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A CHARACTERIZATION OF SEQUENTIAL RATIONALIZABILITY

JOSE APESTEGUIA† AND MIGUEL A. BALLESTER‡

Abstract. A choice function is sequentially rationalizable if there is an ordered
collection of asymmetric binary relations that identifies the selected alternative in
every choice problem. We propose a property, F-consistency, and show that it
characterizes the notion of sequential rationalizability. F-consistency is a testable
property that highlights the behavioral aspects implicit in sequentially rationaliz-
able choice. Further, our characterization result provides a novel tool with which
to study how other behavioral concepts are related to sequential rationalizability,
and establish a priori unexpected implications. In particular, we show that the
concept of rationalizability by game trees, which, in principle, had little to do with
sequential rationalizability, is a refinement of the latter. Every choice function that
is rationalizable by a game tree is also sequentially rationalizable. Finally, we show
that some prominent voting mechanisms are also sequentially rationalizable.

Keywords: Individual rationality, Rationalizability, Consistency, Bounded ratio-
nality, Behavioral economics, Voting.
JEL classification numbers: B41, D01.

1. Introduction

The classic choice model in economics encompasses choice behaviors that are the

result of maximizing a preference relation. When this is the case, any such choice

behavior is typically said to be rationalizable. Over the last decades, however, the

research has produced increasing amounts of evidence documenting systematic and

predictable deviations from the notion of rationality implied in the above definition.

Not surprisingly, these inconsistencies between theoretical models and applications

have allowed a number of alternative rationalizability models to flourish in the litera-

ture. In general, these models adopt less strict notions of rationality. Some recent

examples are:
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• Rationalization by multiple rationales (Kalai, Rubinstein, and Spiegler, 2002):1

the decision-maker (DM) partitions the set of choice problems into different

categories and applies different rationales to different categories.

• Rationalizability by game trees (Xu and Zhou, 2007): the choices of the DM

are the equilibrium outcome of an extensive game with perfect information.

• Sequential Rationalizability (Manzini and Mariotti, 2007): the DM sequen-

tially applies a collection of rationales in a fixed order.

It is the last of these approaches that concerns us here. The intuition of Manzini and

Mariotti’s notion of sequential rationalizability is very appealing from a behavioral

perspective. It considers DMs that, when faced with a choice problem, apply a

number of criteria in a fixed order of priority, gradually narrowing down the set

of alternatives until one is identified as the choice. Notably, Manzini and Mariotti

provide characterizations for those choice functions that are sequentially rationalizable

by two rationales, named Rational Shortlist Methods (RSMs), and three rationales.2

That is, the work of Manzini and Mariotti allows us to identify choice behavior that

can be sequentially rationalized by either two or by three rationales.

The question then arises of how to identify choice behavior that may be sequentially

rationalizable, but only by means of more than three rationales. In this paper we

propose a testable property of choice functions, F -consistency, that turns out to

be equivalent to the fact that a choice function c is sequentially rationalizable. F -

consistency has a behavioral flavor and falls within the tradition of the properties that

can be found in the choice-theoretic literature. F -consistency suggests a particular

behavioral procedure that DMs may follow. It evokes the existence of a two-stage

procedure in which the DM first makes a preselection of alternatives following a rule

requiring a great deal of behavioral consistency, and then makes the final choice.

Our characterization allows a better understanding of sequential rationalizability.

Further, we show that this result opens up the possibility of linking sequential ra-

tionalizability with other rationalizability notions, and determining whether certain

choice patterns are sequentially rationalizable. In particular, we first show that the

notion of rationalizability by game trees, due to Xu and Zhou (2007), which, in princi-

ple, had little to do with sequential rationalizability, is a strict refinement of the latter.

Our property can be used to show that every choice function that is rationalizable by

game trees is in fact sequentially rationalizable, and a simple example shows that the

reverse does not hold. We then show that agenda rationalizability, a rationalizabi-

lity notion that we introduce here and that is rooted in certain models of choice by

ordered elimination and also in voting mechanisms based on successive elimination,

1For the moment take a rationale as a preference relation. We will be more precise later.
2Salant and Rubinstein (2008) provide an alternative characterization of RSMs in the framework

of a ‘limited attention’ model.
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is also sequentially rationalizable. The proofs of these two links with sequential ra-

tionalizability constitute one of the direct implications of our characterization result.

Further, these two links suggest that the notion of sequential rationalizability may be

of interest in more environments than initially expected.

The paper is organized as follows. Section 2 introduces the notation and the main

definitions to be used thereafter. Section 3 contains the main result of the paper: the

characterization result. Section 4 presents two applications of sequential rationali-

zability: (i) rationalizability by game trees and (ii) agenda rationalizability. Finally,

Section 5 concludes.

2. Basic Notation and Definitions

Let X be a finite set of n ≥ 2 objects.3 We denote by P(X) the set of all non-

empty subsets of X. A choice function c on P(X) assigns to every A ∈ P(X) a

unique element c(A) ∈ A.

Denote by P an asymmetric binary relation on X, P ⊆ X ×X. That is, if xPy for

some x, y in X, then it is not true that yPx. We will often refer to P as a rationale.

For any A ∈ P(X), M(A,P ) denotes the set of maximal elements in A with respect

to P , that is M(A,P ) = {x ∈ A : yPx for no y ∈ A}. We will often write M(A) to

refer to M(A,P ).

The classic notion of rationalizability of a choice function c deals with the issue

of existence of a binary relation P that explains choice behavior as the result of

maximization. That is, a choice function c is rationalizable if there is a binary relation

P such that, for any choice problem A ∈ P(X), c(A) = M(A).4 A well-known result

establishes that a choice function c is rationalizable if and only if c satisfies the

Independence of Irrelevant Alternatives (IIA) property.5

Here we are interested in Manzini and Mariotti’s sequential notion of rationaliza-

bility. A choice function c is sequentially rationalizable by the ordered collection of

rationales {P1, . . . , PK} if, for every choice problem A, the sequential application of

the rationales in that fixed order identifies the selection of c. It is important to stress

that the order of application of rationales is fixed across choice problems. In order to

introduce the formal definition of sequential rationalizability, given an ordered collec-

tion of rationales {P1, . . . , PK}, let M0(A) = A and define recursively for j = 1, . . . , K,

3Manzini and Mariotti consider not necessarily finite sets of objects. In order to avoid tedious
technical details that add little to the understanding of sequential rationalizability, we chose to focus
on the finite case. Details of suitable extensions to the general case can be provided upon request.
Also, in relation to the next section, the setting of Xu and Zhou (2007) is finite.

4With a slight abuse of notation, we identify elements with sets containing only one element.
5IIA simply states that, if an alternative is chosen from a set, then it should also be chosen in

every subset of the set that contains the alternative.
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Mj(A) = M(Mj−1(A), Pj) = {x ∈Mj−1(A) : yPjx for no y ∈Mj−1(A)}.

Sequential Rationalizability: A choice function c is sequentially rationalizable

whenever there exists a non-empty ordered list {P1, . . . , PK} of asymmetric binary

relations such that c(A) = MK(A) for all A ∈ P(X).

In a sequential rationalization of a choice function, successive application of the

rationales eventually reduces the set of alternatives to a unique element, which is

precisely the choice according to c.

3. A Characterization of Sequential Rationalizability

In this section we introduce a new property of choice functions and show that it is

equivalent to the notion of sequential rationalizability. To this end, we first need to

introduce some definitions. We say that a collection of choice problems F ⊆ P(X) is

a filter if: (i) for every set A in F , every non-empty subset of A also belongs to the

collection F , and (ii) there exists at least one problem set C ∈ F with |C| ≥ 2. Note

that the collection of all choice problems P(X) is a filter.

We now introduce a choice correspondence, γG defined on an arbitrary domain des-

cribed by a collection of problem sets G ⊆ P(X), that assigns to every A ∈ G a

non-empty set of elements γG(A) ⊆ A. We say that the choice correspondence γG is

non-trivial if it is not true that γG(A) = A for every A ∈ G. γG satisfies the α property

(or simply α), if, for any A,B ∈ G, if x ∈ A ⊆ B and x ∈ γG(B), then x ∈ γG(A).6

γG satisfies Always Chosen (AC) if for any S ∈ G, if {x, y} ∈ G and x ∈ γG({x, y})
for all y ∈ S \ {x}, then x ∈ γG(S). We are now in a position to introduce the key

behavioral property of choice behavior.

F-Consistency: A choice function c satisfies F -consistency if, for every filter

F ⊆ P(X), there exists a choice correspondence γF such that γF is non-trivial, sat-

isfies α, AC, and c(A) = c(γF(A)) for every A ∈ F .

F -consistency suggests a two-stage procedure. In the first-stage, the correspon-

dence γF makes a ‘rational’ preselection of alternatives, and then, in the second-stage,

the final choice takes place. We speak of a ‘rational’ preselection of alternatives be-

cause F -consistency imposes a great deal of structure on the choice correspondences

γF . F -consistency imposes α and substitutes the classical property β for AC.7 This

means that we allow for some, but not all, violations of property β. For example,

consider a choice correspondence γF over F = {A = {x, y}, B = {x, y, z}, C = {y, z}}
6This property is also known as the Chernoff Axiom. In the context of choice functions, the

parallel property is also known as Independence of Irrelevant Alternatives, as already mentioned.
7Property β: Let A,B ∈ F with A ⊆ B, if x, y ∈ γF (A) and x ∈ γF (B), then y ∈ γF (B).
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such that A = γF(A) and x ∈ γF(B). Notice that, whenever y ∈ γF(C), then AC

implies that y ∈ γF(B). Hence property β follows for sets A and B. But if in the

previous example y 6∈ γF(C), then AC has no bite, and hence property β could be

violated.

It is remarkable how the imposition of these two-stage behavioral procedures on

every possible filter is sufficient to characterize any sequentially rationalizable choice,

even when the latter requires more than two rationales to be sequentially rationalized.

We can now present the main result of this paper:

Theorem 3.1. Given a choice function c, the following two statements are equivalent:

(1) c is sequentially rationalizable.

(2) c satisfies F-consistency.

Proof of Theorem 3.1: 1 ⇒ 2. Suppose that c is sequentially rationalizable by

an ordered collection of asymmetric binary relations {P1, . . . , PK}. We have to show

that, for every filter F , there is a non-trivial choice correspondence γF that satisfies

α, AC, and is such that c(A) = c(γF(A)) for every A ∈ F .

Let F be a filter. Consider ρ = min{j ∈ {1, 2, . . . , K} such that aPjb for some {a, b}
∈ F}, and define for every A ∈ F , γF(A) = Mρ(A). That is, Pρ is the very first ratio-

nale in {P1, . . . , PK} that applies in F . By construction, it is not difficult to see that

for every A ∈ F , γF(A) = Mρ(A) = M(Mρ−1(A), Pρ) = M(A,Pρ). We now show

that it satisfies the requirements of F -consistency.

• Clearly, by definition of ρ, γF is a non-trivial choice correspondence on F .

• To show that γF satisfies α, let A ⊆ B with A,B ∈ F . Let x ∈ A ∩ γF(B).

Then, for every y ∈ B \ {x} it cannot be true that yPρx, and therefore,

in particular for every y ∈ A \ {x}, it cannot be true that yPρx. Hence,

x ∈Mρ(A) = γF(A), as desired.

• To show that γF satisfies AC, let x ∈ γF({x, y}) for all y ∈ S \ {x} with

S ∈ F . Then, for every y ∈ S \{x}, it cannot be true that yPρx, and trivially

it must be the case that x ∈ γF(S), as desired.

• Finally, we have to show that c(A) = c(γF(A)) for every A ∈ F . To this

end note that, since we are assuming that c is sequentially rationalizable by

{P1, . . . , PK}, it must be that c(A) = MK(A) for every choice problem A. By

definition we have

c(A) = MK(A) = MK(MK−1(A))

= · · ·
= MK(MK−1(· · ·Mρ+1(Mρ(A)))).
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By construction it is the case that γF(A) = Mρ(A) and therefore we may write

MK(MK−1(· · ·Mρ+1(Mρ(A)), · · · )) =

MK(MK−1(· · ·Mρ+1(γF(A)), · · · )) =

· · · =

MK(γF(A)) = c(γF(A)).

and hence the claim follows.

We have shown that γF satisfies the requirements and, therefore, c satisfies F -

consistency.

2 ⇒ 1. Assume that c satisfies F -consistency. We first claim the existence of: (i)

collections of sets {Fj}j∈N which are either filters containing all singletons or simply

the set of all singletons, (ii) choice correspondences {γFj
}j∈N over these collections of

sets satisfying the properties given by F -consistency and, (iii) rationales {Pj}j∈N.8

Take F1 = P(X). It is immediate that F1 is a filter containing all singletons. By

F -consistency there is a non-trivial choice correspondence γF1 that satisfies α, AC

and c(A) = c(γF1(A)) for every A ∈ F1. Finally define P1 by aP1b ⇔ [a 6= b, a =

γF1({a, b})]. It is immediate that P1 is asymmetric.

We now prove the inductive step. Suppose that (i) {Fj}t−1
j=1 is a collection of

(collections of) sets which are either filters containing all singletons or the set of

all singletons, (ii) {γFj
}t−1
j=1 is a collection of choice correspondences defined on the

corresponding collections of sets, that satisfy the properties given by F -consistency,

and (iii) {Pj}t−1
j=1 is a list of rationales. First, define Ft as Ft = {A : there exists B ∈

Ft−1 such that A = γFt−1(B)}. We check that it is either a filter containing all the

singletons or the collection of all singletons. Let B ∈ Ft and A ⊆ B. By definition

there is a set D ∈ Ft−1 such that B = γFt−1(D). Hence, it must be that A ⊆ B ⊆ D.

Then, since Ft−1 is either a filter containing all singletons or the collection of all

singletons, it must be that A ∈ Ft−1. Since A ⊆ D, by α, γFt−1(A) ⊇ A ∩ γFt−1(D).

But then, A∩γFt−1(D) = A∩B = A, which implies that A = γFt−1(A), and therefore

A ∈ Ft, as desired. Hence, if Ft contains a set S with |S| ≥ 2, then Ft is a filter. Given

that Ft−1 contains all singletons and γFt−1 is a choice correspondence, the image of

each singleton by that correspondence is the singleton itself, and hence all singletons

are also in Ft too. This implies that Ft is either a filter containing all singletons or

the collection of all singletons.

By F -consistency, if Ft is a filter, there is a non-trivial choice correspondence γFt

that satisfies α, AC, and c(A) = c(γFt(A)) for every A ∈ Ft. If Ft is the collection

of all singletons, define γFt as the unique correspondence on Ft, i.e., the identity

mapping. Finally define Pt by aPtb ⇔ [a 6= b, a = γFt({a, b})]. It is immediate that

Pt is asymmetric, and we have concluded the inductive step.

8As usual, N denotes the set of strictly positive integers.
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We now show that for all A ∈ P(X) and for all j ∈ N, it is the case that Mj(A) =

γFj
◦ γFj−1

◦ · · · ◦ γF1(A).9 Consider a set A ∈ P(X). We start by proving that

M1(A) = γF1(A). Let x ∈ γF1(A). By α, we know that x ∈ γF1({x, y}) for every

y ∈ A \ {x} and hence, by the definition of P1, for every y ∈ A \ {x}, it is not true

that yP1x. This shows that, if x ∈ γF1(A), then x ∈M1(A). Now let x ∈M1(A). By

definition, for every y ∈ A\{x}, it is not true that yP1x and hence it must be that for

every y ∈ A \ {x}, x ∈ γF1({x, y}). AC guarantees that x ∈ γF1(
⋃
y∈A\{x}{x, y}) =

γF1(A), as desired. Consequently, if x ∈ M1(A) then x ∈ γF1(A). We have shown

that M1(A) = γF1(A).

We now prove the inductive step. Suppose that Mj(A) = γFj
◦ γFj−1

◦ · · · ◦ γF1(A)

for all j < t. We now show that Mt(A) = γFt ◦ γFt−1 ◦ · · · ◦ γF1(A). Let it be that

x ∈ γFt ◦ γFt−1 ◦ · · · ◦ γF1(A). By α, x ∈ γFt({x, y}) for every y ∈ γFt−1 ◦ γFt−2 ◦
· · · ◦ γF1(A) \ {x}. Hence, yPtx for no y ∈ γFt−1 ◦ γFt−2 ◦ · · · ◦ γF1(A) \ {x} and

then, since obviously x ∈ γFt−1 ◦ γFt−2 ◦ · · · ◦ γF1(A) = Mt−1(A) we conclude that

x ∈ Mt(A), as desired. In the other direction, let x ∈ Mt(A). This implies that

yPtx for no y ∈ Mt−1(A) = γFt−1 ◦ γFt−2 ◦ · · · ◦ γF1(A), and hence by definition

x ∈ γFt({x, y}) for every y ∈ γFt−1 ◦ γFt−2 ◦ · · · ◦ γF1(A) \ {x}. AC implies that

x ∈ γFt(
⋃
y∈γFt−1

◦γFt−2
◦···◦γF1

(A)\{x}{x, y}) = γFt ◦ γFt−1 ◦ · · · ◦ γF1(A), as desired.

Therefore, Mt(A) = γFt ◦ γFt−1 ◦ · · · ◦ γF1(A).

We now show that there must exist a value K ∈ N such that Fj is a filter if and

only if j ≤ K. Given the construction, it is obvious that Fj+1 ⊆ Fj for all j ∈ N.

Therefore, we are left to prove that the collection Fj+1 is a strict subset of Fj for

j = 1, . . . K, and that FK+1 is the collection of singletons. The latter derives from

the former given the finiteness assumption. To show that Fj+1 ⊂ Fj for all j ≤ K,

note that whenever Fj is not the collection of all singletons, then it is a filter, and γFj

satisfies non-triviality. Therefore, there exists a set A ∈ Fj such that γFj
(A) 6= A.

Take y ∈ A with y 6∈ γFj
(A). We claim that A 6∈ Fj+1. By contradiction, suppose

A ∈ Fj+1. Then y ∈ A = γFj
(B) for some B ∈ Fj. But the application of α

guarantees that y ∈ γFj
(A), which is a contradiction. Therefore, filters contract

strictly and there must exist a value K ∈ N such that Fj is a filter if and only if

j ≤ K.

We finish by proving that {Pj}Kj=1 rationalizes c. Given the construction, γFK
◦

γFK−1
◦ · · · ◦ γF1(A) is a singleton, and then we have that MK(A) = γFK

◦ γFK−1
◦

· · · ◦ γF1(A) = c(γFK
◦ γFK−1

◦ · · · ◦ γF1(A)). Now, since all correspondences satisfy

the requirements of F -consistency c(γFK
◦ γFK−1

◦ · · · ◦ γF1(A)) = c(γFK−1
◦ γFK−2

◦
· · · ◦ γF1(A)) = · · · = c(γF1(A)) = c(A). This shows that the choice is sequentially

rationalized.�

9Where ◦ denotes the composition operator of two functions.
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Theorem 3.1 shows that, to determine whether a particular choice procedure is

sequentially rationalizable, one needs to check for F -consistency. Further, Theorem

3.1 also shows that since F -consistency imply a high degree of behavioral structure,

the notion of sequential rationalizability is a tight one.

4. Applications

Our characterization result allows to identify what is and what is not sequentially

rationalizable. This, in turn, opens up the possibility of judging whether choice mod-

els that may have little to do, in principle, with sequential rationalizability, are in fact

connected to the notion of sequential rationalizability. In this section, we illustrate

these new possibilities by first establishing a perhaps unexpected relation between

sequential rationalizability and another important recent notion of rationalizability:

rationalizability by game trees. We then show that agenda rationalizability, a notion

that is rooted in individual and social procedures of selection through the ordered

elimination of alternatives, is also sequentially rationalizable.

It is convenient to mention, in advance, the connection between sequential rationa-

lizability and two polar notions of rationalizability. On the one hand, it is immediate

that every standard rationalizable function10 is sequentially rationalizable, while the

reverse does not hold. On the other hand, every choice function, and thus every

sequentially rationalizable choice function, is rationalizable by multiple rationales á

la Kalai, Rubinstein and Spiegler (2002), but, again, the converse does not hold.

4.1. Rationalizability by Game Trees. In this section we show that any choice

function that is rationalizable by game trees is in fact sequentially rationalizable. As

the converse does not hold, the set of choice functions rationalizable by a game tree

is a strict subset of the set of choice functions satisfying sequential rationalizability.

Xu and Zhou characterize those choice functions that can be rationalized by ex-

tensive games with perfect information. For a choice function c to be rationalizable

by game trees, there must be a tree G that: (i) has alternatives X as terminal nodes,

such that each alternative in X appears once and only once as a terminal node of G

(hence, X and G can be identified), and (ii) every node in the tree G must represent

a decision by an agent i, with a linear ordering Ri over X.

Rationalizability by Game Trees: A choice function c is rationalizable by game

trees whenever there exists a game tree G such that

c(A) = SPNE(G|A;R) for all A ∈ P(X),

where G|A is the reduced tree of G that retains all the branches of G leading to ter-

minal nodes in A, R is the linear order profile, and SPNE(Γ) stands for the subgame

10That is, every choice function that satisfies IIA.
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perfect Nash equilibrium outcome of Γ.

Denote by CSR and CRGT the sets of choice functions that are, respectively, se-

quentially rationalizable and rationalizable by game trees. We can now present the

following result.

Theorem 4.1. CRGT ⊂ CSR.

Proof of Theorem 4.1: We show that CRGT ⊆ CSR by way of F -consistency. We

first need the following definitions. Given a filter F a node i is relevant for F if there

is a set A in F , with |A| ≥ 2, such that for all x ∈ A, x is a successor of i. We say

that i is minimally relevant if it is relevant and no successor of i is relevant. That is,

i is minimally relevant whenever i decides the final choice among a set A in F .

Given a filter F select a node i that is is minimally relevant. Then, there is a set

A in F , with |A| ≥ 2, where i makes the final choice. Pick the worst alternative in

this set according to Ri, and denote it by y. Take any other alternative x ∈ A \ {y}
and let

γF(A) =

{
A if x 6∈ A or y 6∈ A
A \ {y} if x, y ∈ A

It is immediate that γF is non-trivial, satisfies AC, and α. We have to show that

c(A) = c(γF(A)) for every A in F . Given the definition of γF(A) we only need

to show the latter equality for cases in which x and y are elements of A. But,

since, by assumption, c(A) = SPNE(G|A;R) and i is a terminal decision in which

y is dominated, backward induction guarantees that c(A) = SPNE(G|A;R) =

SPNE(G|(A \ {y});R) = c(A \ {y}) = c(γF(A)). Therefore, F -consistency holds,

and then Theorem 3.1 guarantees that CRGT ⊆ CSR.

We show, by way of an example, that CSR 6⊆ CRGT . Let c(x1, x2, y1) = y1, c(x1, x2, y2) =

x2, c(x1, y1, y2) = x1, c(x2, y1, y2) = y1, c(x1, x2, y1, y2) = y1, c(x1, x2) = x2, c(x1, y1) =

x1, c(x1, y2) = y2, c(x2, y1) = y1, c(x2, y2) = x2, and c(y1, y2) = y1.

To see that c 6∈ CRGT , we show that c does not satisfy the property divergence

consistency, which Xu and Zhou show to be a necessary condition for rationalizability

by game trees. First, consider the following definitions. For any triple x, y, z, x

diverges before y and z, if c({x, y}) = x, c({y, z}) = y, and c({z, x}) = z (or a

similar condition holds for some permutation of x, y, and z), and c({x, y, z}) = x.

Finally, divergence consistency states that, for any four alternatives x1, x2, y1, y2, if

x1 diverges before y1 and y2, and y1 diverges before x1 and x2, then c({x1, y1}) = x1

if and only if c({x2, y2}) = y2.

It can be easily seen that, in our example, x1 diverges before y1 and y2, and y1

diverges before x1 and x2. At the same time, we have c(x1, y1) = x1 but c(x2, y2) =
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x2, contradicting divergence consistency. However, the choice function is sequen-

tially rationalizable by the rationales: P1 = {(y1, y2)}, P2 = {(x2, x1)} and P3 =

{(x1, y1), (y2, x1), (y1, x2), (x2, y2)}. This ends the proof of the theorem.�

The above proof puts in action our property, F -consistency, to show that a choice

function that is rationalizable by game trees is also sequentially rationalizable.

4.2. Agenda Rationalizability. We now introduce a rationalizability notion that

is rooted in (i) a particular choice procedure that is attracting some attention in the

economics and psychology literature, and (ii) in a class of voting mechanisms. Let us

first introduce the details and then draw the connections with the above two strands

of literature.

Let us assume that the n elements in X are linearly ordered 1 < 2 < · · · < n. This

order may be interpreted as, say, a particular physical presentation of the objects.

For any choice problem A in X, write the elements in A ordered according to <

by a(1) < a(2) < · · · < a(t). The DM makes a selection from A according to

the following elimination process. First she makes a first selection between a(1)

and a(2), then compares the selected element from a(1), a(2) with a(3) and makes a

new selection. The DM continues in this ordered way until the surviving element is

compared with the last element a(t); this last choice determines the choice in A. Let

that whenever two alternatives x, y are compared, the selection between x and y is

the same, irrespective of the set A to which x and y belong.

Similar choice by ordered elimination procedures are studied in the choice-theoretic

literature. The models studied in Rubinstein and Salant (2006) and Salant and Ru-

binstein (2008), for example, include this one as a special case. See also Masatlioglu

and Nakajima (2007). But the binary choices between alternatives may also be the

result of majority voting, for example. Then voting mechanisms like voting by succes-

sive elimination are also connected to the above (see Dutta, Jackson, and Le Breton,

2002).

We can now introduce the following notion of rationalizability.

Agenda Rationalizability: A choice function c is agenda rationalizable whenever

there exists an order < over the set of alternatives (an agenda) and binary choices

such that for every A ∈ P(X), c is the outcome of the elimination process.

McGarvey (1953) strengthens the connection between agenda rationalizability and

voting. McGarvey (1953) already showed that, for every possible connected asymme-

tric relation over the set of alternatives, there is a set of individuals with linear

orders over the set of alternatives such that majority voting over pairs of alternatives

determine the connected asymmetric relation.
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Here we wonder about the relation between agenda rationalizability and sequential

rationalizability. Denote by CAR the set of choice functions that are agenda rational-

izable. We can now present the following result.

Theorem 4.2. CAR ⊂ CSR.

Proof of Theorem 4.2: Theorem 3.1 tells us that we simply have to check whether

F -consistency holds. But this is straightforward. For any filter F let x be the first

alternative according to < such that there is another alternative z ∈ X \ {x} with

{x, z} in F . Now, given x, select the pair {x, y} in F such that there is no z with

z < y and {x, z} in F . That is, {x, y} is lexicographically the first pair in F accord-

ing to <. Assume, without loss of generality, that x = c({x, y}). Then, define, as in

Theorem 4.1

γF(A) =

{
A if x 6∈ A or y 6∈ A
A \ {y} if x, y ∈ A

It is immediate that γF is non-trivial, satisfies AC, α, and that c(A) = c(γF(A)) for

every A in F . Hence, F -consistency holds and Theorem 3.1 implies that CAR ⊆ CSR.

The example in the proof of Theorem 4.1 can be used to show that in fact CAR 6=
CSR.11�

Like in the case of rationalizability by game trees, we have used F -consistency to

establish the relation between agenda and sequential rationalizability. This simple

proof illustrates the usefulness of F -consistency.

5. Final Remarks

In this paper we have studied the structure of sequential rationalizability. In

essence, we contribute to the literature in two different ways. First, we clarify the

behavioral structure of sequential rationalizability. We do so by offering a characteri-

zation result, in which we prove that a testable property, F -consistency, is equivalent

to the notion of sequential rationalizability.

Second, we show that our characterization result is useful in the sense that it faci-

litates investigation of the relationships between different notions of rationalizability,

and it allows verification of whether particular choice procedures are sequentially

rationalizable. We have shown that the notions of rationalizability by game trees

and agenda rationalizability are both strict refinements of sequential rationalizability.

11Indeed, it can be shown that every agenda rationalizable choice function is rationalizable by
game trees. We can provide details upon request.
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This suggests that sequential rationalizability may be of interest in a wider range of

environments that perhaps initially expected.
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