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Abstract

Agents voluntarily contribute to an infinitely repeated joint project. We investi-
gate the conditions for cooperation to be a renegotiation-proof and coalition-proof
equilibrium before examining the influence of output share inequality on the sus-
tainability of cooperation. When shares are not equally distributed, cooperation
requires agents to be more patient than under perfect equality. Beyond a certain
degree of share inequality, full efficiency cannot be reached without redistribution.
This model also explains the coexistence of one cooperating and one free-riding
coalition. In this case, increasing inequality can have a positive or negative impact
on the aggregate level of effort.

1 Introduction

Agents take part in a joint project to which they voluntarily contribute efforts. The out-
put is distributed among the players according to their share, which can be for instance
their relative wealth. In this kind of setting, we know that, if the game is played only
once, the first-best optimum will be impossible to sustain1, as deviation is a dominant
strategy and the aggregate level of Nash equilibrium contributions is suboptimal. In
contrast, the Folk theorem teaches us that, provided people are not too impatient, new

∗This paper is part of my thesis written at CRED, University of Namur. I am deeply grateful to Joan
Esteban, Jean-Marie Baland, Gani Aldashev, Siwan Anderson, Karl-Ove Moene, Jean-Philippe Platteau,
Frédéric Gaspart, Michele Valsecchi and participants at the University of Namur seminar, the CORE Sum-
mer School, the Riccardo Faini Doctoral Conference on Development Economics and the Palma Polariza-
tion and Conflict Meeting for helpful comments. I also acknowledge the support of the Barcelona Eco-
nomics Program of CREA. Special thanks to Sathyanarayana Raju and Yvonnka Kelly-Dagnelie.
†e-mail: olivier.dagnelie@iae.csic.es
1It can if all the shares are concentrated into the hands of a single individual and efforts are perfectly

substitutable.
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and more efficient equilibria can be reached thanks to the repetition of the game. In
this paper, we want to investigate to what extent inequality of share influences first-
best sustainability in an infinitely repeated game. Does introducing share inequality render
cooperation more difficult to support?

There exist numerous examples of voluntarily provided joint projects in the real
world. For instance, on can think of an irrigation scheme where individuals have to
put in efforts for building and/or maintaining the infrastructure. Then, the level of
their contributions to this collective action depends on their benefit which is directly
related to the amount of land they cultivate. This same setup can also apply to many
other cases: voluntary provision to local public goods, collective action problems in
management of environmental resources (forests, fisheries, pest and weed control), co-
operatives, financial lobbying, defence alliances, etc. Industrial Organization also en-
compasses related issues, i.e. tacit collusion and to a lesser extent moral hazard in
teams. Bardhan and Singh (2005) also evoke Velasco and the theoretical literature on
the common pool problem in fiscal stabilization policy in Latin America.

Despite most of the literature on these issues uses a static game formalization, these
situations are often better described as repeated games. One can indeed easily imagine
that people interact repeatedly2 and have to find ways to sustain cooperation between
them, not knowing when this game is going to end. Our infinitely repeated game frame-
work seems therefore quite realistic.

In one-shot games, Olson (1965), followed by several authors, argued that the effect
of inequality was positive on collective action. He claimed that if one single (or a few)
agent has a great interest in the collective action, the good is more likely to be provided
even if this user is the only one to bear its cost. Olson brought up the two following
insights: that contributions are positively related to wealth, which seems plausible, and
that great inequality implies a great likelihood of success of collective action. Several
papers show that the conditions for the latter result to remain valid are quite demand-
ing. This is put forward, among others, in empirical studies by Bardhan (2000) and
Dayton-Johnson (2000) but also put in perspective in more theoretical papers such as
Bardhan, Ghatak, Karaivanov (2007) and Ray, Baland, Dagnelie (2007).

Nowadays, it seems that the effect of inequality - not necessarily of wealth - on ef-
ficiency or the aggregate level of effort is ambiguous, depending on the cost function
(Banerjee et al., 2006). In an empirical paper on collective action in Pakistanese com-
munities, Khwaja (2006) finds a U-shaped relationship between inequality in the dis-
tribution of project returns or land ownership and maintenance, the aggregate level of
efforts. It also appears that, in many cases, departing from an equalitarian distribution
will hurt collective action or efficiency, by increasing the poor’s incentives to free-ride or
by allowing the rich and powerful to take over rents - as in the case of the Maharashtra

2It fits particularly well the case where people live in a small rural community and share resources.
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sugar cooperatives (Banerjee et al., 2001). Then, deepening inequality can increase or
decrease further the incentives of the beneficiaries from the redistribution to cooperate3.

With the prospect of future interactions with the same people4 arises the possibility
of punishing undesired actions, which is conducive to cooperative outcomes. A few pa-
pers address the question of dynamic or repeated games. The former refers to a paper
by Tarui (2007) investigating the influence of inequality in productivity, access to mar-
kets and credit into a dynamic intergenerational game of common property resource
use5. It takes into account how the resources of the commons endogenously evolve
given the harvests by users in previous generations. According to the punishment used
and the harvest sharing rule, Tarui shows that first-best sustainability may or not be
affected by an increase of inequality.

As to Bardhan and Singh (2005), they explore the influence of wealth inequality on
cooperation, sustained by trigger strategies, i.e. Nash reversion. In their model, agents
are endowed with private capital which enters, with a complementary input, a constant
return to scale Cobb-Douglas production function. To produce this complementary in-
put, agents have to choose between a status quo technology which guarantees some
level of output and a cooperative technology the fruits of which can be captured by
one or more deviating players. They establish that, in this setting, inequality can affect
cooperation and that redistribution can improve the welfare of the rich thanks to the
greater possibility of cooperation.

This paper relates to Itaya and Yamada (2003) who investigate the impact of income
inequality on a repeated game of private provision of public goods with two players
and renegotiation-proof equilibria. They also point out the negative effect of inequality
on first-best sustainability.

This research is also very close in spirit to Vasconcelos (2005), a paper on tacit col-
lusion in quantity setting supergames with asymmetric costs. It is quite interesting to
transpose Vasconcelos’ setting to our model. In both papers, inequality decreases the
scope of cooperation sustainability, by increasing the discount factor of interest. Con-
sistently with a large number of historical and empirical evidence, Vasconcelos’ market
shares are allocated according to the firms’ production capacity, which affects marginal
costs. In his repeated Cournot model, he shows that the smallest firms are more prone
to deviate from the collusive agreement, which fits our framework. As he uses optimal
penal codes à la Abreu (the stick and the carrot, 1986, 1988) to sustain cooperation, while

3A comprehensive discussion on this issue can be found in Baland and Platteau (2003) from p. 161.
4This renders our framework different from reputation matching games à la Kandori (1992) where rela-

tionships are infrequent and ”agents change their partners over time and dishonest behaviour against one
partner causes sanctions by other members in the society”.

5Rendering our model dynamic would only make, at each period, the rich, richer and the poor, poorer.
It would then lead to a situation where only one player would be rich enough for cooperation to be more
desirable than deviation. No one would therefore produce the efficient level of effort.
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punishing, the largest firms have the greatest incentives to deviate from the punishment
path6. Here lies the main difference with our research7. As we resort to renegotiation-
proof punishments, the cooperative agents do not suffer while punishing. They even
profit by carrying out the punishment and are therefore not tempted by deviations.

A common and easy solution considered in the literature to sustain cooperation is
Nash reversion (Friedman, 1971) consisting in a permanent return to the Nash equilib-
rium after a single deviation. We will use it as a benchmark for our analysis. How-
ever, one of the main drawbacks of Nash reversion is that, without being the harshest
punishment, the punisher suffers from giving a punishment. As stated by Bernheim
and Ray (1989) - collective dynamic inconsistency - and Farrell and Maskin (1989) -
renegotiation-proofness - who introduced the concept of renegotiation-proofness in the
literature8, this renders the threat not credible. Everybody indeed anticipates that, ex
post, the punishers and the punished will be tempted to renegotiate. Furthermore, after
a single deviation, all the agents are stuck for ever in a pareto dominated equilibrium.
It would be hard to believe that, in a repeated setting, agents fail to exploit the existing
opportunities to reach the pareto frontier. Actually, this is rarely observed on the field
as stated in Tarui (2007). The latter quotes Ostrom (1990) who argues that many com-
mons overcame occasional deviations. This indirectly supports the evidence that the
punishments are only temporary, allowing a return to cooperation.

This confirms the need to elaborate punishments allowing a return to cooperation af-
ter the punishment phase. In this research, we also extend the concept of renegotiation-
proofness from 2 to n players, taking into account credible deviations9 of coalitions,
which, to our knowledge, is a novelty.

These renegotiation-proof and coalition-proof punishments, easy to implement once
information is complete, allow to sustain cooperation as long as the agents are not too
impatient. For existence of the efficient equilibrium, we check that the discount factor
compatible with the different conditions imposed by our punishment is smaller than
one.

We also introduce a new explanation as to why inequality can result in suboptimal
outcomes. We indeed show that the introduction of inequality under Nash reversion or
punishments resisting to renegotiation and deviation by credible coalitions is detrimen-
tal to cooperation. In the presence of inequality of shares, the agents have to be more

6Abreu proposes symmetric punishments during which everyone suffers. Large firms, having a large
market share, suffer more from the price decrease following the breach in the collusive agreement.

7We also take into account deviations of credible coalitions whereas it is less relevant in Cournot com-
petition.

8Readers interested in this topic could also see the works of van Damme (1989) and Asheim.
9In some cases, a certain number of agents is required to make a deviation profitable. Hence, no one

would like to deviate unless an agreement is reached. Once such an arrangement is found, it might still be
interesting for one or more players to renege on the agreement and deviate further. This would render the
deviation not credible, a case which we will not address in this paper.
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patient not to deviate than under perfect equality.
In Section 2, we present our simple model giving two options to the agents: cooper-

ating or deviating from the socially optimal contribution. Nash reversion is addressed
in Section 3. Then, in Section 4, we propose a renegotiation-proof and coalition-proof
punishment scheme and investigate the influence of share inequality on the limit dis-
count factor. We characterize, in Section 5, the lowest share compatible with generalized
cooperation, discuss the coexistence of one free-riding and one cooperating coalition
and how redistribution can increase or decrease the total amount of effort put in the
project. We also examine how redistributing shares from the rich to the poor players
can improve the welfare of everybody. Eventually, before concluding in Section 7 as
to the negative influence of wealth inequality in this setting, we introduce, in Section 6
outside options. The proofs are collected in an Appendix.

2 Repeated Joint Production with Shares

A group of n agents decide to produce jointly and repeatedly a particular output. All the
i agents are identical except for, λi, their share in output which can also be a measure of
their relative wealth. λ is the vector of shares, [λ1, λ2, . . . , λn], the sum of which equals
1. Note that λ1 ≤ λ2 ≤ . . . ≤ λn. All the agents exhibit the same degree of impatience
and therefore have the same discount factor, δ 10.

The collective output is, as in the standard pure public good model, the sum of the
(nonnegative) efforts, ei, of all the agents taking part in the project. This modelling
of the output implies that efforts are perfect substitutes what, with respect to efficiency,
favours an unequal distribution of shares11. A straightforward illustration of this would
be to consider a single agent concentrating all the incentives (λi = 1) to produce the
efficient effort. In this case, the first-best optimum is produced at each stage of the
game while using a Leontieff production function, where efforts are perfect comple-
ments, would result in a suboptimal production of effort. Each agent putting effort in
the project has to undergo an isoelastic convex cost expressed in terms of her share12,
eγi
γλi

with γ ≥ 2 13. This allows us to release the assumption of strict equality of marginal
costs which could have been suspected of driving the results. As the marginal cost of

10If one introduces inequality in the distribution of discount factors assuming that the poor are less
patient than the rich, for instance by endogenizing δ w.r.t. λ, cooperation is even harder to sustain and our
conclusions easier to reach.

11For a discussion on the influence of inequality on joint projects when efforts are not perfect substitutes
in a one-shot game, see Ray, Baland and Dagnelie (2007).

12A similar exercise was run with simply an isoelastic convex cost eγi with γ > 1 in a previous version of
the paper (Dagnelie, 2007). Results are equivalent.

13If γ < 2, a strong inequality implies that the very rich players prefer generalized deviation to general-
ized cooperation and at γ = 1, surplus maximization is unbounded.
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effort is decreasing in the share endowment14, the efficient level of effort is smaller for
the poor which therefore makes it easier for them to cooperate. γ is also present at the
denominator for analytical tractability, without loss of generality.

Collective action individual payoffs, πi, have therefore the following form:

πi = λi
∑
j

ej −
eγi
γλi

(1)

Maximizing the social surplus provides us with the optimal, cooperative level of

effort, eCi , equal to λ
1

γ−1

i , which depends on the distribution of shares.
If this game is played once, then every agent is going to maximize her own payoff, given
the efforts contributed by the other agents.

max
ei

λi(ei +
∑
j 6=i

ej)−
eγi
γλi

(2)

In this case where everyone deviates from the cooperative level of effort and produces

eNi ≡ λ
2

γ−1

i , the outcome is known to be pareto dominated by the first-best optimum15.
The game described above is similar to a prisoner’s dilemma with n agents and

continuous strategies. Inequality creates tensions in the sense that the premium from
deviating from cooperation is, proportionally to their endowment, higher for the poor
which therefore renders deviation more attractive to them.

LEMMA 1 The agent the most tempted by deviation is always the one with the lowest share.

When we introduce share inequality, the cooperation payoff decreases faster than
the deviation payoff which makes deviation more profitable for the poor. This tends to
confirm Olson’s hypothesis as to the exploitation by the poor.

If πC
∗

i < πCi - where πC
∗

is the deviation profit16 which depends on the number of
deviating players and πC is the cooperation profit17 - deviating from the cooperation
effort is not profitable. There is therefore no need of punishment in those cases. In this
paper, we are not paying attention to those not credible deviations. For deviating to be

14This could be due to restricted access to credit or scale economies in the production of effort, etc. Note
that facilitating cooperation for the poor renders our conclusion harder to reach.

15It means that eNi = eCi λ
1

γ−1
i with eNi < eCi as, if λi < 1, λ

1
γ−1
i < 1 for all γ.

16πC
∗

i = λi(
P
nC

λ
1

γ−1
j +

P
nD

λ
2

γ−1
i − γ−1λ

2
γ−1
i ), where n− nD = nC cooperate but nD deviate.

17πCi = λi(
P
λ

1
γ−1
i − γ−1λ

2−γ
γ−1
i )
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interesting, the following condition must be fulfilled:

πC
∗

i > πCi ≡
λiγ

∑
nD
λ

1
γ−1

i (1− λ
1

γ−1

i )

λ
1

γ−1

i (1− λ
γ
γ−1

i )
< 1

with nD being the number of deviating players. Under a perfectly equalitarian distri-
bution of shares (i.e. λi = 1

n ), it simplifies to :

γ
nD
n

<
1− n

−γ
γ−1

1− n
−1
γ−1

≡ nD <
n− n

−1
γ−1

γ(1− n
−1
γ−1 )

For this inequality to be satisfied, the number of deviating players must decrease when
γ increases (unless γ → +∞) and n decreases. When γ = 2, it is true as long as nD <
n+1

2 . The latter value is also the higher bound18 on the number of deviating players
when γ > 2. The proportion of deviators in the group (nD/n) must decrease with
the size of the group (n) for the condition to remain true. It is to be noted that the
condition is always satisfied if nD = 1. While cooperating produces a big surplus, if
too few cooperate and too many deviate, the small surplus is divided among too many
deviating players for deviating to remain profitable.

3 Nash Reversion

In this section, we will temporarily not address the problems posed by renegotiation
and consider the following punishment: Once a coalition has deviated, everybody pro-
duces the Nash level of effort for ever. For cooperation to be sustainable, the discount
factor must respect the following condition:

(1− δN )πC
∗

+ δNπ
N < πC ⇒ δN >

πC
∗ − πC

πC∗ − πN

where πN is the Nash profit19, corresponding to generalized deviation.
If πC∗−πC

πC∗−πN < 1, it is theoretically possible to support cooperation. As long as players
have a discount factor greater than δN and smaller than 1, Nash reversion can be used
as a threat against deviation. Hence, the necessary condition for cooperation to become
sustainable is :

πCi > πNi ≡
λiγ

∑
λ

1
γ−1

i (1− λ
1

γ−1

i )

λ
1

γ−1

i (1− λ
γ
γ−1

i )
> 1 (3)

18As the number of deviating players has to be an integer and the condition is strict, in practice, nD can
never be greater than n/2.

19πNi = λi(
P
i λ

2
γ−1
i − γ−1λ

2
γ−1
i )
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The bigger the difference πCi − πNi , the smaller δN and therefore the easier cooperation
can be sustained.

One can see that, if the distribution of shares is perfectly equalitarian, as long as
the agents have a discount factor smaller than 1 and greater than δN , cooperation can
always be sustained by Nash reversion. The condition in equation (3) is indeed always
verified and becomes :

γ >
1− n

−γ
γ−1

1− n
−1
γ−1

(4)

PROPOSITION 1 Introducing inequality among agents renders the condition to sustain cooper-
ation with Nash reversion more difficult to fulfill.

As cooperation can always be sustained with Nash reversion when the distribution is
equalitarian (and δN < δ < 1) and as deviation is a dominant strategy for the agents
for which inequality renders πCi < πNi , one can expect a negative effect of inequality
on cooperation. Following the introduction of inequality, the agents losing from the
redistribution of shares, i.e. λi < n−1, have to be more patient than before not to enter
a deviation phase. All this means that increasing share inequality makes cooperation
harder and harder to sustain - as the limit discount factor, δN , rises - up to a point where
inequality is such that, whatever the impatience degree of the agent with a low share,
generalized cooperation is not possible any more.

4 A Renegotiation-Proof and Coalition-Proof Equilibrium

As mentioned before, Nash reversion suffers from several flaws. We therefore want to
turn to a renegotiation-proof and coalition-proof equilibrium preventing credible coali-
tions to deviate from the first-best production level. We also want this equilibrium to
allow a return to cooperation after the punishment phase.

As suggested by van Damme (1989) for the 2 players prisoner’s dilemma with dis-
crete strategies, cooperation can be sustained if after player 1’s deviation, player 2 is
allowed to deviate (produce the Nash level of effort) until player 1 cooperates20. Ex-
tending renegotiation-proofness from 2 to n players requires taking account of devi-
ations of coalitions. Nonetheless, the original concept with 2 players fits in with the
framework set out below.

van Damme’s idea, exposed above, is used to devise our punishment scheme. After
a deviation of a coalition of one or more players, the cooperative players enter a pun-
ishment phase during which they produce a retaliation quantity of effort. They keep
playing this level of effort as long as the cheaters - the ones who deviated in the normal

20If player 2 does not cooperate any more, both players are stuck in the Pareto dominated equilibrium.
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phase - have not played the punishment level of effort. During this punishment, ev-
erybody has the incentives to play accordingly to the scheme - what ensures subgame
perfectness - and the punishers get at least as much as when everybody cooperates and
produces the first-best optimum - what guarantees renegotiation-proofness.

We can immediately restrict the length of the punishment phase thanks to the fol-
lowing lemma.

LEMMA 2 Aiming at the smallest discount factor compatible with a renegotiation-proof and
coalition-proof punishment limits the length of the punishment phase to one period.

A multi-period punishment would have two effects, ex ante, it would make deviation
less attractive but as the punishment is harsher, ex post, it would increase the incentives
to deviate from conforming to the punishment. As will become clearer below, there is
a trade-off between these two effects. In this particular case, the latter effect would be
dominating as the punishment level of effort is high enough for the punishers to be
willing to punish, given the requirement of renegotiation-proofness.

For a punishment to be renegotiation-proof and coalition-proof and to allow a return
to cooperation, the discount factor must respect 5 conditions.

Condition 1 Ex ante, the punishment must be such that deviations are deterred.

(1− δ)πC∗ + δ(1− δ)πP + δ2πC < πC

⇒ δXA >
πC
∗ − πC

πC − πP
(5)

δXA must be smaller than 1 which implies that 2πC − πC
∗ − πP > 0, with πP being

the payoff obtained by an agent during her punishment. Meeting this condition will
prevent a subcoalition of players to alternate between deviating and being punished
every other period. If the punishment effort is fixed at the level of the cooperative effort,
this condition is always verified as 2πC−πC∗−πP > 0 boils down to equation (4). Hence
we know that, if the punishment effort to put in is greater than during cooperation, δXA
decreases.

Condition 2 The payoff of the punished must be greater when conforming to their punishment
than when deviating.

(1− δ)πP + δπC > (1− δ)πP ∗ + δ(1− δ)πP ′ + δ2πC

⇒ δXP >
πP
∗ − πP

πC − πP ′
(6)

with πP
∗

being the profit obtained when deviating from undergoing the punishment
and πP

′
, the profit received, while incurring the penalty, by the subcoalition of agents
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who deviated from the punishment. When nD∗ = 1, δXP reaches its minimum which
therefore makes Condition 2 the most easily fulfilled. The benefit from deviating from
the punishment is by far outweighed by the burden of the penalty for which the single
deviator has to compensate all the cooperating players. If the size of the deviating
subcoalition rises, πP

∗
decreases whereas πP

′
rises much faster which means that δXP

also rises. It is therefore expected that arg maxnD∗∈(1,nD) δXP = nD.
The following two conditions ensure that all the punishers are willing to conform to

the punishment phase.

Condition 3 The payoff of the punishers must be greater when conforming than when deviating
from punishing and then conforming, i.e. π1/P > π1/P ∗ .

If π1/P and π1/P ∗ represent respectively the profit from punishing and from deviating
from giving the punishment, we get:

(1− δ)π1/P + δπC > (1− δ)π1/P ∗ + δπC ⇒ π1/P > π1/P ∗

In case of perfect equality of wealth among agents, we have:

γ
nC∗

n
(C − C∗) > (Cγ − C∗γ ) (7)

The idea behind this condition is that it could more interesting, for the punishing play-
ers, to skip the punishment phase and go back directly to cooperation. We are going to
check which values ofC andC∗ are compatible with a renegotiation and coalition-proof
punishment. C∗ is the level of effort put in when deviating from giving a punishment.
Equation (7) must hold for nC∗ = 1, while if it does not hold when nC∗ > 1 we have to
ensure that all these deviating coalitions are not credible. This is done in Condition 4.

One could imagine that the simplest form of punishment would be that the punish-
ers do not produce for one period while the deviators are constrained to put in such a
level of effort that the punishers get at least the cooperative payoff. However, as long
as C < eNi , for very high values of γ, it could be interesting for one punisher to deviate
and produce the cooperative level of effort21. Once C is fixed at the Nash level of effort,
it is never interesting for one punisher22 to deviate from the punishment scheme. Once
that C is fixed to eNi , it is easy to prove that:

∂δXP
∂nD∗

> 0 (8)

21As showed by limγ→+∞
γ
n
(βn

−1
γ−1 − 1) − (βγn

−γ
γ−1 − 1) < 0 when β < 1. For the particular case of

C = 0, it is easy to check that the condition C∗ > ( γ
n
)

1
γ−1 is not satisfied for many values of γ, n.

22A coalition of nC∗ > 1 players could be tempted to deviate from giving the punishment. This prevents
this scheme to be strong Nash.
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Hence, we have to focus on the case where Condition 2 is the hardest to satisfy, i.e.
nD∗ = nD, which gives δXP > πN−πP

πC−πP . As it is easy to see that ∂δXP
∂πP

< 0 23, we know
that the minimum of δXP is reached when the punishment is also fixed at its minimum.

All that has been said so far allows us to remark that πN is again a focal point. If the
cooperative agents return to putting in the Nash effort, the threat point of the game is
infinite repetition of the Nash equilibrium. The deviators can indeed renege for ever on
the punishment and also produce the Nash effort. We therefore know that πCi > πNi is
again to satisfy.

For this setting to be coalition-proof, we must now ensure that no deviating coalition
of punishers is credible. For the deviation to be credible, no one should have one’s
interest in further deviating from the deviating coalition. We hence turn to the next
condition.

Condition 4 For the equilibrium to be coalition-proof, no deviation of punishers should be cred-
ible, i.e. π1/P ∗ < π1/P ∗∗ .

If λi = 1
n and nC∗∗ = 1 24, it is equivalent to:

γ

n
<

(1− n
−γ
γ−1 )

(1− n
−1
γ−1 )

(9)

For all γ and n, this condition is always fulfilled which means it is always more inter-
esting for one player to further deviate from the deviating coalition by producing the
Nash level of effort25. Condition 4 is always fulfilled and no deviation of punishers is
therefore credible.

It is to be noted that, if all the punished conform to the punishment phase and pro-
duce a high level of effort, no coalition of punishers is willing to deviate. A fortiori, if a
subcoalition of punished deviates from the punishment phase - and therefore produces
less -, no subcoalition of punishers is tempted to skip this phase. Given the punished
and the punishers have opposite duties and interests, no deviation of a mixed coalition
is credible.

The following condition ensures that the punishers are not going to renegotiate the
punishment scheme.

Condition 5 The payoff from punishing a deviating coalition must be greater or equal than the
payoff from generalized cooperation, i.e. π1/P ≥ πC .

23 ∂δXP
∂πP

= πN−πC
(πC−πP )2

which is negative as long as πC > πN .
24If one player wishes to deviate from the deviating coalition, the latter is not credible.
25It is not surprising as eNi is the best response of player i, being the solution to equation (2).
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It means that, if λi = 1
n ,

P ≥ n
−2
γ−1

[
n

γ
γ−1 − nC − γ−1(n

γ
γ−1 − 1)

] 1
nD

(10)

Now that the conditions to satisfy are stated, we want to find the punishment pro-
ducing the lowest discount factor compatible with generalized cooperation, δ. We have
therefore to fix the effort level corresponding to the punishment, P , so that the couple
(δXA, δXP ) is the lowest possible and, in any case, smaller than one. As our punish-
ment scheme has to simultaneously respect the conditions expressed in equations (5)
and (6), we have to find the max(δXA, δXP ). To obtain the punishment correspond-
ing to the highest degree of impatience, we have to determine P such that we get
δ ≡ min max(δXA, δXP ).
Comparing δXA and δXP boils down to comparing πC

∗ − πC and πN − πP , in the limit
case where nD∗ = nD, as the denominator of these fractions is the same. After simplifi-
cation,

πC
∗ − πC ≤ πN − πP (11)

becomes:
−γ−1n

−1
γ−1

[
(n

1
γ−1P )γ − 1

]
+ nDn

−γ
γ−1 (n

1
γ−1P − 1) ≤ 0 (12)

The root of interest in equation (12) is P = eC . Hence we know that when P = eC ,
δ = δXA = δXP . We also know that as soon as P > eC , we have to minimize πN−πP and
thus P to get δ. It means that the minimal punishment compatible with renegotiation-
proofness and coalition-proofness is P as long as it is greater than the cooperative level
of effort. As long as the parameters of equation (10) produce a P < eC , resorting to such
a punishment effort will not prevent deviations. The penalty incurred by the deviators
would be too small to deter them from alternating between deviating and being pun-
ished. In this case, the punishment must be to put in the cooperative level of effort. On
the other hand, if P < P , the punishment is not renegotiation-proof.
We have therefore to find P ≡ max(eC , P ) and turn to the following equation.

P ≥ eC ≡ nC
n
γ ≥ 1− n

−γ
γ−1

1− n
−1
γ−1

(13)

Taking into account the condition for deviation to be profitable, i.e. πC
∗ − πC > 0, the

only case where equation (13) is not verified, with γ ≥ 2, is when nC = nD = n
2 . In the

latter case, P is too small a punishment and the punished have to put in the cooperative
level of effort, exactly as in the two players game put forward by van Damme (1989).
Note that this particular case can happen only if n is even.

Considering we took into account the different conditions imposed by our punish-
ment scheme when λi = n−1, we are equipped with the parameters of our punishment,
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P and C. As δXP must be smaller than 1 for cooperation to be a renegotiation-proof
and coalition-proof equilibrium, πNi must be smaller than πCi . It is the same binding
constraint as with Nash reversion and we know from equation (4) that it is always true.
This allows us to put forward the following proposition:

PROPOSITION 2 As long as δXP < δ < 1, λi = n−1 and the game is infinitely repeated26, it is
possible to sustain cooperation with a renegotiation-proof and coalition-proof punishment.

So far, we have shown that, under a perfectly equalitarian distribution of shares,
it is possible to use a renegotiation-proof and coalition-proof punishment scheme to
sustain generalized cooperation. One can remark that, with γ known and a perfectly
observable and certain output, this equilibrium requires particularly little information.
It can be completely decentralized as, after deviation, the punished and the punishers
know exactly which level of effort to provide.

We now want to investigate how introducing share inequality influences the way
the first-best optimum can be supported. The punishment is, as expected, very similar
to the case of perfect share equality. If we introduce inequality, πC

∗ − πC ≤ πN − πP
becomes: ∑

j∈nD

(Pj − λ
1

γ−1

j )

− γ−1λ
2−γ
γ−1

j

[
(Pjλ

−1
γ−1

j )γ − 1
]
≤ 0 (14)

in which the only case where the Pj is insufficient to satisfy equation (14), when γ ≥ 2,
occurs again when nD = n

2 . It is easy to see that for this condition to be respected,
the punishment effort has to be greater or equal than the cooperative level of effort, i.e.

Pj ≥ λ
1

γ−1

i . It means that equation (10) becomes:

P j ≥
λj∑

j∈nD λj

∑
k∈n

λ
1

γ−1

k −
∑
i∈nC

λ
2

γ−1

i − γ−1

∑
i∈nC λ

2−γ
γ−1

i (1− λ
γ
γ−1

i )
nC


While, as each punisher must receive π1/P

i = πCi , all the deviators have to put in P j so
that:

π
1/P
i = λi(

∑
i∈nC

λ
2

γ−1

i +
∑
j∈nD

P j − γ−1λ
2

γ−1

i )

where ∀i ∈ nC :
∑

j∈nD P j =
∑

k∈n λ
1

γ−1

k −
∑

i∈nC λ
2

γ−1

i − γ−1λ
2−γ
γ−1

i (1− λ
γ
γ−1

i ).
We showed that, under a perfectly equalitarian distribution of shares, our punish-

ment scheme prevents all the agents from deviating from cooperation. We also know
that inequality is detrimental to cooperation as it is possible that deviation becomes a

26It remains true if the agents do not know when the game ends.
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dominant strategy for poorly endowed agents - i.e. if πCi < πNi . However, even in less
extreme cases, we can state the following proposition.

PROPOSITION 3 After introducing inequality, the agents losing from the disequalizing change
in the distribution of shares have to be more patient than before to produce the efficient level of
effort when the punishment is renegotiation-proof and coalition-proof.

As in the case of Nash reversion, introducing inequality of shares renders first-best effi-
ciency more difficult to support with a renegotiation-proof and coalition-proof punish-
ment.

Now that we have characterized the minimal discount factor with those two kinds
of punishment, we can compare them. It is easy to show that δN ≤ δXP as, after rear-
ranging and symplifying, we get equation (11).

5 Redistribution and Cooperation

In this section, we try to characterize the lower bound of theoretical cooperation, i.e.
when δ tends towards 1. Note again that the further

(
πCi − πNi

)
is from 0, the lower δ,

which increases the scope for cooperation. Then, we investigate the issue of redistribu-
tion.

5.1 Characterization of the lowest share compatible with generalized coop-
eration

As the utmost condition to satisfy for cooperation to be sustainable is πCi > πNi , it is pos-
sible to partially characterize the lowest share compatible with generalized cooperation,
λmin. To see this, let us define several distributions of shares:

λ ≡ λ1 = . . . = λn−1 < λn
λ̃ ≡ λ̃1 = . . . = λn−2 < λn−1 < λn
λ̂ ≡ λ̂1 = . . . = λn−2 < λn−1 = λn
λ̄ ≡ λ̄1 < λ2 = . . . = λn

The lowest share compatible with cooperation depends on the convexity parameter of
the cost term, γ. Therefore, we get:

λmin ≥
{
λ̄1 if 2 ≤ γ ≤ 4
λ̄1 or λ1 if γ > 4

(15)

When γ > 4, the second derivative of the function λ
1

γ−1 − λ
2

γ−1 is either positive or
negative. Hence the latter function is respectively convex or concave which determines
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the form of the shares distribution giving the lowest share compatible with generalized
cooperation. A high γ favours convexity and therefore inequality while a high n is in
favour of concavity and equality of shares.

5.2 Redistribution

We know that, whatever the punishment strategy we use, if πCi < πNi , the best strategy
for player i is to deviate at each period of the game. The first-best optimum cannot be
attained any more but cooperation can still be sustained for a subset of players whose
cooperation profit is greater than the Nash profit27.

Observation 1 The only influence of the agents not cooperating because of a low λj
28 is to

diminish the share of the cooperators.

Taking into account the poorly endowed agents, equation (3), πCi > πNi , becomes

λiγ
∑nC

i 6=j λ
1

γ−1

i (1− λ
1

γ−1

i )

λ
1

γ−1

i (1− λ
γ
γ−1

i )
> 1 (16)

This inequality is never verified if nC = 1. It means that, if more than one agent gets
a positive share, producing the first-best level of effort requires at least two agents to
get a big enough share29, i.e. a share such that πCi > πNi . The number of people whose
shares add up to a low λinflim does not influence cooperation. At the same time, there
can coexist one cooperating and one free-riding coalition.

As we know that cooperators put in an effort of λ
1

γ−1 and deviators contribute λ
2

γ−1 ,
the total level of effort put in the project is

∑
i ei =

∑
nC
λ

1
γ−1 +

∑
nD
λ

2
γ−1 . It is therefore

possible to compare the different distributions with respect to the total level of effort
contributed to the project30.

The only case where the effect of redistribution is unambiguous31 is when it lowers
the share of a poor player to the benefit of another poor player to the extent that the
latter becomes rich enough to cooperate. Then higher inequality increases the total sum

27This can be the case if we suppose that the rich players, knowing that the deviators are so poor that
they cannot afford to cooperate, do not turn to punishing the deviating players.

28P
j λj = λinflim ⇒

PnC
i 6=j λi = 1− λinflim

29It implies that, if all the agents but one have a share such that πCi < πNi , the richest player (whose
λn < 1) will produce the deviating level of effort.

30The same exercise done on the social surplus,
P
nC

λ
1

γ−1 (1− γ−1) +
P
nD

λ
2

γ−1 (1− γ−1λ), produces
equivalent results.

31To the exception of γ = 2, where redistribution is neutral, disequalizing redistributions between coop-
erators always lower the aggregate level of effort.
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of contributions. In all the other instances of redistribution, the effect on the aggregate
level of effort depends on γ which determines the concavity or convexity of the func-
tion. Regarding redistribution from/to a deviator to/from a cooperator, its effects are
symmetrical. If we redistribute from a deviator to a cooperator (from a cooperator to a
deviator), if γ ≥ 3, it decreases (increases) the aggregate level of effort while if γ < 3
there is a point where redistribution is neutral as to the aggregate level of contributions
and beyond this point, increasing inequality will raise (lower) the total level of efforts.
As to the redistribution between deviators, the pivotal value of γ is 3. At 3, redistribu-
tion does not influence the amount of efforts provided in the project. Below (above) 3,
every disequalizing redistribution among the poor decreases (increases) the aggregate
level of effort. We therefore show that increasing inequality can have a positive effect on
the amount contributed. This means we can observe a U-shaped relationship between
inequality and the aggregate level of effort.

This being said, we now want to investigate whether it would be profitable for the
rich agents to redistribute part of their share to the less endowed so that the latter can
afford to cooperate. If the agents are perfectly patient, once the poor get a share such
that their cooperation profit is at least equal to their deviation profit, they are expected
to produce the efficient level of effort. The benefits from cooperation are such that, in
some cases, they outweigh the loss of welfare suffered by the rich agents redistributing
part of their share.

Let us first examine the extreme case where only one individual is rich enough for
cooperation to be attractive. In this case, all produce the deviation level of effort. There
are therefore large potential gains from cooperation. Simulations on the following sys-
tem of equations32 teach us that redistributing so that each agent gets a big enough
share to cooperate is always interesting, if the number of players is ≥ 3 and γ ≥ 3.{

πCñ ≥ πNn with agent ñ being n after redistributing part of her share.

πCmin = πNmin

The general form of this system of equations, where cooperation takes place before
redistribution, would be:{

πCñ ≥ πCn with agent ñ being n after redistributing part of her share.

πCmin = πNmin

where we consider the payoff from cooperation for a subcoalition and for the grand
coalition under the condition that the poorest agent gets a share such that cooperation
is at least as interesting as generalized deviation33.

32The detail of this system is presented in Appendix B.
33We could also examine these conditions when the cooperating subcoalition is enlarged by one player.
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As in the case of weakest-link public goods where the aggregator index used to
describe the production function is the minimum of all the contributions34, the repeti-
tion of the game could induce rich players to redistribute part of their share to render
cooperation attractive for the poor. Note that it would not be dictated by altruistic con-
siderations but would pertain to a payoff maximizing behaviour of the richest agents.

6 Outside Option

So far we have constrained the players to produce either a cooperative or a deviation
level of effort while preventing them from opting out of the game. This could be the
right way to model many joint projects in real life where, once the decision of joining
the project has been made, it is not possible to go astern. Nevertheless, the alternative is
relevant for other types of project, all the more since we focus on projects with perfect
substitutability of efforts. In the presence of outside options, it seems reasonable to
consider that, to get the same level of goods as jointly produced by n agents, working
solo would require more effort and therefore be costlier than being involved in a joint
project. In the case of irrigation schemes, once the decision to participate has been
made, the irrigation infrastructure is built. It then becomes difficult to opt out and,
unless one is ready to sustain an important cost, the agent’s choice is limited to produce
the cooperative or the deviation level of maintenance effort. Likewise, regarding tacit
collusion in competition à la Cournot, firms, once in the market, produce either the
collusive or the Nash quantity. As to defence alliances, countries can decide to leave a
coalition, in which case they will probably have to increase their level of effort to benefit
from the same level of protection.

Introducing outside options changes the conditions to be fulfilled for cooperation to
be sustainable. In the case of Nash reversion, it is necessary to take into account the pos-
sibility that the profit from working solo (πSi ) is higher than the profit from generalized
deviation (πNi ) in which case the condition to be respected becomes:

(1− δ)πC∗ + δπS < πC ⇒ δ >
πC
∗ − πC

πC∗ − πS

Deviating from cooperation then leaving the collective action for working on one’s own
must indeed be less profitable than producing the cooperative level of effort in the joint
project. The ultimate condition for cooperation to be fulfilled is therefore:

πC > max(πN , πS)

34See Vicary (1990) for redistributions and weakest-link techonology.
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One can immediately realize that, if πSi > πNi , the discount factor is higher than without
exit option. Outside options can therefore, as expected, decrease the scope for coopera-
tion.

As to renegotiation-proofness where we have to ensure that δ = min max(δXA, δXP ),
we have to take into account an additional condition. As the punishment lasts one
period and allows a return to cooperation, the payoff received on the punishment path
must be higher than the payoff obtained while working solo.

(1− δ)πP + δπC > πS ⇒ δS >
πS − πP

πC − πP

As in the case of Nash reversion, the ultimate condition to be respected, while δXA and
δXP must be simultaneously verified, becomes:

πC > max(πN , πS)

Obviously, as long as the outside option gives nothing more advantageous than the joint
project, working solo is not even considered. Once the solo payoff is higher than the
payoff from generalized deviation, deviating then working solo becomes a conceivable
option which is not chosen unless the player is too impatient.

To summarize the different possibilities created by the introduction of an outside
option, let us present the following tables. Note that the outside option is not specified
and could differ according to the agent’s share (or other factors absent from this model).
The first table typically corresponds to the situation of the rich or to an equal to moder-
ately unequal distribution of shares where, for all, the cooperation profit is greater than
the Nash profit.

πC
∗

i > πCi > πNi

πSi ↑ ↑ ↑ ↑
πSi (1− δ)πC∗i + δπSi πCi if δS < δ πCi if δ < δ

According to the level of their solo payoff (πSi ), agents are going to make different
decisions as to their participation in the project. If the payoff from working alone is
even greater than deviating from the project for agent i, the latter is going to work
individually and will never participate in the project. If the solo payoff is greater than
the cooperation payoff but smaller than the payoff from deviating, one can expect this
agent to deviate in the first period of her participation in the collective action and then
to opt out and work solo. In this case, it is likely that the cooperative players decide, if
possible, to restrict access to the project.35 While if working solo is less profitable than

35They could also introduce a membership fee or a commitment device for discouraging such strategic
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cooperating but more than generalized deviation, as long as the player’s discount factor
is greater than the limit discount factor taking account of the outside option, the player
is going to cooperate. That, she will also do if working solo is less interesting than
generalized deviation. Whatever, the discount factor in this latter case, she is taking
part in the joint project. Whether she cooperates or deviates will then depend on the
player’s and the limit discount factors.

It is interesting to note that once some players opt out, the condition for cooperation
to be sustainable among the remaining players boils down to equation (16). Even if
the payoff of the rich decreases when poor and thus deviators leave the joint project,
the departure of the latter does not render cooperation harder to sustain for the rich.
Outside options might therefore increase the scope for feasible redistribution. It could
indeed be interesting for the rich to redistribute so that the poor get πNi > πSi and, even
though deviating, keep participating in the project36.

The second table exhibits the case where there is enough inequality for the Nash
profit, typically of the poorly endowed agents, to be greater than the cooperation profit.

πC
∗

i > πNi > πCi

πSi ↑ ↑ ↑ ↑
πSi (1− δ)πC∗i + δπSi (1− δ)πC∗i + δπNi (1− δ)πC∗i + δπNi

In those cases where cooperation is never a conceivable option, the agent either
works directly on her own if her solo payoff is greater than her deviation payoff or first
deviates then leaves the joint project if her solo payoff is comprised between her devi-
ation and Nash payoff. Eventually, if the payoff from generalized deviation is greater
than the solo payoff, at each period of the game, this player is going to produce the
deviation level of effort.

Again, in some cases, the rich players knowing the situation of the poorest could let
them deviate while a subcoalition could keep cooperating.

As an illustration, we present the following solo payoff function: πSi = αei −
eγi
γλi

which gives an optimal level of effort to put in being eSi = (αλi)
1

γ−1 while the payoff

becomes πS
opt

i = α
γ
γ−1λ

1
γ−1

i (1 − γ−1). If α < 1, it is clear that the optimal level of effort
to put in is smaller when working solo than in a joint project. The conditions on α as to
the different cases detailed above are presented in Appendix C.

behaviours. Otherwise, they could let the solo agent deviates instead of collectively deviate anticipating
that they would be stuck in the pareto dominated equilibrium or that the solo player would join the project
once they have returned to cooperation.

36A larger redistribution such that πCi > πNi for all i is also to be considered in this case.
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7 Conclusion

We showed that, in this particular model, cooperation can be supported under Nash
reversion or a renegotiation-proof and coalition-proof punishment. We also demon-
strated that introducing inequality of share among players increases the discount factor
compatible with sustainable cooperation, reducing the scope for cooperation. Once in-
equality has been introduced, the poorer agents involved in the repeated project have to
be more patient than before to keep cooperating. Hence, we demonstrated that inequal-
ity is, in this game, detrimental to generalized cooperation, the efficient outcome. In this
respect, this paper puts forward new insights as to the relationship between inequality
and efficiency.37

Inequality can be such that some agents cannot afford to produce the efficient level
of effort while others may keep cooperating. Our model can therefore also explain the
coexistence of well endowed players providing a high level of effort and poor agents
only putting in the Nash level of effort. This, in a way, complies with Olson’s hypothesis
that contributions are positively related to wealth.

Comparing several distributions of share where cooperators and deviators coexist
shows that increasing share inequality can have a positive or negative impact on the
aggregate level of effort (or social surplus) depending on the cost parameter, γ, (and the
number of cooperators). Hence, share inequality can have a U-shaped relationship with
the aggregate level of effort (or social surplus), as regularly seen in case studies.

We also mentioned that, in some cases, it can be profitable for the rich agents to re-
distribute part of their share to the poor players so that the latter can afford to cooperate
at each period of the game. Repetition of the game can therefore enlarge the scope for
redistribution.

Eventually, we put forward that outside options could restrict the scope for cooper-
ation and increase the scope for redistribution.

37Several other explanations have been proposed so far in the vast literature exploring the link between
inequality and efficiency. Missing or imperfect capital markets have been shown to prevent poor individ-
uals to develop their full potential leading to inefficiency from the viewpoint of the social surplus (Loury,
1981). Inequality implying high redistribution would generate inefficiency through tax induced distortions
on resource allocation (Alesina and Rodrik, 1994, Persson and Tabellini, 1994). As modelled by Esteban
and Ray (2006), agents lobbying for government support put in effort along two dimensions: productiv-
ity of the project and wealth. This blurs the signal received by the government which leads it to make
inefficient decisions in the presence of wealth inequality.
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APPENDIX

A Proofs

Proof of Lemma 1:
The relative premium from deviating in terms of her own share is the following:

πC
∗

i − πCi
λi

=
[∑
nD

λ
1

γ−1 (λ
1

γ−1 − 1)
]
− γ−1λ

2−γ
γ−1 (λ

γ
γ−1 − 1)

If the derivative with respect to the share is negative, a wealth decrease renders the
deviation more attractive.

∂(πC
∗
i − πCi )/λi
∂λi

≡ 1
γ − 1

λ
−γ+2
γ−1

i

[
(λ

1
γ−1

i − 1) +
2− γ
γ

(λ−1
i − λ

1
γ−1

i )
]

As the derivative is always negative when γ ≥ 2, the relative premium from deviating
rises when the share declines.

Proof of Equation (4)
After rearranging equation 4, we get:

(γ − 1)− n
−1
γ−1 (γ − n−1) > 0

Taking alternatively the limit of γ towards 2 and +∞, we get that the first term is always
positive and greater than the second one. It makes our result.

Proof of Proposition 1
We are going to compare two discount factors compatible with cooperation, first under
a perfectly equalitarian distribution of shares, then after introducing a disequalizing
change in the distribution. As discount factors and ease to sustain cooperation vary
in opposite directions, we are done if we can prove that introducing inequality in the
distribution of shares makes the discount factor rise.
As long as δN < 1, it is theoretically possible to sustain cooperation. We know that the
bigger πCi − πNi , the lower δN .

πCi − πNi = λi

[(∑
λ

1
γ−1 (1− λ

1
γ−1 )

)
− γ−1λ

2−γ
γ−1

i (1− γ
γ
γ−1 )

]
As ∂(πC−πN )

∂λi
> 0, a decrease in λi lowers the gain from cooperation and therefore in-

creases the incentives to deviate and the limit discount factor, δN .
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Proof of Lemma 2
Let us assume the length of the punishment is t periods with t ∈ [1, . . . , T ]. If we com-
pare the different δ corresponding to equations (5) and (6), we get:

• ex ante, no one wishes to deviate
T∑
t=1

δtXA >
πC
∗ − πC

πC − πP
⇒ δXA−1 > . . . > δXA−T

• The payoff of the punished must be greater when conforming to their punishment
than when deviating.

δXP−t > (
πP
∗ − πP

πC − πP
)

1
t ⇒ δXP−1 < . . . < δXP−T

To get the equilibrium compatible with the biggest impatience of the agents, we have to
find the lowest δ, δ ≡ min max(δXA−t, δXP−t) with t being the number of periods of the
punishment.
If δXA−1 ≤ δXP−1, we are done as this couple would be smaller than any other one in
the following general ordering: δXA−t < . . . < δXA−1 ≤ δXP−1 < . . . < δXP−t.
It therefore boils down to prove that πC

∗ − πC ≤ πP
∗ − πP which is the case when

P ≥ eCi as explained after equation (12).

Proof of Equation (8)
Taking into account that δXP < 1 and that πC − πP

′
> 0, and rearranging, we get

πP
∗

+ πP
′ − πC − πP < 0. Our strategy is to focus on the terms varying with nD∗ to get

the simplest expression of the derivative.
Considering the punishment level of effort of equation (10), we get respectively for P
and P ′:

P = n
−2
γ−1

[
n

γ
γ−1 − (n− nD)− γ−1(n

γ
γ−1 − 1)

]
1
nD

P ′ = n
−2
γ−1

[
n

γ
γ−1 − (n− nD∗)− γ−1(n

γ
γ−1 − 1)

]
1

nD∗

Deriving πP
∗

+ πP
′ − πC − πP with respect to nD∗ , we get:

n−1

[
−P + P ′ + nD∗

∂P ′

∂nD∗
− n2P ′γ−1 ∂P

′

∂nD∗

]
Substituting in the latter expression ∂P ′

∂nD∗
= 1

nD∗
[−P ′ + n

−2
γ−1 ], we have the following

sum which we can sign:

n−1

[
−(P − n

−2
γ−1 ) +

n2

nD∗
P ′γ−1(P ′ − n

−2
γ−1 )

]
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It is easy to prove that the second term is greater than the first one if nD∗ = 1.
As we know that P ≤ P ′ with equality when nD = nD∗ , we are done if we can show
that the derivative is positive when all the punished deviate from the prescribed pun-
ishment. In this case, the derivative becomes:

n−1

[
(P − n

−2
γ−1 )(P ′γ−1 n

2

nD
− 1)

]
Regarding the first difference, P − n

−2
γ−1 , the condition for it to be positive boils down

to:

γ >
1− n

−γ
γ−1

1− n
−1
γ−1

which we know is always true.

While the second difference, P ′γ−1 n2

nD
−1, is positive if n

γ
γ−1−n−n

γ
γ−1

D +nD−γ−1(n
γ
γ−1−

1) > 0. Since the higher bound on nD is n
2 and the lower bound on γ is 2, it is always

respected.
Those two differences being positive, we know that ∂δXP∂nD∗

> 0.

Proof of Equation (9)
The scheme of this proof follows the proof of equation 4, what gives:

(γ − n)− n
−1
γ−1 (γ − 1) > 0

Taking alternatively the limit of γ towards 2 and +∞, we get that the first term is always
positive and greater than the second one. It makes our result.

Proof of Proposition 3
As, in the limit case where nD∗ = nD, the condition for cooperation to be sustainable
becomes πCi > πNi , the proof of Proposition 3 boils down to the proof of Proposition 1.

Proof of Equation (15):
As the condition for one agent to cooperate is πCi − πNi > 0, the bigger the positive
difference, the easier the cooperation. We can therefore compare equation (3) 38, with
two different distributions of λ to see which one will be more favourable to cooperation.
If λ1 is compatible with cooperation such that equation (3) is verified then all the ’less
compatible with cooperation’ distributions of shares will produce a smaller result.

38πCi > πNi ≡
P
λ

1
γ−1
i (1− λ

1
γ−1
i )− λ

2−γ
γ−1
i (1− λ

γ
γ−1
i ) > 0
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This being said, we can compare the different distributions of shares.
We compare equation (3) with λ and λ̃:

(n− x)(λ
1

γ−1

1 − λ
2

γ−1

1 ) + x
[
(1−(n−x)λ1

x )
1

γ−1 − (1−(n−x)λ1

x )
2

γ−1

]
− γ−1λ

2−γ
γ−1

1 (1− λ
γ
γ−1

1 ) ≷

(n− x− 1)(λ
1

γ−1

1 − λ
2

γ−1

1 ) + (λ1 + ε)
1

γ−1 − (λ1 + ε)
2

γ−1

+x
[
(1−(n−x)λ1−ε

x )
1

γ−1 − (1−(n−x)λ1−ε
x )

2
γ−1

]
− γ−1λ

2−γ
γ−1

1 (1− λ
γ
γ−1

1 )

It simplifies to:

λ
1

γ−1

1 − λ
2

γ−1

1 + x
[
(1−(n−x)λ1

x )
1

γ−1 − (1−(n−x)λ1

x )
2

γ−1

]
≷

(λ1 + ε)
1

γ−1 − (λ1 + ε)
2

γ−1 + x
[
(1−(n−x)λ1−ε

x )
1

γ−1 − (1−(n−x)λ1−ε
x )

2
γ−1

]
As the second derivative of λ

1
γ−1 (1− λ

1
γ−1 ) with respect to λ is equal to:

1
(x− 1)2

λ
3−2γ
γ−1 [2− γ − 2(3− γ)λ

1
γ−1 ]

this function is concave if 2− γ − 2(3− γ)λ
1

γ−1 < 0 (convex if > 0).
As λ1 < λ2 < . . . < λn ⇒ λ1 <

1
n we get:

1− (n− x)λ1

x
>

1− (n− x)λ1 − ε
x

> λ1

This point and the concavity of the function λ
1

γ−1 (1− λ
1

γ−1 ) when 2 ≤ γ ≤ 4 allow us to
state that, if x = 1, λ1 < λ̃1. If ε grows and becomes = 1−nλ1

x+1 ,

(λ1 + ε)
1

γ−1 − (λ1 + ε)
2

γ−1 + x
[
(1−(n−x)λ1−ε

x )
1

γ−1 − (1−(n−x)λ1−ε
x )

2
γ−1

]
=

(x+ 1)
[
(1−(n−(x+1))λ1

x+1 )
1

γ−1 − (1−(n−(x+1))λ1

x+1 )
2

γ−1

]
The same reasoning shows therefore that λ1 < λ̃1 < λ̂1. Then applying the same rea-
soning with x = [2, . . . , n− 1] gives our result when 2 ≤ γ ≤ 4.
The reverse is true when γ > 4, and the function λ

1
γ−1 − λ

2
γ−1 is convex, this being

dependent on the shares (and therefore the number of players).
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B Systems of equations

Extreme case:

(n− 1)λ
1

γ−1

min(1− λ
1

γ−1

min) + (1− (n− 1)λmin)
1

γ−1 [1− (1− (n− 1)λmin)
1

γ−1 ]

−γ−1λ
γ−2
γ−1

min(1− λ
γ
γ−1

min) > 0

λn(
∑
λ

2
γ−1 − γ−1λ

2
γ−1
n ) > (1− (n− 1)λmin)[(1− (n− 1)λmin)

1
γ−1

+(n− 1)λ
1

γ−1

min − γ−1(1− (n− 1)λmin)
γ−2
γ−1 (1− (1− (n− 1)λmin)

γ
γ−1 )]

General form:

λn(
∑

nC λ
1

γ−1 +
∑

nD λ
2

γ−1 − γ−1λ
2−γ
γ−1 )

< (λn − ε)
[∑

min,...,n∈nC λ̃
1

γ−1 +
∑

1,...,x∈nD λ
2

γ−1 − γ−1(λn − ε)
2

γ−1

]
λmin ≡ πC = πN ⇒

∑
nC λ

1
γ−1 (1− λ

1
γ−1 )− γ−1λ

γ−2
γ−1

min(1− λ
γ
γ−1

min) = 0

C Conditions on α

In the general case:

πC > πS ⇒ α <

λ γ−2
γ−1

i

∑
λ

1
γ−1

i − γ−1

1− γ−1


γ−1
γ

The latter expression is smaller than 1 if λi < n−1 and γ ≥ 2. It means that for coop-
eration to be attractive for a poor α has to be smaller than for a rich. If λi > n−1, the
cooperation payoff is always greater than the Nash payoff and, even if α > 1, coopera-
tion can, in some cases, be preferred to working individually.

The following condition is easier to satisfy than the previous one.

πC
∗
> πS ⇒ α <

λ
γ−2
γ−1

i

(∑
nC
λ

1
γ−1

i +
∑

nD
λ

2
γ−1

i − γ−1λ
2

γ−1

i

)
1− γ−1


γ−1
γ
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As expected, the following condition is more demanding than the previous one.

πN > πS ⇒ α <

λ
γ−2
γ−1

i

(∑
λ

2
γ−1

i − γ−1λ
2

γ−1

i

)
1− γ−1


γ−1
γ

In the case of an equalitarian distribution, the three previous equations become:

πC > πS ⇒ α < 1

πC
∗
> πS ⇒ α <

nCn−1 + n
−γ
γ−1
(
nD − γ−1

)
1− γ−1


γ−1
γ

πN > πS ⇒ α < n
−1
γ

[
1− γ−1n−1

1− γ−1

] γ−1
γ

∂rhs

∂n
< 0,

∂rhs

∂γ
> 0
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