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1 Introduction

We consider the problem of the provision of a single pure public good where
there are n agents in the society and the set of feasible alternatives is A = [0; 1].
Each agent has either single-peaked or else single-plateaued preferences over al-
ternatives. Given that the set of available preferences for each agent is the same,
the provided level of public good is chosen by means of a social choice function.
We impose some strategic requirements over the decision procedure: strategy-
proofness, Maskin monotonicity, non-bossyness (or some variations of them).
Strategy-proofness assures us that no individual agent will gain by misrepre-
senting his true preferences. Maskin monotonicity (a necessary condition for
Nash implementation, see Maskin 1977, 1985, and 1999) tells us that no single
agent will be able to change the social outcome when changing his preferences
in such a way that the lower contour set of the initial outcome under initial
preferences is a subset of the lower contour set of the initial outcome under new
preferences. In this paper we use the notion of non-bossyness for economies with
only pure public goods. Mainly, it says that no agent, by misrepresenting his
true preferences, can change the social outcome without changing the (ordinal)
utility it assigns to him under his initial preferences.
Concerning preferences domains, Barberà (2007) discusses the extent to

which allowing for agents to be indi¤erent among alternatives may alter the
qualitative results that are obtained in social choice theory. Two of the most
well-known conditions that guarantee positive results in social choice are Dun-
can Black�s notion of single-peakedness, and the straightforward extension of
single-peakedness to allow for indi¤erences, that is, single-plateaued preference
pro�les, which allow individuals to be indi¤erent among several consecutive best
alternatives.
Following the idea in Barberà (2007), in our framework of social choice

functions with these two domains, we examine logical relations between strategy-
proofness, Maskin monotonicity, non-bossyness, or some variations of them.
We discuss the relationships between these concepts when preferences pro�les
satisfy the single-peaked condition and we investigate if such relationships keep
holding when we move to single-plateaued preference pro�les. In our framework
we obtain that non-bossyness, or a weaker version of it that we call weak non-
bossyness, turn out to be crucial. In particular, such à la non-bossy conditions
allow us to state the relationship between strategy-proofness and conditions à
la Maskin monotonicity in our main results (concretely, in Theorems 1 and 2
for single-peakedness and Theorem 3 for single-plateauedness).
Non-bossyness, formally introduced by Satterthwaite and Sonnenschein (1981),

has been largely studied in the literature for economies incorporating private
goods. However, as far as we know there are very few papers studying such
kind of conditions with only public goods. Ritz (1985) de�nes the condition of
"noncorruptability", a strategic requirement on social choice correspondences,
and in particular on social choice functions. We name this condition weak
non-bossyness and it plays an important role in two of our main results where
we relate strategy-proofness and a weak version of Maskin monotonicity (see
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Theorems 2 and 3). A social choice function is weakly non-bossy (or equiva-
lently, "noncorruptible") if no agent can, by misrepresenting his true preferences,
change the social outcome without changing the value of it for himself. As we
argue and claim in the Concluding Remarks section, weak non-bossyness could
be very helpful to obtain closed characterization results for strategy-proof so-
cial choice function on the domain of single-peaked preferences without convex
range.
Non-bossyness and a di¤erent weaker version of it have been recently used in

Saijo, Sjöström, and Yamato (2007) to analyze double implementation (that is,
implementation in both dominant strategies and Nash equilibria) in a general
social choice framework incorporating ours. We call their weaker condition quasi
non-bossyness since in our framework, and under strategy-proofness, it is in fact
equivalent to our non-bossyness.
With the aim of establishing a relationship between strategy-proofness and a

type of à la Maskin condition for social choice functions on single-plateaued pref-
erences in subsection 3.2, we consider two ways of relaxing Maskin monotonicity
that we call strict Maskin monotonicity and plateau-invariance. The �rst one
weakens the idea of an "improvement" implicit in the very same de�nition of
Maskin monotonicity. Plateau-invariance is part of Moulin�s (1984) strong-
uncompromisingness (in particular, his parts (iv) and (v)) and not requiring à
la Maskin "improvements" to all the alternatives in the range but only to those
that are the most preferred alternatives for some agent.
As previously mentioned, in this paper we show that non-bossyness plays an

important role combined with strategy-proofness in the characterization of social
choice functions in our framework with single-peaked preferences. Theorem 1
shows that under strategy-proofness, a social choice function on single-peaked
preferences is non-bossy if and only if its range is convex. Moreover, it also
rea¢ rms the family of minmax rules characterized by Moulin (1980)1 on a single-
peaked domain as an important class of rules. In particular, these rules are also
the unique ones that are non-bossy and strategy-proof.
The result in Theorem 1 does not hold on a single-plateaued domain. As

we show in Proposition 1, on a single-plateaued domain only constant rules are
non-bossy. We may, however, insist on a non-bossy type concept and move to
the weaker concept of weak non-bossyness. Then, we are able to relate strategy-
proofness and Maskin monotonicity. Theorem 2 shows that on a single-peaked
domain a social choice function is strategy-proof and weakly non-bossy if and
only if it is Maskin monotonic.
This result does not hold either on the single-plateaued domain. Note

that Proposition 1 excludes dictatorial social choice functions, in particular,
only constant social choice functions are admissible under Maskin monotonic-

1Moulin (1980) characterized on the single-peaked domain the class of minmax rules by
using strategy-proofness and peak-onlyness (that is, the best alternative is the unique relevant
information of agents� preferences). Ching (1992) used a continuity axiom instead of peak-
onlyness (and called the same class of rules as augmented median voter rules) while Sprumont
(1995) (in his Theorem 2.4) used convexity of the rule�s range to characterize the same class
of rules.
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ity. Dasgupta, Hammond, and Maskin (1979) also obtain strategy-proofness as
a necessary condition for Maskin monotonicity for their rich domains.2 Given
Proposition 1 we show that, for single-plateaued preferences, the relation Maskin
monotonicity implies strategy-proofness vacuously holds. To obtain a counter-
part result to Theorem 2, we use the two proposed ways of relaxing Maskin
monotonicity. Theorem 3 shows that on the single-plateaued domain a so-
cial choice function is strategy-proof and weakly non-bossy if and only if it is
strictly Maskin monotonic. Finally, we explore the second way to relax Maskin
monotonicity, called plateau-invariance. In Proposition 2, we show that on a
single-plateaued domain any strategy-proof and plateau-invariant social choice
function is weakly non-bossy, thus strictly Maskin monotonic by Theorem 3.
With the same �avour as Theorem 1, part (iii) in Proposition 2 guarantees
the convexity of the range of any strategy-proof and plateau-invariant rule on
single-plateaued preferences.
There are interesting papers in the literature analyzing the relationship

among strategy-proofness, Maskin monotonicity, and/or non-bossyness. Bar-
berà and Jackson (1995) state for exchange economies that strategy-proofness
and non-bossyness implies coalition strategy-proofness (that is, no coalition of
agents can strictly gain by misrepresenting their preferences). Klaus (2001) in
a problem of an assignment of indivisible objects with single-dipped preferences
obtains an equivalent result adding some model speci�c conditions to strategy-
proofness. In cost sharing models non-bossyness has also appeared as a relevant
instrumental condition (see for instance, Moulin, 1994, Serizawa, 1999 and Mu-
tuswami, 2005). Pápai (2000) and Takamiya (2001) showed that non-bossyness
joint with strategy-proofness is equivalent to coalition strategy-proofness in the
house allocation problem and in the Shapley-Scarf housing market with strict
preferences, respectively. Mizukami and Wakayama (2007b) study the relation-
ship between Maskin monotonicity and non-bossyness in a quite general eco-
nomic framework. They obtain the equivalence between Maskin monotonicity
and non-bossyness joint with individual monotonicity whenever preferences do-
mains are weakly monotonically closed. Although Mizukami and Wakayama�s
model encompasses exchange economies, housing markets, public and private
good economies, etc., it does not encompass ours.
As far as we know, only three works deserve our attention concerning the

relationship between strategy-proofness and Maskin monotonicity that embed
or directly analyze the problem of the provision of only public goods. Shenker
(1993) studies the relationship between our three strategic axioms when agents�
preferences are monotonically closed in a model dealing simultaneously with
both the public and the private goods case. However, his non-bossyness con-
dition is Satterthwaite and Sonnenschein (1981)�s one and thus it is trivially
satis�ed when analyzing economies with only public goods. As said above we
consider an alternative de�nition that has some bite for public goods.
Another paper closely related to ours is due to Takamiya (2007). He consid-
2See Maskin and Sjöström (2002) for a precise statement of this result. See also Bochet

and Klaus (2007a) for a discussion and a correction of the relationship and de�nition of rich
domain �rst proposed in Dasgupta, Hammond, and Maskin (1979).
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ers the same framework as ours and de�nes two su¢ cient conditions that a do-
main of a social choice function should satisfy to have the property that coalition
strategy-proofness implies Maskin monotonicity and its converse. Our results
are independent from his since the domain of single-peaked preferences does not
satisfy any of his domain conditions. Moreover, the domain of single-plateaued
preferences satis�es only one of his conditions, the one required by Takamiya
to establish that Maskin monotonicity implies strategy-proofness. However, we
will see that this relationship is vacuous since Maskin monotonicity is very de-
manding applied to our framework with single-plateaued preferences.
Recently, Bochet and Klaus (2007b) have analyzed the relationship between

Maskin monotonicity and strategy-proofness in a general model that covers both
the private goods and the public goods setup. Like Takamiya (2007) they intro-
duce two su¢ cient conditions that a domain of a social choice function should
satisfy to guarantee that Maskin monotonicity implies strategy-proofness and
the converse. Observe that neither single-plateaued nor single-peaked prefer-
ences satisfy their condition to guarantee that strategy-proofness implies Maskin
monotonicity. However, both domains satisfy their condition to guarantee that
Maskin monotonicity implies strategy-proofness. For single-peaked preferences,
we independently state this result (see part of one implication of Theorem 2).
As mentioned above, for single-plateaued preferences, we show that this relation
is vacuous and trivially holds.
The paper is organized as follows. Section 2 contains the model and de-

�nitions while Section 3 encompasses the main results. Some comments and
proposals for further research form the Concluding Remarks section (Section
4). We gather the proofs of all results in Section 5.

2 The basic model and de�nitions

Let A = [0; 1] be the set of alternatives3 that stand for the feasible levels of
a public good, and N = f1; 2; :::; ng be the set of agents (with n > 2) in the
society. Let capital letters S; T � N denote subsets of agents while small letters
s; t their cardinality.
Let D denote the set of admissible preferences for each agent, that will be

a subset of continuous and convex preferences on A. Although we restrict to
ordinal preferences, we use utility functions to denote them. A preference pro�le
is denoted by u = (u1; :::; un) 2 Dn or also by u = (uS ; u�S) 2 Dn when we
want to stress the role of a coalition S � N , and then uS 2 Ds and u�S 2 Dn�s
denote the preferences of agents in S and in NnS, respectively.
In each de�nition, D will refer to either one of the following domains: the set

of single-plateaued preferences (denoted by F) or else the set of single-peaked
preferences (denoted by S). That is, each property will be de�ned for two
di¤erent domains: F and S.
We now de�ne a single-plateaued preference for any agent i 2 N .
3All of our proofs can be easily adapted for a �nite set of alternatives and for R.
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De�nition 1 A preference ui is single-plateaued if there exist p�(ui), p+(ui) 2
A, p�(ui) 6 p+(ui) such that [p�(ui); p+(ui)] = fx 2 A : ui(x) > ui(y); for all
y 2 Ag, and for any y; z 2 A such that y < z 6 p�(ui), or p+(ui) � z < y, then
ui(z) > ui(y).

The set of best alternatives for agent i according to ui, that is [p�(ui); p+(ui)],
is denoted by �(ui) and called the plateau of ui. The domain of single-peaked
preferences, denoted by S, is a subdomain of F for which the plateau of a prefer-
ence ui is a singleton called the peak, say p(ui). That is, p�(ui) = p+(ui) = p(ui)
for ui 2 S.
For some ui 2 D and for some x < p�(ui) (respectively, x > p+(ui)),

let rui(x) be an alternative in A such that ui(x) = ui(r
ui(x)) if it exists and

rui(x) = 1 (respectively, 0) otherwise. Note that when rui(x) exists it is unique
since single-plateaued preferences do not allow for indi¤erences between alter-
natives in the same side of the plateau.
A social choice function (or also a rule) on Dn is a function f : Dn ! A.

Let Af denote the range of f .
The most well-known nonmanipulability property is strategy-proofness. Strategy-

proofness requires that the truth be a dominant strategy and it is a necessary
condition for implementation in dominant strategies (Gibbard, 1973). Strategy-
proofness assures that the rule will be immune to unilateral strategic behavior.

De�nition 2 A social choice function f on Dn is strategy-proof if for any u 2
Dn, any i 2 N and any vi 2 D, ui(f(u)) > ui(f(vi; u�i)). Otherwise, f is said
to be manipulable on Dn, concretely, manipulable by i at u via vi.

It is worth mentioning that if f is strategy-proof on Dn then Af is closed
(see Step 1 of Theorem 2�s proof in Zhou, 1991 and Lemma 1 in Barberà and
Jackson, 1994).
Another well-known condition in implementation theory isMaskin monotonic-

ity, a necessary condition for Nash implementation.4 A social choice function is
said to be Maskin monotonic if the outcome to be chosen by the function does
not vary whenever each individual switches his preference keeping or improving
the relative ranking of that outcome.

De�nition 3 A social choice function f on Dn is Maskin monotonic if for any
u 2 Dn and vi 2 D, if L (f(u); ui) � L (f(u); vi) then f(vi; u�i) = f(u), where
L(x; ui) = fy 2 A : ui(x) � ui(y)g.5

Another property on rules related to the strategic behavior of agents is non-
bossyness. The usual notion of non-bossyness introduced by Satterthwaite and
Sonnenschein (1981) is trivially satis�ed for any social choice function in eco-
nomic environments with only public goods. We use the notion of non-bossyness,

4See Maskin (1977) and Muller and Satterthwaite (1977).
5An alternative de�nition more appropriate to work with weaker versions of Maskin

monotonicity is as follows. We say that f satis�es Maskin monotonicity if for any u; v 2 Dn
and for any i 2 N , for any x 2 A, if ui(f(u)) > ui(x) implies vi(f(u)) > vi(x) then
f(vi; u�i) = f(u).
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recently used by Saijo, Sjöström, and Yamato (2007), and stronger than the one
introduced by Ritz (1985) and called "noncorruptability", that has some bite
for public goods. Mainly, a non-bossy social choice function is a rule for which
no individual can, by misrepresenting his preferences, change the social outcome
without changing the value of it for himself. Formally:

De�nition 4 A social choice function f on Dn is non-bossy if for any i 2 N ,
for any ui; vi 2 D, and u�i 2 Dn�1, ui(f(u)) = ui(f(vi; u�i)) implies f(u) =
f(vi; u�i).

We say that an agent can boss another agent around if, by changing her
announced utility, she can change the social outcome without changing her own
utility.6

Two di¤erent natural weaker versions of non-bossyness can be considered.
None of them have been analyzed a lot in the literature of only public goods.
Saijo, Sjöström, and Yamato (2007) considered quasi non-bossyness7 that, joint
with strategy-proofness, assures in their general framework the possibility of
dominant strategy implementation via the associated direct revelation mecha-
nism. Weak non-bossyness was originally de�ned by Ritz (1985) as "noncor-
ruptability" in a work where he studies the relationship between Arrow social
welfare functions and social choice correspondences. Below, we formally de�ne
both properties.

De�nition 5 A social choice function f on Dn is quasi non-bossy if for any
i 2 N , for any ui; vi 2 D, and u�i 2 Dn�1, if f(u) 6= f(vi; u�i) then there is
some w�i 2 Dn�1 such that ui(f(ui; w�i)) 6= ui(f(vi; w�i)).

That is, we say that an agent is quasi a boss if, by changing her announced
utility, she can change the social outcome without changing her own utility
under both his original preferences independently of others�preferences.

De�nition 6 A social choice function f on Dn is weakly non-bossy if for any
i 2 N , for any ui; vi 2 D, and u�i 2 Dn�1, ui(f(u)) = ui(f(vi; u�i)) and
vi(f(u)) = vi(f(vi; u�i)) implies f(u) = f(vi; u�i).

Mainly, an agent can weakly boss another agent around if, by changing her
announced utility, she can change the social outcome without changing her own
utility under both his original and �nal preferences.
Non-bossyness implies both weak non-bossyness and quasi non-bossyness by

de�nition. However, the converse does not hold in our framework: neither weak

6We could have adapted other existing formulations of non-bossyness for economies with
private goods. For example, instead of requiring that f(u) be equal to f(vi; u�i), we could
require that f(u) be indi¤erent to f(vi; u�i) for all agents. Obviously this makes the condition
weaker. However, it is easy to check that on Sn and Fn under strategy-proofness both non-
bossy conditions are equivalent and we can use them indistinctly.

7The authors call it weak non-bossyness. See also Mizukami and Wakayama (2007a).
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non-bossyness nor quasi non-bossyness imply non-bossyness. For both single-
peaked and single-plateaued preferences, consider the rule de�ned in Example
2 below (see the details in the example).
A natural question refers to establishing in our framework a relationship

between weak non-bossyness and quasi non-bossyness. As we will see below
as a consequence of Lemma 2 in the Appendix and part (iv) of Theorem 1 in
Section 3, under strategy-proofness, quasi non-bossyness and non-bossyness are
equivalent while weak non-bossyness is strictly weaker than non-bossyness.
With the aim of establishing a relationship between strategy-proofness and

a type of à la Maskin condition for social choice functions on Fn in subsection
3.2, we consider two ways of relaxing Maskin monotonicity that we call strict
Maskin monotonicity and plateau-invariance. One weakens the idea of an "im-
provement" implicit in the very same de�nition of Maskin monotonicity. The
other one, not requiring à la Maskin "improvements" to all the alternatives in
the range but only to those that are the most preferred alternatives for some
agent.
We say that x improves à la Maskin with respect to y for agent i when

moving from ui to vi if ui(x) � ui(y) then vi(x) � vi(y). Note that a Maskin
monotonic social choice function requires that for any alternative in the range,
say f(u), improving with respect to any other alternative for all agent when
moving from ui to vi, then the outcome does not change.
We say that x strictly improves with respect to y for agent i when moving

from ui to vi if ui(x) = ui(y) then vi(x) � vi(y) and if ui(x) > ui(y) then
vi(x) > vi(y). With these ideas in mind we present our two properties related
to Maskin monotonicity. We say that a social choice function is strict Maskin
monotonic if the outcome to be chosen by the function does not vary whenever
each individual switches his preference keeping or strictly improving the relative
ranking of that outcome.

De�nition 7 A social choice function f on Dn is strictly Maskin monotonic if
for any i 2 N , for any ui; vi 2 D, u�i 2 Dn�1, and for all x 2 A, ui(f(u)) =
ui(x) implies vi(f(u)) > vi(x) and ui(f(u)) > ui(x) implies vi(f(u)) > vi(x)
then f(vi; u�i) = f(u).

Observe that Maskin monotonicity implies strict Maskin monotonicity by de-
�nition. Moreover, strict Maskin monotonicity is equivalent to Maskin monotonic-
ity on single-peaked preferences (see Lemma 1 below) but not on single-plateaued
ones (see the Concluding Remarks section).

Lemma 1 Any strictly Maskin monotonic social choice function on Sn is Maskin
monotonic.

The second condition that we call plateau-invariance was part of Moulin�s
(1984) strong-uncompromisingness (in particular, his parts (iv) and (v)). In his
Lemma 5, Moulin (1984) shows that his Generalized Condorcet winner choice
functions satisfy plateau-invariance.
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De�nition 8 A social choice function f on Dn is plateau-invariant if for any
i 2 N and u�i 2 Dn�1, the following holds:
(1) for any ui 2 F�S; vi 2 F , if either f(u) 2 Interior[�(ui)] and f(u) 2 �(vi)
or if f(u) = pe(ui) = pe(vi), for e being either f�;+g, then f(u) = f(vi; u�i),
and
(2) for any ui; vi 2 S such that f(u) = p(ui) = p(vi), then f(u) = f(vi; u�i).

Note that for our two domains, strategy-proofness implies the second part
of the de�nition of plateau-invariance. Moreover, for single-peakedness, part
(1) does not apply and part (2) is implied by peak-onlyness. Thus, strategy-
proofness implies plateau-invariance on Sn but the converse does not hold (see
Example 6 below). For single-plateaued preferences, neither strategy-proofness
implies plateau-invariance nor the converse (see the following examples).

Example 1 Let n � 2. Then, for any u 2 Fn, de�ne the social choice function
f as follows:

f(u) =

8><>:
max
i2N

fp�(ui)g if
T
i2N �(ui) = ?,

max
i2N

fp�(ui)g if
T
i2N �(ui) 6= ? and 1

2 =2
T
i2N �(ui),

1
2 if

T
i2N �(ui) 6= ? and 1

2 2
T
i2N �(ui).

Observe that f is strategy-proof but it does not satisfy plateau-invariance. To
show the failness of the last condition, let u 2 Fn such that �(uj) = [ 13 ;

2
3 ] for

any j 2 Nnf3g and �(u3) =
�
1
3 ;

1
3 + "

�
, " 2 R+ being such that 13 + " <

1
2 and

let v3 2 F such that �(v3) = [ 13 ;
2
3 ]. Then, f(u) =

1
3 = p

�(u3) but f(v3; u�3) =
1
2 6= f(u).
It is also interesting to observe that f has a convex range and it satis�es weak
non-bossyness.

Example 2 Let � 2 A. Then, for any u 2 Fn, let f(u) = � if there ex-
ist k 2 N such that � 2 �(uk). Otherwise, (that is, if for any i 2 N ,
� =2 �(ui)) compute A(u) = fl 2 N : d[�(ul); �] � d[�(ui); �] for all i 2 Ng,
where d[�(ul); �] = minx2�(ul) jx� �j. Let a be the smallest j 2 A(u) and
let "(ua) > 0 such that � + "(ua) < p�(ua) if � < p�(ua) and � � "(ua) >
p+(ua) if � > p+(ua). Then, let f(u) = "(ua) + � when ua(1) > ua(0), and
f(u) = �� "(ua) when ua(1) � ua(0).
This social choice function satis�es plateau-invariance and weak non-bossyness
(note that it also satis�es quasi non-bossyness). However, since f is manipula-
ble, by Theorem 3 below, f does not satisfy strict Maskin monotonicity. To show
that manipulations by single agents exist, suppose that � = 3

8 and let u 2 F
n

such that p(u1) = p(u2) = 0, and u3 such that �(u3) = [ 12 ;
3
4 ] and u3(0) > u3(1).

Then, f(u) = 3
8 � "(u3). Let v3 such that �(v3) = [12 ;

3
4 ] and v3(0) < v3(1).

Then, f(v3; u�3) = 3
8 + "(u3). Observe that agent 3 manipulates f at u via v3.

8

8This example can be easily adapted and de�ned for single-peaked preferences. The same
conditions hold and are violated, and similar pro�les work to show manipulation by single
agents. Note that non-bossyness does not hold either: Let u 2 Sn such that p(u1) = p(u2) = 0,
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By means of these two previous examples, we can also show that neither
strict Maskin monotonicity implies plateau-invariance nor the converse on Fn.
The idea is that while strict Maskin monotonicity requires a strict improvement
for all alternatives in the range, plateau-invariance alternatively requires an
improvement but only for some subset of alternatives in the range.

3 Main Results

Along the paper we are interested in establishing the relationship between
strategy-proofness, Maskin monotonicity and non-bossyness, and the variations
of them de�ned in Section 1: quasi non-bossyness, weak non-bossyness, strict
Maskin monotonicity and plateau-invariance. In particular, we ask whether
there are relationships between them and whether these relationships rely on
the preference domains under study (F or S). We �rst consider the single-
peaked domain and then we analyze the single-plateaued one.

3.1 Single-peaked preferences

For the case of single-peaked preferences, there exist lots of rules simultaneously
satisfying our three main strategic requirements. See the following very well-
known example.

Example 3 Let n � 3 be odd. Then, for any u 2 Sn, de�ne the social choice
function f as follows:

f(u) = medfp(u1); :::; p(un)g.

The median voter rule is strategy-proof (see Moulin, 1980). It is easy to check
that f also satis�es non-bossyness and Maskin monotonicity.

First observe that although there exist rules satisfying all the properties, any
couple of them may be logically independent. What we do in this subsection
is to obtain for Sn the exact relationship between our three basic strategic
requirements.
By means of Examples 4 and 5 below, observe that for social choice functions

on Sn neither strategy-proofness nor Maskin monotonicity alone imply non-
bossyness, nor the converse. However, non-bossyness turns out to be crucial as
a complement to strategy-proofness for single-peaked preferences.

Example 4 Let a; b 2 A, a < b, and n � 2. Then, for any u 2 Sn, de�ne the
social choice function f as follows:

f(u) =

�
a if # fi 2 N : ui(a) > ui(b)g � # fi 2 N : ui(a) < ui(b)g, and
b otherwise.

and u3 such that p(u3) = 1
2
and u3(0) > u3(1):Then, f(u) = 3

8
� "(u3). Let v3 such that

p(v3) =
5
8
and v3(0) < v3(1). Then, f(v3; u�3) = 3

8
+ "(u3). Note that we can impose that

and ru3 (�� "(u3)) = �+ "(v3). Then, non-bossyness is violated.
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Observe that f is strategy-proof and it satis�es Maskin monotonicity. However
it is not non-bossy. Suppose that n is odd (a similar example could be obtained
for n even). Let u 2 Sn be such that for n�1

2 agents (say, set S0), p(uj) = 0,
for n�1

2 agents p(uj) = 1 (say, set S1), and for the last agent (say, agent 1)
u1(a) = u1(b). Let v1 2 S be such that p(v1) = b. Then, f(u) = a and
f(v1; u�1) = b. Note that u1(f(u)) = u1(f(v1; u�1)) but f(u) 6= f(v1; u�1).
Using the same preferences we can show that f violates quasi non-bossyness.

Example 5 Let a; b 2 A, a 6= 0, a < b, and n � 2. Then, for any u 2 Sn,
de�ne the social choice function f as follows:

f(u) =

8<: a if u1(a) > u1(b), u1(0) 6= u1(b), and u1(0) 6= u1(a),
b if u1(b) > u1(a), u1(0) 6= u1(b), and u1(0) 6= u1(a), and
0 if u1(a) = u1(b), or u1(0) = u1(b), or u1(0) = u1(a).

Note that f is non-bossy however it is manipulable and it does not satisfy Maskin
monotonicity. To show that strategy-proofness fails, consider u1; v1 2 S such
that u1(a) = u1(b) (thus p(u1) 2 (a; b)) and p(v1) 2 (a; b), v1(a) > v1(0) >
v1(b). Then, f(u) = 0 and f(v1; u�2) = a and agent 1 would manipulate f
at u via v1. Note also that L(f(u); u1) = f0g [ [ru1(0); 1] which is a subset of
L(f(u); v1) = f0g[[rv1(0); 1] since rv1(0) < ru1(0). Thus, Maskin monotonicity
does not hold.

Note that the range of the social choice functions in the previous examples
is not convex. That the range of a social choice function be a closed interval
has happened to be quite important in the characterization of strategy-proof
social choice functions on the single-peaked domain (see Moulin, 1980, Ching,
1992, and Sprumont, 1995). From the above examples, one could think that
there should be a close relationship between convexity of the range and non-
bossyness under strategy-proofness. In fact, as shown in Theorem 1, under
strategy-proofness, convexity of the range and non-bossyness are equivalent.
The next theorem however tells us much more.

Theorem 1 Let f be a strategy-proof social choice function on Sn. Then the
following statements are equivalent:
(i) f is non-bossy,
(ii) f is quasi non-bossy,
(iii) f is an minmax rule,9

(iv) f has a convex range.

9A social choice function f is a minmax rule if there exist a list of parameters (aS)S�N 2
A2

n
satisfying that for any S; T � N , S � T , then aS � aT and for any u 2 Sn,

f(u) = min
S�N

�
max
i2N

fp(ui); aSg
�
.

The class of minmax rules is equivalent to the class of augmented median voter rules due to
Ching (1992) and the class of generalized median voter schemes de�ned for one good as in
Barberà, Gul, and Stachetti (1993).
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To illustrate the relevance of the result in Theorem 1, observe �rst (as illus-
trated in Example 4) that strategy-proofness implies neither non-bossyness, nor
quasi non-bossyness, nor convexity of the range. Second, note that at the light
of Theorem 2.4 in Sprumont (1995) (which uses Ching�s characterization result
and convexity of the range), we can establish the characterization result of the
well-known class of minmax rules using non-bossyness (or equivalently, quasi
non-bossyness) instead of other well-known requirements such as peak-onlyness
(used in Moulin, 1980).
Alternatively, on Sn and under strategy-proofness, quasi non-bossyness, non-

bossyness, and also convexity of the range are equivalent. Moreover, the class
of minmax rules are the only strategy-proof rules with convex range.
It is worth mentioning that the result in Theorem 1 does not hold relax-

ing non-bossyness with weak non-bossyness. Observe that the rule de�ned in
Example 4 satis�es weak non-bossyness and strategy-proofness but it does not
have a convex range.
A natural question that arises is if strategy-proofness can be replaced by

Maskin monotonicity in Theorem 1. To answer this question let us �rst analyze
the relationship between strategy-proofness and Maskin monotonicity for social
choice functions on Sn.
We will show below that Maskin monotonicity implies strategy-proofness

but the converse does not hold. As it is illustrated by means of Example 4,
there exist social choice functions on Sn that are strategy-proof and weakly
non-bossy (the latter is straightforward by de�nition), that additionally satisfy
Maskin monotonicity. As we show in the following statement, the relation-
ship between strategy-proofness joint with weak non-bossyness with respect to
Maskin monotonicity stated in the social choice function presented in Example
4 is not a particular feature of that rule.

Theorem 2 A social choice function f on Sn is strategy-proof and weakly non-
bossy if and only if f is Maskin monotonic.

Among the previous literature, other papers have also established the rela-
tionship between Maskin monotonicity and strategy-proofness. We now discuss
some of them in order to clarify the relevance of the previous result.
The classical result by Muller and Satterthwaite (1977) asserts that on the

unrestricted strict preference domain, a social choice function is strategy-proof
if and only if it is Maskin monotonic (also called in the literature strong positive
association). Muller and Satterthwaite (1977) also show that when allowing for
weak orderings in the domain, only one implication holds. Concretely, strategy-
proofness implies Maskin monotonicity, but not the converse.
Barberà and Peleg (1990) in the framework with a metric space as set of alter-

natives and preferences being continuous utility functions showed that strategy-
proofness does not imply Maskin monotonicity. However, a weaker version of
it, which they call modi�ed strong positive association, is necessary though not
su¢ cient for strategy-proofness (see their Lemma 4.8).
Another existing result goes in the other direction. That is, strategy-proofness

is a necessary condition for Maskin monotonicity. Dasgupta, Hammond, and
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Maskin (1979) (see Footnote 3) considered a general set of alternatives and
"rich" domains and they obtain strategy-proofness as a necessary condition for
Maskin monotonicity.
In our framework, by Theorem 2 above, on Sn Maskin monotonicity implies

strategy-proofness. However, the converse does not hold as Example 7 below
illustrates. With single-peaked preferences, Maskin monotonicity and strategy-
proofness are equivalent under weak non-bossyness. Note that to show the
relationship between strategy-proofness and Maskin monotonicity in Theorem
2 we can not use the results stated in Takamiya (2007) and in Bochet and Klaus
(2007b). The authors consider frameworks encompassing ours and de�ne two
su¢ cient conditions that a domain of a social choice function should satisfy to
have the property that strategy-proofness (in fact, coalition strategy-proofness
in Takamiya, 2007) implies Maskin monotonicity and its converse. However,
one can check that the domain of single-peaked preferences satis�es neither
Takamiya�s condition A nor condition B. Concerning Bochet and Klaus (2007b),
the domain of single-peaked preferences satis�es only their condition R1 that
assures that Maskin monotonicity implies strategy-proofness. Independently of
their result, we also establish such relationship as part of our Theorem 2.
It is also interesting to observe that the result in Theorem 2 is tied. Or

equivalently, as we show in the following examples, strategy-proofness and weak
non-bossyness are also independent properties of social choice functions in our
framework.

Example 6 Let a 2 A and n � 2. Then, for any u 2 Sn de�ne f as follows:

f(u) = ru1(a).

Observe that f is weakly non-bossy, but it is not strategy-proof. Suppose, without
loss of generality, that a = 1

2 . Let u1 2 S be such that r
u1( 12 ) =

1
4 and v1 2 S be

such that rv1( 12 ) =
1
3 . Let u�1 2 S

n�1. Therefore, f(u) = 1
4 and f(v1; u�1) =

1
3 .

Note that u1(f(v1; u�1)) > u1(f(u)).

Example 7 Let a; b 2 A, a < b, n � 2. Then, for any u 2 Sn, de�ne f as
follows:

f(u) =

8>>>>>><>>>>>>:

a if # fi 2 N : ui(a) > ui(b)g > # fi 2 N : ui(a) < ui(b)g,
b if # fi 2 N : ui(a) > ui(b)g < # fi 2 N : ui(a) < ui(b)g,
a if # fi 2 N : ui(a) > ui(b)g = # fi 2 N : ui(a) < ui(b)g > 0, or

if 8i 2 N , ui(a) = ui(b) and
#
�
i 2 N : p(ui) � a+b

2

	
> #

�
i 2 N : p(ui) >

a+b
2

	
,

b otherwise.

Observe that f is strategy-proof. However it is not weakly non-bossy. Suppose
that n is odd (a similar example could be obtained for n even). Let u 2 Sn
be such that for any agent i 2 N , ui(a) = ui(b), p(u1) < a+b

2 , p(uj) =
a+b
2

for j 2 S0 � Nnf1g, being S0 a set of n�1
2 agents, and p(uk) > a+b

2 for
k 2 S1 = Nn (S0 [ f1g) being S1 a set of n�12 agents. Consider also v1 2 S such
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that v1(a) = v1(b) but p(v1) > a+b
2 . Therefore, f(u) = a and f(v1; u�1) = b.

Note that u1(f(u)) = u1(f(v1; u�1)) and v1(f(v1; u�1)) = v1(f(u)) but f(u) 6=
f(v1; u�1) which means that weakly non-bossy is violated. The same pro�les
show that f violates Maskin monotonicity. Note that L(u1; f(u)) = L(v1; f(u))
but f(u) 6= f(v1; u�1).

Before going to the next subsection where the relationships between our
strategic requirements for Fn are studied, note that Theorem 2 allows us to state
that strategy-proofness can be replaced by Maskin monotonicity in Theorem 1.

3.2 Single-plateaued preferences

The statement we did for single-peakedness about "the existence of lots of rules
simultaneously satisfying our three main strategic requirements" is completely
false for the case of single-plateaued preferences. Although we can obtain lots of
examples of strategy-proof rules (see Berga, 1998) it is impossible to �nd non-
constant social choice functions satisfying either one of the other two strategic
requirements: non-bossyness or Maskin monotonicity. Furthermore, it is also
impossible to match strategy-proofness and quasi non-bossyness unless we get
constant rules. Such kind of impossibility results are embedded in the following
proposition.

Proposition 1 There is no social choice function f on Fn with #Af > 2 if
one of the following statements holds:
(i) f is non-bossy,
(ii) f is Maskin monotonic,
(iii) f is strategy-proof and quasi non-bossy.

Note that Proposition 1 excludes dictatorial social choice functions, in par-
ticular, only constant social choice functions are compatible with either Maskin
monotonicity, or non-bossyness, or else strategy-proofness joint with quasi non-
bossyness. The result in part (ii) can be also obtained as a corollary to Saijo
(1987)�s Theorem. In that paper, Saijo analyzes the relationship between Maskin
monotonicity and the constancy of a rule in a more general framework that
encompasses ours. In particular, he uses a condition on Af called "dual domi-
nance" that any social choice function must satisfy to guarantee that the only
Maskin monotonic rules are constant ones.10 The proof of part (ii) of Proposi-
tion 1 is essentially identical to Saijo�s one. We incorporate it in the Appendix
for sake of completeness. A similar conclusion is obtained in Bochet and Klaus
(2007b).
Note that, like for Sn, weak non-bossyness is strictly weaker than non-

bossyness under strategy-proofness with single-plateaued preferences. By Propo-
sition 1 above, only constant rules are non-bossy while there exist non-constant
10 In his general framework, A is any set of social alternatives and for any i 2 N , Ei is the

set of agent i0s preferences, where Ei is any subset of complete and transitive binary relations
on A (that is, weak orderings). We can obtain our framework de�ning A = [0; 1], and for any
i 2 N , Ei = F . Note also that it is easy to see that any social choice function on Fn over A
satis�es "dual dominance". See his Example 1.
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rules satisfying strategy-proofness and weak non-bossyness, for instance the rule
presented in Example 1.
Concerning the relationship between strategy-proofness and Maskin monotonic-

ity, again, observe on the one hand that Muller and Satterthwaite (1977)�s equiv-
alence between Maskin monotonicity and strategy-proofness does not hold for
Fn (there exist lots of non-constant strategy-proof rules on Fn while only con-
stant ones are Maskin monotonic). On the other hand, note that we can not use
the results stated in Takamiya (2007) and in Bochet and Klaus (2007b). We can
check that the domain of single-plateaued preferences satis�es only condition B
(not condition A) in Takamiya�s Theorem 2 and only condition R1 (not condi-
tion R2) in Bochet and Klaus�Theorem 1 to establish that Maskin monotonicity
implies strategy-proofness. Thus, by statement (ii) in Proposition 1 above, the
results stated in Theorem 2 in Takamiya (2007) and in Theorem 1 in Bochet
and Klaus (2007b) are completely vacuous and trivially satis�ed when applied
to single-plateaued preferences.
Given the impossibility results in Proposition 1 if we are interested in es-

tablishing a relationship between strategy-proofness, a kind of à la non-bossy
condition, and/or a kind of à la Maskin monotonicity condition, we should con-
centrate on weaker versions of them. Concretely, we use weak non-bossyness
and strict Maskin monotonicity or plateau-invariance, respectively.
By Examples 2 and 9, we can con�rm the independence of strategy-proofness

and weak non-bossyness for single-plateaued preferences.
With the aim of establishing a relationship between strategy-proofness and

a type of à la Maskin monotonicity condition for social choice functions on
Fn, we �rst consider strict Maskin monotonicity. Below we state for the single-
plateaued domain, the counterpart result to Theorem 2, that is, the one relating
strategy-proofness and Maskin monotonicity on the single-peaked case using
non-bossyness.

Theorem 3 A social choice function f on Fn is strategy-proof and weakly non-
bossy if and only if f is strictly Maskin monotonic.

Note that by Proposition 1, we can not replace strict Maskin monotonicity
by Maskin monotonicity in Theorem 3: the rule in Example 1 is strategy-proof,
weakly non-bossy but it is not constant. Moreover the result stated in Theorem
3 is tied. We can replicate for single-plateaued preferences Examples 6 and 7
above in order to show the independence of strategy-proofness and weak non-
bossyness (alternatively, see Examples 2 and 9).
Now we are interested in studying the power that plateau-invariance joint

with strategy-proofness give to social choice functions on Fn. As we see by
means of the following result, these two conditions imply weak non-bossyness,
strict Maskin monotonicity, and also convexity of the range. Plateau-invariance
is very powerful. It allows us to state clear relationships between strategy-
proofness and both the weaker versions of non-bossyness and strict Maskin
monotonicity.

14



Proposition 2 Let f be a strategy-proof and plateau-invariant social choice
function on Fn. Then, (i) f is weakly non-bossy, (ii) f is strictly Maskin
monotonic, and (iii) f has a convex range.

Note that the converse of these three results do not hold. Concretely, ob-
serve �rst that we can not adapt Theorem 1 for single-plateaued preferences
using weak non-bossyness (see the Concluding Remarks section). However, one
could think that plateau-invariance would help to obtain that counterpart re-
sult; that is, that under strategy-proofness, plateau-invariance and convex range
are equivalent. Note that Proposition 2 tells us that this is not true either and
Example 1 above presents a strategy-proof rule on Fn with convex range but
violating plateau-invariance.
Second, observe that under strategy-proofness, plateau-invariance is equiva-

lent to neither weak non-bossyness nor to strict Maskin monotonicity. Example
8 presents a strategy-proof and weakly non-bossy, and thus, strictly Maskin
monotonic social choice function that violates plateau-invariance.

Example 8 Let a; b 2 A, and a < b, n � 2. Then, for any u 2 Fn, de�ne f as
follows:

f(u) =

�
a if u1(a) > u1(b), and
b otherwise.

Observe that f is strategy-proof and weak non-bossy (thus, strictly Maskin monotonic).
However the range is not convex. Observe also that f is not plateau-invariant.
Let u1 2 F be such that p�(u1) > a and p+(u1) = b and v1 2 F be such that
�(v1) = [a; b]. Let u�1 2 Fn�1. Therefore, f(u) = b and f(v1; u�1) = a, which
contradicts part (1) in the de�nition of plateau-invariance.

4 Concluding Remarks

To conclude we �rst summarize our main results and mention some questions
for further research. In the framework of the provision of a single pure pub-
lic good with single-peaked or single-plateaued preferences, we establish the
equivalence between strategy-proofness joint with weak non-bossyness and strict
Maskin monotonicity (see Theorems 2 and 3). For single-peakedness, we can
go further and we obtain the well-known class of minmax rules as the unique
strategy-proof rules satisfying non-bossyness (see Theorem 1). We also show
that strategy-proofness can be replaced by Maskin monotonicity. For single-
plateaued preferences, we obtain constant rules as the unique ones satisfying
either Maskin monotonicity, or non-bossyness, or else strategy-proofness and
quasi non-bossyness (see Proposition 1). We also identify a condition called
plateau-invariance that joint with strategy-proofness guarantees convexity of
the range (see Proposition 2). All our proofs can be adequately adapted to
show that our results, except the one related to the characterization in part (iii)
of Theorem 1, hold whenever we consider weakly single-peaked or else weakly
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single-plateaued preferences.11 Roughly speaking, weakly refers to allowing for
indi¤erences in the same side of the peak or the plateau. Cantala (2004) analyzes
the particular subclass of weakly single-peaked preferences where one plateau
at the lowest feasible level of utility is considered in both sides of the peak. He
obtains the extreme minmax rules (a subclass of minmax rules whose outcome
is always an agent�s peak) as the unique strategy-proof and e¢ cient rules. Note
that with weakly single-peaked preferences, the class of strategy-proof rules with
convex range (since we can show peak-onlyness) could be a strict subset of the
class of minmax rules, not necessarily all.
Given the results in Theorems 1 and 2, a natural further research work

is to obtain the characterization class of all strategy-proof and weakly non-
bossy rules on Sn. As Theorem 1 indicates the relaxation from non-bossy to
weakly non-bossy includes rules with non-convex range as part of the expected
characterization class. We already know that the class of strategy-proof and
weakly non-bossy rules must be a subclass of Barberà and Jackson (1994)�s
rules.
As we have seen non-bossyness turns out to be crucial in the characteri-

zation of strategy-proof rules with convex range for single-peakedness. Note
also that on single-peaked preferences there does not exist a closed character-
ization of strategy-proof rules with non convex range. Barberà and Jackson
(1994) obtain a characterization via a class of tie-breaking rules. However, nei-
ther in the single-peaked nor in the single-plateaued preferences domain, weak
non-bossyness guarantees convex range. As we show in part (iii) of Propo-
sition 2, strategy-proofness joint with plateau-invariance assures convexity of
the range for single-plateuedness. Thus, one can think that plateau-invariance
opens a possibility to obtain a closed characterization result in the line of those
obtained for single-peakedness but for the case of plateaux.
In the rest of the section we pose some comments noting that the unique

result valid for both domains is the one in Theorem 3. We do it showing that
other relationships established in the paper hold only for one of our two domains.
We begin showing that the results in Lemma 1, Theorems 1 and 2 do only hold
for the single-peaked domain. Moreover, the results in Propositions 1 and 2 do
only hold for the single-plateaued domain.
First, the result in Lemma 1 saying that strict Maskin monotonicity im-

plies Maskin monotonicity does not hold for single-plateaued preferences. By
Proposition 1 there is no Maskin monotonic rule but Example 8 proposes ones
satisfying strict Maskin monotonicity.
Second, the equivalence between non-bossyness and convex range under

strategy-proofness does not hold for social choice functions on Fn. Any con-
stant rule (the unique non-bossy ones on Fn) has obviously convex range but
there exist other strategy-proof rules with convex range. Only constant minmax

11Formally, a preference ui is weakly single-plateaued if there exist p�(ui), p+(ui) 2 A,
p�(ui) 6 p+(ui) such that [p�(ui); p+(ui)] = fx 2 A : ui(x) > ui(y); for all y 2 Ag, and for
any y; z 2 A such that y < z 6 p�(ui), or p+(ui) � z < y, then ui(z) � ui(y). We say that ui
is weakly single-peaked if it is a weakly single-plateaued preference such that [p�(ui); p+(ui)]
is degenerated to a single point, the peak.
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rules are non-bossy. Moreover, as we show by means of the following example
and Example 8, with single-plateaued preferences and under strategy-proofness,
neither convex range implies weak non-bossyness nor the converse as one could
think trying to state a counterpart result of Theorem 1.

Example 9 (see Extended median voter schemes de�ned in Berga, 1998)
Let n � 2. For any B closed interval in A, let g3(B) =

�
g31(B); g

3
2(B); g

3
3(B)

�
where g31(B) = minx2B x; g

3
2(B) =

1
2 (minx2B x + maxx2B x), and g

3
3(B) =

maxx2B x. Let fajg be a set of (3n+1) parameters in A such that 2(n+1) have
value 1 and (n� 1) have value 0. For any u 2 Fn, de�ne f as follows:

f(u) = med
�
g3(�(u1)); :::; g

3(�(un)); a1; :::; a3n+1
	
.

By de�nition, f has closed and convex range. By Berga (1998), f is strategy-
proof. However, f does not satisfy weak non-bossyness. To show that f vio-
lates weak non-bossyness (thus, strict Maskin monotonicity by Theorem 3) and
plateau-invariance, let n = 3, u 2 F3 such that �(u1) = 1

2 , �(u2) = [ 13 ;
2
3 ],

and let u3; v3 2 F such that �(u3) = [34 ; 1] and �(v3) = [23 ; 1]. Note that
f(u3; u�3) =

7
8 2 Interior[�(v3)] \ �(u3), but f(v3; u�3) = 5

6 < f(u3; u�3).
Moreover note that f(v3; u�3) = 5

6 2 �(u3) � �(v3) but f(u3; u�3) 6= f(v3; u�3).

Third, the conclusion in Theorem 2 does not hold either for social choice
functions on Fn. In Example 1, we present a strategy-proof and weakly non-
bossy social choice function on Fn that by Proposition 1 is not Maskin monotonic
since it is not constant.
Fourth, Theorem 1 is obviously false for Sn. Consider the median voter rule

de�ned for single-peaked preferences with an odd number of agents. This rule
is strategy-proof, Maskin monotonic, non-bossy, and quasi non-bossy, however,
it is not constant.
Fifth, the results in Proposition 2 do not hold for a single-peaked domain. To

show it consider Example 7 above and remember that, as we already mentioned
in Section 1, plateau-invariance is implied by strategy-proofness on Sn. Then,
on the one hand, f in Example 7 satis�es strategy-proofness (thus, plateau-
invariance) but it is not weakly non-bossy. On the other hand, if f in Example
7 was strictly Maskin monotonic, by Lemma 1 it would be Maskin monotonic.
Then, by Theorem 2, it should satisfy weak non-bossyness which is false. That
is, plateau-invariance on Sn (which is implied by strategy-proofness), implies
neither weak non-bossy, nor strict Maskin monotonicity, nor convexity of the
range.
Finally, observe that since strict Maskin monotonicity implies strategy-proofness

on our two domains, then any strict Maskin monotonic rule on Dn has closed
range.

5 Proofs

We devote this section to the proofs of all results. We start showing the equiv-
alence between strict Maskin and Maskin monotonicity for single-peaked pref-
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erences.

Proof of Lemma 1. Let f be a strict Maskin monotonic social choice
function on Sn. Let u 2 Sn and vi 2 S such that L(f(u); ui) � L(f(u); vi) (say,
condition B). To show that Maskin monotonicity holds, we must obtain that
f(vi; u�i) = f(u). Without loss of generality, suppose that p(ui) � f(u). Note
that on Sn, this fact joint with condition B imply that p(vi) 2 [f(u); rui(f(u))]
and rvi(f(u)) � rui(f(u)). Thus, it is trivial to see that the following two
conditions hold: (i) for any x 2 A such that ui(f(u)) = ui(x) then it also holds
that vi(f(u)) � vi(x) and (ii) for any x 2 A such that ui(f(u)) > ui(x) then it
also holds that vi(f(u)) > vi(x). Thus, conditions of strict Maskin monotonicity
holds and thus f(vi; u�i) = f(u) which ends the proof.

Let us now prove the main results, all presented in Section 3. First, we show
Theorem 1, that is, the equivalence of non-bossyness, convex range, and quasi
non-bossyness under strategy-proofness for single-peaked preferences. We need
the de�nition of uncompromisingness �rst introduced by Border and Jordan
(1983).

De�nition 9 We say that f satis�es uncompromisingness if the following holds:
Pick any u 2 Dn and set f(u) = z. For all j 2 N and all vj 2 D, we have
f(vj ; u�j) = f(u) if either z < p�(uj) and z � p�(vj), or else z > p+(uj) and
z � p+(vj).

To show the equivalence between quasi non-bossyness and convex range for
single-peaked preferences we need the following intermediate result that also
holds for single-plateaued preferences. It says that strategy-proofness and quasi
non-bossyness impose some additional property on f (say, Property L) which
is, in fact, stronger than Maskin monotonicity by de�nition.

Lemma 2 If a social choice function f on Dn is strategy-proof and quasi non-
bossy then the following property (say, Property L) holds:
"For all ui; vi 2 D such that L (x; ui) � L (x; vi) for all x 2 Af we have that

f(u) = f(vi; u�i) for all u�i 2 Dn�1".

Proof of Lemma 2. Let f be a strategy-proof and quasi non-bossy social
choice function. Let ui; vi 2 D be such that L (x; ui) � L (x; vi) for all x 2 Af .
Note that by strategy-proofness, ui(f(u)) > ui(f(vi; u�i)) and vi(f(vi; u�i)) >
vi(f(u)) for all u�i 2 Dn�1. Since L (x; ui) � L (x; vi) for all x 2 Af , we
have that L (f(u); ui) � L (f(u); vi), and therefore ui(f(u)) > ui(f(vi; u�i))
implies that vi(f(u)) > vi(f(vi; u�i)). Then vi(f(u)) = vi(f(vi; u�i)) for all
u�i 2 Dn�1. By quasi non-bossyness, we have that f(u) = f(vi; u�i) for all
u�i 2 Dn�1.

Proof of Theorem 1.
We proceed showing the two following if and only if relationships: (i) f is

non-bossy() (iv) f has convex range and (ii) f is quasi non-bossy () (iv) f
has convex range. Note that the relationship (iii) f is an minmax rule() (iv)
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f has convex range, has been already stated in the literature (see Theorem 2.4
in Sprumont, 1995).

(i) () (iv) Let f be a strategy-proof social choice function on Sn. We �rst
show that if f is non-bossy then it has convex range. By contradiction suppose
that there exist x; y 2 Af , x < y, such that (x; y) � AnAf . Let u; v 2 Sn such
that f(u) = x and f(v) = y. Let wi 2 S be such that p(wi) 2 (f(u); f(v)) and
wi(f(u)) = wi(f(v)). Under u we distinguish three type of agents, N1 = fi 2 N
such that ui(f(u)) = ui(f(v))g, N2 = fj 2 N such that uj(f(u)) > uj(f(v))g
and N3 = fk 2 N such that uk(f(v)) > uk(f(u))g. We distinguish three cases:
Case 1. If any i 2 N1 announces wi, by non-bossyness f(wi; u�i) = f(u).
Therefore, f(wN1 ; uN2 ; uN3) = f(u).
Case 2. If any j 2 N2 announces wj , f(wN1 ; wj ; uN2nfjg; uN3) 2 ff(u); f(v)g by
strategy-proofness. Suppose to get a contradiction that f(wN1 ; wj ; uN2nfjg; uN3)=
f(v). By non-bossyness, f(wN1 ; uN2 ; uN3)= f(wN1 ; wj ; uN2nfjg; uN3)= f(v),
contradicting that f(u) 6= f(v). Therefore f(wN1 ; wj ; uN2nfjg; uN3) = f(u),
and f(wN1 ; wN2 ; uN3) = f(u).
Case 3. If any k 2 N3 announces wk, by strategy-proofness at (wN1 ; wN2 ; wk; uN3nfkg),
f(wN1 ; wN2 ; wk; uN3nfkg) 2 ff(u); f(v)g. Suppose to get a contradiction that
f(wN1 ; wN2 ; wk; uN3nfkg) = f(v). By non-bossyness, we obtain that f(wN1 ; wN2 ; uN3)
= f(wN1 ; wN2 ; wk; uN3nfkg) = f(v), contradicting that f(u) 6= f(v). Therefore
f(wN1 ; wN2 ; wk; uN3nfkg) = f(u) and f(wN1 ; wN2 ; wN3) = f(w) = f(u). Begin-
ning from v, and from a similar argument than before we get that f(w) = f(v)
and we get the desired contradiction.
We now show that if f has convex range then it is non-bossy. By contra-
diction suppose that there exist i, ui, vi 2 S and u�i 2 Sn�1 such that
f(u) 6= f(vi; u�i), and ui(f(u)) = ui(f(vi; u�i)). Suppose without loss of gen-
erality that f(u) < f(vi; u�i). Observe �rst that f(u) and f(vi; u�i) are di¤er-
ent from p(ui). By single-peakedness, p(ui) 2 (f(u); f(vi; u�i)). By strategy-
proofness, p(vi) > f(u). By Lemma 2.1 in Sprumont (1995), we have that f
is peak-only. Then, his Fact 2 and peak-onlyness imply uncompromisingness
of f . Thus, it is straightforward to show that f(vi; u�i) = f(u) and we get a
contradiction.

(ii)() (iv) Let f be a strategy proof and quasi non-bossy social choice func-
tion. By contradiction, suppose that Af is not convex. Then, there exist
a; b 2 Af , a < b, such that (a; b) � AnAf . Let vi 2 S be such that p(vi) 2 (a; b)
and vi(a) = vi(b), ui 2 S be such that p(ui) = a and L (x; ui) � L (x; vi) for
all x 2 Af , and wi 2 S be such that p(wi) = b and L (x;wi) � L (x; vi) for
all x 2 Af . Since f is strategy proof, we have that it is unanimous on the
range. Therefore, f(u1; u2; ::; un) = a, and f(w1; w2; ::; wn) = b. Beginning
from u and changing one individual each time we have from Lemma 2 that
f(v1; v2; ::; vn) = a. Beginning from w and changing one individual each time
we have from Lemma 2 that f(v1; v2; ::; vn) = b. We get a contradiction with f
being a social choice function.
The converse, that is, that any strategy-proof rule with convex range is quasi
non-bossy, is straightforward by the implication (iv)) (i) shown above. If f is
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strategy-proof and has convex range is non-bossy and thus quasi non-bossy (by
de�nition).

Second, we show that Maskin monotonicity is strictly stronger than strategy-
proofness on Sn. Moreover, they are equivalent adding weak non-bossyness.
Proof of Theorem 2. Let �rst show that any Maskin monotonic social
choice function f on Sn is strategy-proof and weakly non-bossy. Suppose �rst
that f is not weakly non-bossy. Then there exist ui; vi 2 S, and u�i 2 Sn�1,
such that ui(f(u)) = ui(f(vi; u�i)) and vi(f(u)) = vi(f(vi; u�i)) but f(u) 6=
f(vi; u�i). Suppose, without loss of generality, that f(u) < f(vi; u�i). By
single-peakedness, p(ui), p(vi) 2 (f(u); f(vi; u�i)). Therefore, L (f(u); ui) �
L (f(u); vi), and by Maskin monotonicity f(u) = f(vi; u�i), which is a contra-
diction.
Suppose now that f is not strategy-proof. Then there exist i 2 N , ui; vi 2 S,
and u�i 2 Sn�1, such that ui(f(vi; u�i)) > ui(f(u)). Thus, f(vi; u�i) 6= f(u).
Suppose, without loss of generality, that p(ui) < f(u). By single-peakedness,
f(vi; u�i) 2 (rui(f(u)); f(u)). Let wi 2 S be such that p(wi) = f(vi; u�i)
and L (f(u); ui) � L (f(u); wi). By Maskin monotonicity, f(wi; u�i) = f(u).
Since L (f(vi; u�i); vi) � L (f(vi; u�i); wi) = A, again by Maskin monotonicity
f(wi; u�i) = f(vi; u�i) and we get a contradiction to the fact that f(vi; u�i) 6=
f(u).
Now, we show that any strategy-proof and weakly non-bossy social choice func-
tion is Maskin monotonic. Suppose not. Then there exist u 2 Sn, i 2 N ,
and vi 2 S such that L(f(u); ui) � L(f(u); vi) (say condition B) but f(u) 6=
f(vi; u�i). Without loss of generality, let f(u) < f(vi; u�i). By strategy-
proofness, ui(f(u)) > ui(f(vi; u�i)).
Note that if f(u) = p(ui) condition B implies that p(vi) = f(u). By strategy-
proofness, f(vi; u�i) = f(u) which is the desired contradiction.
Now suppose that f(u) > p(ui). By strategy-proofness, ui(f(u)) > ui(f(vi; u�i)).
Then f(vi; u�i) =2 (rui(f(u)); f(u)]. In order that condition B holds, rvi(f(u)) �
rui(f(u)) and p(vi) � f(u). This contradicts strategy-proofness since vi(f(u)) >
vi(f(vi; u�i)).
Finally let f(u) < p(ui). By strategy-proofness, f(vi; u�i) > p(ui) and rui(f(u)) �
f(vi; u�i) (say I1). In order that condition B holds, rvi(f(u)) � rui(f(u)) (say
I2) and thus p(vi) < rui(f(u)). If one of the two inequalities (I1) and (I2) hold
strictly, that is, if either rui(f(u)) < f(vi; u�i) or else rvi(f(u)) < rui(f(u)),
then we get a contradiction to strategy-proofness since we have that rvi(f(u)) <
f(vi; u�i). Otherwise, if rvi(f(u)) = rui(f(u)) = f(vi; u�i), by weak non-
bossyness we obtain that f(vi; u�i) = f(u) which is the desired contradiction.

Previously to the proof of Proposition 1, we need to introduce the well-known
notion of an option set and an intermediate result stated in Claim 1 below.

De�nition 10 Let f be a social choice function on Dn. The option set of
coalition S at uNnS is the set

o(uNnS) = fx 2 A
��there exists uS 2 Ds such that f(uS ; uNnS) = xg:
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Claim 1 Let f be a non-bossy social choice function on Fn with #Af � 2.
Then, (i) o(u�i) is a singleton for any i 2 N and u�i 2 Fn�1. Moreover, (ii)
o(ui) is also a singleton for any i 2 N and ui 2 F .

Proof of Claim 1. Let f be a non-bossy social choice function on Fn with
#Af � 2. First, we show part (i) by contradiction. Consider i 2 N and
u�i 2 Fn�1 �xed. By contradiction, suppose that o(u�i) is not a singleton. Let
ui, vi 2 F such that f(ui; u�i) = x and f(vi; u�i) = y where x 6= y. Let !i 2 F
such that �(!i) = A. By non-bossyness, f(!i; u�i) = x and f(!i; u�i) = y
which is the desired contradiction.
To show part (ii), let i 2 N , ui 2 F , and y 2 o(ui). Let u�i 2 Fn�1 such that
f(ui; u�i) = y. Consider any v�i 2 Fn�1. We must show that f(ui; v�i) = y.
We will do it changing one by one agents� preferences from u�i to v�i and
applying n � 1 times part (i) of this claim. Let j 6= i, u�fjg 2 Fn�1, by part
(i) of this claim, f(vj ; u�j) = y. Let k 6= fi; jg and let u�k = (vj ; u�fk;jg).
Applying part (i) again we obtain that f(vj ; vk; u�fj;kg) = y. Repeating this
argument we get that f(ui; v�i) = y.

Claim 1 is crucial in the proof of part (i) in Proposition 1, that is, to show
the inexistence of non-bossy rules on Fn apart from constant ones. Next we
show that any rule on the single-plateaued domain with #Af � 2 is bossy, it
violates Maskin monotonicity, and furthermore, constant rules are the only ones
satisfying both strategy-proofness and quasi non-bossyness on Fn.
Proof of Proposition 1. (i) Let f be a non-bossy social choice function
on Fn with #Af � 2. Note that by de�nition of f as a social choice function,
given u 2 Fn, f(u) =

T
i2N [o(ui) \ o(u�i)]. By Claim 1, both kinds of option

sets are singletons. Thus, in order that f be well-de�ned, given u 2 Fn, f(u) =
o(ui) = o(u�i) for any i 2 N . This means that f is a constant function, i.e.
for any u 2 Fn, f(u) = x 2 A (otherwise, if x = f(u) = o(ui) = o(u�i)
and y = f(v) = o(vi) = o(v�i), x 6= y, then f(vi; u�i) = o(vi) = x and
f(vi; u�i) = o(u�i) = y which is the desired contradiction).
(ii) Let f be a Maskin monotonic social choice function on Fn with #Af � 2.
Let Af � fx; yg, where x 6= y. Let u; v 2 Fn be such that f(u) = x and f(v) =
y. Without loss of generality suppose that x < y. Let w 2 Fn, be such that for
all i 2 N , �(wi) = [x; y]. Since f is Maskin monotonic, f(wi; u�i) = f(u) since
L(x; ui) � L(x;wi) = A for any i 2 N . Repeating the same argument for any
agent i 2 N; we obtain that f(w) = f(u). Similarly, f(w) = f(v). This implies
that x = y, a contradiction.
(iii) It is straightforward by part (ii), Lemma 2 above and the fact that Property
L implies Maskin monotonicity, as previously noted.

We now show that counterpart result of Theorem 2 for Fn. Concretely, on
Fn, strategy-proofness and weak non-bossyness are equivalent to strict Maskin
monotonicity.

Proof of Theorem 3. We �rst show that any strategy-proof and weakly
non-bossy social choice function on Fn is strictly Maskin monotonic. Let
i 2 N , ui; vi 2 F , and u�i 2 Fn�1 be such that for all x 2 A, such that
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ui(f(u)) = ui(x) we have that vi(f(u)) > vi(x) and ui(f(u)) > ui(x) we have
that vi(f(u)) > vi(x). By strategy-proofness, ui(f(u)) > ui(f(vi; u�i)) and
by the condition in strict Maskin monotonicity letting x = f(vi; u�i), we have
that vi(f(u)) > vi(f(vi; u�i)). Again, by strategy-proofness vi(f(vi; u�i)) >
vi(f(u)). Therefore, vi(f(vi; u�i)) = vi(f(u)) and ui(f(u)) = ui(f(vi; u�i)) (if
ui(f(u)) > ui(f(vi; u�i)) we would have vi(f(u)) > vi(f(vi; u�i)) and i would
manipulate f at (vi; u�i) via ui). By weak non-bossyness, f(u) = f(vi; u�i).
We now show that if f is strictly Maskin Monotonic then it is weakly non-
bossy and strategy-proof. To show weak non-bossyness, consider i 2 N , ui,
vi 2 F , and u�i 2 Fn�1 such that vi(f(vi; u�i)) = vi(f(u)) and ui(f(u)) =
ui(f(vi; u�i)). If for any x 2 A, ui(f(u)) = ui(x) implies vi(f(u)) � vi(x) and
ui(f(u)) > ui(x) implies vi(f(u)) > vi(x) or else for any x 2 A, vi(f(u)) = vi(x)
implies ui(f(u)) � ui(x) and vi(f(u)) > vi(x) implies ui(f(u)) > ui(x), then by
strict Maskin monotonicity we get that f(vi; u�i) = f(u). Otherwise, let wi 2
F such that �(wi) = [minff(u); f(vi; u�i)g;maxff(u); f(vi; u�i)g]. Then, by
strict Maskin monotonicity applied to [u; (wi; u�i)] and also to [(vi; u�i); (wi; u�i)]
we have both that f(wi; u�i) = f(u) and f(wi; u�i) = f(vi; u�i). Thus, since
f is a social choice function f(u) = f(vi; u�i).
Finally, suppose that f is not strategy-proof. Then, there exists i 2 N , ui; vi 2
F , and u�i 2 Fn�1 such that ui(f(vi; u�i)) > ui(f(u)). Let, without loss of
generality, f(vi; u�i) > f(u). Note that f(vi; u�i) 2 (f(u); rui(f(u))) or else
f(vi; u�i) 2 (f(u); 1] if there is no x > p+(ui) such that ui(f(u)) = ui(x).
Let wi 2 S, be such that p(wi) = f(vi; u�i) and wi(f(u)) = wi(r

ui(f(u))).
Note that the following holds: if ui(f(u)) = ui(x) then wi(f(u)) > wi(x)
and if ui(f(u)) > ui(x) then wi(f(u)) > wi(x). Then, by strict Maskin
monotonicity, f(wi; u�i) = f(u). Since p(wi) = f(vi; u�i), we have that if
vi(f(vi; u�i)) = vi(x) then wi(f(vi; u�i)) > wi(x) and if vi(f(vi; u�i)) > ui(x)
then wi(f(vi; u�i)) > wi(x). Again, by strict Maskin monotonicity, f(vi; u�i) =
f(wi; u�i) and we get a contradiction.

Finally, in the next proof we show that for social choice functions on Fn,
strategy-proofness and plateau-invariance imply both weak non-bossyness and
convex range.

Proof of Proposition 2. (i) Let f be a strategy-proof and plateau-invariant
social choice function on Fn. Let us show that f satis�es weak non-bossyness.
Thus, let u 2 Fn, i 2 N , vi 2 F such that ui(f(u)) = ui(f(vi; u�i)) (A1) and
vi(f(u)) = vi(f(vi; u�i)) (A2) but f(u) 6= f(vi; u�i). Without loss of generality,
suppose that f(u) < f(vi; u�i). Distinguish the following three cases (A, B and
C).
Case A: f(u), f(vi; u�i) =2 �(ui) and f(u), f(vi; u�i) =2 �(vi). First note that
by (A1) and (A2), �(ui); �(vi) � (f(u); f(vi; u�i)). Let !i 2 F such that
p�(!i) = f(u) and p+(!i) = f(vi; u�i). By strategy-proofness, f(!i; u�i) 2
ff(u); f(vi; u�i)g (otherwise, either i would manipulate f at u via !i, or i
would manipulate f at (!i; u�i) via ui). Suppose that f(!i; u�i) = f(u) (a
similar argument would work for f(!i; u�i) = f(vi; u�i)). Let vi 2 F such
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that �(vi) = [p�(vi); f(vi; u�i)]. By strategy-proofness, f(vi; u�i) 2 �(vi) (oth-
erwise, agent i would manipulate f at (vi; u�i) via vi). Moreover, also by
strategy-proofness, f(vi; u�i) = f(vi; u�i) (otherwise, agent i would manipu-
late f at (vi; u�i) via vi). By plateau-invariance, f(vi; u�i) = f(!i; u�i) = f(u)
which is the desired contradiction.
Case B: f(u), f(vi; u�i) 2 �(ui) and f(u), f(vi; u�i) 2 �(vi). Without loss
of generality, suppose that f(u) < f(vi; u�i). Consider the following subcases:
(1) f(u) 2 Interior[�(ui)], (2) f(u) = p�(ui) = p�(vi), (3) f(u) = p�(ui),
p�(vi) < p

�(ui) and f(vi; u�i) 2 Interior[�(vi)], (4) f(u) = p�(ui), p�(vi) <
p�(ui), f(vi; u�i) = p+(vi) = p+(ui), (5) f(u) = p�(ui), p�(vi) < p�(ui),
f(vi; u�i) = p+(vi), p+(ui) > f(vi; u�i). Note that for cases 1 to 4 we ob-
tain that f(u) = f(vi; u�i) straightforwardly by plateau-invariance. For case
5, de�ne !i 2 F such that �(!i) = [p�(ui); p+(vi)]. By plateau-invariance, we
obtain both that f(!i; u�i) = f(u) and f(!i; u�i) = f(vi; u�i) which means
that f(u) = f(vi; u�i).
Case C (identical argument to Case A): f(u), f(vi; u�i) 2 �(ui) and f(u),
f(vi; u�i) =2 �(vi) (a similar argument would follow if f(u), f(vi; u�i) =2 �(ui)
and f(u), f(vi; u�i) 2 �(vi)). First note that by (A2), �(vi) � (f(u); f(vi; u�i)).
Let !i 2 F such that �(!i) = [f(u); f(vi; u�i)]. By plateau-invariance, f(!i; u�i) =
f(u). Let !0i 2 F such that �(!0i) = [p

�(vi); f(vi; u�i)]. By plateau-invariance,
f(!0i; u�i) = f(vi; u�i). But since p

+(!i) = p
+(!0i) = f(vi; u�i) and f(!

0
i; u�i) =

f(vi; u�i);by plateau-invariance, f(!i; u�i) = f(!0i; u�i) which is the desired
contradiction.
(ii) Note that strict Maskin monotonicity is straightforward by part (i) and
Theorem 3.
(iii) Let f be a strategy-proof and plateau-invariant social choice function on
Fn. We now show that f has convex range. By contradiction suppose that
there exist x; y 2 Af , x < y, such that (x; y) � AnAf . Let u; v 2 Fn such
that f(u) = x and f(v) = y. Let wi 2 F be such that �(wi) = [f(u); f(v)] and
w0i 2 F be such that �(w0i) = [f(u); f(u) + "] where " > 0 and f(u) + " < f(v).
Consider the following argument.
Given a preference pro�le u we distinguish three types of agents: N1

u = fi 2 N
such that ff(u); f(v)g 2 �(ui)g, N2

u = fj 2 NnN1
u such that uj(f(u)) >

uj(f(v))g, and N3
u = fk 2 N such that uk(f(v)) > uk(f(u))g. We now change

agents� preferences from u to w in the following order: �rst (step 1) change
preferences of each agent in N1

u , second (step 2), change preferences of each
agent in N2

u and last (step 3) change preferences of each agent in N
3
u .

Step 1. If i 2 N1
u announces wi, by plateau-invariance f(wi; u�i) = f(u).

Repeating the same argument #N1
u times, changing the preference of a single

agent in N1
u each time, we obtain that f(wN1

u
; uN2

u
; uN3

u
) = f(u).

Step 2. If j 2 N2
u announces w

0
j , by strategy-proofness f(wN1

u
; w0j ; uN2

unfjg; uN3
u
) =

f(u) (otherwise, j would manipulate f at (wN1
u
; w0j ; uN2

unfjg; uN3
u
) via uj). By

plateau-invariance, f(wN1
u
; wj ; uN2

unfjg; uN3
u
) = f(wN1

u
; w0j ; uN2

unfjg; uN3
u
) = f(u).

Therefore f(wN1
u
; wj ; uN2

unfjg; uN3
u
) = f(u).

Repeating the same argument #N2
u times, changing the preference of a single

agent in N2
u each time, we obtain that f(wN1

u
; wN2

u
; uN3

u
) = f(u).
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Step 3. If k 2 N3
u announces wk, by strategy-proofness f(wN1

u
; wN2

u
; wk; uN3

unfkg) 2
ff(u); f(v)g (otherwise, k would manipulate f at (wN1

u
; wN2

u
; wk; uN3

unfkg) via
uk). Moreover, also by strategy-proofness f(wN1

u
; wN2

u
; wk; uN3

unfkg) = f(u),
otherwise, k would manipulate f at (wN1

u
; wN2

u
; uN3

u
) via wk. Repeating the

same argument #N3
u times, changing the preference of a single agent in N

3
u

each time, we obtain that f(wN1
u
; wN2

u
; wN3

u
) = f(u).

Beginning from v, and using a similar argument than above we get that
f(w) = f(v) which is the desired contradiction.
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