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ON THE COMPLEXITY OF RATIONALIZING BEHAVIOR

JOSE APESTEGUIA† AND MIGUEL A. BALLESTER‡

Abstract. We study the complexity of rationalizing choice behavior. We
do so by analyzing two polar cases, and a number of intermediate ones. In
our most structured case, that is where choice behavior is defined in univer-
sal choice domains and satisfies the “weak axiom of revealed preference,”
finding the complete preorder rationalizing choice behavior is a simple mat-
ter. In the polar case, where no restriction whatsoever is imposed, either
on choice behavior or on choice domain, finding the complete preorders
that rationalize behavior turns out to be intractable. We show that the
task of finding the rationalizing complete preorders is equivalent to a graph
problem. This allows the search for existing algorithms in the graph theory
literature, for the rationalization of choice.

Keywords: Rationalization, Computational complexity, NP-complete, Ar-
bitrary choice domains.
JEL classification numbers: D00.

1. Introduction

The theory of individual decision making is typically formulated on the
basis of two different approaches. A revealed preference approach that di-
rectly studies individual choice behavior through choice correspondences. Or
a preference relation approach, where tastes are summarized through binary
relations. Clearly, the relation between these two distinct formal approaches
to individual behavior is a fundamental question in economics. It is said that
a collection of preference relations rationalizes choice behavior, whenever both
approaches identify the same alternatives for every possible choice problem
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that may arise.1 This problem has attracted a great deal of attention in the
literature.

Drawing on the tools of theoretical computer science, we study the question
of how complex it is to find the preference relations that rationalize choice
behavior. That is, given any possible choice rule, how difficult it is to construct
the collection of preference relations that summarizes choice behavior. In spite
of the fact that the question of rationalization is central to economics, to the
best of our knowledge this paper is the first one to study the practical difficulty
of rationalization.

We analyze two polar cases and some intermediate ones. In the first place
we study what we call the rational procedure. This is the case where the
choice correspondence satisfies the well-known consistency property known as
the “weak axiom of revealed preference” (WARP). The classic result in this
case is that a choice correspondence defined on the universal choice domain
(i.e., choice is defined on all possible choice problems) satisfying WARP is
rationalized by a unique complete preorder. We show that finding the complete
preorder in such a case is a simple matter, as there are algorithms that can
easily construct it.

We then turn the analysis to the polar case where no restriction whatso-
ever is imposed, neither on choice behavior nor on the choice domain. In
other terms, we do not impose any consistency property on choice behavior;
neither WARP, nor any other property. With regard to the choice domain,
we consider arbitrary collections of choice problems. Then, drawing from a
seminal paper by Kalai, Rubinstein, and Spiegler (2002; hereafter KRS), in
order to rationalize behavior we use a collection (a book) of complete preorder
relations (rationales), such that for every choice problem A in the domain of
feasible choice problems, the choice c(A) is maximal in A for some complete
preorder. Clearly, there are multiple books that rationalize a given choice rule.
KRS naturally propose to focus on those books that use the minimal number
of preference relations. In this case, we show that, contrary to the previous
one, finding a minimal book is a difficult computational problem (see Theorem
3.2). That is, there is little hope for the existence of an algorithm that for
every possible choice rule finds a minimal book in a reasonable time frame.
Hence, in this extremely unstructured case, the task of finding the collection
of preferences that rationalize behavior is in general intractable.

Now, the question arises whether it is the conjunction of (i) unstructured
choice behavior and (ii) unrestricted choice domain that leads to the com-
putational hardeness of the problem of rationalization. It could be the case

1In the next section we will make precise the terminology we use in this introduction.
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that the difficulty in finding the preference relations rationalizing choice comes
from the unstructured nature of behavior. It turns out that the answer to this
question seems to depend on the single or multi-valued nature of the choice
function.

Theorem 3.4 suggests that in the case of single-valued choice functions, the
essence of the intractability of rationalization is triggered by the interplay of
both unstructured behavior and unrestricted domain. Theorem 3.4 shows that
under the universal choice domain, the problem of finding a minimal book is
quasi-polynomially bounded. However, we argue that in the case of choice
correspondences the practical difficulty of rationalizing behavior may be due
to the nature of choice behavior per se.

The challenge is then to understand the driving force of the complexity of
rationalization. If we are able to understand the roots of the complexity in
rationalizing choice behavior, we may use this to search for specific algorithms
that behave well under certain circumstances. We start this challenge by
defining two binary relations on the space of choice problems, that capture
two fundamental properties on the structural relation of choice problems. By
doing so we will be able to draw a connection with a graph theory problem (see
Theorem 4.3). This is especially useful since there is a wealth of algorithms
for graph problems that may be used to solve the problem of rationalization
of certain choice structures.

We then end the analysis by exploring a specific case, inspired by the recent
work of Manzini and Mariotti (2007; hereafter MM). MM study the nature of
choice functions that can be rationalized by sequentially applying a fixed set of
asymmetric binary relations. Among other results, they provide a full charac-
terization for the case when a choice function is sequentially rationalizable by
two rationales. Such a choice function is called a Rational Shortlist Methods
(RSMs). Using the tools derived for establishing the connection with graph
theory, we show that the rationalization of RSMs through multiple rationales
turns out to be a computationally tractable problem.

Apart from those papers already mentioned, Salant (2003), Ok (2005), and
Xu and Zhou (2007) constitute recent related works. Salant (2003) studies
two computational aspects of choice when the “independence of irrelevant al-
ternatives” (IIA) axiom does not necessarily hold: the amount of memory
choice behavior requires, and the computational power needed for the com-
putation of choice. He shows that the rational procedure is favored by these
considerations. Ok (2005) provides an axiomatic characterization of choice
correspondences that satisfy the IIA axiom. Finally, Xu and Zhou (2007)
propose the rationalization through extensive games with perfect information,
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and provide a full characterization of those choice functions that can be so
rationalized.

The rest of the paper is organized as follows. Section 2 gives the defini-
tions on choice behavior and binary relations, and makes precise the notion
of rationalization we will use throughout the paper. Furthermore, it contains
a brief introduction to the theory of NP-completeness. Section 3 contains the
complexity results. In section 4 we draw on the connection between the prob-
lem of rationalization and the literature on graph theory. Finally, section 5
concludes and relates our work to the economics literature on language and to
the bounded rationality literature.

2. Preliminaries

2.1. Choice behavior and preference relations. Let X be a finite set of
n objects. We denote by U the set of all non-empty subsets of X. We also
consider the general case of arbitrary domains D ⊆ U , with D 6= ∅. A choice
correspondence c on D assigns to every A ∈ D a non-empty set of elements
c(A) ⊆ A. A single-valued choice function simply assigns to every A ∈ D, a
unique element c(A) ∈ A.2

The weak axiom of revealed preference is the classic consistency property:

Weak Axiom of Revealed Preference (WARP): Let A,B ∈ D and as-
sume x, y ∈ A∩B; if x ∈ c(A) and y ∈ c(B), then we must also have x ∈ c(B).

WARP imposes a great deal of structure on choice. This can be best ap-
preciated through its implications on the connection with preference relations.
In order to elaborate on the connection between choice behavior and prefer-
ence relations, which is central to this paper, we first introduce some notation.
Denote by � a binary relation on X, �⊆ X ×X. Binary relations � and ∼
are the asymmetric and symmetric parts of �, respectively. Hence, x � y if
and only if x � y and ¬(y � x), and x ∼ y if and only if x � y and y � x.
We will say that a binary relation is a preorder if it is reflexive and transitive.
We will often refer to complete preorders by rationales. We will say that a
binary relation is a linear order if it is antisymmetric, transitive, and complete.
Finally, we will say that it is a partial order if it is reflexive, antisymmetric,
and transitive. For any A ∈ D, M(A,�) denotes the set of maximal elements
in A with respect to �, that is, M(A,�) = {x ∈ A : y � x for no y ∈ A}.

2To avoid tedious duplication of notation, we denote both the multi-valued and the single-
valued cases by c. In any case, the context will be specific enough to avoid confusion.
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Let c(A) � c(B), A,B ∈ D, denote the case when for every x ∈ c(A) and
y ∈ c(B), we have x � y.

The classic notion of rationalization of a choice correspondence deals with
the issue of existence of a unique complete preorder relation � that explains
choice behavior defined on U .3 The question is whether there is a � such that
c(A) = M(A,�) for every A ∈ U . A well-known result establishes that a choice
correspondence c satisfies WARP if and only if there is a complete preorder �
such that c(A) = M(A,�) for every A ∈ U . This result makes it clear that if c
does not satisfy WARP then a broader definition of rationalization is needed.

In the context of single-valued choice functions and universal choice domains
U , KRS propose the rationalization of any possible choice function through
collections of linear orders. The interest is naturally directed to the minimal
number of linear orders that rationalizes choice behavior. Here we use this no-
tion of rationalization. To this end we extend the original definition to include
choice correspondences and arbitrary choice domains D. Accordingly, we also
substitute linear orders by complete preorders.

Minimal Rationalization by Multiple Rationales (RMR): A K-tuple
of complete preorders (�k)k=1,...,K on X is a rationalization by multiple ratio-
nales (RMR) of c if for every A ∈ D, there is a k ∈ {1, . . . , K}, such that
c(A) = M(A,�k). It is said to be minimal if any other RMR of c has at least
K preference relations.

Note that a minimal RMR is an extension of the classic idea of rationaliza-
tion by one rationale. In fact, if c satisfies WARP, then the minimal RMR is
composed of one complete preorder. Further, note also that the case of choice
correspondences generalizes the case of single-valued choice functions. The
classic result in the latter context is that a single-valued choice function c is
rationalized by a linear order if and only if c satisfies the property of indepen-
dence of irrelevant alternatives (IIA):

Independence of Irrelevant Alternatives (IIA): For any A,B ∈ D, if
y ∈ A ⊆ B and y ∈ c(B), then y ∈ c(A).

We highlight an especially important class of choice sets; the collection of
c-maximal sets. These are the sets that must be explained in order to rational-
ize behavior. A set S is c-maximal if any addition to S of elements (consistent

3Uzawa (1957), Arrow (1959), Richter (1966) and Sen (1970) were among the first to
study aspects of this problem.
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with the domain of choice problems D) leads to a change in choice behavior
with respect to the original elements of S. Formally,

c-Maximal Sets: A subset S ∈ D is said to be c-maximal if for all T ∈ D,
with S ⊂ T , it is the case that c(S) 6= c(T ) ∩ S. Denote the family of c-
maximal sets under the choice domain D by MD

c .

For any c-maximal set there is no possibility of obtaining its associated
elements from any other superset of it included in the domain D, and thus,
the study of choice behavior needs to incorporate it.4 Clearly, all other choice
sets in D can be trivially associated with at least one c-maximal set.

2.2. NP-completeness. We now present an informal introduction to the no-
tion of complexity we use in this paper. For an excellent, detailed and formal
account see Garey and Johnson (1979).5

In theoretical computer science the computational complexity of a problem
is measured by the relation between the size of the problem and the time
required to solve it. There are different classes of problems. The P-class
encompasses problems that can be solved in polynomial time. That is, a
problem belongs to the P-class if there is an algorithm that solves the problem,
and the time required is upper bounded by a polynomial function of the size of
the problem. More precisely, a time algorithm f(t) is polynomial if there is a
polynomial function p such that |f(t)| ≤ |p(t)| for every t ≥ 0, with t denoting
the size (or the input length) of the problem. In this sense we write that the
complexity function of f(t) is O(p(t)).

The NP-class is the family of problems that may be difficult to solve (it
may take exponential time, or an even greater amount of time), although it is
relatively easy (it takes polynomial time) to verify a particular instance of the
problem (that is a concrete case where the parameters have been realized).

Within the NP-class there is one class of problems of particular interest.
This is the class of NP-complete problems. The NP-complete problems are
regarded as the most difficult problems in NP. This is because no polynomial
time algorithm is known to solve any of them, but if a polynomial algorithm
were found for one problem, then such an algorithm could be translated into
polynomial time algorithms for all other problems in the NP-complete class.
If an algorithm cannot be polynomially bounded, then it is typically called

4In the simpler case of single-valued choice functions, the condition to identify the class
of c-maximal sets is simply c(S) 6= c(T ).

5See also Cormen, Leiserson, Rivest, and Stein (2001). Ballester (2004) and Aragones,
Gilboa, Postlewaite and Schmeidler (2005) provide introductions in the context of economics.
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an exponential time algorithm.6 In this sense we say that only exponential
time algorithms are known for NP-complete problems, and these problems are
regarded as intractable. It is interesting to note that, although there is no
known polynomial time algorithm solving an NP-complete problem, a proof
showing that no such algorithm exists is still awaited. In fact, this is regarded
as one of the major unsolved problems in mathematics.

The theory of NP-completeness is conventionally centered around decision
problems. These are problems formulated with a yes-or-no answer. Conse-
quently, we define a decision problem that is the binary analog of the problem
of finding a minimal RMR of a choice correspondence c on D as follows.

Rationalization by Complete Preorders in D (RCP-D): Given a
choice correspondence c on D, can we find k ≤ K complete preorders that
constitute a rationalization by multiple rationales of c?

Setting D = U , respectively, substituting complete preorders by linear or-
ders, we define the binary problems RCP-U , Rationalization by Linear Orders
in D (RLO-D) and RLO-U .

In this paper we use the proof-by-restriction technique to prove that a par-
ticular (decision) problem is NP-complete. That is, to prove that a given
problem Π in NP is in fact NP-complete, we show that it contains a known
NP-complete problem Π′ as a special case.

3. Complexity of rationalization

We start with the classic, structured case, where D = U and WARP holds.
Let us call this case the rational procedure. Then we will study the polar case
of the rational procedure. This is the case where no restriction whatsoever
is imposed either on choice behavior, or on the choice domain. At the same
time, we will deal with a number of intermediate cases.

3.1. Structured choice behavior: The rational procedure. We start by
considering the case where a choice correspondence defined over the universal
choice domain U satisfies WARP. We have already mentioned that this rep-
resents a very structured case, as it is well-known that there exists a unique
complete preorder relation � rationalizing c.

Now the question arises of how difficult it is to find the rationalizing binary
relation �. Intuitively, it seems that the high degree of structure of the rational
procedure implies that finding the rationale is not a difficult task. This is in

6However, note that this leads to classify algorithms that are O(nlog n) or O(n!) as
exponential.
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fact the case. It is easy to show that the set |MU
c | is small, as it contains at

most n elements. The simplicity of the family of maximal sets allows us to
consider very simple algorithms to obtain the rationalization of choice behavior
in polynomial time. Consider for instance the following trivial one.

Take X0 = X and iteratively define Xk = Xk−1\c(Xk−1) if Xk−1\c(Xk−1) 6=
∅ holds. Then, the set of maximal elements is the collection of sets {Xk}, with
cardinality equal to or less than n. Clearly, every element is chosen from
exactly one set Xk. Then, the rationale can be defined by stating that x � y
if and only if x ∈ Xk, y ∈ Xj, with Xk, Xj in the family of c-maximal sets
{Xk} and k ≤ j.

We summarize the above in the following observation.

Observation 3.1. Let the choice correspondence c be a rational procedure
and D = U , then |MU

c | ≤ n and the problem of finding the complete preorder
� that rationalizes c is polynomial.

There are two important remarks to Observation 3.1. First, as a corollary
to the above, finding the linear order � rationalizing a single-valued choice
function defined on U that satisfies IIA is also polynomial. This follows from
the fact that the single-valued case is but a special case of the multi-valued
choice correspondence.

Second, the results also hold for arbitrary choice domains D. To find the
binary relation rationalizing c when D 6= U , simply write x � y if and only
if x ∈ c(A) and y ∈ A, A ∈ D. It is easy to see that WARP guarantees that
such a binary relation is a complete preorder.

3.2. Unstructured behavior and unrestricted domain. We now turn to
the polar case of the rational procedure where we neither impose structure
on choice behavior, nor on the domain of choice sets. This means that, in
general, there is not a single binary relation rationalizing choice behavior, but
a set of them in the sense of KRS. It is clear that the problem of finding the
rationales in this case is a much more demanding task than the one we faced
for the rational procedure in the previous section. In fact we show below that
the task is demanding to the point of being intractable. That is, we show that
finding a minimal RMR in this setting belongs to the class of NP-complete
problems, and hence unless P=NP, there is no hope of finding an efficient
algorithm that for every choice correspondence c gives a minimal RMR in a
reasonable time frame.

We can now state our first NP-complete result.

Theorem 3.2. RCP-D is NP-complete.
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Proof of Theorem 3.2: It is easy to show that RCP-D is in NP. A candidate
for a solution consists of k ≤ K complete preorders that can be easily checked
to rationalize the choice corrrespondence c.

Now consider the following problem that is known to be NP-complete.

Partition into Cliques (PIC): Given a graph G = (V,E), can the ver-
tices of G be partitioned into k ≤ K disjoint sets V1, V2, . . . , Vk such that for
1 ≤ i ≤ k the subgraph induced by Vi is a complete graph?

We now find a restriction of RCP-D that makes it identical to PIC. First,
let H = {h1, ..., h|V |}. Now, let X be the union of the set of vertices V and
the set H. For each vertex i ∈ V define the set Si = {i} ∪ {j : ij /∈ E} ∪ {hi}
and denote S = {Si : i ∈ V }. Choice behavior is defined as follows. For every
Si ∈ S let c(Si) = i. Clearly, this defines a single-valued choice function in
D, that is but a special case of a choice correspondence in D. Note that the
construction of X, D, and c can be done in polynomial time in the size of |V |.

We now prove that G can be partitioned into less than K cliques if and only
if c can be rationalized by less than K rationales.

First, consider a collection (�p)p=1,...,k with k ≤ K complete preorders
rationalizing c. Consider a single-valued mapping (there may be several)
f : S → {1, . . . , k} such that f(Si) = p if and only if �p rationalizes the
choice in Si. Define Vp = {i : f(Si) = p}. Clearly, the union of all sets Vp is
a partition of the vertex set V . Now, we show that Vp is a clique. Otherwise,
let i, j ∈ Vp such that i, j /∈ E. Then, i, j ∈ Si ∩ Sj and hence, given the def-
inition of c over the class S, for the rationalization of Si and Sj it must hold
that i �p j and j �p i. But this contradicts that �p is a complete preorder.
We conclude that Vp is a clique, as desired. Therefore the partition of G is
composed of at most k cliques, and hence there is obviously a PIC of G with
at most K cliques.

In the other direction, let {Vp}p=1,...,k be a partition of G into k ≤ K cliques.
Define for every p = 1, . . . , k, the partial order �′p by: x �′p y if and only if
[x ∈ Vp or y ∈ X \ Vp]. Take any linear extension of �′p and denote it by �p.
We now have to show that {�p}p=1,...,k rationalizes all the selections. We claim
that the collection of sets Si, i ∈ Vp is rationalized by �p. Otherwise, there
would be a set Si with i ∈ Vp, and an element w ∈ Si, w 6= i with w �p i. This
implies that given the definition of �p, since i ∈ Vp, it must be w ∈ Vp. Since
Vp is a clique it must be that (i, w) ∈ E, but this contradicts that w ∈ Si.
This shows that there is a collection of at most K complete preorders that
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rationalizes c.�

Note that the c used in the proof is single-valued and the binary relations
defined from the partition of the graph are linear orders. Hence, the following
corollary to (the proof of) Theorem 3.2 is immediate.

Corollary 3.3. RLO-D is NP-complete.

Theorem 3.2 (and Corollary 3.3) show that the conjunction of (i) unstruc-
tured choice behavior and (ii) unrestricted choice domain lead to the NP-
completeness of the problem of rationalization. But are the two conditions
required to get the intractability result? In principle, it could be that the real
difficulty in finding a minimal RMR is completely triggered by choice behavior
per se, or it could be that it is the interplay of behavior and domain that drives
the result. Theorem 3.4 below suggests that in the case of single-valued choice
functions it is the interplay of both, unstructured behavior and unrestricted
domain, that triggers the intractability of finding the rationales.

Theorem 3.4. RLO-U is quasi-polynomially bounded.

Proof of Theorem 3.4: Let c be a single-valued choice function defined on
U , and consider the following naive algorithm. The naive algorithm would
examine all the k-tuples of order relations, with 1 ≤ k ≤ n − 2. That is, it
will start by checking whether there is one rationale that rationalizes behav-
ior. If yes, the algorithm stops. Otherwise, it checks whether there are two
rationales rationalizing behavior, and so on. Proposition 1 in KRS shows that
the minimal book is composed of at most n − 1 rationales. We now proceed
to compute the order of magnitude of the algorithm. The main components
of the input size and the number of operations are the number of choice sets
and the number of collections of rationales to check. That is, since the choice
domain is the universal one, the input size x of the algorithm is roughly 2n.
The naive algorithm requires a number of operations t which is roughly n!n−1.
These values take into account only the number of choice problems 2n and
the set of possible collections of n − 1 linear orders n!n−1. Note that a more
precise formulation would include other considerations such as the number of
elements in each choice set, the chosen element, a checking protocol for the
rationalization of choice, or the length of the data expressed in bits. It is not
difficult to see, however, that these considerations have no influence on the
final conclusion. Hence, we avoid these details here.

Now, to check the order of magnitude of the operations we relate t to xα.
This gives an α that is O(log n!) or equivalently O(log x log log x). Hence, it
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corresponds to the case where the naive algorithm has a quasi-polynomial or-
der of magnitude of O(xlog x log log x). Therefore, there is a quasi-polynomially
bounded algorithm that computes a minimal book for RCP-U , wich completes
the proof.�

Theorem 3.4 suggests that RLO-U is not NP-complete.7 Otherwise, The-
orem 3.4 would imply that all NP-complete problems are quasi-polynomially
bounded. However, in spite of continuous efforts such a bound has never been
found for NP-complete problems. Indeed, there is the strong conviction this
will never happen.

The question with regard to choice correspondences defined on U , how-
ever, remains open. The naive algorithm used in Theorem 3.2 is not quasi-
polynomially bounded in this case. It is not difficult to see that the number
of possible complete preorders is upper bounded by n!2. The problem arises
because, in the case of complete preorders, the n− 1 bound on the maximum
number of preference relations to check for rationalization does not hold. In
fact, it is straightforward to see that the bound turns out to be 2n. This
implies that the naive algorithm for choice correspondences cannot be quasi-
polynomially bounded, having an exponential order of magnitude. Therefore,
it may well be the case that with choice correspondences, the practical diffi-
culty in finding a minimal RMR is triggered by choice behavior per se.

The challenge for future research is then to understand the driving force of
the complexity of rationalization, and use this understanding to find specific
algorithms that behave well under certain circumstances. In the next section
we start this task by drawing a connection with graph theory. This is especially
useful since there is a wealth of algorithms for graph problems that may solve
the problem of rationalization of certain choice structures.

4. On the structure of the complexity of rationalization

4.1. Rationalization and graph theory. The following binary relations
capture two fundamental properties on the structural relation of maximal sets.

Definition 4.1. LetA,B ∈MD
c , A→ B if and only if c(A)∩B /∈ {∅, c(B)∩A}.

This first binary relation→ states the conditions under which a set A blocks
another set B, in the sense that A and B cannot be rationalized by a binary

7The naive algorithm of Theorem 3.4 does not necessarily behave well in unrestricted
choice domains D. The reason being that in this case the input size need not be as high as
2n, but for example, it could be n. This gives an exponential order of magnitude for the
naive algorithm.
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relation � writing c(A) � c(B). Define HA = A \ c(A), A ∈ D. Then, when c
is single-valued, → reduces to: A→ B if and only if c(A) ∈ HB.

Definition 4.2. Let A,B ∈MD
c , A−B if and only if c(A) ∩ c(B) 6= ∅.

A − B means that sets A and B are linked in the rationalization problem.
That is, if A and B are to be rationalized by the same binary relation � when
A−B, then it must be that c(A) ∼ c(B).

Finally, we use the above two binary relations to define an oriented cycle.

Oriented Cycle: The collection {At}nt=1 ∈MD
c , n ≥ 2, is an oriented cycle

if

(1) A1 = An,
(2) for every i ∈ {1, . . . , n− 1}, either Ai → Ai+1, or Ai − Ai+1, and
(3) there is j ∈ {1, . . . , n− 1} such that Aj → Aj+1.

We are now in a position to introduce a graph theory problem over the space
of c-maximal sets.

Minimal Non-Oriented Partition (NOP): A partition ofMD
c {Vp}p=1,...,P

is said to be a non-oriented partition if for every class Vp there is no oriented
cycle. It is said to be minimal if any other NOP has at least P classes.

A (minimal) NOP is constructed over the set MD
c according to the binary

relations→ and −. Hence, a class Vp in the partition has a clear interpretation:
all the sets in the class Vp can be rationalized through a complete preorder �p.
Then, an NOP gives information on which choice problems can be rationalized
together.

The following theorem establishes finding a minimal RMR is equivalent
to finding a minimal NOP. This opens the possibility of drawing upon the
established algorithm knowledge on graph theory problems.

Theorem 4.3. Let c be a choice correspondence:
-If {�p}p=1,...,P is a minimal RMR, then there is a minimal NOP {Vp}p=1,...,P .
-If {Vp}p=1,...,P is a minimal NOP, then there is a minimal RMR {�p}p=1,...,P .

Proof of Theorem 4.3: Let {�p}p=1,...,P be an RMR of c. Consider a single-
valued mapping (there may be several) f : MD

c → {1, . . . , P} such that f(A) =
j if and only if �j rationalizes the choice in A. The mapping f naturally
induces a partition ofMD

c containing at most P classes. Let Vp = {Asp}s=1,2,...,Sp

be the c -maximal sets associated with class p, 1 ≤ p ≤ P (some of them may
be empty). We now show that there is no oriented cycle in Vp. Assume the
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contrary is the case. That is let {At}nt=1 ∈ MD
c , n ≥ 2 be an oriented cycle in

Vp. Then, by definition, there is j ∈ {1, ..., n − 1} such that Aj → Aj+1, and
hence c(Aj) ∩ Aj+1 /∈ {∅, c(Aj+1) ∩ Aj}.

Assume that c(Aj+1) ∩ Aj 6= ∅. Then Aj+1 → Aj and there must be an
element x ∈ X such that either x ∈ c(Aj) ∩ HAj+1

or x ∈ c(Aj+1) ∩ HAj
.

Without loss of generality, assume the first case. Then for �p to rationalize
Aj+1 it must be c(Aj+1) �p x. Since c(Aj+1) ∩ Aj 6= ∅, there is y ∈ Aj such
that y �p x. But this contradicts the rationalization of Aj since x ∈ c(Aj).
Hence, it must hold that c(Aj+1)∩Aj = ∅, and therefore, for �p to rationalize
Aj and Aj+1 it must hold c(Aj+1) �p c(Aj).

Now, consider Aj+2 (A2 if Aj+1 = An = A1). Since, by assumption, it is an
oriented cycle, it must be either that Aj+1 → Aj+2 or Aj+1−Aj+2. In the first
case, the argument in the previous paragraph shows that c(Aj+2) �p c(Aj+1).
In the second case, it must obviously hold that c(Aj+2) ∼p c(Aj+1). In both
cases, by the transitivity of �p it must be that c(Aj+2) �p c(Aj). Applying
this reasoning iteratively we conclude that c(Aj) �p c(Aj), which is of course
absurd. This shows that there is no oriented cycle.

Now take an NOP {Vp}p=1,...,P . For every class Vp we construct a rationale
�p that rationalizes all the elements in the class Vp. We start by defining an
equivalence relation E between the elements of Vp: AEB if and only if there
is a chain of elements in Vp such that A = A1 − A2 − · · · − Aq = B. The

equivalence relation E partitions Vp into disjoint classes {Lip}
Ip
i=1. We write

Lip → Ljp when there are A ∈ Lip and B ∈ Ljp with A→ B.

We start by noting that there must be at least one class, denoted by L1
p,

such that L1
p → Lip holds for no Lip, i > 1. Otherwise, due to the finiteness

of X and hence to the number of classes Lip in Vp, there would be a cycle.

Using the same argument there must be another class L2
p such that L2

p → Lip
holds for no Lip, i > 2. Clearly, this argument extends to all classes {Lip}

Ip
i=1.

We write c(Lip) = ∪A∈Li
p
c(A) and c(Vp) = ∪A∈Vpc(A). Now, we show that the

order

c(L1
p) �p c(L2

p) �p · · · �p c(LIpp ) �p X \ c(Vp)

rationalizes Vp. Assume the contrary is the case. Let j ∈ {1, . . . , Ip} and
A ∈ Ljp with y ∈ HA but y �p c(A). By construction of �p this means

that y ∈ c(B) for some B ∈ Lkp, k ≤ j. From y ∈ HA ∩ c(B), obviously
c(B)∩A /∈ {∅, c(A)∩B} and, hence, B → A. By construction of the equivalence
classes, it can only be k = j. But, since A and B belong to the same equivalence
class there is a chain of elements A = A1 − A2 − ...− Aq = B and, therefore,
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together with B → A, it implies that there is an oriented cycle. This is absurd
and therefore �p rationalizes Vp.

Finally, to end the claims of the theorem we have to show the conditions
on minimality. Then, for the first claim suppose that {�p}p=1,...,P is minimal
while {Vp}p=1,...,P is not. Then there is an NOP with T number of classes,
T < P . But then, we have shown that there is an RMR with T classes, con-
tradicting the minimality of {�p}p=1,...,P . The reverse direction of the proof is
analogous. This concludes the proof.�

The significance of Theorem 4.3 is best appreciated in the case of single-
valued choice functions. Recall that when c is single-valued, A → B if and
only if c(A) ∈ HB, A,B ∈ MD

c . That is, A blocks B if and only if the chosen
element in A belongs to B and, at the same, time this element is not chosen
in B. It is clear that such a case is inconsistent with a linear order ratio-
nalizing B and writing c(A) � c(B). Also, note that A − B if and only if
c(A) = c(B). Then the relation between minimal RMRs and minimal NOPs
simplifies considerably. This is because for any three sets A1, A2, B ∈ MD

c ,
whenever c(A1) = c(A2), then A1 → B if and only if A2 → B. This implies
that, whenever there is an oriented cycle, there is a cycle composed of elements
related only through →. Hence the analysis can obviate the equivalence re-
lation −, and focus on (MD

c ,→). The latter is simply an standard directed
graph, and the structure defined as an oriented cycle reduces to the standard
notion of a directed cycle. There is an immense literature on graphs with-
out directed cycles, typically known as directed acyclic graphs (DAGs).8 This
is especially important since Theorem 4.3 guarantees that there is much to
gain from the results in this literature. Hence, our problem reduces to find a
minimal partition into DAGs.

4.2. An example. The study of concrete choice procedures appears partic-
ularly appealing. It is likely that the structure inherent to specific choice
procedures allows for the tractability of rationalization. Here we provide an
example that draws on the previous subsection.

Manzini and Mariotti (2007) study the nature of choice functions defined on
U that can be rationalized by sequentially applying a fixed set of asymmetric
binary relations in a universal domain. Among other results, they provide a
full characterization of the case when a choice function is sequentially rational-
izable by two rationales. Such a choice function is called a Rational Shortlist
Method (RSM). Their characterization makes use of the classical property of

8See, e.g., Cormen, Leiserson, Rivest, and Stein (2001).
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expansion.

Expansion: If x ∈ c(A) and x ∈ c(B), A,B ∈ U , then x ∈ c(A ∪B).

It is not difficult to observe that the set MU
c shrinks considerably whenever

this property holds. Clearly, for each element x in X there is at most one
element in MU

c for which x is the chosen element, namely, the union of all
subsets A for which x is chosen. Denote the latter by M(x). Then the problem
of finding a minimal RMR here reduces to finding a minimal partition into
DAGs over the universal set of alternatives X according to , where for every
x 6= y,

x y if and only if M(x)→M(y) if and only if x ∈M(y)

Hence the rationalization of RSMs through multiple rationales turns out to
be a computationally tractable problem.

5. Final remarks

We have used the tools of theoretical computer science to study the com-
plexity of finding the preference relations that rationalize choice behavior. The
question of rationalizability of choice behavior has played a central role in eco-
nomics. However, surprisingly enough, virtually no attention has been given
to the practical problem of computing the rationales.

We have shown that, in the classical case, when the weak axiom of revealed
preference holds, finding the preference relation rationalizing choice behavior
is easy. There are polynomial time algorithms that compute the rationale
quickly. On the other hand, when we neither impose any restriction on choice
behavior nor on the domain, we have shown that the problem of rational-
ization is NP-complete. Therefore, there is little hope of finding an efficient
algorithm bounded above by a a polynomial function. Furthermore, we have
shown that in the case of single-valued choice functions, it is the conjunction
of unstructured choice and unrestricted domain that drives the intractability
result. Under the universal domain, the problem of finding a minimal book is
quasi-polynomially bounded. On the other hand, we argue that in the choice
correspondences case, it may well be the case that the difficulty in finding a
minimal book is triggered by choice behavior per se.

We then turned to trying to better understand the complexity of rational-
ization. To this end we identified two binary relations over choice sets that
capture part of the essence of rationalization. Furthermore, these binary re-
lations define a problem in graph theory that is equivalent to the problem
of rationalization. This is particularly interesting since the complexity issues
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have attracted a great deal of attention in graph theory. The equivalence re-
sult provided allows for the searching of existing algorithms in graph theory
that can be used for the problem of rationalization.

Apart from the literature on rationalization, our results relate to two other
strands in the literature. First, the problem of rationalization can be read as
the problem of transmission of information (choice behavior in different situ-
ations), given a specific grammar (complete preorders a la KRS). Under this
interpretation, our paper is related to the economics literature on language
(see Rubinstein, 2000). Rubinstein stresses the importance of binary relations
to natural language. In this sense, our results establish that there are practical
limitations to the design of a grammar with the ability to transmit any kind
of information. Several questions arise. Does the structure of natural speech
imply the existence of a collection of complete preorders computable in poly-
nomial time? What, if anything, is lost in the transmission of information,
if the problem of constructing a grammar is upper bounded by a polynomial
time algorithm?

Second, an immediate conclusion from our results is that the more struc-
tured behavior is, the easier it is to rationalize it in practice. That is, ra-
tionality makes things easier. This type of observation has been recognized
in the bounded rationality literature from different perspectives. Tversky and
Simonson (1993) note that the standard maximization problem is hard to beat
in terms of its simplicity of formulation. It is most likely that any descrip-
tive bounded rationality model is condemned to involve a more cumbersome
formulation. Also, Salant (2003) shows that the rational procedure requires
the least memory possible and that the automatation required to compute the
rational procedure is the smallest possible.
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