as those obtained from Table 1. That is, in the 

simulations without persistency, all the estimators perform badly. The OLS and fixed-effect 

estimators present considerable biases and, although the system GMM estimator displays a 

relatively low bias, it has a high RMSE for . As to the moderate and high-persistency 

cases, the system GMM does better than any other estimator overall. Still, the moderate-

persistency estimation suffers from a small sample upwards bias of 20% for  and of 14% 

for . 

The next set of results is obtained by straining even more the sample size, with N = 35 and 

T = 12. From the previous discussion it becomes apparent that the system GMM 

estimation with the set of instruments used in the previous simulations is not feasible since 

the number of instruments 4×(122)=40 exceeds the number of individuals. Several 

alternatives were considered for reducing the number of instruments. First, lagged levels of 

xit were omitted from the instrument set for the equation in differences and Zl was kept as 

before. Second, lagged differences of xit were omitted from the instrument set for the 

equation in levels and Zd was kept as before. And third, Zl was kept as before and Zd was 

modified as follows, 





















 2iT

i2

i1

2iT

i2

i1

di

x

x

x

y

y

y

0

0


Z  (10) 

Under this last alternative the total number of instruments is 3×(T2)+1=31. Although all 

three alternatives provided similar results in terms of bias, the third alternative resulted in 

the lowest RMSE error in the high-persistency case. Table 3 compares the different 

estimators, with the instruments for the system GMM estimator defined in (10) for the 

equation in differences and in (10) for the equation in levels. In general the RMSE are 

higher than in the previous simulations due to the smaller sample size. In addition, the 

upward bias for  obtained by system GMM is higher than before. But overall, this 

estimator outperforms in terms of accuracy and efficiency once again. 

The last case under consideration is when errors are heteroskedastic across individuals. The 
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results presented in tables 1 to 3 are based on residuals with variances  and 

. Now heteroskedasticity is introduced by generating residuals uit and eit such 

that  and . This particular structure implies that the 

expected variances of uit and eit are the same as in the previous simulations and that the 

ratio  is constant, thus making easier the comparison with the results previously 

shown. Table 4 reports the simulation results with N = 35 and T =12. The instruments 

used correspond to those of Table 3. The main effect of heteroskedasticity is to slightly 

increase the RMSE of  in the high-persistency case. Still, the level and system GMM 

estimators display both the lowest finite-sample bias and the lowest RMSE. 

1σ2
u 

0.16σ 2
e 

σ2
u i

U~

2
u i

σσ /

1.5) ; (0.5

2
e i

2
u

2
e ii

0.16σσ 

Figure 1 presents the distribution of the estimates obtained with OLS,  and one and two-

step system GMM. The distributions correspond to the sample with N = 35, T = 12 and 

with heteroskedastic residuals across individuals. The vertical line corresponds to the 

parameter values. The figure shows that the distributions of the one and two-step system 

GMM are more concentrated around parameter than the distribution obtained from 

OLS. However, the GMM estimators are systematically biased upwards, though the bias is 

considerably lower than the one present in OLS. Regarding , the distributions of GMM 

estimates in the no-persistency case though centred on the right value have very fat 

queues. The OLS estimator performs better in this particular case. In the cases with 

moderate and high persistency the dispersion of GMM distribution is considerably reduced 

and its bias is systematically lower than OLS's. 

One striking feature of GMM estimators is that the gain in efficiency from the two-step 

estimator is almost inexistent: the one and two step distributions are virtually the same. 

More work should be done in order find out the cases in which the two-step estimator 

does better than the one-step estimator.

3.2 Type-I error and power of significance tests. 

Another aspect in which the various estimators can be evaluated is the frequency of wrong 

rejections of the hypothesis that is not significant when it is in fact equal to zero (i.e. 

type-I error) and the power to properly reject lack of significance when coefficients are 

different from zero. Table 5 reports the frequency rejections at a 5% level of the hypothesis 

that  = 0 and  = 0 for the different simulations described above. 

One striking feature which came out already from figure 1 is that the OLS estimator 
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always rejects lack of significance, even in the case when  = 0 (see the no-persistency 

case). This is an additional flagrant implication of the upward bias of OLS estimates. A 

similar phenomenon occurs with the Within estimator, which fails to discard significance 

of  in 43% to 99.5% of the simulations with  = 0. As mentioned before, the standard 

error of two-step GMM estimators underestimate the real variability of the coefficients. A 

consequence of this is the relatively high number of wrong rejections of non-significance 

of  in the simulations with  = 0 in two-step GMM estimates (up to 69% in the system 

GMM estimator in the simulation with heteroskedasticity). The lowest type-I errors 

correspond to one-step GMM estimators, although they also tend to over-reject as N 

becomes smaller. 

The weakness of the difference GMM estimator is reflected in its low power to reject non-

significance when parameters are in fact different from zero. For instance, in the high-

persistency case the one-step difference GMM estimator rejects non-significance of  in 

only 4% to 30% of the simulations that is, it wrongly dismisses the significance of  in 

70% to 96% of the simulations. The system estimator is the most powerful among GMM 

estimators, with its power increasing as series become more persistent. For instance, 

according to one-step estimates in the heteroskedastic case, the non-significance of  was 

rejected in 56% of the simulations without persistency, 92% of simulations with moderate 

persistency, and 100% of simulations with high persistency. 

Overall, the one-step system GMM is the more reliable estimator in terms of power and 

error type-I. Among all the estimators presented in the table, the OLS estimator has the 

highest power in absolute terms (it never rejected significance in the simulations). But the 

counterpart of this is that inference based on OLS estimates is a poor guide when the 

decision of rejecting a potential non-significant but endogenous variable comes up. 

3.3 Overidentifying restrictions tests 

One crucial feature of instrumental variables is their exogeneity. Frequency rejections of 

overidentifying restriction tests in which the null hypothesis is that instruments are 

uncorrelated with uit are presented in Table 6. By construction, the instruments used for 

estimation are all exogenous, so one would expect that at a 5% level, exogeneity would be 

rejected in 5% of the simulations. In samples with N = 100 and T = 5 there is a slight 

tendency towards under-reject exogeneity in the two extreme cases of persistency. But in 

simulations with smaller N and larger T the under-rejection is much more accentuated. In 

fact, the system GMM estimation results in overidentifying restriction tests that (properly) 
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never reject exogeneity. However, the fact that the frequency of rejections is lower than 

their expected value, suggests that small sample bias is affecting the tests. In order to 

understand better the consequences of this bias, simulations with autocorrelated residuals 

should be made. When residuals uit are autocorrelated lagged levels or differences of the 

regressors would be correlated with the uit, hence they could not be used as instruments. 

This kind of simulations was not performed in this paper. 

4. Conclusions 

This paper has analysed the properties of recently developed GMM and other standard 

estimators, obtained with Monte Carlo simulations. Although earlier studies by Blundell 

and Bond (1998) and Blundell et al (2000) have already shown the superiority of the system 

GMM estimator over other estimators, the validity of their results when the number of 

individuals is small are largely unknown. Understanding better the properties of these 

estimators when N is small is important given the popularity that this method of estimation 

is getting in empirical growth studies. 

A small number of individuals that is, the number of countries typically available in panel 

studies does not seem to have important effects on the properties previously outlined 

about the system GMM estimator. Namely, when series are moderately or highly persistent, 

this estimator presents the lowest bias and highest precision. As expected, the OLS 

estimator has the lowest variance, but the gain in terms of accuracy that the system GMM 

estimator presents, makes it a more reliable tool in the practical work. Other widely used 

estimators the fixed effect and the difference GMM are systematically outperformed by 

the system GMM estimator. 

Moreover, the properties of this estimator are not hindered when N is so small that it is not 

possible to exploit the full set of linear moment conditions. This is also an important 

finding since the earlier Monte Carlo simulations were carried out by using the full set of 

instruments, whereas in practical work this may not be always feasible, especially in the 

context of country growth studies. 

Overall the system GMM estimator displays the best features in terms of small sample bias 

and precision. This, together with its simple implementation convert it into a powerful tool 

in applied econometrics. The next step is to contrast the results provided by this new 

estimator in applied econometrics with those obtained by the standard estimators. 
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Appendix A: Construction of initial observations 

In order to reduce truncation error, which is may be important particularly in simulations 

with high persistency, initial observations are built as follows (see Kiviet (1995) for a more 

general discussion on the generation of initial observations). First, let's omit the index i and 

rewrite (6) as: 

tt ξ
1
τη

x 


  (A.1) 

where  represents the deviation of xt from its steady state  and is given by: tξ

  
tt

tt
1

t

qθp     

eθuL1ξ


  

 (A.2) 

So  is the sum of two independent AR(1) processes, pt  and qt, with variances tξ

2

2
u2

p
-1

σ
σ


  and 

2

2
e2

q
-1

σ
σ


  . 

Based on independent random variables , u1 and e1, it is possible to generate initial 

stationarity-consistent observations x1 as follows: 

   5.0
1





 2

111 eθu
1
τη

x  . 

Similarly, rewriting equation (7) where yt is represented as a deviation from steady state, 

we obtain: 

 
   tt ζη

1α1
βτ1

y 



 . (A.3) 

The deviation from steady state tζ is given by, 

  t
1

tt
11

t uαL)(1eθuL)(1αL)β(1ζ   . (A.4) 
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According to the expression (A.4) tζ  a sum of two independent AR(2) processes and one 

AR(1) process, and so it can be expressed as: 

is

tttt vβsβθrζ   (A.5) 

where 

t2-t21-t1t urrr  , 

t2-t21-t1t esss   and 

t1-tt uαvv   

The autoregressive parameters are 1 =  +  and 2 =  . The variances of each one 

of these processes are given by: 

       2
1

2
222

2
u

2
r 111σσ   

       2
1

2
222

2
e

2
s 111σσ   

 22
u

2
v α1σσ   

With these variances at hand it is possible to generate for each individual initial 

observations of r1, s1 and v1 that are consistent with mean and variance stationarity. Then 

initial observations of y1 are generated based on equations (A.3) and (A.5) as follows: 

 
   1111 vβsβθrη

1α1
βτ1

y 



  

Since this procedure does not ensure covariance stationarity of initial observations, each 

series yt was generated for 50 + T periods and the first 50 periods were deleted for 

estimation. 

 

Appendix B: The GMM estimator 

This appendix describes the difference and system GMM estimators and the problem of 

weak instruments. Much of the material of this appendix is based on Arellano and Bond 

(1991) and Blundell and Bond (1998). 

B.1 First-difference GMM estimator 

The standard Arellano and Bond (1991) estimator consists in taking equation (1) in first 
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differences and then using yit-2 and xit-2 for t = 3,…, T as instruments for changes in period 

t. The exogeneity of these instruments is a consequence of the assumed absence of serial 

correlation in the disturbances uit. Namely, there are zd = (T1)(T2) moment conditions 

implied by the model that may be exploited to obtain zd different instruments. The 

moment conditions are: 

  0Δuy itsit E  and   0Δux itsit E  (B.1) 

for t = 3,…, T and s = 2,…, t1, where uit = uit  uit-1. Thus for each individual i, 

restrictions (B.1) may be written compactly as, 

  0Δ i
'
di uZE  (B.2) 

where  is the (T  2)zd matrix given by, diZ





















 2iTi12iTi1

i2i1i2i1

i1i1

di

x ... x  y... y

x x  yy

x y

0

0


Z  (B.3) 

and ui is the (T  2)1 vector (ui3, ui4,…,uiT)'. 

Setting the matrix Zd = ( Z'd1, Z'd2,…, Z'dN)', the matrix X formed by the stacked matrices 

Xi = ( (yi2 xi3)', (yi3 xi4)',…, (yiT-1 xiT)')' and the vector Y formed by the stacked vectors Yi  = ( 

yi3, yi3,…, yiT)', the GMM estimation of B = (, )' based on the moment conditions (B.2) is 

given by, 

     YZWZXXZWZXB Δ'ΔΔ'Δ '
d

1
dd

'
d

1
ddd


1

 (B.4) 

where Wd is some zdzd positive definite matrix. From equation (B.4) it can be seen that the 

standard instrumental variable estimator with instruments given by (B.3) is a particular case 

of the GMM estimator. Indeed, the standard IV estimator is obtained by letting Wd = 

Z'dZd. Hansen (1982) shows that the matrix Wd yielding the optimal (i.e., minimum 

variance) GMM estimator based only in moment conditions (B.2) is, 
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di
'
i

N

1i
i

'
did ΔΔ ZuuZW 


   (B.5) 

Since the actual vectors of errors ui are unknown, a first step estimation is needed in 

order to make Hansen's estimator operational. Although no knowledge is required about 

the variance of ui, Arellano and Bond (1991) suggest taking into account the variance 

structure of the differenced error term ui that would result under the assumption of 

homoskedasticity. In that case, E(uiu'i) = u
2  G where G is the (T2)(T2) matrix 

given by, 

































21

1

1

121

12

0

0

G



 

Therefore, the one-step Arellano-Bond estimator is obtained by using,  

di

N

1i

'
did ZGZW 


  (B.6) 

Then, the two-step estimator is obtained by substitutingui in (B.5) by the residuals from 

the one-step estimation. 

 

B.2 Weak instruments 

Blundell and Bond (1998) show that the first-difference GMM estimator for a purely 

autoregressive model i.e. without additional regressors has a large finite sample bias and 

low precision in two cases. First, when the autoregressive parameter  tends to unity and 

second, when the variance of the specific-effect i increases with respect to the variance of 

uit. In both cases lagged levels of the dependent variable become weaker instruments since 

they are less correlated with subsequent changes. To see this clearly, Blundell and Bond 

consider the simple case of T = 3. In this case only one observation per individual is 

available for estimation, which leads to the following single instrumental variable equation: 
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i2ii1i2 uη1)y(αΔy   , for i = 1,…, N. (B.7) 

The least-squares estimation of (  1) in equation (B.7) yields the following coefficient, 






N

i

2
i1

N

i
i1i2

y

yΔy
π̂  , 

which has a probability limit equal to, 

2
u

2
η σσk

k
1)(απ Plim


ˆ  , where 

α1
α1

k



 . 

Not surprisingly the probability limit of  tends towards zero as yit approaches to a 

random walk process. Also, due to the positive correlation between yi1 and i,  tends 

towards zero as  increases relative to . 

π̂

2
u

π̂

2
ησ σ

A similar result is obtained when additional regressors are included as in the model (1)-(5). 

To show this keeping tractability, consider again the simple case with T = 3 and with xi1 

being the only lagged variable used as an instrument. In that case the single instrumental 

variable equation for xi3 is 

i3ii1i3 υτη1)x(Δx    (B.8) 

for i = 1,…, N and where   i2i2i3i3i3 eθu1eθuυ  . The least square 

estimate for (  1) is given by, 






N

i

2
i1

N

i
i1i3

x

xΔx
π̂ , 

which has a probability limit equal to, 
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γ1

1)(
π Plim




ˆ , where 
2
e

2
u

2

2
η

2

σσθ

στ
γ


 . 

As in the Blundell-Bond example of a purely autoregressive equation, lagged levels of an 

additional regressor are weak instruments as  tends to 1 and when the variance of the 

specific effect component of xi1, , is large relative to the variance of its temporal 

disturbance, . The only difference with the purely autoregressive case is that 

when the autoregressive parameter  tends to zero, xi1 is also a weak instrument for xi3. 

This is the result of using levels of variables lagged two periods as instruments for 

contemporary changes. 

2
η

2στ

2
e

2
u

2 σσθ 

As Staiger and Stock (1997) show, when instruments are weakly correlated with the 

regressors, instrumental variable methods have a strong bias and the standard errors 

underestimate the real variability of the estimators. Therefore, in the context of growth 

regressions where even considering a time trend variables like the income level or 

human and physical capital stocks have a strong autoregressive component, the standard 

difference GMM estimator is not likely to perform satisfactorily. Hence the need in growth 

regressions of GMM estimators that deal with the problem of high persistency in the series. 

 

B.3 System GMM estimator 

Arellano and Bover (1995) and Blundell and Bond (1998) suggest to use lagged differences 

as instruments for estimating equations in levels. The validity of these instruments require 

only a mild condition on initial values, which is 

   0Δxηu i2ii3 E  and    0Δyηu i2ii3 E  (B.9) 

Conditions (B.9) together with the model set out in (1) to (5) imply the following moment 

conditions: 

   0Δxηu 1-itiit E  and    0Δyηu 1-itiit E  (B.10) 

for i = 1,…, N and t = 3,…,T. So, if conditions (B.9) are true, (B.10) results in the  

existence of zl = 2(T2) instruments for the equation in levels.  

In fact conditions (B.9) are always true under the hypothesis of mean stationarity implicit in 
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the derivation of expressions (6) and (7) and the absence of serial correlation in uit. Indeed, 

under such hypothesis we have: 

      0 i2ii3i2ii3 ΔξηuΔxηu EE  

and 

      0 i2ii3i2ii3 ΔζηuΔyηu EE . 

The advantage of estimation in levels is that lagged differences are informative about 

current levels of variables even when the autoregressive coefficients approach unity. To see 

this, consider again the simple case of T = 3 and where xi2 is the only variable used as 

instrument for xi3. Then the first-stage instrumental variable equation is 

i3ii2i3 υτηΔxx   

where now i3 is a function of uit and eit for t = 3, 1 and earlier dates. The least square 

estimator for  has a probability limit equal to 

2
ˆ


π Plim . 

Therefore, lagged differences remain informative about current levels even when the 

autoregressive parameter tends to one. On the other hand, when the autoregressive 

parameter tends to 0, lagged differences lose their explanatory power. 

Blundell and Bond (1998) propose to exploit conditions (B.10) by estimating a system of 

equations formed by the equation in first-differences and the equation in levels. The 

instruments used for the equation in first-differences are those described above, while the 

instruments for the equation in levels for each individual i are given by the (T  2)×zl 

matrix 


























 1iT1iT

i3i3

i2i2

li

x y

x y

x y

0

0


Z  (B.11) 

Thus, letting the matrix Zl = ( Z'l1, Z'l2,…, Z'lN)', the whole set of instruments used in the 
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system GMM estimator is given by the 2N(T  2)(zd + zl) matrix  











l

d
s Z

Z
Z

0

0
 

The one-step system GMM estimator is obtained with the weighting matrix WS defined as: 











l

d
s W

W
W

0

0
,  

(B.12) 

where  and Wd is defined in (li

N

1i

'
lil ZZW 


 B.6). So the one-step estimator is: 

     S
'
S

1
SS

'
SS

'
S

1
SS

'
SS YZWZXXZWZXB 

1
 

where Xs is a stacked matrix of regressors in differences and levels and where Ys is a 

stacked vector of the dependent variable in differences and levels. Finally, the 

heteroskedasticity-robust two-step estimator is obtained as explained above. 

It is straightforward to show that the system GMM estimator is a weighted average of the 

difference and level coefficients. Indeed, defining the matrices, 

'-1
mmmm ZWZP   and mmmm XPXQ '  

where m = d, l or s (i.e., matrices with variables in differences, levels or system), and noting 

that 

ldS QQQ   

the system estimator Bs may be written as: 

 ll
'
ldd

'
d

-1
SS YPXYPXQB   

  ld
-1
Sdd

-1
S BQQIBQQ   
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In this last expression d and l are the difference and level estimators, respectively, and I 

is the identity matrix. The weight on d is: 

   dd
'
d

'
dll

'
l

'
ldd

'
d

'
dd

1-
S ππππππ ZZZZZZQQ

1
  

where d is a zd×2 matrix of coefficients obtained by least square in the underlying first-

stage regression of Xd on Zd, and l is defined analogously. Therefore, as the explanatory 

power of the instruments for the equation in differences decreases and d tends towards 

zero, the system GMM estimator tends towards the level GMM estimator. 
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Table 1: Simulations with N = 100 and T = 5 

Estimator Mean RMSE Std. Dev.
Std. Err. / 
Std. Dev. Mean RMSE Std Dev

Std. Err. / 
Std. Dev.

OLS 0.493 0.496 0.045 1.002 0.977 0.137 0.135 0.988
Within -0.242 0.247 0.050 0.965 0.394 0.621 0.136 0.961
DIF GMM - 1 -0.027 0.100 0.096 1.024 0.395 1.018 0.819 0.980

No DIF GMM - 2 -0.027 0.107 0.103 0.868 0.390 1.059 0.865 0.848
Persistency LEV GMM - 1 0.038 0.118 0.112 1.103 1.572 1.780 1.685 1.059
 LEV GMM - 2 0.029 0.121 0.117 1.001 1.544 1.832 1.750 0.968

SYS GMM - 1 0.019 0.089 0.087 1.004 0.886 0.786 0.778 1.014
SYS GMM - 2 0.021 0.089 0.086 0.740 0.844 0.811 0.796 0.694

OLS 0.820 0.321 0.022 0.980 0.773 0.249 0.103 0.982
Within 0.136 0.368 0.055 1.000 0.388 0.630 0.146 0.995
DIF GMM - 1 0.368 0.212 0.166 0.993 0.653 0.633 0.529 0.969

Moderate DIF GMM - 2 0.363 0.227 0.181 0.829 0.632 0.686 0.579 0.805
Persistency LEV GMM - 1 0.577 0.133 0.109 1.017 1.174 0.581 0.555 1.000
 LEV GMM - 2 0.566 0.135 0.118 0.894 1.165 0.606 0.583 0.910

SYS GMM - 1 0.552 0.113 0.100 0.966 1.067 0.413 0.408 0.981
SYS GMM - 2 0.556 0.117 0.103 0.653 1.032 0.416 0.414 0.722

OLS 0.963 0.013 0.002 1.010 0.886 0.124 0.049 1.014
Within 0.749 0.206 0.041 0.994 0.574 0.453 0.154 0.980
DIF GMM - 1 0.895 0.100 0.084 0.993 0.285 1.208 0.974 1.012

High DIF GMM - 2 0.891 0.109 0.092 0.831 0.254 1.283 1.044 0.860
Persistency LEV GMM - 1 0.958 0.011 0.007 1.102 0.991 0.127 0.127 1.127
 LEV GMM - 2 0.958 0.011 0.008 1.012 0.988 0.133 0.132 1.035

SYS GMM - 1 0.958 0.011 0.007 1.087 0.990 0.113 0.113 1.158
SYS GMM - 2 0.958 0.011 0.008 0.625 1.002 0.111 0.111 0.828

 
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Table 2: Simulations with N = 50 and T = 12 

Estimator Mean RMSE Std. Dev.
Std. Err. / 
Std. Dev. Mean RMSE Std Dev

Std. Err. / 
Std. Dev.

OLS 0.493 0.495 0.047 0.956 0.968 0.122 0.118 0.987
Within -0.084 0.094 0.042 0.972 0.406 0.602 0.100 1.028
DIF GMM - 1 -0.025 0.065 0.060 0.987 0.400 0.723 0.403 0.962

No DIF GMM - 2 -0.020 0.067 0.064 0.418 0.399 0.738 0.428 0.418
Persistency LEV GMM - 1 0.074 0.105 0.074 0.984 1.565 0.920 0.727 0.949
 LEV GMM - 2 0.065 0.105 0.082 0.646 1.508 0.967 0.822 0.609

SYS GMM - 1 0.041 0.077 0.065 0.982 1.103 0.546 0.536 0.954
SYS GMM - 2 0.043 0.082 0.069 0.364 1.074 0.545 0.540 0.289

OLS 0.818 0.319 0.019 0.967 0.781 0.235 0.086 0.980
Within 0.393 0.114 0.039 0.990 0.530 0.480 0.101 1.015
DIF GMM - 1 0.410 0.131 0.095 0.896 0.704 0.410 0.285 0.970

Moderate DIF GMM - 2 0.411 0.136 0.103 0.368 0.702 0.431 0.312 0.415
Persistency LEV GMM - 1 0.638 0.153 0.066 0.993 1.205 0.378 0.318 0.989
 LEV GMM - 2 0.631 0.151 0.076 0.638 1.195 0.403 0.352 0.672

SYS GMM - 1 0.601 0.120 0.064 0.979 1.140 0.319 0.287 1.008
SYS GMM - 2 0.601 0.122 0.069 0.338 1.126 0.325 0.300 0.357

OLS 0.963 0.013 0.002 0.950 0.883 0.126 0.046 0.947
Within 0.922 0.032 0.016 0.960 0.815 0.203 0.084 0.959
DIF GMM - 1 0.913 0.054 0.040 0.932 0.475 0.692 0.451 0.974

High DIF GMM - 2 0.910 0.059 0.044 0.377 0.457 0.736 0.497 0.387
Persistency LEV GMM - 1 0.959 0.009 0.004 1.074 0.988 0.083 0.082 1.062
 LEV GMM - 2 0.959 0.010 0.004 0.714 0.983 0.093 0.092 0.710

SYS GMM - 1 0.958 0.009 0.004 1.055 0.990 0.083 0.083 1.037
SYS GMM - 2 0.958 0.009 0.004 0.373 0.993 0.089 0.088 0.380

 
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Table 3: Simulations with N = 35 and T = 12 

Estimator Mean RMSE Std. Dev.
Std. Err. / 
Std. Dev. Mean RMSE Std Dev

Std. Err. / 
Std. Dev.

OLS 0.495 0.498 0.057 0.943 0.966 0.152 0.148 0.929
Within -0.087 0.101 0.051 0.956 0.401 0.612 0.126 0.967
DIF GMM - 1 -0.028 0.084 0.079 0.977 0.387 0.841 0.576 0.945

No DIF GMM - 2 -0.023 0.091 0.088 0.546 0.398 0.893 0.660 0.522
Persistency LEV GMM - 1 0.100 0.134 0.089 0.954 1.510 0.842 0.669 0.997
 LEV GMM - 2 0.094 0.136 0.098 0.537 1.466 0.872 0.737 0.554

SYS GMM - 1 0.060 0.101 0.081 0.954 1.231 0.616 0.571 0.982
SYS GMM - 2 0.060 0.104 0.084 0.291 1.190 0.601 0.571 0.250

OLS 0.818 0.319 0.023 0.930 0.774 0.250 0.107 0.938
Within 0.391 0.119 0.047 0.974 0.529 0.488 0.126 0.958
DIF GMM - 1 0.423 0.139 0.116 0.945 0.723 0.487 0.400 0.969

Moderate DIF GMM - 2 0.422 0.150 0.128 0.522 0.715 0.519 0.434 0.555
Persistency LEV GMM - 1 0.661 0.177 0.074 0.966 1.155 0.383 0.350 0.975
 LEV GMM - 2 0.656 0.177 0.084 0.539 1.149 0.407 0.378 0.576

SYS GMM - 1 0.624 0.145 0.074 0.948 1.148 0.367 0.336 0.966
SYS GMM - 2 0.623 0.145 0.076 0.277 1.127 0.365 0.342 0.294

OLS 0.963 0.013 0.002 0.935 0.887 0.126 0.055 0.932
Within 0.920 0.035 0.019 0.936 0.817 0.211 0.105 0.904
DIF GMM - 1 0.921 0.056 0.048 0.987 0.619 0.671 0.553 0.999

High DIF GMM - 2 0.917 0.067 0.058 0.475 0.603 0.745 0.631 0.472
Persistency LEV GMM - 1 0.959 0.010 0.005 1.026 0.986 0.099 0.098 1.032
 LEV GMM - 2 0.959 0.010 0.005 0.582 0.983 0.110 0.109 0.585

SYS GMM - 1 0.958 0.010 0.005 1.008 0.990 0.098 0.097 1.011
SYS GMM - 2 0.959 0.010 0.005 0.324 0.987 0.102 0.101 0.332

 
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Table 4: Simulations with N = 35 and T = 12 and heteroskedasticity 

across individuals 

 

Estimator Mean RMSE Std. Dev.
Std. Err. / 
Std. Dev. Mean RMSE Std Dev

Std. Err. / 
Std. Dev.

OLS 0.492 0.495 0.059 0.938 0.971 0.149 0.146 0.984
Within -0.089 0.103 0.053 0.962 0.404 0.610 0.133 0.962
DIF GMM - 1 -0.033 0.090 0.083 0.961 0.401 0.822 0.564 0.969

No DIF GMM - 2 -0.027 0.094 0.090 0.512 0.394 0.878 0.635 0.502
Persistency LEV GMM - 1 0.098 0.135 0.094 0.935 1.425 0.821 0.702 0.959
 LEV GMM - 2 0.090 0.135 0.101 0.491 1.398 0.879 0.784 0.493

SYS GMM - 1 0.056 0.103 0.086 0.933 1.185 0.637 0.610 0.936
SYS GMM - 2 0.056 0.104 0.088 0.249 1.158 0.632 0.612 0.214

OLS 0.818 0.319 0.023 0.988 0.776 0.248 0.106 0.969
Within 0.394 0.116 0.048 0.975 0.525 0.491 0.126 0.994
DIF GMM - 1 0.429 0.136 0.116 0.965 0.708 0.504 0.411 0.958

Moderate DIF GMM - 2 0.429 0.145 0.126 0.514 0.708 0.540 0.454 0.510
Persistency LEV GMM - 1 0.664 0.181 0.075 0.980 1.146 0.386 0.358 0.977
 LEV GMM - 2 0.660 0.180 0.083 0.517 1.152 0.412 0.383 0.538

SYS GMM - 1 0.629 0.149 0.075 0.958 1.134 0.361 0.335 0.991
SYS GMM - 2 0.627 0.149 0.077 0.254 1.117 0.359 0.340 0.273

OLS 0.963 0.013 0.002 0.925 0.882 0.131 0.057 0.926
Within 0.920 0.036 0.020 0.932 0.812 0.215 0.104 0.946
DIF GMM - 1 0.920 0.060 0.052 0.947 0.592 0.716 0.588 0.961

High DIF GMM - 2 0.915 0.071 0.062 0.444 0.585 0.760 0.637 0.466
Persistency LEV GMM - 1 0.959 0.010 0.005 0.950 0.983 0.109 0.108 0.991
 LEV GMM - 2 0.959 0.011 0.005 0.529 0.980 0.116 0.115 0.545

SYS GMM - 1 0.959 0.010 0.005 0.953 0.985 0.106 0.105 0.989
SYS GMM - 2 0.959 0.010 0.005 0.277 0.983 0.110 0.109 0.289

 
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Table 5: Frequency rejections of the null hypothesis that coefficients 

are not significant (at a 5% level) 

 

Estimator        

OLS 1000 1000 1000 1000 1000 1000 1000 1000
Within 995 853 538 975 456 895 426 870
DIF GMM - 1 63 64 80 202 93 130 98 122

No DIF GMM - 2 109 117 448 599 316 397 351 398
Persistency LEV GMM - 1 59 208 189 643 247 652 219 586
 LEV GMM - 2 74 235 332 769 469 819 497 792

SYS GMM - 1 65 233 111 587 142 623 139 559
SYS GMM - 2 164 412 531 927 632 960 687 946

OLS 1000 1000 1000 1000 1000 1000 1000 1000
Within 714 764 1000 997 1000 986 1000 987
DIF GMM - 1 651 280 975 733 939 499 933 482

Moderate DIF GMM - 2 695 333 998 914 980 732 985 731
Persistency LEV GMM - 1 972 632 1000 964 1000 901 1000 907
 LEV GMM - 2 970 636 1000 981 1000 967 1000 973

SYS GMM - 1 994 769 1000 971 1000 924 1000 921
SYS GMM - 2 999 862 1000 999 1000 994 1000 995

OLS 1000 1000 1000 1000 1000 1000 1000 1000
Within 1000 962 1000 1000 1000 1000 1000 1000
DIF GMM - 1 999 43 1000 281 1000 308 1000 306

High DIF GMM - 2 999 97 1000 613 1000 601 1000 576
Persistency LEV GMM - 1 1000 990 1000 1000 1000 1000 1000 1000
 LEV GMM - 2 1000 990 1000 1000 1000 1000 1000 1000

SYS GMM - 1 1000 995 1000 1000 1000 1000 1000 1000
SYS GMM - 2 1000 997 1000 1000 1000 1000 1000 1000

N=100; T=5 N=50; T=12 N=35; T=12 N=35; T=12; 
Heteroskedasticity

 

 

 25



Table 6: Frequency rejections of the null hypothesis that instruments 

are exogenous (Sargan test) 

 

N=100; T=5 N=50; T=12 N=35; T=12
N=35; T=12; 

Heterosk.
Estimator

No DIF GMM 24 0 1 2
Persistency LEV GMM 39 9 0 0
 SYS GMM 29 0 0 0

Moderate DIF GMM 54 0 1 1
Persistency LEV GMM 74 31 2 0
 SYS GMM 49 0 0 0

High DIF GMM 21 0 1 1
Persistency LEV GMM 25 10 1 0
SYS GMM 34 0 0 0  
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Figure 1: Distributions of estimates in model with N=35, T=12 and 

heteroskedasticity across individuals 
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