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acknowledged. The work of the authors is partially supported by the Barcelona Economics Program of CREA.

Corresponding author: Francesc Llerena, Avda. Universitat 1, E-43204 Reus, Catalunya, Spain.

E-mail: francesc.llerena@urv.cat.

1



Abstract

This paper deals with the strong constrained egalitarian solution introduced by Dutta and

Ray (1991). We show that this solution yields the weak constrained egalitarian allocations (Dutta

and Ray, 1989) associated to a finite family of convex games. This relationship makes it possible

to define a systematic way of computing the strong constrained egalitarian allocations for any

arbitrary game, using the well-known Dutta-Ray’s algorithm for convex games. We also charac-

terize non-emptiness and show that the set of strong constrained egalitarian allocations Lorenz

dominates every other point in the equal division core (Selten, 1972).

Keywords: Cooperative TU-game, strong constrained egalitarian solution, weak constrained egalitarian

solution, equal division core, Lorenz domination.

JEL classification: C71, C78
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1 Introduction

The concept of egalitarianism for cooperative TU-games was first introduced by Dutta and Ray (1989)

with the aim of combining social values and selfish behavior. Their weak egalitarian solution (from

now on the Dutta-Ray solution) is defined in a recursive way and it yields, whenever it exists, the

unique Lorenz maximal imputation in what they call the weak Lorenz core. This is a sharp result

because the Lorenz relation generates a partial ordering on the set of allocations. Nevertheless, the

Dutta-Ray solution lacks general existence properties. In fact, the class of convex games is the only

standard class of TU-games for which an existence result is known. In order to widen the potential

class of applications, Dutta and Ray (1991) introduced the strong constrained egalitarian solution

(SCES for short), a parallel concept that exists for weakly superadditive games. Unfortunately, the

SCES loses the uniqueness property, but always produces a finite (but maybe empty) set of outcomes

as we prove in this paper. Related studies are Arin and Iñarra (2001), Hougaard et al. (2001), and

Arin et al. (2003), which introduced other egalitarian solutions based on the notion of the core.

The SCES selects the Lorenz maximal imputations in the equal division core, a set solution concept

introduced by Selten (1972) to explain outcomes of experimental cooperative games, and recently

axiomatized by Bhattacharya (2004). This solution, then, combines the natural behavior of the

players in order to form claims with a normative rule of egalitarianism. It is also more attractive

from the social point of view than its weak counterpart. Indeed, if the Dutta-Ray allocation is not a

strong constrained egalitarian allocation, then it is Lorenz dominates by one of them and, in convex

games, all the strong constrained egalitarian allocations Lorenz dominate it (Dutta and Ray, 1991).

Hence, it seems sensible to focus on this set solution concept. Although the Dutta-Ray solution has

been widely studied and axiomatized in the domain of convex games (see, for instance, Dutta, 1990,

Klijn et al., 1998, Hokari, 2000 and Arin et al., 2003), a similar analysis for the SCES has not been

made. Perhaps one of the reasons is that no algorithm is known to check this solution even for convex

games. Moreover, as Dutta and Ray (1991) point out, “the process of constructing strong constrained

egalitarian allocations is considerably more complicated since the choice of individuals at each stage

cannot be made arbitrarily”. Thus, the aim of this paper is provide a methodology for computing all

the strong constrained egalitarian allocations for an arbitrary cooperative TU-game.
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2 Notation and terminology

The set of natural numbers N denotes the universe of potential players. By N ⊆ N we denote a finite

set of players, in general N = {1, . . . , n}. A transferable utility coalitional game (a game) is a pair

(N, v) where v : 2N −→ R is the characteristic function with v(∅) = 0 and 2N denotes the set of all

subsets (coalitions) of N . We use S ⊂ T to indicate strict inclusion, that is S ⊆ T but S 6= T . By |S|

we denote the cardinality of the coalition S ⊆ N . Given a finite set N ⊂ N, ΓN denotes the set of all

games defined on N .

Let R
N stand for the space of real-valued vectors indexed by N , x = (xi)i∈N , and for all S ⊆ N ,

x(S) =
∑

i∈S xi, with the convention x(∅) = 0. Given two vectors x, y ∈ R
N , x ≥ y if xi ≥ yi, for all

i ∈ N . We say that x > y if x ≥ y and for some j ∈ N , xj > yj .

The set of feasible payoff vectors of a game (N, v) is defined by X∗(N, v) := {x ∈ R
N |x(N) ≤

v(N)}. A solution on a set of games Γ′ ⊆ ΓN , is a mapping σ which associates with each game

(N, v) ∈ Γ′ a subset σ(N, v) of X∗(N, v). Notice that σ(N, v) is allowed to be empty. The pre-

imputation set of a game (N, v) is defined by X(N, v) := {x ∈ R
N |x(N) = v(N)}, and the set

of imputations by I(N, v) := {x ∈ X(N, v) |x(i) ≥ v(i), for all i ∈ N}. The core of (N, v) is the

set of those imputations in which each coalition gets at least its worth, that is C(N, v) = {x ∈

X(N, v) | x(S) ≥ v(S) for all S ⊆ N}. A game (N, v) is convex (Shapley, 1971) if, for every S, T ⊆ N ,

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

For any x ∈ R
N , denote by x̂ = (x̂1, . . . , x̂n) the vector obtained from x by rearranging its

coordinates in a non-decreasing order, that is, x̂1 ≤ x̂2 ≤ . . . ≤ x̂n. For any two vectors y, x ∈ R
N

with y(N) = x(N), we say that y Lorenz dominates x, denoted by y ≻L x, if
∑k

j=1 ŷj ≥
∑k

j=1 x̂j ,

for all k ∈ {1, . . . , n}, with at least one strict inequality. Given a set A ⊆ R
N , EA denotes the set

of allocations that are Lorenz undominated within A. That is, EA := {x ∈ A | there is no y ∈

A such that y ≻L x}.

Given a game (N, v), we say that a payoff vector is in the strong Lorenz core, denoted by L∗(N, v),

if it is both efficient and not blocked by the equal division allocation for any subcoalition. Formally,

L∗(N, v) =

{

x ∈ I(N, v) | for all ∅ 6= S ⊂ N, there is i ∈ S with xi ≥
v(S)

|S|

}

.

Here the strong Lorenz core coincides with the equal division core when the coalition structure is

N and there are no restrictions on coalition formation (see Selten, 1972 for details). The strong

constrained egalitarian solution of a game (N, v), denoted by EL∗(N, v), selects the vectors that are
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Lorenz-undominated within the strong Lorenz core (Dutta and Ray, 1991). On the domain of convex

games, the Dutta-Ray solution of a game (N, v), denoted by DR(N, v), selects the vectors that are

Lorenz-undominated within the core. That is, DR(N, v) = EC(N, v).1 On this domain, Dutta and

Ray (1989) show that it picks the payoff vector that is obtained by the following algorithm.

Let (N, v) be a convex game. Step 1: Define v1 = v. Then find the unique coalition S1 ⊆ N

such that for all S ⊆ N , (i) v1(S1)
|S1|

≥ v1(S)
|S| , and (ii) if v1(S1)

|S1|
= v1(S)

|S| and S 6= S1, then |S1| > |S|.

Uniqueness of such a coalition is guaranteed by convexity of (N, v). Then, for all i ∈ S1, DRi(N, v) =

v1(S1)
|S1|

. Step k: Suppose that S1, . . . , Sk−1 have been defined. Let Nk = N \ (S1 ∪ . . . ∪ Sk−1). Let

(Nk, vk) be the game defined as follows: vk(S) := v(S1 ∪ . . . ∪ Sk−1 ∪ S) − v(S1 ∪ . . . ∪ Sk−1), for

all S ⊆ Nk. It can be shown that (Nk, vk) is convex. Then find the unique coalition Sk ⊆ Nk such

that for all S ⊆ Nk, (i) vk(Sk)
|Sk|

≥ vk(S)
|S| , and (ii) if vk(Sk)

|Sk|
= vk(S)

|S| and S 6= Sk, then |Sk| > |S|.

The uniqueness of such a coalition is guaranteed by the convexity of (Nk, vk). Then, for all i ∈ Sk,

DRi(N, v) = vk(Sk)
|Sk|

= v(S1∪...∪Sk)−v(S1∪...∪Sk−1)
|Sk|

.

3 Finding the strong constrained egalitarian allocations

In this section, we provide a systematic procedure for computing strong constrained egalitarian alloca-

tions. The key factor is the connection between the SCES and the Dutta-Ray solution. More precisely,

we state that the set of strong constrained egalitarian allocations is formed by Dutta-Ray allocations

associated to a finite family of convex games. From the computational point of view, this is a nice

result which enables the Dutta-Ray algorithm to be used for convex games so that the outcomes of

the SCES can be determined for any arbitrary game. In addition, we characterize non-emptiness, and

show that the set of strong constrained egalitarian allocations Lorenz dominates the strong Lorenz

core.

Before stating our main result, we need to introduce a set of vectors, named sequential share worth

vectors, one for each ordering of the players. An ordering θ = (i1, . . . , in) of N , where |N | = n, is a

bijection from {1, . . . , n} to N . We denote by ΘN the set of all orderings of N .

Definition 1 Let (N, v) be a game and θ = (i1, . . . , in) ∈ ΘN . The sequential share worth vector

1The original definition of the Dutta-Ray solution, given on a class of games that is larger than the convex class, is

different from the one we use here. But both are equivalent on the domain of convex games, as shown by Dutta-Ray

(1989).
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associated to θ, denoted by xθ(v) ∈ R
N , is defined as follows:

xθ
ik

(v) := max
S∈Pik

{

v(S)

|S|

}

, for k = 1, . . . , n, (1)

where Pi1 := {S ⊆ N | i1 ∈ S} and Pik
:= {S ⊆ N | i1, . . . , ik−1 6∈ S, ik ∈ S}, for k = 2, . . . , n.

Given a game (N, v) and an ordering θ ∈ Θ, if there is no confusion we write xθ instead of xθ(v).

Having determined an ordering θ = (i1, i2, . . . , in) ∈ ΘN , the first player i1 receives in xθ the maximal

average worth he or she can obtain by choosing coalitions S ⊆ N containing i1. Now player i1 leaves

the game and the second player i2 receives the maximal average worth among coalitions S ⊆ N \ {i1}

containing i2. Following this procedure, the last player in gets his individual worth. Notice that,

in general, xθ cannot be an efficient vector. By X ∗(v) we denote the set of sequential share worth

vectors of the game (N, v) that are feasible. That is, X ∗(v) := {xθ | xθ(N) ≤ v(N)}. We say that

x ∈ X ∗(v) is minimal if there is no y ∈ X ∗(v) such that y < x. M(v) denotes the set of feasible

minimal sequential share worth vectors of the game (N, v).

Remark 1 In order to find the minimal sequential share worth vectors, it is easy to check that we can

restrict attention to orderings such that agents occupying the first place belong to coalitions maximizing

average worth. That is, given a game (N, v), any x ∈ M(v) can be associated to an ordering θ =

(i1, . . . , in) ∈ ΘN such that x = xθ and i1 ∈ S1, where S1 ∈ arg max∅6=S⊆N
v(S)
|S| .

Let (N, v) be a game and x ∈ M(v). We define the almost modular game associated to x, denoted

by (N, vx), as follows:

vx(S) :=







x(S) if S ⊂ N,

v(N) if S = N.
(2)

The convexity of (N, vx) follows straightforwardly from the fact that x(N) ≤ v(N).

The next definition introduces the candidates to be strong constrained egalitarian payoff vectors.

Definition 2 Let (N, v) be a game, x ∈ M(v), and θ = (i1, i2, . . . , in) ∈ ΘN such that xi1 ≥ xi2 ≥

. . . ≥ xin
. Given k ∈ {1, . . . , n − 1}, n ≥ 2, we define the vectors yk and yx as follow:

1. For j = 1, . . . , n,

yk
ij

:=











xij
if j ≤ k,

v(N)−xi1
−...−xik

n−k
otherwise.
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2. For k∗ = min{k ∈ {1, . . . , n − 1} | yk ≥ x},

yx := yk∗

. (3)

Notice that for k = n − 1, yn−1 ≥ x. Therefore, yx is well-defined. Given x ∈ M(v), the associated

payoff vector yx is constructed by using the following procedure: if xi1 ≥ xi2 ≥ . . . ≥ xin
, then the

first player i1 receives xi1 . The second player i2 receives the maximum between xi2 and
v(N)−xi1

|N |−1 . If

v(N)−xi1

|N |−1 ≥ xi2 , then the remaining players also receive
v(N)−xi1

|N |−1 . If not, the third player i3 receives

the maximum between xi3 and
v(N)−xi1

−xi2

|N |−2 . As before, if
v(N)−xi1

−xi2

|N |−2 ≥ xi3 , the remaining players

also get
v(N)−xi1

−xi2

|N |−2 , and so on.

The next theorem states that the SCES picks the Lorenz undominated vectors defined in (3).

Theorem 1 Let (N, v) be an arbitrary game. Then, the set of strong constrained egalitarian alloca-

tions is formed by the Lorenz undominated Dutta-Ray allocations associated to the family of convex

games {(N, vx}x∈M(v). Formally,

EL∗(N, v) = E {DR(N, vx) | x ∈ M(v)} = E{yx | x ∈ M(v)}. (4)

Proof: Let (N, v) be a game, x ∈ M(v), and (N, vx) be the almost modular game associated to x

as defined in (2). We must first prove that

L∗(N, v) ⊆
⋃

x∈M(v)

C(N, vx). (5)

Let y ∈ L∗(N, v) and S1 ∈ arg max∅6=S⊆N
v(S)
|S| an arbitrary coalition maximizing average worth.

Since y ∈ L∗(N, v), there exists some player i1 ∈ S1 such that yi1 ≥ v(S1)
|S1|

. Now choose S2 ∈

arg max∅6=S⊆N\{i1}
v(S)
|S| . As before, there exists some player i2 ∈ S2 such that yi2 ≥ v(S2)

|S2|
. Following

this process step by step we can construct an order θ = (i1, i2, . . . , in) ∈ ΘN . Let xθ ∈ R
N be the

associated sequential share worth vector: xθ
ij

=
v(Sj)
|Sj |

, j = 1, 2, . . . , n. By definition we have xθ
i ≤ yi

for all i ∈ N , and so xθ(N) ≤ y(N) = v(N). Hence, xθ is a feasible payoff vector. If xθ 6∈ M(v), then

there is x′ ∈ M(v) such that x′
i ≤ xθ

i ≤ yi, for all i ∈ N , with at least one strict inequality. Thus,

in all cases, there exists x ∈ M(v) with x ≤ y. Now consider the associated convex game (N, vx).

Clearly, y ∈ C(N, vx), which proves (5).

Next, we show EL∗(N, v) ⊆ E {DR(N, vx) | x ∈ M(v)}. Let y ∈ EL∗(N, v). By definition y ∈

L∗(N, v) and so, from (5), y ∈ C(N, vx) for some x ∈ M(v). By convexity, DR(N, vx) ∈ C(N, vx) and

it Lorenz dominates every other point in the core of the game (N, vx) (Dutta and Ray, 1989). Hence,

DR(N, vx) ≻L y, whenever y 6= DR(N, vx).
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Let us see that, for all x ∈ M(v),

DR(N, vx) ∈ L∗(N, v). (6)

Indeed, let x ∈ M(v) and (N, vx) be the associated almost modular game. By efficiency,
∑

i∈N DRi(N, vx) =

vx(N) = v(N). Let R ⊂ N be a non-empty coalition, θ = (i1, . . . , in) ∈ ΘN an ordering asso-

ciated to x ∈ M(v), and ik ∈ R the first player in R w.r.t. θ. Since DR(N, vx) ∈ C(N, vx),

DRik
(N, vx) ≥ vx({ik}) = xik

= maxS∈Pik

{

v(S)
|S|

}

≥ v(R)
|R| . These inequalities together with efficiency

imply DR(N, vx) ∈ L∗(N, v). Since y ∈ EL∗(N, v) and DR(N, vx) ∈ L∗(N, v), we get DR(N, vx) = y.

Finally, from (6) we conclude that EL∗(N, v) ⊆ E {DR(N, vx) | x ∈ M(v)}.

To show the reverse inclusion, E {DR(N, vx) | x ∈ M(v)} ⊆ EL∗(N, v), suppose there is y ∈

E {DR(N, vx) | x ∈ M(v)}, with y 6∈ EL∗(N, v). In this situation, y = DR(N, vx) for some x ∈ M(v),

and from (6), y ∈ L∗(N, v). Since y 6∈ EL∗(N, v), z ∈ L∗(N, v) must exist with z ≻L y. From (5),

there is x ∈ M(v) such that z ∈ C(N, vx). Thus, either z = DR(N, vx) or DR(N, vx) ≻L z. In all

cases, since the Lorenz relation is transitive, we obtain DR(N, vx) ≻L y, which contradicts the fact

that y ∈ E {DR(N, vx) | x ∈ M(v)}. Hence, E {DR(N, vx) | x ∈ M(v)} ⊆ EL∗(N, v).

To end the proof, we only need to show that DR(N, vx) = yx, for all x ∈ M(v). Let x ∈ M(v)

and let us assume, w.l.g., x1 ≥ x2 ≥ . . . ≥ xn. Now consider the associated almost modular game

(N, vx) defined by (2). Let P = {S1, S2, . . . , Sm} be the partition of N obtained by means of the

Dutta-Ray algorithm to compute their egalitarian allocation for convex games. If m = 1, then

N is an equity coalition for the game (N, vx). In this case, DRi(N, vx) = vx(N)
|N | = v(N)

|N | for all

i ∈ N. By definition of the sequential share worth vector we obtain x1 = v(N)
|N | , and DR(N, vx) = y1

(w.r.t. x). If m ≥ 2, it can be seen that S1 = {i ∈ N | xi ≥ xk ∀ k ∈ N} and, for h = 2, . . . ,m − 1,

Sh = {i ∈ N \ S1 ∪ . . . ∪ Sh−1 | xi ≥ xk ∀ k ∈ N \ S1 ∪ . . . ∪ Sh−1}. That is, the set S1 is formed by

those players with the maximum payoff at x. Then, removing players of S1, S2 is formed in a sim-

ilar way, and so on and so forth until the last but one element of the partition, Sm−1. Moreover,

DRi(N, vx) = xi for all i ∈ Sh and all h = 1, . . . ,m − 1, and DRi(N, vx) =
v(N)−

P
i∈N\Sm

xi

|Sm|

for all i ∈ Sm. Hence, DR(N, vx) = yk (w.r.t. x), where k = |S1 ∪ . . . Sm−1|. Now suppose

that k is not minimal and denote by k∗ = min{r ∈ {1, . . . , n − 1} | yr ≥ x}. Then, yk∗

=
(

x1, . . . , xk∗ ,
v(N)−x1−···−xk∗

n−k∗ , . . . ,
v(N)−x1−···−xk∗

n−k∗

)

. By the minimality of k∗, xk∗ >
v(N)−x1−···−xk∗−1

n−(k∗−1) ,

or equivalently, xk∗ >
v(N)−x1−···−xk∗

n−k∗ . Thus, x1 ≥ . . . ≥ xk∗ >
v(N)−x1−···−xk∗

n−k∗ . Hence, for all

i ∈ {1, . . . , k∗, . . . , k}, DRi(N, vx) ≤ yk∗

i . Moreover, for all i > k, since i ∈ Sm and k ∈ Sm−1, we

have that DRi(N, vx) < DRk(N, vx) = xk ≤ yk∗

k = yk∗

i . But then, yk∗

≻L DR(N, vx), which is a
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contradiction, since yk∗

∈ C(N, vx). 2

The above result tells us how to compute the strong constrained egalitarian allocations. With the

following two examples we illustrate this procedure.

Example 1 (Dutta and Ray, 1991) Let (N, v) be a 3-person game with: v({1}) = v({2}) = 1, v({3}) =

0, v({1, 2}) = v({1, 2, 3}) = 2.2, v({1, 3}) = v({2, 3}) = 1.4.

The set of minimal sequential share worth vectors is M(v) = {x1, x2}, where x1 = (1.1, 1, 0) and

x2 = (1, 1.1, 0). From Definition 2 we select the candidates to be strong constrained egalitarian allo-

cations: yx1
= (1.1, 1, 0.1) and yx2

= (1, 1.1, 0.1). Finally, since yx1
and yx2

are Lorenz undominated,

we have EL∗(N, v) = {yx1
, yx2

}.

yx1 yx2

C
�

N, vx1

�
C
�

N, vx2

�
(1.2, 1, 0) (1, 1.2, 0)

(1, 1, 0.2)

Figure 1: This figure corresponds to Example 1. The two shadowed zones in the triangle form the strong

Lorenz core and EL∗(N, v) = {yx1 , yx2}.

Example 2 Let (N, v) be a 3-person game with: v({1}) = v({2}) = v({3}) = 0, v({1, 2}) =

v({1, 3}) = 100, v({2, 3}) = 0, v({1, 2, 3}) = 125.

The set of minimal sequential share worth vectors is M(v) = {x1, x2} where x1 = (50, 0, 0) and

x2 = (0, 50, 50). Therefore, yx1
= (50, 37.5, 37.5) and yx2

= (25, 50, 50). Since yx1
≻L yx2

we have

EL∗(N, v) = {yx1
}.

Some interesting and direct consequences can be derived from Theorem 1.

Corollary 1 Let (N, v) be an arbitrary game. Then, the set of strong constrained egalitarian alloca-

tions is a finite (but maybe empty) set.

9



yx1

yx2

C
�

N, vx1

� C
�

N, vx2

�
(125, 0, 0) (0, 125, 0)

(0, 0, 125)

Figure 2: This figure corresponds to Example 2. The union of the two shadowed triangles corresponds to the

strong Lorenz core and EL∗(N, v) = {yx1}.

Here it is worth to point out that the set of Lorenz maximal elements in a compact set is not, in

general, finite (see, for instance, Example 4 in Dutta and Ray, 1989).

Notice that the reasoning used to prove expression (6) can be applied to any arbitrary core element

to get the inclusion
⋃

x∈M(v) C(N, vx) ⊆ L∗(N, v). This relation, together with (5), implies that the

strong Lorenz core of any game (N, v) can be expressed as

L∗(N, v) =
⋃

x∈M(v)

C(N, vx). (7)

From this decomposition, and taking into account that the strong Lorenz core is a compact set, the

next characterization follows.

Corollary 2 Let (N, v) be a game. Then, EL∗(N, v) 6= ∅ if and only if there exists a feasible sequential

share worth vector i.e. there exists θ ∈ Θ such that xθ(N) ≤ v(N).

Recall that Dutta and Ray (1991) stated a sufficient, but no necessary, condition of existence for this

solution.

Finally, we show that the set of strong constrained egalitarian allocations Lorenz dominates every

other allocation in the strong Lorenz core. On the domain of convex games, Dutta and Ray (1989)

state an equivalent result for their weak egalitarian solution but replace the strong Lorenz core by the

core.

Corollary 3 Let (N, v) be a game and x ∈ L∗(N, v) \ EL∗(N, v). Then, there exists y ∈ EL∗(N, v)

such that y ≻L x.
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Proof: Let (N, v) be a game and x ∈ L∗(N, v)\EL∗(N, v). Then, z ∈ L∗(N, v) must exist with z ≻L

x. From (5), z ∈ C(N, vx′) for some x′ ∈ M(v). Then, either z = DR(N, vx′) or DR(N, vx′) ≻L z.

In all cases, DR(N, vx′) ≻L x. If DR(N, vx′) 6∈ EL∗(N, v), then by Theorem 1 there is DR(N, vx′′) ∈

EL∗(N, v), where x′′ ∈ M(v), and such that DR(N, vx′′) ≻L DR(N, vx′) ≻L x, which gives the result.

2
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