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Abstract

The goal of this paper is to study the role of multi-product �rms in
the market provision of product variety. The analysis is conducted us-
ing the spokes model of non-localized competition proposed by Chen
and Riordan (2007). In the presence of economies of scope the equi-
librium con�guration includes a small number of multi-product �rms
who use their product range as a key strategic variable. Product va-
riety under multi-product �rms may be higher or lower than under
single-product �rms. Similarly, from a social point of view the level
of variety provided by large multi-product �rms may also be excessive
or insu¢ cient. A key determinant of the overall provision of variety is
the strategic price e¤ect. Under some conditions, �rms drastically re-
strict their product range in order to relax price competition, causing
a substantital underprovision of variety.
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1 Introduction

Does the market provide too much or too little product variety? Is the
supply of books, CD�s, TV programs, furniture or cereals su¢ ciently diverse
to e¢ ciently match the preferences of heterogeneous consumers? Or, on
the contrary, do pro�t maximizing �rms tend to produce a disproportionate
array of products and incur into excessive costs? The existing theoretical
literature clearly suggests that anything can happen, i.e., product diversity
may be excessive or insu¢ cient depending on the relative strength of various
e¤ects. However, the literature has typically focused on the case of single-
product �rms. In contrast, in many markets individual �rms produce a
signi�cant fraction of all varieties. These multi-product �rms choose their
product range as an additional strategic tool, which may potentially a¤ect
the overall provision of variety. Does the presence of multi-product �rms
reduce or expand product variety with respect to the case of single-product
�rms? And with respect to the �rst best? Can an incumbent �rm use product
proliferation to monopolize the market and prevent entry?
In this paper we address these issues by introducing multi-product �rms

into the spokes model of non-localized competition proposed by Chen and
Riordan (2007). There are several reasons that justify the choice of model;
in particular, the spokes model provides a tractable, intuitive and transpar-
ent framework to study competition and product variety when neighboring
e¤ects are absent, which is increasingly the case in many industries. By
considering a continuous approximation of the original model we show that
it is possible to study in the same framework alternative market structures,
including monopolistic competition (large number of single-product �rms,
oligopoly (small number of large multi-product �rms) and even asymmetric
competition (one large, multi-product �rm competing with a large number
of single-product �rms).
The study of product diversity has been typically conducted using three

alternative families of models. Many authors have chosen spatial models
of localized competition, similar to those proposed by Hotelling (1929) and
Salop (1979). However, it is generally agreed that they are not well suited
to study either the welfare implications of product variety or multi-product
�rms. Alternatively, a large fraction of the literature has followed Spence
(1976) and Dixit and Stiglitz (1977) (SDS) and assumed the existence of a
representative consumer with well de�ned preferences over all possible vari-
eties. In this set up neighboring e¤ects are absent and typically each variety

2



is symmetrically placed with respect to the rest. Finally, some authors have
used some version of the multinomial logit model, where consumers are sta-
tistically identical and their choices are described by logit models.1 Several
papers have recently introduced multi-product �rms into CES and nested
logit frameworks and have analyzed their role in the provision of product
variety. The papers which are most closely related to ours are Ottaviano and
Thisse (1999), Ju (2003), and Anderson and de Palma (2006).2 Below we
comment on these papers in more detail.3

The spokes model (Chen and Riordan, 2007) extends the Hotelling model
to an arbitrary number of varieties in a perfectly symmetric set up. A crucial
feature of the model is that each consumer only cares about two varieties,
which di¤er across consumers. The preference space consists ofN spokes that
start from the same central point. The producer of each potential variety
is located in the extreme end of a di¤erent spoke. If N = 2 then we are
in the standard Hotelling set up. As N goes to in�nity, and if the number
of varieties per �rm is small, the model becomes an adequate representation
of monopolistic competition. In this paper we take the spokes model one
step further by considering multi-product �rms. It turns out that the spokes
model can accommodate multi-product �rms as easily as the SDS model and,
moreover, it brings about new insights and useful welfare results.
Tractability of the spokes model is considerably enhanced by assuming

that the number of varieties is su¢ ciently large. In the next section we review
the �nite model and formulate the continuous approximation. Thus, the
product range of a multi-product �rm can be treated as a continuous variable.
In the same section we also brie�y review the solution to the social planner�s
problem and the free entry equilibrium with single-product �rms. These
problems were examined in Chen and Riordan (2007). The only novelty
is that we provide explicit values for the variety variable in the continuous
approximation, which sets the stage for the analysis of multi-product �rms.

1See, for instance, Perlo¤ and Salop (1985), Besanko et al. (1990), and Anderson and
de Palma (1992a)

2Earlier papers like Brander and Eaton (1984), Chamsaur and Rochet (1989), and
Anderson and De Palma (1992b) are also important milestones in the formal analysis of
multi-product �rms.

3A number of papers have introduced multi-product �rms in the SDS framework in
order to study the e¤ects of trade liberalization. Some of the prominent and recent papers
include Ottaviano et al. (2002), Allanson and Montagna (2005), Nocke and Yeaple (2006),
Eckel and Neary (2006), Bernard et al. (2006), and Feenstra and Ma (2007).
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Although the main focus of the paper is the e¤ect of competition among
multi-product �rms, in Section 3 we establish some interesting insights for
the monopoly case. First, a protected monopolist may provide a higher level
of product variety than the social planner. Excessive diversity occurs when
the cost of producing an additional variety is relatively low. In this case,
and in contrast to the �rst best, the optimal monopoly pricing implies that
every new variety generates a strong market expansion e¤ect. Second, in
contrast to the case of localized competition, an incumbent �rm cannot use
product proliferation to monopolize the market and prevent entry. In fact,
we show that �rm size (as measured by the length of its product range) is a
competitive disadvantage. Therefore, multi-product �rms can only emerge in
industries characterized by non-localized competition if economies of scope
are su¢ ciently strong.
Section 4 is the core of the paper and deals with the oligopoly case. The

presence of economies of scope implies that only a small number of multi-
product �rms can survive and each one chooses both product range and
prices strategically. As it is standard, the number of �rms is endogenous and
determined by a non-negative pro�t condition. In line with the literature, the
number of �rms in equilibrium is ine¢ ciently high because of the duplication
of entry costs. However, in contrast to most of the literature it is not always
the case that the overall provision of product variety is insu¢ cient from a
social point of view. In fact, the presence of multi-product �rms in�uences
the overall provision of product variety through several channels:
a) Cannibalization: a multi-product �rm internalizes the impact of a new

variety on the demand for the other varieties it produces. This e¤ect tends
to reduce product diversity.
b) Appropriability: The presence of a small number of large multi-product

�rms is associated with prices which are higher than those set by single-
product �rms. This e¤ect tends to expand product variety.
c) Strategic price e¤ect : an oligopolistic �rm anticipates that its product

range in�uences its rival�s prices. It turns out that the sign of the strategic
price e¤ect is ambiguous. If consumers�reservation prices are not too low
then �rms �nd it optimal to restrict product variety in order to relax price
competition. For su¢ ciently low reservation prices the sign of the strategic
price e¤ect may be reversed and a �rm may �nd it optimal to expand its
product variety in order to raise its rival�s prices.
Obviously, these e¤ects are larger when the number of �rms is small (when

economies of scope are stronger). In fact, the equilibrium with multi-product
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�rms converges to the equilibrium with single-product �rms as the number
of �rms goes to in�nity (as economies of scope vanish).
As shown by Chen and Riordan (2007), product variety chosen by single-

product �rms may be insu¢ cient or excessive with respect to the �rst best.
Since large multi-product �rms may expand or contract the level of product
variety selected by single-product �rms, then the overall level of product
variety chosen by large multi-product �rms can also be socially excessive
or insu¢ cient depending on parameter values. The size of the discrepancy
between the market provision of variety and the �rst best level is particularly
large in the duopoly case, if consumers�reservation prices are not too small,
and the �xed cost per variety is relatively low. In the limit case of zero �xed
costs per variety, duopolists may choose to produce a relatively low fraction
of potential varieties, as low as 50%, even though social e¢ ciency calls for
100%. Thus, in contrast to the case of single-product �rms, under duopoly
product diversity may be ine¢ ciently low for both low and high values of the
�xed cost. For intermediate values anything can happen.
Some of the e¤ects that are present in this paper are similar, or at least

related, to those identi�ed by the literature; in particular by Ottaviano and
Thisse (1999), Ju (2003), and Anderson and de Palma (2006).
Ottaviano and Thisse (1999) consider a quadratic utility model. A non-

desirable feature of their framework is that the optimal prices of a multi-
product �rm are independent of its product range. In other words, in their
set up a �rm cannot take advantage of producing a signi�cant fraction of all
potential varieties in order to raise its prices. In their model multi-product
�rms generate less product diversity than single-product �rms because of the
cannibalization e¤ect. Also, product diversity under multi-product �rms is
socially excessive only if the �xed cost of producing an additional variety is
su¢ ciently low (the threshold is lower than under monopolistic competition).
In contrast, in the current set up when the �xed cost is low then �rms �nd it
optimal (in the adequate parameter range) to restrict their product range in
order to maintain a friendly price environment, which results in insu¢ cient
product variety.
The strategic price e¤ect of our oligopoly game is related to that of Ju

(2003), and Anderson and de Palma (2006). In these models a broader prod-
uct range also induces rivals to price more aggressively. Ju (2003) considers a
nested CES utility function and assumes that varieties produced by a single
�rm are better substitutes for one another than varieties produced by di¤er-
ent �rms. He identi�es an strategic price e¤ect of a nature similar to ours.
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Unfortunately, his framework does not allow a clean comparison between the
market solution and the �rst best and hence we cannot compare his results
against ours.4 In Anderson and de Palma (2006) consumers have preferences
for both �rms and varieties. Consumers�decisions are taken in two steps.
First, they choose which �rm to purchase from. Second, they choose which
products to buy from the selected �rm. As a result, a �rm with a broader
product range becomes more attractive to consumers, which induces a more
aggressive price response by rival �rms. In this case, in the free entry equi-
librium there are too many �rms, each one producing too narrow a product
range. In contrast (and consistent with Ottaviano and Thisse, 1999), we
consider markets where consumers have symmetric preferences for varieties
(they do not care who produces what) and hence the impact of multi-product
�rms on overall product variety can be evaluated more clearly.
The results of this paper also contrast with those obtained in standard

spatial models (See, for instance, Schmalensee, 1978; and Bonanno, 1987).
In these models, an incumbent �rm may �nd it pro�table to monopolize
the market by crowding the product space or by choosing the appropriate
location. Instead, the current set up suggests that the presence of neighboring
e¤ects in those models was crucial for their results. In fact, in the absence
of neighboring e¤ects proliferation cannot be an e¤ective entry deterrence
mechanism.

2 The spokes model with a large number of
varieties

2.1 The set up

We start up by reviewing the spokes model introduced by Chen and Riordan
(2007). There are N possible varieties of a di¤erentiated product, indexed
by i; i = 1; :::; N . The preference space consists of N lines of length 1

2
, also

indexed by i, that meet at the centre (spokes network). The producer of
variety i is located in the extreme end of line i. A particular variety may or

4Minniti (2006) imbeds Ju�s framework in a growth setting and conducts the welfare
analysis. However, he assumes a continuum of �rms and, as a result, the strategic price
e¤ect is not present any more. Consistent with Anderson and de Palma(2006), he also �nds
that in equilibrium there are too many �rms, each one providing a too narrow product
range.
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may not be active (supplied). Supplying a variety involves a �xed cost, f ,
and constant marginal cost (which, for simplicity, is normalized to 0):
There is a mass N

2
of consumers that are uniformly distributed over the

spokes network. A consumer located in line i (her favorite brand), at a
distance x from the extreme end; obtains a utility of v � xi � pi is she buys
one unit of variety i at the price pi (unit transportation cost is normalized to
1). Her second preferred brand, j 6= i; is chosen by nature with probability
1

N�1 . If she purchases one unit of variety j at a price pj then she obtains a
utility of v � (1� x) � pj. Each consumer buys at most one unit of one of
the two desired brands. Throughout the paper we assume that v > 2:5

The spokes framework o¤ers a very useful representation of non-localized
competition. We consider the limiting case in which the number of possible
varieties, N , goes to in�nite, keeping the mass of consumers per variety equal
to 1

2
. In this context, we can treat the fraction of active varieties, denoted

by k, as a continuous variable.6

For an arbitrary value of k 2 (0; 1) ; consumers can be classi�ed in three
di¤erent groups. A fraction k2 of consumers have access to their two desired
varieties, a fraction 2k (1� k) are only able to purchase one of them, and a
fraction (1� k)2 have access to none of their desired varieties and drop out
of the market.
Considering the pool of consumers that demand variety i, a fraction k of

these consumers also have access to their alternative variety, and a fraction
1� k do not:
Throughout the paper we express all variables per unit mass of consumers.

For instance, the number of active varieties is kN
N
2

= 2k and, hence, total

production costs are 2kf:

2.2 First benchmark: The social planner

For a given value of k; those consumers with access to their two desired
varieties should be allocated, from an e¢ ciency point of view, to the closest
supplier. Thus, the maximum average surplus generated by this group of

5Chen and Riordan (2007) consider a larger parameter range: v > 1. By focusing on
v > 2 we simplify the presentation considerably without a¤ecting the main insights.

6Chen and Riordan (2007) solve the model for a �nite N and study the limiting prop-
erties of the equilibrium as N goes to in�nity. In this paper we work directly on the limit
economy. It is shown below that, in the case of single-product �rms, the two approaches
are equivalent.
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consumers is v � 1
4
: Consumers with access to only one variety incur in

higher average transportation costs, and thus the average surplus generated
by this group is v � 1

2
: Finally, consumers without access to any of their

desired varieties generate zero surplus. Therefore, total surplus is:

W (k) = k2
�
v � 1

4

�
+ 2k (1� k)

�
v � 1

2

�
� 2kf:

The �rst order condition (objective function is concave) can be written
as follows:

dW

dk
= 2

�
k
1

4
+ (1� k)

�
v � 1

2

�
� f

�
= 0:

The �rst term represents the preference matching e¤ect. When we ac-
tivate an additional variety, a fraction k of all consumers that have a taste
for that variety already have access to the other desired variety and hence the
new variety simply involves lower average transportation costs

�
from 1

2
down to 1

4

�
.

The second term is the market expansion or aggregate demand e¤ect. A frac-
tion 1� k of these consumers had no access to any of their desired varieties
and the availability of the additional variety involves an average surplus of�
v � 1

2

�
: Since v � 1

2
> 1

4
then total surplus created by an additional variety

decreases with k:
Thus, the optimal value of k; denoted by k� , can be computed directly

from the �rst order condition (See Figure 1):

k� =

8><>:
0 if f � v � 1

2
v� 1

2
�f

v� 3
4

if 1
4
� f � v � 1

2

1 if f � 1
4

2.3 Second benchmark: competition among single-product
�rms

Suppose that the number of potential �rms is equal to the number of possible
varieties, and each �rm can produce only one variety. If a �rm decides to
enter the market and supply variety i then it pays the �xed cost, f; and sets
a price, pi.7 We restrict attention to equilibria with symmetric prices and

7Since each �rm is negligible then the timing of decisions does not a¤ect equilibrium
behavior.
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free entry. Hence, �rms make zero pro�ts if k < 1; and non-negative pro�ts
if k = 1 . This is a model of monopolistic competition, in the sense that
each �rm is negligible with respect to the market but it enjoys some market
power. This is why we denote equilibrium values with the superscript MC.
Chen and Riordan (2007) focused on the case of single-product �rms and

also study the limiting properties of the model as the number of varieties
goes to in�nity. Hence, there are no original results in this subsection and
we simply present it as an additional benchmark in order to set the stage for
the analysis of multi-product �rms (we provide explicit expressions for the
equilibrium values of k).
We need to distinguish between two alternative cases.8 If f is su¢ ciently

high, f � (v�1)2
v
; then k is low and �rms face little competition from their

rivals. In equilibrium �rms set prices pMC = v � 1: From the zero-pro�t
condition we obtain that:

kMC =

(
2v�1�f

v�1 ; if f 2
h
(v�1)2
v
; v � 1

i
0; if f � v � 1

If f is su¢ ciently low, f � (v�1)2
v
, then k is relatively high and competition

drives equilibrium prices below v � 1. More speci�cally, pMC = 2�k
k
:9 As a

result, from the zero-pro�t condition we obtain that:

kMC =

(
1; if f � 1

2

2 + f �
p
4f + f 2, if f 2

h
1
2
; (v�1)

2

v

i
Chen and Riordan (2007) already pointed out that the level of product

variety provided by single-product �rms may be excessive or insu¢ cient with
respect to the �rst best. The ambiguity comes from the tension between two
countervailing e¤ects:
a) Partial appropriability of the market expansion e¤ect : an entering �rm

cannot appropriate all the surplus it generates by expanding aggregate de-
mand. First, it does not price discriminate; second, the price tends to fall as
the number of varieties increases (price competition).

8Algebraic details are available upon request.
9If v � 1+ (2�k)2

2k(1�k) then a �rm has incentives to deviate from p =
2�k
k and set p = v�1:

In this case, a symmetric equilibrium does not exist.
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b) Business stealing (excessive appropriability of the preference matching
e¤ect): A fraction of the pro�ts of an entrant �rm come from stealing cus-
tomers of established �rms, and these pro�ts are higher than the e¢ ciency
gains generated by reallocating these consumers.
Thus, the �rst e¤ect depresses private incentives with respect to social

incentives and tend to generate insu¢ cient product variety. In contrast, the
second e¤ect works the other way around and tends to generate excessive
diversity.
For extreme values of f the spokes model behaves like Salop�s. If f

is su¢ ciently low then k is close to one, and the business stealing e¤ect
dominates (excessive product variety). Similarly, if f is su¢ ciently high then
k is close to zero, then �rms are e¤ectively local monopolists and the partial
appropriability e¤ect dominates (insu¢ cient product variety).
For intermediate values of f it is not so easy to track the relative strength

of these two e¤ects and anything can happen (at least when v is not too low).

3 Monopoly

Although we are principally concerned with competition among multi-product
�rms, there are some important insights to be established for the monopoly
case. First, a protected monopolist may choose an excessive level of product
variety (with respect to the �rst best). Second, a multi-product �rm is at
competitive disadvantage vis-a-vis single-product �rms. Thus, proliferation
is not an e¤ective barrier to entry in the absence of economies of scope. In
fact, a multi-product �rm can only survive if economies of scope are su¢ -
ciently strong.

3.1 Optimal product variety

Consider �rst the optimal pricing policy for a given k. Given the symmetry
of the model it makes sense to focus on symmetric pricing policies: pi = p, for
all i. Also, we can restrict attention to prices in the interval

�
v � 1; v � 1

2

�
:

First, a monopolist does not �nd it optimal to set a price below v � 1; since
it cannot attract any additional consumer by lowering the price below this
level. Second, given that v > 1, it does not �nd it optimal to set a price
above v � 1

2
and leave consumers located close to the center of the spokes
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network unattended. The optimal price schedule (See Appendix for details)
is the value of p that maximizes:

� (p) =

�
k
1

2
+ (1� k) (v � p)

�
pk � fk (1)

subject to p 2
�
v � 1; v � 1

2

�
: The solution is given by:

pM (k) =

8<:
v � 1

2
; if k � 2v�2

2v�1
v
2
+ k

4(1�k) ; if
2v�4
2v�3 � k �

2v�2
2v�1

v � 1; if k � 2v�4
2v�3

(2)

If k is low then it is optimal to set a price su¢ ciently low, v�1, in order to
attract all consumers that only have access to their second preferred variety
(which are a relatively large fraction of the pool of potential consumers).
However, if k is large, most consumers have access to their most preferred
variety, and the monopolist �nds it optimal to set a higher price, v � 1

2
, and

leave consumers with only access to their second preferred variety out of the
market. For intermediate values of k the optimal price is somewhere between
these two values.
If we plug (2) into (1) then we are ready to compute the monopolist�s

optimal product line. It turns out (See Appendix for details) that if v >
7+
p
5

4
� 2:3 then it is never optimal to choose a value of k that induces

pM 2
�
2v�4
2v�3 ;

2v�2
2v�1

�
.10 As a result the optimal product variety is given by:

kM =

8>><>>:
0; if f � v � 1

v�1�f
v�1 ; if v � 1 � f �

q
v�1
2

1; if f �
q

v�1
2

The next proposition compares the monopoly solution with the �rst best
and the case of single-product �rms. (See Figures 1 and 2).

Proposition 1 If v > 7+
p
5

4
; (i) under monopoly the level of product variety

is excessive (kM > k�) if f 2
�
1
4
;
q

v�1
2

�
and insu¢ cient (kM < k�) if

10If v 2
h
2; 7+

p
5

4

i
then for some values of f the monopolist chooses a price in the

interval
�
2v�4
2v�3 ;

2v�2
2v�1

�
. The characterization of the monopoly solution in this interval is

more convoluted.
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f 2
�q

v�1
2
; v � 1

�
; (ii) there exists a threshold bf 2 hqv�1

2
; (v�1)

2

v

�
such that under monopoly the level of product variety is higher than
under monopolistic competition (kM > kMC) if f 2

�
1
2
; bf� and lower�

kM < kMC
�
if f 2

� bf; v � 1� :
The result that a monopolist may provide too much product variety with

respect to the �rst best is somewhat surprising. If f is relatively high then
k is low and the social bene�ts generated by an additional variety come
from the market expansion e¤ect. A monopolist can only capture a fraction
of the social bene�ts but has to pay the entire �xed cost. As a result the
level of product variety under monopoly is ine¢ ciently low. However, if f
is relatively low then k is high, and most of the social bene�ts generated
by an additional variety come from better preference matching (in the �rst
best most consumers have access to at least one of their desired varieties.)
However, in this parameter range a monopolist sets a price equal to v� 1

2
and

excludes all consumers without access to their most preferred variety. As a
result, when a monopolist introduces an additional variety then it attracts
all consumers for which such a variety is their favorite, and from each one
it obtains a high surplus

�
v � 1

2

�
. In other words, the additional variety

generates a substantial market expansion e¤ect and no cannibalization.
Also, if f is low single-product �rms are subject to intense competition,

which results in relatively low prices. Incentives to enter come almost exclu-
sive from the customers stolen from rival �rms, although entering �rms can
only charge them a relatively low price. In contrast, when a monopolist in-
troduces an additional variety then it attracts a similar amount of consumers
but it charges them a higher price. As a result the level of product diver-
sity is higher under monopoly than under single-product �rms (monopolistic
competition).

3.2 Product proliferation as an entry barrier

The main goal of this section is to determine whether or not, in the current
set up, size (as measured by the number of varieties) is a source of competitive
advantage and whether product proliferation is an e¤ective entry deterrence
mechanism. In order to address these issues we consider an incumbent mo-
nopolist who anticipates potential competition from a large number of small
�rms, each one of them able to supply a single variety (a competitive fringe).
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In order to focus on the potential strategic e¤ect of a �rm�s product range,
we assume there are no economies of scope.
More speci�cally, consider the following three-stage game. In the �rst

stage �rm L chooses the fraction of varieties; kL; and pays the �xed costs
(per unit mass of consumers) associated to activating these varieties: 2fkL.
In the second stage, small �rms decide whether or not to enter, and hence
the mass of small active �rms, kC ; is determined. Fixed costs per variety
are the same for small and large �rms, so that each small �rm that chooses
to enter pays f: In the third stage, �rms simultaneously set the prices for
those varieties that have been activated. We rule out the case that the large
�rm �nds it optimal to set kL = 1; which makes further entry physically
impossible. That is, we assume that f > 2v�1

4
. We �rst state the main result

of this section.

Proposition 2 There is no equilibrium where the large �rm makes strictly
positive pro�ts. More speci�cally, if f 2

h
(v�1)2
v
; v � 1

i
then kC + kL =

kMC and the values of kC and kL are undetermined (kL must be below

a certain threshold). If f 2
�
2v�1
4
; (v�1)

2

v

�
then kL = 0 and kC = kMC :

The �rst part of the proposition is immediate. We cannot have an equi-
librium where the large �rm makes strictly positive pro�ts and small �rms
make zero pro�ts. The reason is that a small �rm can always imitate the
large �rm and set pi = pL and make the same level of pro�ts per variety of
the large �rm. Thus, if the large �rm produces a positive fraction of vari-
eties it must be the case that both the large and small �rms set the same
price. In the Appendix it is shown that an equilibrium with equal prices
exists for those parameter values that under monopolistic competition �rms
set pMC = v� 1: Otherwise, the large �rm strictly prefers to drop out of the
market. Thus, under non-localized competition the size of a �rm, as mea-
sured by its product range, tends to be a source of competitive disadvantage.
Therefore, multi-product �rms can emerge only if economies of scope are
su¢ ciently strong.
In contrast, other standard location models (see, in particular, Schmalensee,

1978, and Bonanno, 1987) predict that the incumbent monopolist may pre-
vent entry either by crowding out the product space or by choosing the right
location pattern. In these models competition is localized and the �rm pro-
ducing the new brand competes only with one or two of the existing brands.
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Thus, the entrant correctly anticipates that the incumbent �rm will react to
entry by cutting the price of the competing brands. In contrast, in our set
up those neighboring e¤ects are absent and a new brand does not a¤ect the
prices of existing brands.

4 Oligopoly

In the previous section we have shown that in the absence of economies of
scope multi-product �rms are at a competitive disadvantage vis-a-vis single-
product �rms. In this section we study the market structure that arises
endogenously in the presence of a speci�c form of economies of scope. In
equilibrium only a small number of �rms are active, and each one produces a
signi�cant fraction of the total number of varieties. The aim is to investigate
how the strategic incentives of large multi-product �rms a¤ect prices and,
specially, product diversity.11

Suppose that there is a large number of potential �rms, all of them ex-
ante identical with respect to their production capabilities. Consider the
following three-stage game. In the �rst stage, each �rm decides whether or
not to enter. If a �rm enters then incurs an entry cost, g. The number of
active �rms, n, becomes public information. In the second stage, active �rms
simultaneously choose the fraction of potential varieties they wish to supply.
In particular, �rm i chooses ki 2 [0; 1] and incurs an additional costs kif:
Thus, the cost per variety, f + g

ki
, decreases with ki: If there are n active

�rms then the total fraction of activated varieties is denoted by k =
Pn

i=1 ki:
It will be convenient to denote by k�i the range of varieties supplied by
�rm i�s competitors; i.e., k�i =

P
j 6=i kj. The vector of active varieties,

fkigni=1 becomes public information. In the third stage, �rms simultaneously
set prices for all active varieties. We focus on symmetric, subgame perfect
equilibria, where ki = 1

n
k for any i = 1; :::; n; and all varieties are sold at

the same price. We consider any value of g such that in equilibrium we have
n � 2.
Given �rms�decisions about their product range, a fraction k2i of con-

sumers will have access to two varieties supplied by �rm i, a fraction 2ki (1� k)
11Since we follow a similar approach, our results will be comparable to a large strand

of the literature, which includes Ottaviano and Thisse (1999), Ju (2003), and Anderson
and de Palma (2006). The di¤erences in results can only be explained by the alternative
speci�cations of consumer preferences.
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will have access only to one of the varieties supplied by �rm i; and a fraction
2kik�i will have access to one variety supplied by �rm i and one variety sup-
plied by �rm i�s competitors. Hence, �rm i enjoys absolute monopoly power
with the �rst two groups of consumers and faces competition for the third
group.
For further reference we de�ne

v (n) � 2n� 1
n� 1

Note that v (2) = 3; v (n) decreases with n and converges to 2 as n goes
to in�nity. In the �rst part of this section we focus on the case v � v(n). In
this case no �rm has incentives to set a price above v � 1 (See Appendix).
At the end of the section we discuss the case 2 < v < v(n), where some of
the e¤ects are reversed and therefore requires separate consideration.

4.1 The case of high reservation prices

Suppose v � v(n). In this case, we can write �rm i�s optimization problem
in the third stage as follows: given (ki; k�i), and the average prices chosen
by rival �rms, bp�i = 1

n�1
P

j 6=i pj, �rm i chooses the price of its varieties, pi,
in order to maximize:

�i =

�
k2i + 2ki (1� ki � k�i) + 2kik�i

�
1

2
+
bp�i � pi
2

��
pi � 2kif � g

subject to pi+1 � v.12 If the constraint is not binding then �rm i�s reaction
function is:

pi =
2� k
2k�i

+
bp�i
2

As usual reaction functions are upward sloping (prices are strategic com-
plements). More interesting is the e¤ect of the fraction of varieties supplied
by each �rm on the optimal price. First, pi decreases with ki. The reason is
that the fraction of total consumers that have to choose between two vari-
eties supplied by di¤erent �rms, 2kik�i

k2i+2ki(1�k)+2kik�i
, increases with ki. Second,

pi decreases with the range of varieties supplied by �rm i�s rivals, k�i. A

12It will be apparent that we need not worry about deviations such that pi =2
[bp�i � 1; bp�i + 1].
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higher k�i reduces the fraction of consumers that can only buy from �rm i
and raises the fraction of consumers that have two options.
The reaction functions of �rm i�s competitors are symmetric. Thus, for

a given vector (k1; :::; kn), in equilibrium �rm i sets the following price:

pi =
2� k
2n� 1

 
n

k�i
+
X
j 6=i

1

k�j

!
(3)

It is important to emphasize that pi decreases with both ki and k�i.
That is, when �rms choose their product range they will take into account
the strategic price e¤ect: an increase in a �rm�s product range reduces its
rivals�prices. This e¤ect will explain some of the results below and may also
cause large ine¢ ciencies.
Along a symmetric equilibrium path, ki = 1

n
k for any i = 1; :::; n. Thus,

the candidate to equilibrium price can be obtained rewriting equation (3):

p =
n

n� 1
2� k
k

(4)

provided p � v � 1, which is equivalent to:

k � k � 2n

(n� 1)v + 1 < 1 (5)

Note that, for any value of k; the equilibrium price decreases with n and
converges to the equilibrium price under single-product �rms as n goes to
in�nity. In fact, a multi-product �rm can be interpreted as a coalition of
single-product �rms. Cooperation allows the coalition to raise their prof-
its by raising the price above the level prevailing in the equilibrium with
single-product �rms. Take the case n = 2 and k = 1: In this case, one half
of consumers are able to choose between two varieties supplied by di¤erent
�rms, but the other half are trapped and can only choose between two va-
rieties supplied by the same �rm. This is why a large multi-product �rm
can exploit its monopoly power and charge higher prices than single-product
�rms.
Let us begin the search for equilibrium candidates in the region of para-

meter values where condition (5) does not hold; i.e., a region of parameters
that yield in equilibrium k � k. In this case, �rms are expected to set prices
equal to v � 1 and make pro�ts:

�i = ki (2� ki � k�i) (v � 1)� 2kif � g
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This is precisely �rm i�s objective function in the second stage, which is
concave in ki. From the �rst order condition with respect to ki, evaluated at
ki =

1
n
k, we obtain the level of product variety in the candidate equilibrium:

k =
2n

n+ 1

v � 1� f
v � 1 (6)

provided k � k, which is equivalent to:

f � f � (n� 1)v � n
(n� 1)v + 1 (v � 1)

Thus, if f � f the equilibrium fraction of active varieties in oligopoly,
kO (n) ; is given by equation (6).13

Let us turn our attention to the case f < f: Potentially, condition (5)
may fail: k > k. In this case, prescribed prices are given by equation (4).14

By plugging equilibrium prices in the pro�t function we obtain �rm i�s payo¤,
in the range that satis�es k � k:

�i (k1; :::; kn) = kik�i

�
2� k
2n� 1

�2 
n

k�i
+
X
j 6=i

1

k�j

!2
� 2kif � g

The �rst derivative evaluated at ki = 1
n
k is:

d�i
dki

= � (k; n)
(2� k)2
k

� 2f (7)

where

� (k; n) � n(2n� 3)(2� k)� (2n� 1)2k
(2n� 1)(n� 1)(2� k)

If k > 2n(2n�3)
2n2+n�2 then � (k; n) < 0 and

d�i
dki
< 0 for all f . Also, � decreases with

k, is lower than 1, and it tends to 1 as n goes to in�nity.

13Clearly, no �rm �nds it pro�table to select such a large product range that induces
its rivals to set prices below v � 1.
14We need to check that no �rm has incentives to deviate from p = n

n�1
2�k
k and set

p = v � 1: A su¢ cient condition is v � 1 + (2�k)2
2k min

n
1

1�k ;
9

6�5k

o
. This is analogous to

the condition required in the case of single-product �rms (See footnote 8 and also Chen
and Riordan, 2007).
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Let us consider the value of v, denoted by v (n), such that k = 2n(2n�3)
2n2+n�2 :

That is:

v (n) � 2n2 � n+ 1
(2n� 3)(n� 1)

If v � v (n) ; given that k decreases with v; then 2n(2n�3)
2n2+n�2 < k and therefore

for all k � k; d�i
dki
< 0 and all �rms �nd it optimal to set k

n
for any value of f .

Also, let us consider the value of f , denoted by f , such that d�i
dki

�
k
�
= 0:

That is:

f � �(k)(2� k)
2

2k

If v > v (n) then 2n(2n�3)
2n2+n�2 > k and � (k; n) > 0, which opens the possibility

to the existence of an equilibrium where k > k: It turns out that in the case
n = 2 second order conditions are not satis�ed and hence if f < f then no
symmetric equilibrium exists. However, for n > 2 second order conditions
are always satis�ed and if f < f then kO is implicitly given by equalizing
equation (7) to zero (provided the solution satis�es k � 1).
Note that v(2) = 7; v (n) decreases with n; and v(n) < v (n) if and only

if n > 3:
All this discussion is summarized in the following lemma. In the Appendix

we provide some technical details as well as the value of the threshold, fa.

Lemma 1 Whenever a symmetric equilibrium exists: (i) kO is given by equa-
tion (6) if f 2

�
f; v � 1

�
; (ii) kO = k if f 2

�
f; f

�
; (iii) kO follows

from equalizing equation (7) to zero if f 2
�
max f0; fag ; f

�
; and (iv)

kO = 1; if f 2 [0; fa].

If we compare kO with kMC the following pattern emerges (See Figure 3
and Appendix for details).

Proposition 3 Under oligopoly, if v � v; the fraction of varieties supplied in
a symmetric equilibrium is lower than under monopolistic competition�
kO < kMC

�
for either relatively low or relatively high values of f , and

higher
�
kO > kMC

�
for intermediate values of f .

The di¤erential incentives to introduce product variety by oligopolistic
and monopolistically competitive �rms depend on the relative weight of three
e¤ects:

18



a) Cannibalization: when a multi-product �rm introduces a new variety
it anticipates that some of the buyers are recruited from the customers of the
�rm.
b) Appropriability/competition: for any number of active varieties equi-

librium prices tend to be higher under oligopoly than under monopolistic
competition.
c) Strategic price e¤ect: a multi-product �rm anticipates that a wider

product range induces a more aggressive pricing behavior from its rivals.
The �rst and the third e¤ects work in favor of lower product diversity

under oligopoly. The second e¤ect works in the opposite direction as �rms
can appropriate a larger fraction of the surplus created.
For relatively high values of f; so that kMC is very low, both the strate-

gic price e¤ect and the competition e¤ect are non-operative since prices are
equal to the monopoly level under both market structures. In this case the
cannibalization e¤ect dominates and product variety is lower under oligopoly.
In contrast, if f is relatively low so that kMC is close to 1, the strategic price
e¤ect dominates, since oligopolistic �rms are not willing to expand their prod-
uct range at the cost of triggering a price war. However, for intermediate
values of f; the competition e¤ect dominates and oligopolistic �rms intro-
duce more product variety than monopolistic �rms because they can charge
higher prices and appropriate a large fraction of total surplus.
Let us now compare kO and k� (See Figure 4 and Appendix for details).

If n � 5 then we have that kO and k� cross each other twice at di¤erent
values of f , and then kO < k� for either relatively low or relatively high
values of f , and kO > k� for intermediate values of f . If n > 5 then there
are two possibilities. If v su¢ ciently high then kO and k� cross each other
three times, and kO < k� for high values of f , and kO > k� for low values of
f . Instead, if v is relatively low then kO and k� cross each other only once
and there is excessive variety for low values of f and insu¢ cient variety for
high values of f: In sum, we obtain the following result (See Appendix for
details):

Proposition 4 Under oligopoly, if v � v (n), the fraction of varieties sup-
plied in a symmetric equilibrium is insu¢ cient

�
kO < k�

�
for relatively

high values of f , but the sign of the ine¢ ciency is ambiguous for low
and intermediate values. In particular, for relatively low values of f
there are two cases: (i) if n < 6 then the fraction of varieties supplied
in a symmetric equilibrium is insu¢ cient, but (ii) if n � 6 then it is
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excessive
�
kO < k�

�
:

If f is relatively high then the behavior of multi-product �rms is similar
to that of single-product �rms and they provide an ine¢ ciently low level of
product variety because they cannot price discriminate and hence are only
able to appropriate a fraction of the market expansion e¤ect. On the top of
this e¤ect there is the cannibalization e¤ect which further reduces product
variety. However, if f is relatively low then the sign of the ine¢ ciency depends
very much on market structure. If n is low the strategic price e¤ect dominates
and �rms refrain from expanding their product range in order to relax price
competition, and as a result product variety is insu¢ cient. If n is relatively
high then the business stealing e¤ect dominates (like in the case of single-
product �rms) and multiproduct-�rms produce an excessive level of product
variety. For intermediate values of f anything can happen.
It is important to note that the strategic price e¤ect may cause large

ine¢ ciencies. For example, consider the case n = 2; v = v(2) = 7; and
f = 0. In this case, social e¢ ciency requires all potential varieties being
produced. In contrast, in the market solution only one half of all potential
varieties is provided. Hence, the strategic price e¤ect may cause a substantial
underprovision of product diversity.
Finally, let us consider the endogenous determination of the number of

�rms (the �rst stage of the game). In equilibrium it must be the case that all
active �rms make non-negative pro�ts and that if any additional �rm decides
to enter then it would make negative pro�ts. Let g2 be the value of g for
which in equilibrium with n = 2 �rms make zero pro�ts: In the Appendix,
we prove the following result:

Lemma 2 There exists a strictly decreasing sequence fgng1n=2 that converges
to 0 as n goes to in�nity, such that n � 2 is the maximum number of
�rms that make non-negative pro�ts in equilibrium if and only if g 2
(gn+1; gn] : In other words, for any value of g 2 [0; g2] the equilibrium
number of �rms is given by a single-valued, step function, n (g), which
decreases with g.

Remark 1 The equilibrium number of �rms is ine¢ ciently high.

Obviously, a social planner would dictate that a single �rm produces the
e¢ cient number of varieties in order to avoid the duplication of entry costs
(in order to exploit economies of scope).
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4.2 The case of low reservation prices

Finally, we turn our attention to a region of the parameter space, 2 < v <
v(n), where some of the e¤ects analyzed above are reversed. In this region
�rms never set prices below v� 1;15 but they may choose to set prices above
v � 1, and not to serve some potential customers in submarkets where con-
sumers can buy either one of the �rms�varieties or nothing. However, �rms
will never choose to set prices above v� 1

2
(See Appendix). In the main text

we focus our discussion on the case n = 2 in order to make the presenta-
tion more transparent, and postpone to the Appendix the discussion of the
general case.
In the third stage, �rm i chooses pi in order to maximize:

�i =

�
k2i + 2ki (1� ki � kj) (v � pi) + 2kikj

�
1

2
+
pj � pi
2

��
pi � 2kif � g

subject to pi 2
�
v � 1; v � 1

2

�
; i; j = 1; 2; i 6= j. If these constraints are not

binding then �rm i�s optimal price is given by:

pi =
ki + kj + 2v(1� ki � kj) + kjpj

2 (2� 2kj � kj)

Since �rm j has a similar reaction function, then we can write �rm i�s
equilibrium price as follows:

pi =
[k + 2v(1� k)][2(2� k)� kj]
8(2� k)(1� k) + 3kikj

; i; j = 1; 2; i 6= j

Note that in this case pi increases with both ki and kj. In other words,
in this region of the parameter space the sign of the strategic price e¤ect is
reversed. An expansion of a �rm�s product range induces its rivals to set
a higher price. That is, more product variety implies a more relaxed price
environment. The intuition is the following. If kj is very low, then �rm
i pays a great deal of attention to those submarkets where consumers can
either buy one of its varieties or nothing. Since v is relatively low then �rm
i has incentives to moderate its pricing (set a price equal to v� 1) and serve
all these consumers. As kj increases then �rm i puts less weight on these
submarkets and more weight on submarkets where consumers can choose

15Suppose they do. Then, from equation (4), p � n�1
n � v � 1; provided v � v (n) :
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between varieties supplied by di¤erent �rms. In those submarkets �rm i
does not have to attract consumers located at the other end of the segment,
but only consumers located in the middle. As a result �rm i �nds it optimal
to set a higher price.16

Thus, in the second stage, �rms have incentives to expand their product
range in order to relax price competition in the subsequent pricing stage.
As a result, the strategic price e¤ect, together with the competition e¤ect,
may dominate the cannibalization e¤ect. Consequently, and in contrast to
the case where v � v (n), for relatively low values of f product variety under
oligopoly may be higher than under monopolistic competition (and hence
excessive from a social viewpoint).
In order to illustrate this possibility in the Appendix we consider the

case n = 2; v = 5
2
. We show that if f � 3

4
, then there exists a symmetric

equilibrium with ki = 1
2
, i = 1; 2. Hence, if f 2

�
1
2
; 3
4

�
we have that kO =

1 > kMC > k�.

5 Concluding remarks

In this paper we have examined the role of multi-product �rms in the market
provision of product variety. The spokes model provides a very useful set up
to compare the product diversity generated by alternative market structures
in industries where neighboring e¤ects can be neglected.
We have shown that multi-product �rms are in a competitive disadvan-

tage vis-a-vis single-product �rms and they will emerge only if economies
of scope are su¢ ciently strong. Thus, in the absence of neighboring e¤ects
product proliferation is not an e¤ective entry deterrence mechanism.
Under economies of scope the equilibrium con�guration includes a small

number of multi-product �rms who use their product range as a key strategic
variable. It turns out that product variety may be higher or lower than in the
case of single-product �rms; moreover, large multi-product �rms may provide
too little or too much variety with respect to the �rst level. However, for
a relevant range of parameter values, oligopolistic �rms drastically restrict
their product range in order to relax price competition. As a result, product
diversity may be substantially lower than the e¢ cient level.

16The result that more product variety may imply higher prices is analogous to the
result found in the monopoly case (Section 3) and to the "price rising entry" discussed by
Chen and Riordan (2007) in the case of a �nite number of single-product �rms.

22



These results contribute to a better understanding of the impact of multi-
product �rms and nicely complement those obtained in the SDS and logit
models. Moreover, on a more methodological spirit, the analysis indicates
that the spokes set up is su¢ ciently �exible to accommodate multi-product
�rms and hence it reinforces the idea that the model proposed by Chen
and Riordan (2007) is indeed a signi�cant development within the family of
spatial models.
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7 Appendix

7.1 Proof of Proposition 1

Given the optimal prices stated in the main text, there are three alternative
candidates to the optimal value of k: Option (a) consists of setting p = v�1:
In this case pro�ts are equal to

�
1� k

2

�
k (v � 1) � kf . Hence, the optimal

value of k can be computed directly from the �rst order condition:

k = 1� f

v � 1
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Note that this is an optimal pricing policy only if k � 2v�4
2v�3 ; which implies

that this is a candidate only if f � v�1
2v�3 : Maximum pro�ts that can be

obtained by setting p = v � 1 are given by:

�a (f) =
(v � 1� f)2

2 (v � 1)
Option (b) consists of setting a price p = v

2
+ k

4(1�k) , which is optimal

provided k 2
�
2v�4
2v�3 ;

2v�2
2v�1

�
: In this case pro�ts are:

� (k) = k (1� k)
�
v

2
+

k

4 (1� k)

�2
� kf

It can be checked that �000 (k) > 0: In other words, �0 (k) is a convex
function. Also, �0

�
2v�4
2v�3

�
= v�1

2v�3 � f: Thus, if f >
v�1
2v�3 then there is no local

maximum in the interval
�
2v�4
2v�3 ;

2v�2
2v�1

�
: However, if f < v�1

2v�3 then there is a

unique local maximum, ek (f) ; although it is not possible to compute ana-
lytically the associated level of pro�ts �b (f). However, using the envelope
theorem we know that d�

b

df
= �ek (f) > �1:

Finally, option (c) consists of setting p = v � 1
2
: In this case pro�ts are

equal to k
2

�
v � 1

2

�
� kf: Hence, if f < 2v�1

4
it is optimal to set k = 1 and

make pro�ts:

�c (f) =
2v � 1
4

� f

Next, we compare �a (f) and �c (f). These two functions cross each

other at a single point f =
q

v�1
2
. Option (a) dominates if f is above the

threshold and option (c) dominates if f is below. We can rule out option
(b) if we place an additional constraint on parameter values. Note that
�b (f) > �a (f) only if f < v�1

2v�3 ; and in this case
d�b

df
> �1: If we consider

values of v higher or equal than 7+
p
5

4
(� 2:3) ; then v�1

2v�3 �
q

v�1
2
. Thus, if

f >
q

v�1
2
then option (a) is preferred to option (c) ; and (b) is not even a

candidate. If f 2
�
v�1
2v�3 ;

q
v�1
2

�
then option (c) is preferred to option (a),

and again option (b) is not a candidate. Finally if f � v�1
2v�3 then option

(c) is preferred to both options (a) and (b). In order to check this, de�ne
	(f) � �c (f)��b (f) : First, 	

�
v�1
2v�3

�
� 0. Second, 	0 (f) = �1+ek (f) < 0:
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Therefore, �c (f) > �b (f) for all f < v�1
2v�3 : Thus, we have computed explicitly

kM in the case v � 7+
p
5

4
.

The comparison between kM and k� is straightforward. It is also imme-
diate to check that kM never crosses the linear portion of kMC

�
f > (v�1)2

v

�
.

However, it may cross the non-linear portion. In particular if v � 5, then
there are two solutions to the equation:

v � 1� f
v � 1 = 2 + f �

p
4f + f 2

which are given by:

f =
v � 1
2v � 1

�
v � 2�

q
(v � 2)2 � (2v � 1)

�
:

If we denote by f+ and f� the highest and the lowest solution respectively,

then it turns out that f� <
q

v�1
2
. Also, f+ >

q
v�1
2
if and only if v is higher

than a threshold bv; bv > 5: This proves part (ii) of the proposition and also
that the threshold value, bf , is equal to qv�1

2
if v < bv and to f� otherwise.

7.2 Proof of Proposition 2

Suppose that, in the third stage of the game, �rm L sets pL > v� 1: Then a
small �rm i sets pi in order to maximize:

�i =

�
(1� k) (v � pi) +

1 + kCpC + kLpL � pi
2

�
pi

provided pi; pC 2
�
v � 1; v � 1

2

�
: It turns out that d�i

dp1
(pi = pC = pL) < 0:

Suppose now that pL < v�1: Then a small �rm i sets pi in order to maximize:

�i =

�
1� k + 1 + kCpC + kLpL � pi

2

�
pi

The �rst order condition evaluated at pi = pC = pL implies that pL =
3�2k
2�k : Also, �rm L chooses pL in order to maximize:

�L = kL

�
1� kL +

kL
2
+ kC

1 + pC � pL
2

�
pL
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It turns out that d�L
dpL

evaluated at pi = pC = pL = 3�2k
2�k is strictly positive.

Therefore, the only possible equilibrium with equal prices involves pC =

pL = v � 1: This is the case if f 2
h
(v�1)2
v
; v � 1

i
: In this interval, under

monopolistic competition kMC � 2
v
and pMC = v � 1. The presence of a

large �rm does not change the aggregate outcome. From the monopoly case

we know that if kL < 1�
p

v�1
2

v�1 then the large �rm will still set pL = v � 1:
The large �rm is indi¤erent about any kL that induces pL = v � 1; but it
will never set a value kL large enough to induce pL > v � 1 in the third
stage. Finally, if f 2

h
2v�1
4
; (v�1)

2

v

i
; then we know from the monopolistic

competition case that if everyone else sets a price equal to v�1; then a small
�rm wants to deviate and set a price below v � 1; and hence a large �rm
cannot make non-negative pro�ts in this environment.

7.3 Proof of Lemma 1

Consider �rst the case v(n) � v > v(n). In the region where f 2 [f; v � 1],
we have kO < k(n). Note that since v > v(n) then k(n) < 1. We need to
check that in this region the only symmetric equilibrium involves p = v � 1.
Let us consider prices above v � 1. Firm i chooses pi in order to maximize:

�i =

�
k2i + 2ki (1� ki � k�i) (v � pi) + 2kik�i

�
1

2
+
bp�i � pi
2

��
pi

subject to v � 1
2
� pj � v � 1 for any j = 1; :::; n. Suppose these constraints

are not binding. Then, �rm i�s optimal price is given by:

pi =
k + 2 (1� k) v + k�ibp�i

2 (2� ki � k)

If pj = v � 1 for all j 6= i, then the optimal price, pi, will be given by:

pi =
v

2
+

ki
2 (2� ki � k)

< v � 1

and the slope of the reaction function is less than one. Hence, there is no
symmetric equilibrium with prices above v � 1.
If v � v(n) with n = 2; 3 then there is a candidate for a symmetric equilib-

rium, which is given by equalizing equation (7) to zero. It turns out that for
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n = 2 second order conditions are not satis�ed; @�
2
i

@k2i

�
ki =

k�i
n�1 �

k
n

�
> 0; and

hence there is no symmetric equilibrium if f < f: However, if n > 2 then it

can be shown (the proof is available upon request) that @�
2
i

@k2i

�
ki � k�i

n�1 �
k
n

�
<

0, and hence �rst order conditions are su¢ cient to characterize the symmetric
equilibrium.
Finally, let us de�ne the threshold value, fa. Evaluating equation (7) at

k = 1 and equalizing to zero yields the following value of f :

fa =
1

2

2n2 � 7n+ 2
2n2 � 3n+ 1

Note that fa < 0 for n = 3, 0 < fa < 1
2
for n � 4, and fa tends to 1

2
as n

goes to in�nity. Thus, if fa > 0 then kO = kMC = 1 if f 2 [0; fa].

7.4 Proof of Proposition 3

We show that there exist thresholds fa, fb and fc such that the following
holds: (i) when v(n) > v > v(n) for n = 2; 3, kO < kMC if f 2 [0; fb) [
(fc; v � 1), and kO > kMC if f 2 (fb; fc); and (ii) when v > maxfv(n); v(n)g
for n � 3, kO < kMC if f 2 [maxf0; fag; f) [ (fc; v � 1), and kO > kMC if
f 2 (fb; fc).
It turns out that fa <1

2
< fb < f < fc <

(v�1)2
v
, and in the limiting case

where n goes to in�nity, fa(n) tends to 1
2
, fb(n) to

(v�1)2
v
,f(n) to (v�1)2

v
as

well, and kO(n) to kMC .
Consider �rst that v(n) > v > v(n) for n = 2; 3: The reader should

remember that in this case kO is given by equation (6) if f � f , and kO = k
if f � f . Also, kMC = 2v�1�f

v�1 if f 2
h
(v�1)2
v
; v � 1

i
; and kMC = 2 + f �p

4f + f 2; if f 2
h
1
2
; (v�1)

2

v

i
: First of all, f < (v�1)2

v
and kMC

�
f = (v�1)2

v

�
<

k: Second, if we look for crossing points between kMC and kO for values of
f < f , then we �nd only one, fb, which is given by:

fb =
(n� 1)2(v � 1)2
n[(n� 1)v + 1]

Note that 1
2
< fb < f for all v > v(n). Since kMC (f) is a decreasing function

in this interval then we have that kMC > kO if f 2 [0; fb) and kMC < kO if
f 2

�
fb; f

�
. Finally, since kMC (f) is not only decreasing but also a convex
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function, then there is another crossing point between kMC and kO; denoted
by fc; such that f < fc <

(v�1)2
v
; which is implicitly given by kc = kO (fc)

where fc satis�es
(2�kc)2
2kc

= (v � 1)
�
1� n+1

2n
kc
�
. Hence, if f 2

�
f; fc

�
then

kMC < kO and if f 2 (fc; v � 1) then kMC > kO:
Consider now v > maxfv(n); v(n)g for n � 3. If f < f then kO follows

from equalizing equation (7) to zero. The only di¤erence is that if fa > 0
(where fa has been de�ned in the proof of Lemma 1) then kO = kMC = 1 if
f 2 [0; fa]. Let us consider f 2

�
fa; f

�
, given that � (k) < 1 then abusing

notation we can write fMC = (2�k)2
2k

> � (k) (2�k)
2

2k
= fO: That is, for all

f 2
�
fa; f

�
then kMC > kO. The results are the same as in the previous case

if f > f:

7.5 Proof of Proposition 4

We show that there exist thresholds fd, fe, ff , fg, fh; � such that: (i) when
v(n) > v > v(n) for n = 2; 3, kO < k� if f 2 [0; fd)[

�
fe; v � 1

2

�
, and kO > k�

if f 2 (fd; fe); (ii) when v > maxfv(n); v(n)g and n = 3; 4; 5 then kO < k�
if f 2 (max ffa; 0g ; f 0) [

�
fe; v � 1

2

�
, and kO > k� if f 2 (f 0; fe), where f 0

is either fd or fh (iii) when � > v > maxfv(n); v(n)g for n > 5, kO < k� if
f 2 (ff ; v � 1

2
), and kO > k� if f 2 (1

4
; ff ); and (iv) when v > � for n > 5,

kO < k� if f 2 (fg; fh) [ (ff ; v � 1
2
), and kO > k� if f 2 (1

4
; fg) [ (fh; ff ).

It turns out that: (i) fd and fe are such that fd < f < fe; (ii) ff is such
that f < ff < v� 1; (iii) fg and fh are such that 12 < fg < fh < f ; (iv) �(n)
is real-valued if and only if n > 5; increases with n, and approaches 5

2
+
p
2

as n goes to in�nity.
Let us �rst compare kO with k� under v(n) > v > v(n) for n = 2; 3. If

1
4
� f � f , kO = k, which equals k� at the value of f given by

fd =
2(n� 1)v � 3n+ 1
2[(n� 1)v + 1] (v � 1)

where 1
4
< fd < f . For f < f � v � 1

2
, there is another crossing point at

f = fe; which is given by:

fe =
2(n� 1)v � 2n+ 1
2(n� 1)v � n+ 2 (v � 1)

Next, consider v > maxfv(n); v(n)g for n � 3. In the proof of Lemma 1
we gave the exact value of fa; where kO (fa) = 1: Note that fa is higher than
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1
4
if and only if n > 5. This implies that if n = 3; 4; 5, kO (f) goes through the

point (fa; 1) and a is decreasing and convex function. This function may cross
k� at either fd (whenever f < fd) or at a lower level of f

�
whenever f > fd

�
,

denoted by fh: In either case, there are also three di¤erent regions like in
the previous case, with insu¢ cient variety for low and high values of f; and
excessive variety for intermediate values.
Finally, if n > 5; then either kO and k� cross each other twice or none in

the interval k 2
�
k; 1
�
. In particular, we are looking for values of k such that

�(k)
(2� k)2
2k

= k

�
v � 1

4

�
+ (1� 2k)

�
v � 1

2

�
The two roots to this equation are

k =
2(2n2 � 3n+ 1)v + 6n2 � n� 5�

p
w(n; v)

4(2n2 � 3n+ 1)v � 2n2 + 11n� 7

which are real valued if and only if w(n; v) > 0, where

w(n; v) � (2n� 1)
�
4(2n3 � 5n2 + 4n� 1)v2+

�4(10n3 � 33n2 + 28n� 5)v + 34n3 � 101n2 + 108n� 25
�

In turn, w(n; v) > 0 and if v > �(n), where

�(n) =
10n3 � 33n2 + 28n� 5 + 2

p
2
p
4n6 � 36n5 + 99n4 � 115n3 + 57n2 � 9n

4n3 � 10n2 + 8n� 2

Note that �(n) is real valued for all n > 5, increases with n, and tends to
5
2
+
p
2 as n goes to in�nity.

Consequently, the two roots above are real valued whenever v > �(n),
and then the lower of those roots is greater than k and the upper root is less
than 1. We denote by fg and fh the two values of f at which kO and k� cross
each other in the interval where k < k < 1. Thus, if v < � then kO > k� if
f 2

�
1
4
; fe
�
, and kO < k� if f 2

�
fe; v � 1

2

�
. However, if v > �, then kO > k�

if f 2
�
1
2
; fg
�
[ (fh; fe) and kO < k� if f 2 (fg; fh) [

�
fe; v � 1

2

�
:

7.6 Proof of Lemma 2

In equilibrium pro�ts have di¤erent expressions depending on the value of f
(See Lemma 1). Let us consider the following notation. If f 2

�
f; v � 1

�
then
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we can write pro�ts as �1 (f; n)� g: If f 2
�
f; f

�
then we write �2 (f; n)� g:

Finally, if f 2
�
0; f
�
we write �3 (f; n) � g: Plugging the optimal value of k

in the pro�t function we obtain:

�1 (f; n) =
v � 1
n

�
2n

n+ 1

v � 1� f
v � 1

�2
�2 (f; n) =

k

n

�
2� k

�
(v � 1)� 2f k

n

where k is given by equation (5).

�3 (f; n) =

�
2� kO

�2
n� 1 � 2k

O

n
f

where kO follows from equalizing equation (7) to zero. Note that @�i
@n
< 0

for all i = 1; 2; 3: Hence, if we compute the value of g such that n �rms make
zero pro�ts, gn, then provided f belongs to the same interval gn+1 < gn.
However, as n changes thresholds also change, and hence the equilibrium
may be given by a di¤erent �i (f; n). In particular, both f and f increase
with n.
Let us denote by � (k; f; n) � v�1

n
k (2� k)� 2f

n
k. In fact, �

�
kO; f; n

�
=

�1 (f; n), where kO is given by equation (6). Similarly, �
�
k; f; n

�
= �2 (f; n),

where k is given by equation (5). It turns out that @�
@k

�
kO; f; n

�
< 0 and

@2�
@k2

> 0: That is, If f 2
�
f; v � 1

�
, then kO < k, and hence �1 (f; n) �

�2 (f; n) : Suppose there is a value n0 for which f 2
�
f; v � 1

�
, and for n0 + 1

we have that f 2
�
f; f

�
. In this case �2 (f; n0 + 1) < �2 (f; n0) < �1 (f; n0),

and hence strict monotonicity is preserved.
Similarly, let us denote by � (p; k; f; n) = p

n
k (2� k)�2f

n
k: In fact, �

�
v � 1; k; f; n

�
=

�2 (f; n), and �
�
pO; kO; f; n

�
= �3 (f; n), where pO is given by equation (4)

and kO follows from equalizing equation (7) to zero. Clearly, if f 2
�
f; f

�
�2 (f; n) � �3 (f; n) ; since prices are higher and product variety is lower.
In other words, in this interval an individual �rm does not want to expand
its product range above k

n
; when its rivals choose this level. The move to a

higher product range by all �rms is even more detrimental to pro�ts. Now
suppose there is a value n0 for which f 2

�
f; f

�
, and for n0 + 1 we have that

f 2
�
0; f
�
. In this case �3 (f; n0 + 1) < �3 (f; n

0) < �2 (f; n
0), and hence

strict monotonicity is once again preserved.
Finally, the same argument can be applied in case of a possible switch

from f 2
�
f; v � 1

�
to f 2

�
0; f
�
:
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7.7 Low reservation prices: v < v(n)

In the third stage, �rm i chooses pi in order to maximize:

�i =

�
k2i + 2ki (1� ki � k�i) (v � pi) + 2kik�i

�
1

2
+
bp�i � pi
2

��
pi� 2kif � g

subject to pi 2
�
v � 1; v � 1

2

�
. As shown in the monopoly case, no �rm has

ever incentives to set prices above v � 1
2
: Also, if v � v (n) then �rms never

want to set prices below v� 1. If these constraints are not binding then �rm
i�s optimal price is given by:

pi =
ki + k�i + 2v(1� ki � k�i) + k�ibp�i

2 (2� 2ki � k�i)

We can write �rm i�s equilibrium price as follows:

pi =
(n� 1)[k + 2v(1� k)][1 + k�i�(k1; :::; kn; n)]

4(n� 1)� (2n� 1)ki � (2n� 3)k

where

�(k1; :::; kn; n) �

nX
j=1

1

4(n� 1)� (2n� 1)kj � (2n� 3)(kj + k�j)

1�
nX
j=1

k�j
4(n� 1)� (2n� 1)kj � (2n� 3)(kj + k�j)

so that pi increases with both ki and k�i.
Let us focus on the case the strategic price e¤ect is the strongest: n = 2

and a particular parameter value: v = 5
2
. Consider the following equilibrium

candidate k1 = k2 = 1
2
. In this case, pi = 2 = v � 1

2
: A su¢ cient condition

for k = 1 to be part of a symmetric equilibrium is f � 3
4
: Let us consider a

deviation by �rm 1. Note that if k1 < 1 then p2 > p1 � 3
2
:

d�1
dp1

�
k2 =

1

2

�
= p1

�
3� p1 +

1

2
(p2 � p1) + 8k1

�
p1 � 1 +

1

16

@p2
@k1

��
� 2f

Since 3 � p1 � 1; p2 > p1 >
3
2
; @p2
@k1

� 0, then d�1
dp1

� 3
2
� 2f: Hence, if

f � 3
4
then k = 1 is an equilibrium of the duopoly game. In other words, if

f 2
�
1
2
; 3
4

�
then kO > kMC > k�.
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