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Abstract

This paper aims at providing a Bayesian parametric framework to tackle the accessibility

problem across space in urban theory. Adopting continuous variables in a probabilistic setting

we are able to associate with the distribution density to the Kendall’s tau index and replicate

the general issues related to the role of proximity in a more general context. In addition,

by referring to the Beta and Gamma distribution, we are able to introduce a differentiation

feature in each spatial unit without incurring in any a-priori definition of territorial units.

We are also providing an empirical application of our theoretical setting to study the density

distribution of the population across Massachusetts.

Keywords: Agglomerations, Bayesian inference, Distance, Gibbs sampling, Kendall’s tau

index, Population density.

JEL Classification: C40, R14.

1 Introduction

Empirical evidence backs the idea that the distribution of population or activities across space is

not uniform. According to the accessibility concept, people show a particular interest in locating

as close as possible to the central business district (CBD). In such a way they enjoy an easy access

to all the amenities and other facilities they look for (see Fujita-Thisse, 2002 or Song, 1996).

According to Song (1996) the concept of accessibility is very important in defining urban form
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and function. For instance, it measures the ease of access to an economic activity from a specific

location and it contributes to quantifying the market potential concept for any location (see, for

instance, Glaeser, 2008). The accessibility function also introduces a heterogeneity in the space:

all locations cannot be considered as equivalent from a strictly economic viewpoint. Therefore,

whenever consumers display a preference for one location with respect to another, their distribution

across space is not expected to be constant.

But, how could we formalize this property of the space where proximity matters? The definition

of the distribution function draws the relationship between, for instance, population density and

the distance from a central point (for instance the CDB) (Nairn and O’Neill, 1988). However, as

listed in Song (1996), there is a wide number of possible population density functions that can be

applied in scientific studies. The existence of this wide range of functions stems from the variety of

accessibility functions that can be adopted. The general distance from a CBD can be measured in

multiple ways. Then, in a standard urban setting, the population density function is the product

of the accessibility function and an index of the population density at a single location point.

The very controversial issue is the way to (i) define a distance function, and (ii) identify the

proper territorial unit to deal with the problem of the importance of proximity as an agglomeration

force toward a CDB. The state-of-the-art literature generally proposes exogenous methods to

introduce a distance function and, then, define the proper territorial unit.

The probabilistic approach we are proposing in this study allows to overcome some problems

associated with a variety of functions due to the variety of definition of the accessibility concept.

One of the key issues of the standard spatial equilibrium model (for monocentric city, for instance)

is the analysis of the impact of transportation costs on the population density. Commuting

entails a cost and, as a consequence, the urban structure is considered as a sort of distance-

minimizing structure. Urban models dating back to Alonso-Muth-Mills setting need to look for

an approximation of the distance function and, then, the costs associated with it (Glaeser, 2008).

The empirical studies founded on these models also suffer from the same problem. Our approach is

more general because our starting point is a simple axiomatic assumption of population preferences.

Considering the population and distance functions as random continuous variables and by applying

the Kendall’s tau index, we are able to replicate all the previous results in a more general framework

and to add new and further findings.

Furthermore, an additional advantage of this approach is to manage a differentiation feature

of the space by adopting a Beta (probabilistic) distribution function, as a benchmark. In fact, the

Beta distribution enhances the concept of uneven distribution of agents across space. It relaxes

the assumption of uniform distribution of the population density function within the quantile and

decile groups of reference. Thinking of the income distribution, the general exogenous way to define

space and, hence, the uniform distribution of income across space can generate severe distortions
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when aggregating provincial data into regional data in order to investigate regional disparities

(Chotikapanich, Rao and Tang, 2007). Instead, the Beta distribution is used for modeling events

that are constrained to take place in a general interval and whose shape varies with respect to the

value of parameters (McDonald and Xu, 1995).

However, the lack of a-priori information on the behavior of the density distribution across

space of population, for instance, translates into the difficulty in adopting the Beta distribution

as a general distribution to work with. Another candidate that can fit our scope is the Gamma

distribution. One of the most interesting properties of this function is its ability to behave like

other used distributions and, sometimes, Gamma distribution helps in defining which of those

distributions should be adopted to model a particular process. Of course, the concern of preserving

the properties of the Beta function induces us to work on the conditions that makes the adoptions

of the two functions indifferent from a statistical viewpoint. Once more, the study of the Kendall

tau index reveals to be the key criterion to asses the identity between the two approaches when

aiming at modeling our problem.

In addition, a Gamma model is very useful if we expect an increase in the variance of the

density for larger values of the mean density and, hence, a shorter distance from the CBD (see,

McCullagh and Nelder 1989). Therefore, this piece of evidence suggests to exploiting the flexibility

of the Gamma function to model the behaviour of the population density.

According to our approach, we can assess not only that the distribution density function

decreases with the distance from the CBD but also we can connect how rapidly the density falls

off with distance to the values of the parameters of the Gamma distribution. We also provide

an application of our empirical strategy. We are applying an estimation method based on a

“Gamma-Gamma model” to the study of the distribution of the population density of the counties

in Massachusetts. By choosing Boston as CBD and, considering the distance as a probabilistic

function, our likelihood function is able to replicate the distribution pattern of population density

of each town in Massachusetts against its relative distance to Boston. We also run a few statistical

check of robustness of our estimated parameters and, basically, our estimated results converge to

the real ones.

The remainder is organized as follows. In Section 2 we describe our setting of analysis. Section 3

deals with the concept of Kendall’s tau and its applications. In Section 4 we develop a Gamma-

Gamma model that applied to the case of Massachusetts and Section 5 concludes. All proofs are

deferred to the Appendix.
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2 The setting

We aim at defining a function representing the distribution problem of a continuous of agent. We

identify space with the continuous line X ∈ (0,∞) and the total surface of land in each location

x ∈ X is equal to one.

Assumption 1 Given two locations (x , z ) ∈ X 0 < x < z, then for each agent x � z.

Assumption 1 bis (Mas-Colell et al., 1995). The choice structure (ß , C(.)) satisfies the weak

axiom of revealed preferences if the following property holds: if for some X ∈ ß with (x, z) ∈ X

we have x ∈ C(X), then for any X ′ ∈ ß with (x, z) ∈ X ′ we must also have x ∈ C(X ′).

Without loss of generality, we can define the CBD at 0. Hence, X can be seen as the spatial

distance from the CBD. Moreover, let Y be the population density in the space. The cumulative

distribution function of the population density conditional to the distance FY |X(y | x) is defined

as FY |X(y | x) = P (Y ≤ y | X = x).

Assumption 2 Y is negatively regression dependent on X, i.e.

FY |X(y | x1) ≤ FY |X(y | x2), ∀y ∈ R and ∀x1 < x2 (1)

According to Assumption 2, the hypothesis we introduce regarding consumers preferences

implies that it is more likely that the density of the population is lower as the distance from the

CBD increases. Indeed, the inequality in Assumption 2 means that the proportion of census tracts

at a distance x1 (from the CBD) with population density less than or equal to y is no greater than

the proportion of census tracts more distant (x2), with population density less than or equal to y.

In other words, under Assumption 2, large distances X from the CBD tend to be associated with

small densities of population Y .

In a probabilistic setting, Assumption 2 corresponds to the classical notion of dependence

introduced by Lehmann (1966) and called Stochastically Decreasing (SD). The Kendall’s tau index

measures the degree of this kind of association between X,Y , i.e. how much X,Y are concordant

or discordant.

Definition 3 The Kendall’s tau (τ) index of a random vector (X,Y ) is given by

τ = P ((X1 −X2)(Y1 − Y2) > 0)− P ((X1 −X2)(Y1 − Y2) < 0)

where (X1, Y1), (X2, Y2) are two independent copies of (X,Y ). If the random vector (X,Y ) is

continuous, then τ turns out to be τ = 1− 2πd, where πd = P ((X1 −X2)(Y1 − Y2) < 0).
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The Kendall’s τ index assumes values in the interval [−1.1] and is negative if and only if

πd > 1/2; if the Kendall’s τ of X,Y is negative, then X,Y are discordant or negative associated

random variables.

The characterization of the discordance between X and Y in terms of a restriction on the

values that πd can assume (πd > 1/2) has an interesting intuition. The probability that either

x1 < x2 is associated with y2 > y1 or x1 > x2 to y2 < y1 is greater than 1/2. This condition

implies that values of (X,Y ) are dissociated with a high probability, namely greater than one half.

Lemma 4 If Assumption 2 is true then X,Y are discordant, i.e. τ < 0.

There is no a unique manner to define a-priori the population density distribution and density;

any positive random variable can be chosen. Below, we consider some examples.

Example 5 (Log-normal Model) Let us define Y as follows:

lnY = α0 − αX + ε (2)

where ε is a random disturbance term with zero mean and constant variance and X and ε are

independent. Then Y is negatively regression dependent on X as α > 0. In fact, the conditional

cumulative distribution function of Y given X = x corresponds to that of exp{α0−αx+ ε} which

is clearly stochastically decreasing in x if α > 0. In Equation (2) the density of population Y is

modeled as a negative exponential function of the distance from the CBD and the parameter α is

the density gradient that describes how rapidly the density falls off with distance. This corresponds

to the classical analysis of the accessibility problem, where, by assumption, α is assumed to be

greater than zero. See, for example, the estimation function of the accessibility measure numbered

1 in the first row of Table 1 in Song (1996). Therefore, this example emphasizes that the classical

log-normal regression analysis of the accessibility satisfies Assumption 2.

Example 6 (Beta-Gamma model) Let fY |X (y | x) be a Beta density of parameters c and

ax+ b with a, b and c all positive, i.e.

fY |X (y | x) =


yc−1(1−y)ax+b−1

B(c,ax+b) if 0 < y < 1 and x > 0

0 otherwise
(3)

where B(c, ax+ b) =
∫ 1

0
yc−1(1− y)ax+b−1.

For any marginal density of the nonnegative random variable X, Assumption 2 is satisfied. In

fact, the partial derivative of a Beta cumulative distribution function F (w; a, θ) with respect to θ
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is

∂F (w; a, θ)
∂θ

=
θ − 1

(B(a, θ))2

∫ 1

0

dz2

∫ w

0

dz1(z2 − z1)(z1z2)a−1[(1− z1)(1− z2)]θ−2 =

=
∫ 1

w

dz2

∫ w

0

dz1(z2 − z1)(z1z2)a−1[(1− z1)(1− z2)]θ−2

and, the last integral is positive for any w ∈ (0, 1). It follows that for any y ∈ (0, 1), any

beta(c, ax + b) cumulative distribution function x 7→ FY |X (y | x) is an increasing function of x

and thus Assumption 2 is satisfied.

The conditional expected value of Y given X = x is

E(Y |X = x) =
c

c+ ax+ b
∀a, b, c > 0 (4)

Notice that the right hand side in Equation (4) is equal to 1/(1+ ã+ b̃X), with ã = a/c and b̃ = b/c

so that the shape parameter c is not identifiable. Henceforth, to remove this problem, we assume

c = 1. If Y given X = x is beta(1, ax+ b)-distributed, then its conditional cumulative distribution

is FY |X=x (y | x) = 1 − (1 − y)ax+b, for all y in (0, 1) and E(Y |X = x) = 1/(1 + ax + b) , with

conditional variance Var(Y |X = x) = (ax+ b)/[(1 + ax+ b)2(2 + ax+ b)].

To complete the model for the couple (X,Y ), let X be a random variable Gamma-distributed

with shape parameter α and rate parameter β i.e its density is

fX (x) =


βαxα−1

Γ(α) e−βx if x > 0

0 otherwise
(5)

We shall write X ∼ Γ(α, β). It follows that

fX ,Y (x, y) =


(ax+b)βαxα−1

Γ(α) (1− y)ax+b−1e−βx if 0 < y < 1 and x > 0

0 otherwise

and

fY (y) =

∞∫
0

fY |X (y | x) fX (x) dx

=
aβα(1− y)b−1

Γ(α)

∞∫
0

xαe−x(β−a log(1−y))dx + βαb(1− y)b−1

∞∫
0

xα−1

Γ(α)
e−x(β−a log(1−y))dx

=
aβα(1− y)b−1

Γ(α)
× Γ(α+ 1)

[β − a log(1− y)]α+1 +
βαb(1− y)b−1

[β − a log(1− y)]α+1

=
(aα+ b)βα(1− y)b−1

[β − a log(1− y)]α+1

The marginal expected value of Y is given by

E(Y ) = (aα+ b)
∫ ∞

0

βαy(1− y)b−1

[β − a log(1− y)]α+1 dx
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which, alternatively, we can compute as

E(Y ) =
∫ ∞

0

1
1 + a

βx+ b
× xα−1e−x

Γ(α)
dx . (6)

Looking at the expression of mean E(Y ) in Equation (6), we deduce that on average the population

density depends on the ratio a/β which can be interpreted as the density gradient computed as

a pure number: indeed, observe that the scale parameter β changes with changes in the scale

measurement of the distance from CBD x.

As a further remark, we notice that when turning to consider the conditional mean E(Y |X = x)

of a conditional Beta distribution, we are adding a further feature: we are assuming that the

population distribution function at any distance x is not uniform. In particular, we are assuming

not only that the distribution of the population is not uniform in each territorial unit, but also

that its variance increases along with the distance from the CDB. Hence, we are including a further

element of potential inequality across different points of the space.

Example 7 (Extended-beta Model) The beta density function on [0, 1] can be easily extended

to a random variable with support [0,M ]. Hence, we can use a beta model for population density

Y with values in [0,M ], for some M > 0 not necessarily equal to one. Model (3) takes the form:

fY |X (y | x) =


(ax+b)(M−y)ax+b−1

Max+b if 0 < y < M and x > 0

0 otherwise
(7)

and the corresponding cumulative distribution function is given by

FY |X (y | x) =


0 if y ≤ 0

1− (1− y
M )ax+b if 0 < y < M

1 y ≥M

which satisfies Assumption 2.

Example 8 (Gamma model) Suppose that conditional on X = x, Y is Gamma-distributed

with shape θ and rate function θeax/b:

Y |X = x ∼ Γ
(
θ, θ

eax

b

)
, b > 0 . (8)

In Appendix B, we check that Assumption 2 is satisfied if and only if a > 0. The conditional mean

of Y given X = x is E(Y |X) = be−ax and the (conditional) coefficient of variation (CV from now

on), defined as the ratio of the standard deviation to the mean, is constant and equal to θ−1/2,

since Var(Y |X) = E(Y |X)2/θ.

A model with constant coefficients of variation is very useful if we expect the variance of Y to

increase with its mean or smaller values of the distance X from CBD. Actually, the descriptive
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statistics referring to the distribution of the population density across counties in Massachusetts

replicate this feature as shown in Table 6. This evidence suggests to exploiting the flexibility of

the Gamma function to model the behaviour of the population density.

Using the Gamma Model (8) to deal with the accessibility is equivalent to accepting a regression

model with multiplicative gamma errors for original data. In the previous Log-normal Model (2)

the variance is constant and Log-normal model (2) provides an additive regression model for the

logarithms of density and distance from the CBD. Conversely, in a Gamma model, density and

distance from the CBD are measured on the original scale. Once more, the conditional mean

E(Y |X = x) coincides with the notion of accessibility as distance from CDB but measured on the

original scale. Anyway, if we take a log link, i.e. log E(Y |X) = log b − aX, then Model (8) can

be analyzed under the generalized linear model (GLM) setup (see, McCullagh and Nelder 1989).

The parameter a can be interpreted as a measure of the density gradient describing the decreasing

speed of the density against the distance, whereas parameter b describes the density at or near

the CBD.

The Gamma model is very flexible. We can choose a rate function η(x) alternative to eax/b

examined here. For example, model Y |X = x ∼ Γ(θ, θ(ax+b)), with a > 0 satisfies Assumption 2.

Our interest in the last model Y |X ∼ Γ(θ, θ(aX+ b)) comes from the close connection between its

Kendall’s τ and the Kendall’s τ of the Beta-Gamma model described in the previous Example 6.

The computation of the Kendall’s τs is performed in Section 3.

A more articulated Gamma model fitting the description of the distribution of the population

density across counties in Massachusetts will be examined in detail in Section 4.

3 Computation of the Kendall’s τ

In this section we compute the Kendall’s τ index for the Gamma and Beta-Gamma models de-

scribed in Section 2 and analyze how they vary as functions of the parameters. This exercise is

very useful to quantify to what extend the shape of the function is able to condition the decay of

the density against the distance with respect to the CDB. In doing so, we are also able to trace

back to the standard results usually obtained in the current literature as a particular specification

of this general framework.

We start with some general remarks that turn out to be very useful first to simplify the

computation of the Kendall’s τ , and second to shed light what parameters effectively determine

the Kendall’s τ and thus influence the dependence of density population from the distance from

CBD.

As a general remark, note that the value of the Kendall’s τ index of a couple (X,Y ) does not

change under every increasing monotone (deterministic) transformations of X or Y or X and Y . In

8



fact, P (X2 > X1, Y2 < Y1) = P (g(X2) > g(X1), h(Y2) < h(Y1)), for any increasing function g, h.

In particular, τ(X,Y ) = τ(lX,mY ), for all l > 0 and m > 0 and τ(X,Y ) = τ(X,− log(1 − Y ))

for any random variable Y with support [0, 1].

Example 9 (Gamma-Gamma Model) Let η(x) : (0,∞) 7→ (0,∞) be a monotone increasing

function and consider the model given by: Y |X = x ∼ Γ(θ, θη(x)) and

X ∼ Γ(α, β), θ, α, β > 0 that we shall denotes as Γ(θ, θη(x))×Γ(α, β). In the light of the previous

remark on θ and of the properties of the gamma distributions family, we have that the Kendall’s τ

of a Γ(θ, θη(x))×Γ(α, β) model is equal to the Kendall’s τ of a Γ(θ, θη(x/β)/m)×Γ(α, 1) model,

for all m > 0.

In fact, if W = βX and Z = mY (l > 0,m > 0) then fW (w) ∼ Γ(α, 1) and

fZ|W (z|w) =
1
m
× fY |X

(
z

m
|w
β

)
=

(
θη
(
w
β

)
/m
)θ

Γ(θ)
zθ−1e−zθη(

w
β )/m

In particular, if η(X) = aX and m = a/β then the vectors (X,Y ) and (W,Z) with Z|W ∼

Γ(θ, θW ) andW ∼ Γ(α, 1) share the same Kendall’s τ . So, in a Gamma-Gamma model Γ(θ, θaX)×

Γ(α, β), the Kendall’s τ is independent of both the two rate parameters a and β, and depends

only on the shape parameters α and θ.

On the other hand, notice that if η(x) = ax+ b, then the Gamma-Gamma models Γ(θ, θ(ax+

b)) × Γ(α, β) and Γ (θ, θ(a/βx+ b)) × Γ(α, 1) share the same τ . In other terms, if b 6= 0 then τ

depends on the coefficient of variation CV of Y conditional on X given by CV = θ−1/2, by shape

parameter α of X, by b and by gradient a/β, computed as a pure number.

In any case, without loss of generality, in our numerical calculations of τ , we can suppose β = 1.

As a matter of fact, the expression for Kendall τ of this model can only be evaluated numerically

or via simulation. For example, some simplification for τ arises when α and θ are integers. For

example, when α = θ = 1, one has

τ(X,Y ) = 2
∫ ∞

0

∫ ∞
x1

∫ ∞
0

∫ ∞
y2

x1x2e−x1y1−x1−x2y2−x2 dy1dy2dx2dx1 − 1 =

= 2
∫ ∞

0

∫ ∞
x1

e−(x1+x2) x2

x1 + x2
dx2 dx1 = 2× 0.375− 1 = −0.5

Anyway, in general, we evaluated τ using the following simple simulation scheme. We just simu-

lated N = 20000 independent random couples {(Xi, Yi)}Ni=1 from the distribution of (X,Y ) and

calculated the empirical Kendall’s coefficient of concordance:

RK =
C −D

N(N − 1)
(9)

where C is the number of concordant couples and D the number of discordant. Remember that

two pairs are concordant if both members of a couple are larger than their respective members of
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the other couple, whereas, two pairs are discordant if the two members of one couple differ in the

opposite sense from the respective members of the other couple.

Alternatively, we could evaluate τ via a simple Monte Carlo scheme based on the simulation of

two independent bivariate samples {(X(j)
i , Y

(j)
i )}Ni=1, for j = 1, 2 from the distribution of (X,Y ).

Hence, we obtain

τ̂N =

∑N
i=1 sign

(
(X(1)

i −X
(2)
i )(Y (1)

i − Y (2)
i )

)
N

.

The results of simulations are given in Table 1 (for fixed β = 1).

One observes in Table 1 that for fixed parameter b and the conditional coefficient of variation

CV of Y given X, the negative dependence decreases as α increases (the Kendall’s τ approaches 0

from bellow as α→∞). On the other hand, given the shape parameter α of the gamma distance

X, the negative dependence decreases with the conditional coefficient of variation CV = θ−1/2

of the conditional gamma distribution of Y given X. Actually, larger values of CV imply larger

dispersion for Y , whereas larger values of α imply larger variance for X and so, in both these cases,

smaller dependence between X and Y . Finally, given CV = θ−1/2, b 6= 0 and α, the dependence

between X and Y increases as gradient a increases and is the more relevant the bigger are b and

θ1.

Thinking of τ as the degree of dissociation in the location choices of agents, the negative

dependence reinforces proportionally to shape θ, i.e. the distribution density-polarizes. Put

differently, whenever the CBD enlarges, the preferences of agents coincides because they all want

to settle close to the CBD (for any kind of function of distance shaping the space). Beside, still for

any function of distance, agents’ preferences (with respect to a possible location in proximity of

the CBD) become more blurred when α increases (the shape parameter of the distance function),

because the distance function becomes polarized up to make this spatial dimension disappear. An

extreme point would be reducing the space to one single point.

Example 10 (Gamma model. Continued) Let Y |X ∼ Γ
(
θ, θ eaX

b

)
with b > 1, a > 0 and

X ∼ Γ(α, β). One can verify that

τ(X,Y ) = τ (βX, Y/b) = τ(W,Z),

where W ∼ Γ(α, 1) and Z|W ∼ Γ(θ, θeaW/β). In other terms, the value of τ depends only on the

coefficient of variation CV(Y |X) = θ−1/2,the shape α of X and the ratio a/β.

We evaluated Kendall’s τ of the Gamma-Gamma Model (8) by using the simulation scheme

described in Example 9 and empirical Formula (9). A summary of the values of the empirical RK

for β = 1 is in Tables 2.
1Note that the variability in Kendall’s τ when b = 0 for different values of a –for example, τ =

−0.499,−0.504,−0.507, for θ = 1 and a = 0.5, 1, 10, respectively– is exclusively due to the simulation errors.

10



Table 1: Kendall’s τ for the Gamma-Gamma model in Example 9 with E(Y |X) = 1/(aX + b),

coefficient of variation CV = 1/θ−1/2 and β = 1.

α

a b CV 1 10 50 100

0.5 0 0.2 -0.889 -0.646 -0.392 -0.289

0.5 0 1.0 -0.499 -0.175 -0.079 -0.063

0.5 0 4.0 -0.081 -0.023 -0.011 -0.009

0.5 1 0.2 -0.582 -0.580 -0.385 -0.292

0.5 1 1.0 -0.147 -0.148 -0.078 -0.067

0.5 1 4.0 -0.021 -0.019 -0.006 -0.013

0.5 10 0.2 -0.127 -0.308 -0.299 -0.247

0.5 10 1.0 -0.018 -0.057 -0.063 -0.058

0.5 10 4.0 0.000 -0.009 -0.006 -0.006

1.0 0 0.2 -0.888 -0.648 -0.381 -0.297

1.0 0 1.0 -0.504 -0.175 -0.071 -0.058

1.0 0 4.0 -0.078 -0.019 -0.013 0.002

1.0 1 0.2 -0.704 -0.614 -0.382 -0.294

1.0 1 1.0 -0.227 -0.160 -0.074 -0.058

1.0 1 4.0 -0.023 -0.011 -0.011 -0.010

1.0 10 0.2 -0.237 -0.413 -0.337 -0.264

1.0 10 1.0 -0.047 -0.098 -0.065 -0.052

1.0 10 4.0 -0.008 -0.005 -0.006 -0.005

10.0 0 0.2 -0.888 -0.647 -0.396 -0.289

10.0 0 1.0 -0.507 -0.174 -0.072 -0.052

10.0 0 4.0 -0.077 -0.023 -0.004 -0.005

10.0 1 0.2 -0.866 -0.643 -0.387 -0.295

10.0 1 1.0 -0.433 -0.175 -0.072 -0.058

10.0 1 4.0 -0.049 -0.015 -0.006 -0.005

10.0 10 0.2 -0.709 -0.614 -0.387 -0.297

10.0 10 1.0 -0.233 -0.157 -0.072 –0.053

10.0 10 4.0 -0.029 -0.021 -0.011 -0.010
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Table 2: Kendall’s τ for Gamma-Gamma models with E(Y |X) = e−aX and β = 1. See Example 10

and Equation (8).

α

a CV 1 10 50 100

0.5 0.2 -0.670 -0.916 -0.963 -0.974

0.5 1.0 -0.233 -0.579 -0.788 -0.846

0.5 4.0 -0.026 -0.105 -0.205 -0.266

1.0 0.2 -0.810 -0.958 -0.981 -0.987

1.0 1.0 -0.388 -0.759 -0.890 -0.923

1.0 4.0 -0.056 -0.177 -0.356 -0.436

10.0 0.2 -0.978 -0.996 -0.998 -0.028

10.0 1.0 -0.878 -0.975 -0.988 -0.041

10.0 4.0 -0.387 -0.737 -0.873 -0.030

As in the previous case, the degree of association of the preferences of agents, measured by τ ,

reduces as long as the distances polarizes (or degenerates) in one point.

Example 11 (Beta-Gamma Model) Here we consider the following model: Y |X ∼ beta(c, aX+

b) andX ∼ Γ(α, β), with a, c, α, β > 0; we shall denotes this model as the Beta-Gamma(c, a, b, α, β)

model. To compute the Kendall’s τ of a beta-gamma(c, a, b, α, β) model we can use the same

calculations as executed for the Gamma-Gamma model of Example 9. As already discussed

in Example 6, to remove the identifiability problem we assume c = 1 and face with a Beta-

Gamma(1, a, b, α, β) model that has a conditional mean E(Y |X) = 1/(1 + aX + b). Second, since

the Kendall’s τ index of a couple (X,Y ) is invariant under every increasing monotone transforma-

tions of X or Y or X and Y , then the Kendall τ(X,Y ) of a Beta-Gamma(1, a, b, α, β) model is equal

to τ(X,Z), with Z− log(1−Y ). On the other hand, conditionally on X, the random variable Z is

Gamma-distributed with shape parameter 1 and rate function: aX+ b (i.e Z | X ∼ Γ(1, aX+ b)).

So, we conclude that the Kendall’s τ of a Beta-Gamma(1, a, b, α, β) model coincides with Kendall’s

τ of Gamma-Gamma model Γ(1, ax+ b)× Γ(α, β). Evaluations of Kendall’s τ are summarized in

Table 3, obtained by extracting the rows of Table 1 with the coefficient of variation CV = 1.

On one hand, this example reiterates the results associated with the polarization of the distance

function. On the other, for a given (not polarized) distance function, as much proximity to the

CDB matters for agents (by parameter a) as τ will represent a good measure of their preferences

in concentrating as closely as possible to the CBD.
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Table 3: Kendall’s τ for the Beta-Gamma model in Example 11 with E(Y |X) = 1/(1 + aX + b)

and β = 1.

α

a b 1 10 50 100

0.5 0 -0.499 -0.175 -0.079 -0.063

0.5 1.0 -0.147 -0.148 -0.078 -0.067

0.5 10 -0.018 -0.057 -0.063 -0.058

1.0 0 -0.504 -0.175 -0.071 -0.058

1.0 1.0 -0.227 -0.160 -0.074 -0.058

1.0 10 -0.047 -0.098 -0.065 -0.052

10.0 0 -0.507 -0.174 -0.072 -0.052

10.0 1.0 -0.433 -0.175 -0.072 -0.058

10.0 10 -0.233 -0.162 -0.072 -0.053

4 A case study: the Gamma-Gamma Model

In order to illustrate the properties of our framework, we are proposing an empirical application

to the case of Massachusetts.

Data are taken from US Bureau Census and refer to the year 2000. We are considering all the

towns belonging to the state (351) grouped by county (14). By comparing descriptive statistics

presented in Table 6,first of all it is easy to recognize the association between lower population

density and a greater distance from Boston (the capital of the state). In Table 6, the distance

is understood as the shortest distance of each county from Boston. Moreover, if we look at the

empirical means and standard deviations of the population density (and housing density) across

counties in Massachusetts, we note an increase in the standard deviation in correspondence of

larger values of the mean. So, it is quite evident that there exists a clear trend replicating the

properties studied for a Gamma model with constant coefficients of variation: high density’s

variance in correspondence to high average density. This property makes the Gamma-Gamma

model suitable for the adoption.

Empirical evidence discussed above does suggests that the geographic CDB in Massachusetts

may be the capital (Boston); therefore we select it as CBD and we organize the data by considering

the k counties of the state. For i = 1, . . . , k let ni be the number of cities and Zi the size of free

land (namely water areas) in ith county. Predictor Zi is a kind of measure for the proportion of

rural land in a county. Furthermore, for j = 1, . . . , ni and i = 1, . . . , k, let Yij be the density of
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population of the jth city within the ith county and Dij its distance from the CBD.

In our model we introduce some state variables X1, . . . , Xk and adopt the following two-stage

Gamma-Gamma model:

Yij |Xi ∼ Gamma(θ, θXieaiDij )

Xi ∼ Gamma(α, αBi)
(10)

with ai = β2 +β3Zi and Bi = exp{β0 +β1Zi}. All the state variables Xi are independent, whereas

the densities of population Yij are assumed to be independent across counties and dependent

within.

Our framework provides a technique to estimate the density of population of a city using a) the

CBD distance Dij as a local covariate variable, b) the rural degree Zi as a global covariate and c)

an unobserved state variable Xi.

In some sense Xi represents all the predictors of the population density, either observable or

not observable or neglected, common to all the cities in the ith county. According to the contents

of the last World Development Report (World Bank, 2008) and Ramcharan (2009), the economic

concept of distance is something more than the Euclidean (physical) distance. In economics,

distance refers to the ease or difficulty for goods, services, labor, capital, information or ideas to

move across the space. Then, the cultural proximity or the quality of infrastructure can affect the

economic distance between two places, even if the Euclidean distance between them is identical.

In this exercise we aim at recovering this wider idea of distance, and this is the reason to look for

a bunch of predictors (for population density) in addition to the physical distance. Nevertheless,

by ideally ranking the different factors composing the measure of the distance, the Euclidean

component is always considered as the most relevant one. Furthermore, our model is an attempt

to take into account of spatial dependence in each country. In our exercise, we are assuming that

the land organizational structure of each county is independent of that of the others, but towns

belonging to the same county are characterized by very similar features. For instance, it is likely

that citizens are submitted to local laws of own county that can be different from that of another,

as well as each county my have peculiar natural endowments that others do not have, (i.e. Dukes

is an island). Put differently, towns belonging to a same county share some common features

that can be associated to fixed effects recorded in Zis and random effects recorded in unobserved

covariates Xis. For this kind of reasons, we think is sensible to model the population densities of

different counties as independent random variables, and the spatial dependence between densities

within counties via a state variable Xi.

We obtain several features of density of population Yij through the conditional expectation

results and some standard properties of the Gamma distribution. For α > 1 we have:

E(Yij) =
α

α− 1
eβ0+β1Zi−β2Dij−β3ZiDij (11)
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whereas for α > 2 we obtain:

Var(Yij) =
α− 1 + θ

(α− 2)θ
(E(Yij))2 , (12)

Cov(YijYlj) =
E(Yij)E(Ylj)

α− 2
1(i = l) , (13)

ρ(YijYih) =
θ

θ + α− 1
, (14)

since:

E
(
X−ri

)
=

αrBri
(α− 1)× (α− r)

for α > r and r = 1, 2

E
(
Y rij
)

= E(E(Y rij |Xi)) =
θ(θ + 1).....(θ + r − 1)e−raiDij

θr
E(X−ri ) for r = 1, 2

E(YijYlh) =

E(E(YijYih|Xi)) = E(E(Yij |Xi) E(Yih|Xi)) if i = l

E(Yij) E(Ylh) if i 6= l .

We read in Equation (11) that the unconditional expectation of Yij describes a log-linear regression

model that includes the local and global predictors and an interaction term. The variance of Yij is

quadratic in the mean (see (12)) and the correlation between the densities of the populations of two

cities of the same county is always positive, since ρ(YijYih) > 0. The shape parameters θ (of the

conditional law of Yij given Xi) and α (of Xij) measure the intensity of the relationship between

Yij , Yih (within counties). In particular, as one can see in Equation (14), the larger α, the more the

state variables Xij concentrate around 1; the independence of the Yij within counties is obtained

for α → 0. Similarly, small values of α record a strong positive relationship of densities among

cities in the same county, but stronger heterogeneity among the counties. Moreover, for the α value

being equal, the larger θ is, the less Yij ’s are concentrated and, the bigger the dependence between

Yij , Yih is. Put differently, when distance does not have a discriminating impact on population

distribution within each county, i.e Xi concentrates around 1, other kinds of factors have to be

considered as potential discriminatory devices (here represented by the parameters shaping the

distribution function). Instead, when those factors are somewhat identical across cities, within

the same county, it is less likely to differentiate the population density of one city from another.

Alternately, one can measure the dependence between the densities of populations of two cities

in a county, using the Kendall’s τ coefficient. In the Appendix we prove that for θ = 1, τ(Yij , Yih)

is given by

τ(Yij , Yih) =
2

2 + α

As ρ(Yij , Yih) in (14), the Kendall’s τ depends only on parameter α. Moreover, for α → ∞,

both ρ and τ go to zero as 1/α; but ρ approaches 0 faster than τ . Nevertheless, in Model (10)

the dependence between Yij , Yih is not linear and, then, it could not be detected only by ρ.
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Furthermore, the Kendall’s τ allows for detecting the dependence even if α is less than 2, whereas

some of the mean values of Yij , Yi,h involved in Equations (11) -(14) do not exist for α ≤ 2.

4.1 Likelihood specifications of the Gamma-Gamma model

The next step is to define a suitable specification in order to estimate the population density in

accordance with the statistical framework we developed. Let now (Y ,D,Z) be the collection of the

triplets (Yij , Dij , Zi) observed for every j = 1, . . . , ni and i = 1, . . . , k and let β = (β0, β2, β2, β3)

be the vector of the regression parameters. The likelihood function of the parameters (β, θ, α)

based on observed data (Y ,D,Z) can be obtained by integrating the conditional joint probability

densities of Yij |Xi over all the random state variables Xi’s. We have

L(Y ,D,Z;β, θ, α) =
k∏
i=1

∫ ∞
0

ni∏
j=1

Γ(θ, θxieaiDij )(yij)× Γ(α, αBi)(xi) dxi

=

∏
i,j

yij

θ−1

×
θnθαkα

∏k
i=1 Γ(niθ + α)

Γ(θ)nΓ(α)k
×

k∏
i=1

Bαi

αBi + θ
∑
j

yi,jeaiDi,j

−nθ−α (15)

with n =
∑k
i=1 ni. For θ 6= 1, the final form of the likelihood L(Y ,D,Z;β, θ, α) from (15) is too

complicated to work with. In order to solve this problem, let us consider the following model
Yi,j |wi ∼ Gamma(θ, θwi/µij) independent for all j

wi ∼ Gamma(α, α) independent for all i

µij = eβ0+β1Zi−β2Dij−β3ZiDij

(16)

One can realize that Models (10) and (16) give rise to the same likelihood L(Y ,D,Z;β, θ, α)

in (15). However, the random factors Xi and wi are unobservable so that the two models are

not distinguishable and hence every estimate of parameters (β, θ, α) obtained using the likelihood

function should be the same for Models (10) and (16). Due to its simplicity, we use Model (16)

to develop an estimation procedure of (β, θ, α).

Remark 12 Model (16) is not only a convenient expedient to handle a complicated likelihood.

Actually, when θ = 1, Model (16) is an example of an exponential regression model with scale

parameter eβ0 and gamma shared frailties w1, . . . , wk, also known as gamma county random effects.

Shared frailties models have been applied in multivariate survival analysis and extensively studied

in literature. Several procedures of statistical inference, both frequentist and Bayesian, have been

developed. See, for example Chapter 8 in Hougaard 2000 for a review on the frequentist techniques

and, for instance, Sahu, Dey, Aslanidou and Sinha (1997) for a Bayesian modeling. On the other

hand, if θ 6= 1, our model does not fall into the class of parametric shared frailties models, where,
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typically, the conditional hazard function of Yij given wi defined as

hij(y) =
fYij |wi(y|wi)
P (Yij > t|wi)

is modeled as the product of three terms: a “baseline” hazard function h0, a frailty term wi and

an exponential regression model eβX, i.e hij(y) = h0(y)wieβX. Conversely, our gamma hazard

function cannot be reduced to this form.

4.2 Prior specifications and Bayesian estimation

Here we develop a Bayesian technique for estimating parameters β, α, θ. In a Bayesian perspective,

the unknown parameters β, α, θ are understood as random variables with a prior joint distribution,

say π and, the statistical problem consists in updating π by computing a posterior joint conditional

probability of β, α, θ, given data Y ,D,Z. Then the posterior joint distribution is summarized

in a simple way, typically by means of posterior means, giving rise to a point estimate of β, α, θ.

Moreover, the associated standard errors for the posterior means of β, α, θ are computed. We find

out that both the joint and the marginal posterior distributions of β, α, θ does not have a closed

form. So we need to use some Markov Chains Monte Carlo (MCMC) algorithms in summarizing

that. In particular, we will use a Gibbs sampling scheme.

Letw = (w1, . . . , wk) be the vector of the unobservable “frailties” and let us consider (w,Y ,D,Z)

as “complete data”. Instead of L(Y ,D,Z;β, θ, α) from (15), let us work with the “complete”

likelihood L(w,Y ,D,Z;β, θ, α) given by

L(w,Y ,D,Z;β, θ, α) =
θnθαkα

Γ(θ)nΓ(α)k
∏
i,j

(
µθijy

θ−1
ij

)
e−

Pk
i=1 wi(θ

P
j µijyij+α)

∏
i

wniθ+α−1
i (17)

and handle unknown frailties w as unknown parameters to estimate.

As regards the prior, we chose “non-informative” priors for β, α, θ to represent our vague prior

knowledge of them. A priori β, α and θ are assumed to be independent. The regression parameters

in β are a priori independent normal random variables with large variances:

βk ∼ Normal(0, 10 000)

and, the prior distribution for the shape parameter α is Gamma with mean 1 and large variance,

i.e.

α ∼ Gamma(0.01, 0.01).

Analogously, θ is assigned Gamma(ν, ν) prior with a small ν (in our computation, ν = 0.01).

Using complete likelihood L(w,Y ,D,Z;β, θ, α) in (17) and the priors specified above, we

obtain the following full conditional distributions of each parameter given all the others and the

data:
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Let πβ, πθ, πα denote the prior densities of β, α and θ, respectively and, let us denote the set

of data Y ,D,Z by “Data”. Hence

1. conditional on β, θ, α and Data, frailties terms w1, . . . , wk are independent and Gamma-

distributed:

wi ∼ Gamma
(
niθ + α, θ

∑
j

µijyij + α
)

;

2. The full conditional distribution πα(·|β, θ,w,Data) of α, given β, θ,w and Data, is

proportional to

ααk

Γ(α)k
e−α

Pk
i=1 wi

(∏
i

wi

)α−1

πα(·)

3. The full conditional distribution πθ(·|β, α,w,Data) of θ, given β, α,w and Data, is

proportional to
θnθ

Γ(θ)n
e−θ

P
i,j wiµijyij

∏
i,j

(wiµijyij)
θ−1

πθ(·) .

4. The full conditional distribution πβ(·|θ, α,w,Data) of β, given θ, α,w and Data, is

proportional to

eβ′θc−θ
P
i,j wiyije

β′cij
πβ(·) ,

where cij = (1, Zi,−Dij ,−ZiDij) and c =
∑
i,j cij

We can now sample frailties w and β, α, θ alternately sampling w and β, α, θ from their full

conditional probability distribution as follows: given starting values w(0),β(0), α(0), θ(0) repeat

w
(l)
i ∼ Gamma

(
niθ

(l−1) + α(l−1), θ
∑
j

µ
(l−1)
ij yij + α

)
, for i = 1, . . . , k

α(l) ∼ πα(·|β(l−1), θ(l−1),w(l),Data)

θ(l) ∼ πθ(·|β(l−1), α(l),w(l),Data)

β(l) ∼ πβ(·|θ(l), α(l),w(l),Data) .

The sample of w,β, α, θ so obtained, after a burn-in period, can be considered as a sample from

the joint posterior distribution of the parameters. Anyway, a complete description of the Gibbs

sampling is beyond the scope of this paper, further details can be found for example in Casella

and and George (1992).

For carrying out the Gibbs sampler, we use JAGS (Just Another Gibbs Sampler) software

package by Plummer 2009. JAGS is designed to work closely with the R package where all

statistical computations and graphics are performed.

4.3 Results for the Massachusetts case study

We run few simulations for our specific Massachusetts case study. In order to deal with tractable

values, we adopt the following strategies. We normalize the distance Dij of each single town from
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Table 4: Estimation with real data and without interaction (β3 = 0).

mean sd 2.5% 25% 50% 75% 97.5% Rhat

α 2.9 1.3 1.0 1.9 2.6 3.5 6.2 1.0

β0 1.5 0.3 0.9 1.3 1.5 1.7 2.1 1.0

β1 −0.4 0.8 −2.0 −0.8 −0.3 0.1 1.0 1.0

β2 4.8 0.5 3.9 4.4 4.8 5.1 5.8 1.0

θ 1.1 0.1 1.0 1.1 1.1 1.2 1.3 1.0

the CBD (here Boston city) to a value belonging to interval (0, 1). The measure of distance we

are applying is:

D̃ij =
Dij −minD

maxD −minD

where Dij is the direct measure of the distance of each town to Boston, and minD,maxD are

the minimum and maximum values of observed distances in our sample. In the similar manner we

define

Z̃i =
Zi −minZ

maxZ −minZ
,

where Zi is the fixed effect given by the size of the free land in county i and minZ,maxZ are the

minimum and maximum values of observed Zi, respectively.

By using the package JAGS, 10 000 iterations for three chains were run for the unknown

parameters β, α, θ and frailties w1, . . . , w14, and the first half was discarded as burn-in. After

burn-in, one out of every 5th simulated values were kept for posterior analysis, for a total of 3000

simulations saved. Only results for effective parameters β, α, θ are here included. Table 4 presents

the estimation results for a Model (16) without interaction (i.e. β3 = 0) and Table 5 that for a

Model (16) with interaction. These tables summarize the posterior mean, standard deviation and

sample quantiles (2.5th, 25th, 50th, 75th and 97.5th) of parameters β, α, θ, given Data. For each

parameter, the last column of Table 5 provides an estimate “Rhat” of the Gelman-Rubin potential

scale reduction factor diagnostic which measures the convergence of the Gibbs sequences to the

posterior distribution. In short, Rhat compares the between and within variances of the three

simulated chains and, at convergence, Rhat=1. See Gelman and Rubin (1992).

To assess the goodness of fit of our model, we follow the guidelines on the Bayesian model

checking contained, for example, in Albert (2009). We simulate draws of the posterior predictive

density f(y|Data) of the density of population for each town in Massachusetts and summarize

that by the 5th and 95th quantiles. Hence we graph that as line plots in Figure 1, where the
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Table 5: Estimation with real data and with interaction term

mean sd 2.5% 25% 50% 75% 97.5% Rhat

α 3.3 1.7 1.1 2.1 3.0 4.2 7.7 1.0

β0 1.2 0.4 0.6 1.0 1.2 1.5 2.0 1.0

β1 1.1 1.7 -2.9 0.1 1.2 2.3 4.2 1.0

β2 4.4 0.7 3.2 3.9 4.4 4.8 5.8 1.0

β3 3.0 3.3 -4.3 1.0 3.2 5.4 9.1 1.0

θ 1.1 0.1 1.0 1.1 1.1 1.2 1.3 1.0

observed densities yij are placed as solid dots. If the actual yij turns out to be in the tail of this

distribution, that indicates yij is an outlier and the model does not fit.
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Figure 1: Posterior predictive distributions of the densities population with actual densities yij

denoted by solid dots.

We note in Figure 1 that “almost all” the actual values yij are consistent with the corresponding

predictive distributions. There are five points below the 5th quantile: points indexed by 10, 21

and 28 corresponding to three towns in Franklin county, 244 which is a town in Dukes county and

285 in Worcester. A further ten points exceed the 95th quantile: town numbered 122 in Bristol

county, towns 150 and 153 in Berkshire, towns 164, 168, 173, 174, 181, 185 in Hampden, and town
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225 in Hampshire.

Furthermore, we use a Q-Q plot of the empirical quantiles of actual yij versus the quantiles of

351 values (one-per town) of population density simulated according to the Model (16) with the

Bayesian estimates of the parameters, provided on the first column of Table 5, plugged in. We

plot out results in Figures 2 and 3.
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Figure 2: Plot of the simulated densities, denoted by (black) squares, real densities denoted by

(red) circles and normalized distance denoted by (blue) line.

It is easy to detect that population density is generally reducing in the presence of a large

distance from Boston. Moreover, the simulated and real data generally behave in a quite similar

way. Anyway, the Q-Q plot of the sample quantiles of simulated densities versus that those of

real densities in Figure 3 shows the tails of the simulated densities are slightly longer than that of

real densities. On the other hand we have already noticed the presence of a few outliers belonging

to Franklin, Dukes, Worcester, Bristol, Berkshire, Hampden and Hampshire counties. In the

plots of the densities of population versus distance from Boston in Figures 4 and Figures 5 we

indicated these outliers by solid points. In particular, Figure 5 shows that a negative dependence

between distance from Boston and density of population seems doubtful for Bristol, Berkshire and

Hampden counties. One reason we can put forward to justify this behavior is the fact that all

these counties are border areas, so that it is very likely that the attractiveness of Boston may be

smoothed by the degree of attractiveness of others towns or state capital such as Providence.
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Figure 3: Q-Q plot of the sample quantiles of simulated densities versus that of real densities.
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Figure 4: Plots of the log density population versus distance from Boston, with “down-outliers”

points indicated by solid dots.
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Figure 5: Plots of the log density population versus distance from Boston, with “up-outliers”

points indicated by solid dots.

5 Concluding remarks

Our study proposed a probabilistic approach to estimate the distribution density in the proximity

of CBD. Our framework is very general since we are following an axiomatic approach. In order to

achieve our scope, we are adopting the idea of Kendall’s τ index to enhance the importance of the

individual preferences for settling close to the CBD. The empirical strategy we are adopting pegs

on the statistical property of the Gamma function, and those properties allow to take into account

the heterogeneity of the space as claimed in spatial theory. We are also proposing a preliminary

empirical exercise to test the goodness of our estimation strategy. The case of Massachusetts s

revealed to be a good benchmark test. The organization of the space seems to find a core in Boston

city. According to the data available at hand, our predictions on the distribution of population

density (against distance) across space replicate the original data well enough.

Future extensions of the study should target to extend the empirical exercise to other case

studies as well as thinking about a possible extension to a multicenter spatial configuration instead

of a monocentric one, as well as testing this estimation strategy for other sample of data.
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Appendix

A Proof Lemma 5

Let (X1, Y1) and (X2, Y2) be two independent copies of (X,Y ) ∼ FY |X × FX . Then

P ((X2 −X1)(Y2 − Y1) < 0) = P (X2 < X1, Y2 > Y1) + P (X2 > X1, Y2 < Y1)

Moreover

P (X2 < X1, Y2 > Y1) =
∫
R

x1∫
−∞

∫
R

∞∫
y1

dFY |X(y2 | x2)dFY |X(y1 | x1)dFX(x2)dFX(x1)

=
∫
R

x1∫
−∞

∫
R

[
1− FY |X(y1 | x2)

]
dFY |X(y1 | x1)dFX(x2)dFX(x1)

>

∫
R

x1∫
−∞

∫
R

[
1− FY |X(y1 | x1)

]
dFY |X(y1 | x1)dFX(x2)dFX(x1) [by Assumption 2]

=
∫
R

x1∫
−∞

(
1−

F 2
Y |X(y1 | x1)

2

∣∣∣∣∣
R

)
dFX(x2)dFX(x1)

=
1
2

∫
R

x1∫
−∞

dFX(x2)dFX(x1)

=
1
2

∫
R

FX(x1)dFX(x1)

=
1
2
× F 2

X(x1)
2

∣∣∣∣
R

=
1
2
× 1

2
=

1
4

By reasoning in the same manner, we obtain P (X2 > X1, Y2 < Y1) >
1
4

, so that

πd = P ((X2 −X1)(Y2 − Y1) < 0) >
1
4

+
1
4

=
1
2

and τ = 1− 2πd < 1− 2× 1
2

= 0.

B Check of Assumption 2 in Example 7

Let Z1 ∼ Γ(c, a1) and Z2 ∼ Γ(c, a2), with a1 < a2. Then a1Z1 ∼ Γ(c, 1), a2Z2 ∼ Γ(c, 1) so that

P (a1Z1 ≤ t) = P (a2Z2 ≤ t), ∀t. Hence

P (Z1 ≤ z) = P (a1Z1 ≤ a1z) = P (a2Z2 ≤ a1z) ≤ P (a2Z2 ≤ a2z) = P (Z2 ≤ z) ∀z.

Let us now consider some conditional Gamma distribution functions Γ (c, g(x1)) and Γ (c, g(x2))

where 0 < x1 < x2 and g(x) is a positive monotone increasing function on (0,∞). Thus, g(x1) <
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g(x2) and,

FΓ(c,g(x1))(y) < FΓ(c,g(x2))(y), ∀y > 0 and x1 < x2 . (18)

By applying Equation (18) to c = θ and g(x) = τeax/b with a > 0, we obtain that Assumption 2

is satisfied by the Gamma model in Example 8.

C Kendall τ of the Gamma-Gamma Model

Using Model (16), equivalent to Model (10), we have that if θ = 1, then P (Yij > s, Yih > t) can be

represented as the Laplace transform of a Gamma(α, α) distribution evaluated in (sµ−1
ij + tµ−1

ih ).

Indeed:

P (Yij > s, Yih > t) = E(P (Yij > s|wi)P (Yih > t|wi)) = E(e−sµ
−1
ij wi−tµ

−1
ih ).

Hence

P (Yij > s) =

(
α

α+ sµ−1
ij

)α
So P (Yij > s, Yih > t) has form

P (Yij > s, Yih > t) = (P (Yij > s)−1/α + P (Yih > t)−1/α)−α .

The Kendall’s τ of this kind of bivariate distributions is investigated in Example 5.4 in Nelsen (1999),

where one find that τ = α/(α+ 2).
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D Map of Massachussets

Figure 6: Map of Massachussets. Source: US Census Bureau
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E Descriptive statistics about counties in Massachusetts

Mean Std. Dev Min max

County Obs Pop Hous Dist Pop Hous Dist Pop Hous Dist Pop Hous Dist

Suffolk 4 11.345 4.576 6.74 3.573 1.022 4.42 8.001 3.415 0 16.018 5.633 10

Franklin 26 0.111 0.050 145.35 0.164 0.075 31.77 0.009 0.006 29 0.836 0.382 192

Plymouth 27 0.949 0.372 47.63 0.997 0.417 20.83 0.135 0.048 5 4.392 1.771 89

Middlesex 54 2.948 1.205 31.87 3.943 1.693 17.03 0.120 0.042 5.5 18.851 7.902 79

Bristol 20 1.114 0.452 66.11 1.096 0.493 16.02 0.219 0.077 41 4.660 2.063 92

Berkshire 32 0.143 0.071 208.19 0.230 0.107 10.23 0.006 0.006 188 1.124 0.525 231

Hampden 23 0.814 0.332 139.91 1.107 0.453 27.55 0.013 0.010 70 4.738 1.906 182

Essex 34 1.909 0.767 40.21 2.290 0.886 14.07 0.231 0.102 14 10.351 3.678 62

Hampshire 20 0.306 0.120 153.25 0.405 0.153 21.97 0.022 0.011 109 1.258 0.528 192

Dukes 7 0.204 0.192 128.14 0.233 0.195 9.35 0.006 0.016 118 0.572 0.518 144

Worcester 60 0.565 0.224 77.13 0.717 0.298 20.48 0.022 0.009 42 4.597 1.883 150

Norfolk 28 1.819 0.723 31.77 1.690 0.783 24.31 0.363 0.123 8.5 8.410 3.890 143

Barnstable 15 0.512 0.380 127.73 0.246 0.159 27.29 0.099 0.121 89 1.023 0.685 180

Nantucket 1 0.199 0.193 112

Table 6: Population (Pop) and housing (Hous) densities per square mile, Source: US Bureau Census (2000),

Calculus: authors; Shortest distance to Boston in km (Dist) Source:www.viamichelin.com.
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