
 

Centre de Referència en Economia Analítica 
 

 
 

Barcelona Economics Working Paper  Series  
 
 

Working Paper nº 279 
 
 
 
 
 

A Canonical Representation for the Assignment Game:  
the Kernel and the Nucleolus 

 
 

Marina Núñez and Carles Rafels 
 

May 5 , 2006 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A canonical representation for the assignment
game: the kernel and the nucleolus
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Abstract

The core of an assignment market is the translation, by the vector
of minimum core payoffs, of the core of another better positioned
market, the matrix of which has the properties of being dominant
diagonal and doubly dominant diagonal. This new matrix is defined
as the canonical form of the original assignment situation, and it is
uniquely characterized by these three properties. The behavior of
some well-known cooperative solutions in relation with the canonical
form is analyzed. The kernel and the nucleolus of the assignment
game, are proved to be the translation of the kernel and the nucleolus
of the canonical representative by the vector of minimal core payoffs.

Keywords assignment game, core, kernel, nucleolus

1 Introduction

In a bilateral assignment market, a product that comes in indivisible units
is exchanged for money, and each participant either supplies or demands
exactly one unit. The units need not be alike and the same unit may have
different values for different participants. From these valuations, a matrix
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can be defined which reflects the profit that can be obtained by each buyer-
seller pair if they trade. Assuming that side payments are allowed, Shapley
and Shubik (1972) define the assignment game as a cooperative model for
this bilateral market and prove the nonemptiness of the core.

In the present paper we introduce a canonical representative for the as-
signment matrix. The entry related to a mixed pair in the canonical form
is given by the second marginal contribution of their partners by a fixed
optimal matching. The canonical representative can also be derived from
the buyer-seller exact representative introduced in Núñez and Rafels (2002b)
and this allows to prove that its definition does not depend on the chosen
optimal matching. The main result states that the core of the original mar-
ket is the translation, by the vector of minimal core payoffs, of the core of
its canonical form. Moreover, the canonical representative of the assignment
game has dominant diagonal and doubly dominant diagonal, and it is unique
with these properties among all the markets with a core that is a translation
of the core of the original assignment game.

It follows straightforwardly that the τ -value (Tijs, 1981) of an arbitrary
assignment game is the translation, by the vector of minimal core payoffs, of
the tau-value of its canonical form.

Also, an easy characterization of the extreme core allocations of those
assignment games with dominant diagonal and doubly dominant diagonal
matrices is given in Izquierdo et al. (2006), that now, by means of the above
translation, provides a characterization of the extreme core allocations of an
arbitrary assignment market.

After that, we ask whether other solutions to an assignment market can
be obtained by translation of the same solution applied to its canonical form.
The question is affirmatively answered in the case of two other well-known
solutions, the kernel and the nucleolus of the assignment game.

In Section 2, the basic concepts regarding the assignment model are re-
called. In Section 3 we introduce the canonical representative and prove it
is the unique dominant diagonal and doubly dominant diagonal assignment
matrix among those with a core that is a translation of the core of the orig-
inal market. The fact that the kernel of an arbitrary assignment market is
the translation, by the vector of minimal core payoffs, of the kernel of its
canonical form is proved in Section 4. The same property is proved for the
nucleolus in Section 5. Section 6 concludes.
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2 The assignment game

Let us consider a two-sided market with a finite set of buyers M of cardinality
|M | = m and a finite set of sellers M ′ of cardinality |M ′| = m′ , and let
A = (aij)(i,j)∈M×M ′ be a nonnegative matrix where aij represents the profit
obtained by the mixed–pair (i, j) ∈ M ×M ′ if they trade. Let n = m + m′

denote the cardinality |N | of N = M ∪M ′ .

The assignment problem (M, M ′, A) consists in looking for an optimal
matching between the two sides of the market. A matching µ ⊆ M × M ′

between M and M ′ is a bijection from some M0 ⊆ M to some M ′
0 ⊆ M ′

such that |M0| = |M ′
0| = min{|M |, |M ′|} . We write (i, j) ∈ µ as well as

j = µ(i) and i = µ−1(j) . We denote the set of matchings between M and
M ′ by M(M, M ′) . Moreover, we say a buyer i ∈ M is not assigned by µ
if (i, j) 6∈ µ for all j ∈ M ′ (and similarly for sellers).

We say a matching µ ∈M(M,M ′) is optimal for the market (M, M ′, A)
if for all µ′ ∈ M(M, M ′) , we have

∑
(i,j)∈µ aij ≥

∑
(i,j)∈µ′ aij , and will

denote the set of optimal matchings by M∗
A(M, M ′) . Given S ⊆ M and

T ⊆ M ′ , we denote by M(S, T ) and M∗
A(S, T ) the set of matchings and

optimal matchings of the submarket (S, T, A|S×T ) defined by the subset S
of buyers, the subset T of sellers and the restriction of A to S×T . If S = ∅
or T = ∅ , then the only possible matchings are µ = ∅ and by convention∑

(i,j)∈∅ aij = 0 .

By adding null rows or columns if necessary, we will assume that A is
square, which means that the assignment problem has as many buyers as
sellers.

Assignment games were introduced by Shapley and Shubik (1972) as a
cooperative model for a two–sided market with transferable utility. Given
an assignment problem (M, M ′, A) , the player set is N = M ∪M ′ , and the
matrix A determines the characteristic function wA . Given S ⊆ M and
T ⊆ M ′ , wA(S ∪ T ) = max{∑(i,j)∈µ aij | µ ∈ M(S, T )} . Notice that a
coalition formed only by sellers or only by buyers has worth zero.

Shapley and Shubik proved that the core, C(wA) , of the assignment
game (M ∪ M ′, wA) is nonempty and can be represented in terms of any
optimal matching µ of (M, M ′, A) . Once fixed any such optimal matching,
(u, v) ∈ RM × RM ′

is in the core if and only if ui ≥ 0 for all i ∈ M ,
vj ≥ 0 for all j ∈ M ′ , ui + vj ≥ aij for all (i, j) ∈ M ×M ′ , ui + vj = aij

if (i, j) ∈ µ and ui = 0 if i ∈ M is not matched by µ , while vj = 0 if
j ∈ M ′ is not matched by µ .
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Moreover, the core has a lattice structure with two special extreme points:
the buyers–optimal core allocation, (u, v) , where each buyer attains his max-
imum core payoff, and the sellers–optimal core allocation, (u, v) , where each
seller does.

From Demange (1982) and Leonard (1983) we know that the maximum
core payoff of any player coincides with his or her marginal contribution:

ui = wA(M ∪M ′)− wA((M ∪M ′) \ {i}) for all i ∈ M , and
vj = wA(M ∪M ′)− wA((M ∪M ′) \ {j}) for all j ∈ M ′.

(1)

From (1), once fixed µ ∈ M∗
A(M,M ′) , and taking into account that ui +

vµ(i) = aiµ(i) , since (u, v) ∈ C(wA) , we get that the minimum core payoff of
a buyer i who is matched by µ is

ui = aiµ(i) + wA((M ∪M ′) \ {µ(i)})− wA(M ∪M ′) , (2)

while ui = 0 if i is not assigned by µ . Similarly the minimum core payoff
of a seller j who is matched by µ is

vj = aµ−1(j)j + wA((M ∪M ′) \ {µ−1(j)})− wA(M ∪M ′) . (3)

The two aforementioned extreme core allocations of the assignment game
are not, in general, the only ones. We will denote by Ext(C(wA)) the set of
extreme points of the core of (M ∪M ′, wA) .

3 The canonical matrix

We associate to each assignment game, a new assignment market the core of
which preserves the same structure but has the additional property of being
large.1 This related assignment game will be named the canonical represen-
tative of the original market. Given an assignment game (M ∪ M ′, wA) ,
where N = M ∪ M ′ , and in order to introduce its canonical form, some
notations are needed.

The marginal value of player i to the coalition S , i 6∈ S , is given by
4i(S, wA) = wA(S ∪ {i})− wA(S) , and the special case where S = N \ {i}
is denoted by 4i(wA) = wA(N) − wA(N \ {i}) and named the marginal
contribution of player i .

1For an arbitrary coalitional game (N, v) , the core is said to be large (Sharkey, 1982)
if for all aspiration y ∈ Rn such that y(S) ≥ v(S) for all S ⊆ N , there exists x ∈ C(v)
that satisfies xk ≤ yk for all k ∈ N .
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The second difference of two different players, i and j , to coalition S
such that i, j 6∈ S is 4ij(S, wA) = wA(S ∪ {i, j}) + wA(S)− wA(S ∪ {i})−
wA(S ∪ {j}) . Notice that 4ij(S,wA) = 4ji(S,wA) . The special case where
S = N \ {i, j} is named the second marginal contribution of players i and
j , and it is denoted by 4ij(wA) = wA(N) + wA(N \ {i, j})−wA(N \ {i})−
wA(N \ {j}) .

The marginal value of player i to the coalition S measures the con-
tribution of this player to the coalition S . The second difference of play-
ers i, j to the coalition S measures how the marginal value of one of the
players changes with respect to the other player. Notice that 4ij(wA) =
4i(S∪{j}, wA)−4i(S, wA) and also 4ij(wA) = 4j(S∪{i}, wA)−4j(S, wA) .

Once fixed an optimal matching µ ∈ M∗
A(M,M ′) , the canonical matrix

Ac associated to the assignment problem (M, M ′, A) is defined, for any
mixed pair (i, j) ∈ M × M ′ , by the second marginal contribution of their
optimal partners.

Definition 1 Let (M∪M ′, wA) be an assignment game with as many buyers
as sellers and let it be µ ∈M∗

A(M, M ′) . The canonical representative of the
assignment game (M ∪M ′, wA) is another assignment game with the same
set of agents and defined by the matrix Ac where, for all (i, j) ∈ M ×M ′ ,

ac
ij = 4µ(i),µ−1(j)(wA)

or equivalently

ac
ij = wA(M ∪M ′) + wA(M ∪M ′ \ {µ−1(j), µ(i)})

− wA(M ∪M ′ \ {µ(i)})− wA(M ∪M ′ \ {µ−1(j)}) .

Since µ(i) and µ−1(j) belong to opposite sides of the market, they are
complements, and by Shapley (1962) their second marginal contribution is
non-negative. Thus, ac

ij ≥ 0 for all (i, j) ∈ M×M ′ and Ac properly defines
an assignment market.

The canonical representative may seem to depend on the fixed optimal
matching µ , but in fact it does not. To see this, for all (i, j) ∈ M ×M ′ , let
us denote by ar

ij the solution to the following linear programme,

min
(u,v)∈C(wA)

ui + vj . (4)

Once fixed any optimal matching, µ ∈ M∗
A(M, M ′) , the solution of the

above programme is given by (see p. 430 in Núñez and Rafels, 2002b)

ar
ij = aiµ(i) + aµ−1(j),j + wA(M ∪M ′ \ {µ−1(j), µ(i)})− wA(M ∪M ′) . (5)
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Notice however that, by (4), ar
ij does not depend on the fixed optimal match-

ing, but only on C(wA) .

An assignment game is said to be buyer-seller exact if no matrix entry can
be raised without modifying the core of the game. That is, (M ∪M ′, wA)
is buyer-seller exact if and only if for all i ∈ M and all j ∈ M ′ there
exists (u, v) ∈ C(wA) such that ui + vj = aij . For an arbitrary assignment
game (M ∪M ′, wA) , the matrix Ar = (ar

ij)(i,j)∈M×M ′ just obtained defines
the buyer-seller exact representative (M ∪M ′, wAr) of (M ∪M ′, wA) . This
means that it is the unique assignment market with the same core as the
initial assignment market, C(wAr) = C(wA) , and with the property of being
buyer-seller exact.

Taking into account expressions (5), (2) and (3), we can easily verify
that2, for all (i, j) ∈ M ×M ′ ,

ac
ij = ar

ij − ui − vj. (6)

Notice that the right hand side of (6) does not depend on any fixed optimal
matching and, as a consequence, the canonical matrix Ac is well-defined
since it does not depend on the chosen optimal matching.

If we define another matrix with m rows and m′ columns, A , by
aij = ui + vj for all (i, j) ∈ M × M ′ , and taking into account the above
consideration, the following proposition follows straightforwardly.

Proposition 2 Let (M ∪ M ′, wA) be an assignment game with as many
buyers as sellers. The canonical matrix Ac satisfies Ac = Ar − A .

The following example illustrates how to obtain the canonical form of an
assignment game and also gives some intuition about its properties.

Example 3 Consider the 2× 2-assignment market defined by the following
matrix A :

1’ 2’

1
2

3 4
0 2

There is only one optimal matching which is µ = {(1, 1′), (2, 2′)} and thus
the worth of the grand coalition is wA(M∪M ′) = 5 . By (1), (2) and (3), the

2The substraction of ui and vj from aij instead of ar
ij does not guarantee non-

negativeness
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buyers-optimal and the sellers-optimal core allocations are (u, v) = (3, 1; 0, 1)
and (u, v) = (2, 0; 1, 2) . As a consequence, the vector of minimal core payoffs
is (u, v) = (2, 0; 0, 1) .

It is easy to check that C(wA) is the convex hull of the three extreme
points (2, 0; 1, 2), (3, 0; 0, 2) and (3, 1; 0, 1), and the projection of the core
to the space of payoffs to the buyers is depicted in the first picture of Figure
1.

u
2

u
1

u
2

u
1(3,0;0,2)(2,0;1,2)

(3,1;0,1)

(0,0;1,1)

(1,1;0,0)

(1,0;0,1)

Core of wA
Core of wA

C

Figure 1: The core of the game in Example 3 and of its canonical form

We use Definition 1 to obtain the canonical representative of the above
assignment market. For instance,

ac
11′ = wA(M ∪M ′) + wA(M ∪M ′ \ {1, 1′})

−wA(M ∪M ′ \ {1})− wA(M ∪M ′ \ {1′}) = (5 + 2)− (2 + 4) = 1 ,

ac
12′ = wA(M ∪M ′) + wA(M ∪M ′ \ {2, 1′})

−wA(M ∪M ′ \ {2})− wA(M ∪M ′ \ {1′}) = (5 + 4)− (4 + 4) = 1 ,

and similarly ac
21′ = 0 and ac

22′ = 1 . Thus the canonical representative Ac

is

1’ 2’

1
2

1 1
0 1

Notice that the core of this canonical representative is the triangle with
vertices (0, 0; 1, 1), (1, 0; 0, 1) and (1, 1; 0, 0). Again we depict its
projection to the buyers’ space of payoffs to see that this core is a translation
of the core of the original assignment market. Since the origin is in the core
of the canonical form, the vector of translation is the vector of minimal core
payoffs: C(wA) = {(u, v)}+ C(wAc) .

7



Moreover, different to the initial market (M ∪M ′, wA) , the core of the
canonical representative (M ∪M,wAc) is large.

Assignment games with large core have been characterized by Solymosi
and Raghavan (2001) by means of two properties of the assignment matrix:
dominant diagonal and doubly dominant diagonal. An assignment game
(M ∪M ′, wA) with as many buyers as sellers has dominant diagonal if and
only if, once placed an optimal matching in the diagonal, aii ≥ aij for
all j ∈ M ′ and aii ≥ aji for all j ∈ M . As these authors point out,
this is equivalent to saying that each agent has a null minimal core payoff.
Since the property of having null core payoff does not depend on the optimal
matching placed on the diagonal, it follows that, for all µ ∈ M∗

A(M,M ′) ,
the assignment game has dominant diagonal if and only if, for all i∗ ∈ M ,
ai∗µ(i∗) ≥ ai∗j for all j ∈ M ′ and ai∗µ(i∗) ≥ aiµ(i∗) for all i ∈ M .

An assignment game with as many buyers and sellers and an optimal
matching placed on the diagonal has doubly dominant diagonal if and only
if aij + akk ≥ aik + akj for all i, j, k ∈ M . It is proved in Núñez and Rafels
(2002b) that this property characterizes those matrices with the property of
buyer-seller exactness, that is, those where each matrix entry is attained by
some core element. Since buyer-seller exactness is a property of the game
which does not depend on the optimal matching placed on the diagonal,
for each µ ∈ M∗

A(M, M ′) , the assignment game (M ∪M ′, wA) has doubly
dominant diagonal if and only if aij +akµ(k) ≥ aiµ(k) +akj for all i, j, k ∈ M .

Recall that the translation of a convex game C ⊆ Rn by the vector
t ∈ Rn is the set of vectors x ∈ Rn such that x = t + y with y ∈ C .
Formally, {t}+ C = {t + y | y ∈ C} .

The next theorem gives a characterization of the canonical representative.

Theorem 4 Let (M ∪M ′, wA) be an assignment game with as many buyers
as sellers. The matrix Ac is unique among those matrices A′ such that

1. A′ has dominant diagonal,

2. A′ has doubly dominant diagonal and

3. C(wA) is a translation of C(wA′) .

Proof: We first prove that Ac satisfies the three properties in the statement
of the theorem. To prove the property of translation of the cores, recall first
that C(wA) = C(wAr) . Let us see first that both matrices Ar and Ac have
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the same set of optimal matchings (and as a consequence, they have at least
one optimal matching in common). It happens that µ ∈M∗

Ar(M,M ′) if and
only if, for all µ′ ∈ M(M,M ′) it holds

∑
(i,j)∈µ ar

ij ≥
∑

(i,j)∈µ′ a
r
ij , and this

is equivalent to

∑

(i,j)∈µ

ar
ij −

∑
i∈M

ui −
∑

j∈M ′
vj ≥

∑

(i,j)∈µ′
ar

ij −
∑
i∈M

ui −
∑

j∈M ′
vj

which is equivalent to
∑

(i,j)∈µ ac
ij ≥

∑
(i,j)∈µ′ a

c
ij for all µ′ ∈ M(M,M ′) ,

and this is equivalent to the fact that µ is also an optimal matching for
(M, M ′, Ac) .

Now, let us see that C(wA) = {(u, v)}+C(wAc) , or equivalently C(wAr) =
{(u, v)}+C(wAc) . Take (u, v) ∈ RM×RM ′

and define (u′, v′) ∈ RM×RM ′

by
u′i = ui − ui , for all i ∈ M and v′j = vj − vj , for all j ∈ M ′.

We claim that (u, v) ∈ C(wAr) if and only if (u′, v′) ∈ C(wAc) . To see
that, notice first that, since (u, v) is the vector of minimal core payoffs of
(M ∪M ′, wA) , if (u, v) ∈ C(wAr) then ui ≥ ui and vj ≥ vj , and thus we
get u′i ≥ 0 and v′j ≥ 0 . Conversely, if u′i and v′j are non-negative, since
this implies ui ≥ ui and vj ≥ vj , non-negativity also holds for ui and vj .
Moreover, since for all i ∈ M and j ∈ M ′ u′i + v′j = ui + vj − ui − vj and
ac

ij = ar
ij−ui−vj , we have that ui+vj ≥ ar

ij if and only if u′i+v′j ≥ ac
ij . Take

now µ ∈M∗
Ac(M, M ′) and recall that µ is also an optimal matching for Ar .

Then, if (i, j) ∈ µ , we have that ui + vj = ar
ij if and only if u′i + v′j = ac

ij .

From the argument above follows straightforwardly that, since wAr is
buyer-seller exact, wAc is also buyer-seller exact and thus Ac has doubly
dominant diagonal. Notice only that if (u, v) ∈ C(wAr) satisfies ui + vj =
ar

ij , then (u′, v′) = (u, v)− (u, v) belongs to C(wAc) and satisfies u′i + v′j =
ac

ij .

It remains to prove that Ac has dominant diagonal. Once proved that
C(wAr) is the translation of C(wAc) by the vector (u, v) , it follows that,
if we denote by (uc, vc) and (uc, vc) the sellers-optimal and the buyers-
optimal core allocation of (M ∪M ′, wAc) , then (u, v) = (u, v) + (uc, vc) and
(u, v) = (u, v)+(uc, vc) . Then, ui = ui +uc

i for all i ∈ M , and vj = vj +vc
j

for all j ∈ M ′ . Thus, every agent has a null minimal core payoff in the game
wAc which means that Ac has dominant diagonal.

Finally the uniqueness of the matrix A′ satisfying the three requirements
follows easily. On the one hand, if C(wA) is a translation of C(wA′) , since
(M ∪ M ′, wA′) has dominant diagonal and thus null minimal core payoffs,
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the vector of translation must be (u, v) . Secondly, once C(wA′) is deter-
mined by C(wA′) = {(−u,−v)} + C(wA) = C(wAc) , recall from Núñez and
Rafels (2002b) that there exists only one assignment game with a given core
and with the property of being buyer-seller exact (or equivalently doubly
dominant diagonal). 2

Recall from Solymosi and Raghavan (2001) that having dominant diag-
onal and doubly dominant diagonal characterizes those assignment games
with large core (and also those assignment games which are exact). Then,
the following corollary follows from Theorem 4.

Corollary 5 Let (M ∪M ′, wA) be an assignment game with as many buy-
ers as sellers. The canonical representative (M ∪ M ′, wAc) is the unique
assignment game with a core that is large and is a translation of C(wA) .

We now ask which is the behavior of the main cooperative solutions to
the assignment game with respect to its canonical representative. Those
solutions tightly related to the core behave as expected: the buyers-optimal
core allocation of the assignment game is the translation, by the vector of
minimal core payoffs, of the buyers-optimal core allocation of the canonical
representative. The same happens with the sellers-optimal core allocation.
Since the τ -value of the assignment game is the midpoint between the buyers-
optimal and the sellers-optimal core allocation (Núñez and Rafels 2002a),
the τ -value of the assignment game is also the translation, by the vector of
minimal core payoffs, of the buyers-optimal core allocation of the canonical
representative.

In Izquierdo et al. (2006) we show that the set of max-payoff vectors
coincides with the set of extreme core allocations for those assignment games
with large core. To introduce these vectors some notation is needed. An
ordering θ on N = M ∪ M ′ is a bijection from {1, 2, . . . , n} to N =
M ∪ M ′ . We then denote an ordering θ by (k1, k2, . . . , kn) where, for all
i ∈ {1, 2, . . . , n} , ki = θ(i) is the agent that occupies place i . The set of
predecessors of agent k∗ ∈ M ∪M ′ in the ordering θ is P θ

k∗ = {k ∈ M ∪M ′ |
θ−1(k) < θ−1(k∗) } , and the set of all orderings on N is denoted by SN .

Let (M ∪ M ′, wA) be an assignment game. For all θ ∈ SN , the max-
payoff vector xθ(A) ∈ Rn related to θ is defined by xθ

k1
(A) = wA(k1) = 0

and, for all r ∈ {2, . . . , n} ,

xθ
kr

(A) =

{
maxi∈P θ

kr
∩M{0, aikr − xθ

i (A)} if kr ∈ M ′ ,
maxj∈P θ

kr
∩M ′{0, akrj − xθ

j(A)} if kr ∈ M .
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Once fixed and ordering, the first agent receives a null payoff and, after
that, each agent receives the maximum profit he can obtain by trading with
one of his predecessors on the opposite side of the market, after paying this
partner what the vector xθ has already allocated to him.

It is proved in Izquierdo et al. (2006) that, for those assignment games
with as many buyers as sellers, the set of max-payoff vectors coincides with
the set of extreme core allocations of the assignment game if and only if the
assignment matrix is dominant diagonal and doubly dominant diagonal.

Now, as a consequence of Theorem 4, the set of extreme core allocations
of an arbitrary assignment market turns out to be the translation, by the
vector of minimal core payoffs, of the set of max-payoff vectors of its canonical
representative.

Corollary 6 Let (M ∪M ′) be an assignment game with as many buyers as
sellers and let Ac be its canonical representative. The set of extreme core
allocations is

Ext(C(wA)) = {(u, v)}+ {xθ(Ac)}θ∈SN
,

where (u, v) is the vector of minimal core payoffs of the game (M∪M ′, wA) .

4 The kernel

In this section we consider another set-solution concept for coalitional games
that is known as the kernel of the game. We will see that, as it happens with
the core, the kernel of an assignment game is the translation, by the vector of
minimal core payoffs, of the kernel of its canonical representative. The kernel
K(v) of a coalitional game with transferable utility (N, v) is a set-solution
concept introduced by Davis and Maschler (1965), and it is always nonempty.
In the case of a zero–monotonic game ( v(S) ≥ v(T ) +

∑
i∈S\T v({i}) , for all

T ⊆ S ), as it is the case of assignment games, the kernel is given by

K(v) = {z ∈ RN |
∑

k∈N

zk = v(N) and sv
ij(z) = sv

ji(z) for all i, j ∈ N, i 6= j},

where the maximum surplus sv
ij(z) of player i over another player j with

respect to the allocation z ∈ RN in the game (N, v) is defined by

sv
ij(z) = max{v(S)−

∑

k∈S

zk | S ⊆ N , i ∈ S , j 6∈ S} .
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Then, the kernel can be understood as the set of all efficient allocations for
which all pair of players are in equilibrium.

The first analysis of the kernel of an assignment game, K(wA) , is carried
out by Rochford (1984) who characterizes the intersection between the kernel
and the core. She points out that, for those (u, v) ∈ C(wA) , the maximum
excess sij(u, v) is attained either at a mixed-pair coalition or at a single-
player coalition, and the same happens to sji(u, v) . Also Granot and Granot
(1992) analyze some properties of the intersection between the kernel and the
core of the assignment game. Once Driessen (1998) proves that the kernel
of an assignment game is included in the core, the above remarks can be
put together to provide a simplified definition of the kernel of an assignment
game.

We will denote by Φ(A) the set of pairs (i, j) ∈ M ×M ′ belonging to
all optimal matching of the market (M,M ′, wA) . Notice then that, since we
assume A square3, if (i, j) 6∈ Φ(A) then there exists µ1 ∈M∗

A(M, M ′) such
that µ1(i) 6= j and thus sij(u, v) = aiµ1(i) − ui − vµ1(i) = 0 for all (u, v) ∈
C(wA) . Similarly, there exists µ2 ∈ M∗

A(M,M ′) such that µ−1
2 (j) 6= i and

thus also sji(u, v) = 0 .

As a consequence,

K(wA) = {(u, v) ∈ C(wA) | sij(u, v) = sji(u, v) , ∀(i, j) ∈ Φ(A) } (7)

where sij(u, v) = max{−ui, aij1 − ui − vj1 , ∀j1 ∈ M ′ \ {j}} and sji(u, v) =
max{−vj, ai1j − ui1 − vj, ∀i1 ∈ M \ {i}} .

The above expression substantially reduces the number of equality con-
straints that are to be taken into account to obtain the kernel of an assign-
ment game. We are now prepared to prove the relationship between the
kernel of an assignment game and that of its canonical form.

Theorem 7 Let (M ∪M ′, wA) be an assignment game with as many buyers
as sellers. Then,

K(wA) = {(u, v)}+K(wAc) ,

where (u, v) is the vector of minimal core payoffs of the game (M∪M ′, wA) .

Proof: Since we know from Núñez (2004) that K(wA) = K(wAr) , we will
in fact prove that K(wAr) = {(u, v)} + K(wAc) . Moreover, since C(wA) =

3This assumption is not restrictive at all since when we add null rows or columns to
make the matrix square, the kernel of the new market is obtained from the kernel of the
original one by giving a zero payoff to the added dummy agents.
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C(wAr) = {(u, v)}+C(wAc) , and we know that the kernel of the assignment
game is included in the core, we will prove that, for all x ∈ C(wAr) , x ∈
K(wAr) if and only if y = x− (u, v) ∈ K(wAc) . Recall also from the proof of
Theorem 4 that Ar and Ac have the same optimal matchings, which implies
Φ(Ar) = Φ(Ac) .

Now we prove that, for all (i∗, j∗) ∈ Φ(Ar) and all x ∈ C(wAr) it holds
sAr

i∗j∗(x) = sAc

i∗j∗(y) and sAr

j∗i∗(x) = sAc

j∗i∗(y) , where y = x− (u, v) . Two cases
will be considered.

Case 1: Assume ui∗ = 0 . Take any x ∈ C(wAr) and consider y = x−(u, v) .

If sAr

i∗j∗(x) is attained at the single-player coalition, sAr

i∗j∗(x) = −xi∗ .
Then on one side −xi∗ = −yi∗−ui∗ = −yi∗ . Moreover, for all j ∈ M ′ \{j∗} ,
−xi∗ ≥ ar

i∗j − xi∗ − xj = ar
i∗j − (yi∗ + ui∗)− (yj + vj) = ac

i∗j − yi∗ − yj . Thus,
in this case, sAr

i∗j∗(x) = sAc

i∗j∗(y) , where y = x− (u, v) .

If sAr

i∗j∗(x) is attained at a mixed-pair coalition, sAr

i∗j∗(x) = ar
i∗j1 − xi∗ −

xj1 = ac
i∗j1 − yi∗ − yj1 . Moreover, for all j ∈ M ′ \ {j∗, j1} , it holds ar

i∗j1 −
xi∗−xj1 ≥ ar

i∗j−xi∗−xj = ac
i∗j−yi∗−yj . Finally, ar

i∗j1−xi∗−xj1 ≥ −xi∗ =
−yi∗ − ui∗ = −yi∗ . Thus, also in this case sAr

i∗j∗(x) = sAc

i∗j∗(y) .

Case 2: Assume now that ui∗ > 0 . We first claim that, under this assump-
tion, for all x ∈ C(wAr) it holds sAr

i∗j∗(x) 6= −xi∗ .

To prove the claim, assume there exists x ∈ C(wAr) such that sAr

i∗j∗(x) =
−xi∗ . This means that, for all j ∈ M ′ \ {j∗} , −xi∗ ≥ ar

i∗j − xi∗ − xj , which
means that

ar
i∗j ≤ xj for all j ∈ M ′ \ {j∗} . (8)

Define then a payoff vector x̃ ∈ RM×RM ′
in the following way: x̃j = xj

for all j ∈ M ′ \ {j∗} , x̃j∗ = xi∗ + xj∗ , x̃i = xi for all i ∈ M \ {i∗} and
x̃i∗ = 0 .

We now prove that x̃ ∈ C(wAr) . To do that, fix any optimal matching
µ ∈ M∗

Ar(M, M ′) and notice that x̃k ≥ 0 for all k ∈ M ∪M ′ ; x̃i + x̃j =
xi+xj = ar

ij for all (i, j) ∈ µ ; x̃i+ x̃j ≥ ar
ij for all i ∈ M \{i∗} and j ∈ M ′ ;

and, by (8), xi∗ + xj = xj ≥ ar
i∗j for all j ∈ M \ {j∗} . From x̃ ∈ C(wAr)

follows that ui∗ = 0 in contradiction with the assumption of Case 2.

Our second claim is that, under the assumption that ui∗ > 0 , there exists
j2 6= j∗ such that ui∗ + vj2 = ar

i∗j2 . If that were not the case, ui∗ + vj > ar
i∗j

for all j 6= j∗ , we could define ε = minj 6=j∗{ui∗ + vj − ar
i∗j, ui∗} > 0 . Then,

the payoff vector (u, v) ∈ RM ×RM ′
, where ui∗ = ui∗ − ε , vj∗ = vj∗ + ε ,

ui = ui for all i ∈ M \ {i∗} and vj = vj for all j ∈ M ′ \ {j∗} , would belong
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to the core, in contradiction with the definition of ui∗ as the minimal core
payoff of agent i∗ .

Then, by our first claim, there exists j1 ∈ M ′ \ {j∗} such that

sAr

i∗j∗(x) = max
j∈M ′\{j∗}

{ar
i∗j − xi∗ − xj} = ar

i∗j1 − xi∗ − xj1 = ac
i∗j1 − yi∗ − yj1 .

Moreover, for all j ∈ M ′ \ {j∗, j1} , ar
i∗j1 − xi∗ − xj1 ≥ ar

i∗j − xi∗ − xj =
ac

i∗j − yi∗ − yj . By our second claim, there exists j2 ∈ M ′ \ {j∗} such that
ui∗+vj2 = ar

i∗j2 . Then, ar
i∗j1−xi∗−xj1 ≥ ar

i∗j2−xi∗−xj2 = ui∗+vj2−xi∗−xj2 ≥
−xi∗ + ui∗ = −yi∗ . This concludes the proof of sAr

i∗j∗(x) = sAc

i∗j∗(y) in Case 2.

The proof of sAr

j∗i∗(x) = sAc

j∗i∗(y) is analogous and thus left to the reader.
We have then seen that x ∈ K(wA) if and only if y = x− (u, v) ∈ K(wAc) ,
which finishes the proof of the theorem. 2

5 The nucleolus

The nucleolus is a single–valued solution concept for TU coalitional games.
Let us recall the definition, which is due to Schmeidler (1969). Recall that
an imputation of a game (N, v) is a payoff vector x ∈ Rn that is efficient,∑

i∈N xi = v(N) , and individually rational, xi ≥ v({i}) for all i ∈ N . The
set of imputations of (N, v) is denoted by I(v) . For all imputation x of
(N, v) , and all coalition S ⊆ N , the excess of coalition S with respect to x
is e(S, x) = v(S)−x(S) . Now, for all imputation x , let us define the vector
θ(x) ∈ R2n−2 of excesses of all coalitions (different from the grand coalition
and the empty set) at x , arranged in a nonincreasing order. That is to say,
for all k ∈ {1, . . . , 2n − 2} , θk(x) = e(Sk, x) , where {S1, . . . , Sk, . . . , S2n−2}
is the set of all nonempty coalitions in N different from N , and e(Sk, x) ≥
e(Sk+1, x) .

Then the nucleolus of the game (N, v) is the imputation ν(v) which min-
imizes θ(x) with respect to the lexicographic order over the set of imputa-
tions: θ(ν(v)) ≤Lex θ(x) for all x ∈ I(v) . This means that, for all x ∈ I(v) ,
either θ(ν(v)) = θ(x) or θ(ν(v)) <Lex θ(x) . And θ(ν(v)) <Lex θ(x) if there
exists k ∈ {1, 2, . . . , n} such that θi(ν(v)) = θi(x) whenever i < k and
θk(ν(v)) = θk(x) .

It is easy to see that, whenever the core of a game is nonempty, the
nucleolus belongs to it. Moreover, the nucleolus always belongs to the kernel.

An alternative definition of the nucleolus for an arbitrary TU coalitional
game is given by Maschler, Peleg and Shapley (1979) as an iterative process
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that constructs the set of payoffs that lexicographically minimize the vector
of ordered excesses. They prove that this set of minimizers is actually a
single point, called the lexicographic center of the game, which coincides
with the nucleolus. Solymosi and Raghavan (1994) present a definition of
lexicographic center specialized for assignment games, based on the fact that
for assignment games only one–player coalitions and mixed–pair coalitions
play a role in the computation of the nucleolus.

As in Núñez (2004), the definition of lexicographic center of an assignment
game we present here is slightly different from that of Solymosi and Raghavan
(1994); for instance, we define the initial feasible set X0 to be the core of
the game. All steps in the proof of Solymosi and Raghavan (1994) can be
followed to prove that our definition of lexicographic center of an assignment
game also consists of only one point and coincides with the nucleolus.

Let (M ∪M ′, wA) be an assignment game and µ a fixed optimal match-
ing for (M, M ′, wA) , µ ∈ M∗

A(M, M ′) . Let us consider the set of one–
player coalitions and mixed–pair coalitions, that is C = {{k} | k ∈ M ∪
M ′} ∪ {{i, j} | i ∈ M , j ∈ M ′} . We iteratively construct a sequence
(∆0, Σ0), . . . , (∆s+1, Σs+1) of partitions of C , with Σ0 ⊇ Σ1 ⊇ · · · ⊇ Σs+1 ,
and a sequence X0 ⊇ X1 ⊇ · · · ⊇ Xs+1 of sets of payoff vectors such that:
Initially ∆0 = {{i, j} | (i, j) ∈ µ} ∪ {{k} | k ∈ M ∪M ′ not matched by µ} ;
Σ0 = C \∆0 , and X0 = C(wA) = {x ∈ RM

+ ×RM ′
+ | e(S, x) = 0 for all S ∈

∆0 , e(S, x) ≤ 0 for all S ∈ Σ0 } .
For r ∈ {0, 1, . . . , s} define recursively

1. αr+1 = minx∈Xr maxS∈Σr e(S, x) ,

2. Xr+1 = {x ∈ Xr | maxS∈Σr e(S, x) = αr+1},
3. Σr+1 = {S ∈ Σr | e(S, x) is constant on Xr+1} ,

4. Σr+1 = Σr \ Σr+1 , ∆r+1 = ∆r ∪ Σr+1 ,

where s is the last index for which Σr 6= ∅ . The set Xs+1 is called the
lexicographic center of (M ∪M ′, wA) .

As a consequence, following Solymosi and Raghavan (1994), it can be
shown that, for all r ∈ {0, 1, . . . , s} , the payoff set Xr can be written in the
following way:

Xr+1 =

{
x ∈ RM

+ ×RM ′
+

∣∣∣∣
e(S, x) = e(S, ν(wA)) , for all S ∈ ∆r+1

e(S, x) ≤ αr+1 , for all S ∈ Σr+1

}
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or equivalently

Xr+1 =





x ∈ RM
+ ×RM ′

+

∣∣∣∣∣∣∣∣

xk = νk(wA) for all {k} ∈ ∆r+1

aij − xi − xj = aij − νi(wA)− νj(wA) for all {i, j} ∈ ∆r+1

xk ≥ −αr+1 for all {k} ∈ Σr+1

xi + xj ≥ aij − αr+1 for all {i, j} ∈ Σr+1





where ν(wA) is the nucleolus of the game (M ∪ M ′, wA) . Thus, for each
allocation in Xr+1 , the excess of a coalition in ∆r+1 already equals the
excess of this coalition at the nucleolus while, for the coalitions in Σr+1 , the
right hand side of the corresponding core constraint has been increased in
−αr+1 .

In the proof of the following theorem we will consider another collection
of payoff sets, one for each step of the iterative procedure. In each step, the
excess of the settled coalitions ( S ∈ ∆r+1 ) will be fixed, and also equal to
the corresponding excess at the nucleolus, while for the unsettled coalitions
( S ∈ Σr+1 ) we will keep the corresponding core constraints. We then define
a sequence Z0 ⊇ Z1 ⊇ · · · ⊇ Zs+1 of sets of payoffs such that: Z0 = X0 =
C(wA) and, for each r ∈ {0, 1, . . . , s} ,

Zr+1 =





x ∈ RM
+ ×RM ′

+

∣∣∣∣∣∣∣∣

xk = νk(wA) for all {k} ∈ ∆r+1

aij − xi − xj = aij − νi(wA)− νj(wA) for all {i, j} ∈ ∆r+1

xk ≥ 0 for all {k} ∈ Σr+1

xi + xj ≥ aij for all {i, j} ∈ Σr+1





(9)
Notice that, by definition, Z0 = X0 = C(wA) and Xr+1 ⊆ Zr+1 for all
r ∈ {0, 1, . . . , s} . Moreover, Zs+1 = Xs+1 and thus Zs+1 also coincides
with the nucleolus.

Theorem 8 Let (M ∪M ′, wA) be an assignment game with as many buyers
as sellers. 4 Then,

ν(wA) = (u, v) + ν(wAc) ,

where (u, v) is the vector of minimal core payoffs of the game (M∪M ′, wA) .

Proof: We can assume without loss of generality that wA is buyer-seller
exact ( A = Ar ), since, by Núñez (2004), ν(wA) = ν(wAr) . Let us fix
µ ∈ M∗

A(M, M ′) . Since A = Ar , we have µ ∈ M∗
Ac(M,M ′) , as it

is justified at the beginning of the proof of Theorem 4. We then denote

4It is argued in Núñez (2004) that making the matrix square does not modify the
nucleolus of the assignment game, if we drop the null payoff to the added dummy agents.
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by (∆0, Σ0), . . . , (∆s+1, Σs+1) and X0, . . . , Xs+1 the partitions and pay-
off sets which define the lexicographic center of (M ∪ M ′, wA) , and by
(∆̃0, Σ̃0), . . . , (∆̃s′+1, Σ̃s′+1) and X̃0, . . . , X̃s′+1 the partitions and payoff sets
which define the lexicographic center of (M ∪M ′, wAc) .

We prove that for all 0 ≤ r ≤ s + 1 , ∆r = ∆̃r , Σr = Σ̃r , and Xr =
{(u, v)} + X̃r . We also write eA(S, x) = wA(S) − x(S) and eAc

(S, y) =
wAc(S)− y(S) , for all S ⊆ M ∪M ′ and all x ∈ C(wA) or y ∈ C(wAc) .

The proof is by induction on r . By definition, ∆0 = ∆̃0 , Σ0 = Σ̃0 and
X0 = {(u, v)}+X̃0 . Assume now that, for some r ≥ 0 , ∆r = ∆̃r , Σr = Σ̃r ,
and Xr = {(u, v)} + X̃r , and let us show that these equalities hold at step
r + 1 . To see this, we prove that, for all x ∈ Zr (the set defined in (9)) and
y = x− (u, v) ,

max
S∈Σr

eA(S, x) = max
S∈Σr

eAc

(S, y) = max
S∈Σ̃r

eAc

(S, y) , (10)

where the last equality follows from the induction assumptions. We will prove
(10) in two steps.

Claim 1: For all x ∈ Zr , if maxS∈Σr eA(S, x) = eA(S∗, x) , then eA(S∗, x) =
eAc

(S∗, y) for y = x− (u, v) .

If the above maximum is attained at a mixed-pair coalition S∗ = {i, j} ∈
Σr , where i ∈ M and j ∈ M ′ , the assertion in Claim 1 follows straightfor-
wardly since

eA(S∗, x) = aij − xi − xj = aij − ui − vj − (xi − ui)− (xj − vj) = eAc

(S∗, y) .

Assume then that, for some x ∈ Zr , maxS∈Σr eA(S, x) = −xi∗ for some
S∗ = {i∗} ∈ Σr (let us assume without loss of generality that i∗ ∈ M ). If
ui∗ = 0 , then also eA(S∗, x) = −xi∗ = −yi∗ = eAc

(S∗, y) . Assume otherwise
that ui∗ > 0 .

Since −xi∗ ≥ aij − xi − xj for all {i, j} ∈ Σr , we get

(xi − xi∗) + xj ≥ aij for all {i, j} ∈ Σr . (11)

Define then the graph G = (V,E) with the set of vertices V = M ∪M ′

and the set of edges E = {{i, j} | {i, j} ∈ ∆r} . Let Ci∗ be the connected
component of G containing player i∗ and denote by Vi∗ the vertices in this
component. Notice that:

a) For all k ∈ Vi∗ , {k} 6∈ ∆r . To see that, assume there exists k ∈ Vi∗

such that {k} ∈ ∆r . Since i∗ and k are in the same component, there
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exist k1, k2, . . . , kl ∈ Vi∗ such that the edges {k, k1} , {k1, k2} ,..., {kl, i
∗} all

belong to E . But then, from {k} ∈ ∆r and {k, k1} ∈ ∆r follows that
{k1} ∈ ∆r and then recursively that {k2}, . . . , {kl} and {i∗} also belong to
∆r , in contradiction with {i∗} ∈ Σr .

b) For all i ∈ Vi∗∩M , xi∗ ≤ xi . This follows from the fact that maxS∈Σr eA(S, x) =
−xi∗ ≥ −xi for all {i} ∈ Σr .

We now define an allocation x̃ ∈ RM ×RM ′
by

x̃i = xi − xi∗ , for all i ∈ Vi∗ ∩M ; x̃i = xi , for all i ∈ M , i 6∈ Vi∗ ;
x̃j = xj + xi∗ , for all j ∈ Vi∗ ∩M ′ ; x̃j = xj , for all j ∈ M ′ , j 6∈ Vi∗ .

Let us check that x̃ ∈ C(wA) . It is obvious from b) that x̃k ≥ 0 for all
k ∈ M ∪ M ′ . Secondly, if (i, j) ∈ µ then {i, j} ∈ ∆r and either both
players belong to the component Vi∗ or none of them does. If i, j ∈ Vi∗ ,
then x̃i + x̃j = xi − xi∗ + xj + xi∗ = xi + xj = aij since x ∈ Zr ⊆ C(wA) . If
i 6∈ Vi∗ and j 6∈ Vi∗ , then also x̃i+x̃j = xi+xj = aij since x ∈ Zr ⊆ C(wA) .

Finally, if (i, j) 6∈ µ , there are four possibilities. If i ∈ Vi∗ and j ∈ Vi∗ ,
then again x̃i+x̃j = xi−xi∗+xj +xi∗ = xi+xj ≥ aij since x ∈ Zr ⊆ C(wA) .
If i 6∈ Vi∗ and j 6∈ Vi∗ , then, since x ∈ Zr is a core allocation, x̃i + x̃j =
xi + xj ≥ aij . If i ∈ Vi∗ and j 6∈ Vi∗ , this means that {i, j} ∈ Σr and thus
by (11) we get x̃i + x̃j = xi − xi∗ + xj ≥ aij . And in the last case, that is
i 6∈ Vi∗ and j ∈ Vi∗ , we also get x̃i + x̃j = xi + xj + xi∗ ≥ aij + xi∗ ≥ aij

since x ∈ Zr belongs to the core.

Once proved that x̃ ∈ C(wA) , notice that x̃i∗ = 0 in contradiction with
ui∗ > 0 . This proves Claim 1. It now remains to prove the following claim.

Claim 2: For all x ∈ Zr , if maxS∈Σr eA(S, x) = eA(S∗, x) , then eAc
(S∗, y) =

maxS∈Σr eAc
(S, y) , where y = x− (u, v) .

On the one side, for all {i, j} ∈ Σr , where i ∈ M and j ∈ M ′ ,
eAc

(S∗, y) = eA(S∗, x) ≥ aij −xi−xj = ac
ij − yi− yj , where the first equality

holds from Claim 1. On the other side, for all {i} ∈ Σr (let us assume
without loss of generality that i ∈ M ) we have eAc

(S∗, y) = eA(S∗, x) ≥
−xi = −yi − ui . If ui = 0 , we have that eAc

(S∗, y) ≥ −yi .

Otherwise, that is if ui > 0 , notice that Zr preserves the same lattice
structure as the core of the assignment game and thus there exists a sellers-
optimal allocation in Zr , that we denote by (ur, vr) . Since Zr ⊆ C(wA) ,
it holds ur

i ≥ ui > 0 . Since (ur, vr) is an extreme point of Zr , {i} ∈ Σr

and ui > 0 , some other constraint of Zr involving agent i must be tight
at (ur, vr) , apart from those related to coalitions in ∆r . This means that
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there exists {i, j} ∈ Σr such that ur
i + vr

j = aij . Then,

eAc

(S∗, y) = eA(S∗, x) ≥ aij − xi − xj = ur
i + vr

j − xi − xj

≥ −xi + ur
i ≥ −xi + ui = −yi .

This proves Claim 2.

Now, once proved that for all x ∈ Zr , maxS∈Σr eA(S, x) = maxS∈Σr eAc
(S, y)

where y = x−(u, v) , notice that since Xr ⊆ Zr , the above coincidence holds
for all x ∈ Xr . Then, since by induction hypothesis Xr = {(u, v)} + X̃r

and Σr = Σ̃r ,

αr+1 = min
x∈Xr

max
S∈Σr

eA(S, x) = min
y∈X̃r

max
S∈Σ̃r

eAc

(S, y) = α̃r+1 .

As a consequence,

Xr+1 = {x ∈ Xr | max
S∈Σr

eA(S, x) = αr+1} =

= {(u, v)}+ {y ∈ X̃r | max
S∈Σ̃r

eAc

(S, y) = α̃r+1} = {(u, v)}+ X̃r+1 .

Moreover, since −yi = −xi + ui , −yj = −xj + vj and aij − xi − xj =
ac

ij − yi − yj , where y = x − (u, v) , we have that eA(S, x) is constant on

Xr+1 if and only if eAc
(S, y) is constant on X̃r+1 . Thus, Σr+1 = Σ̃r+1 ,

∆r+1 = ∆̃r+1 and Σr+1 = Σ̃r+1 .

Thus, when Xr reduces to one single point for some r ≥ 0 , the same
happens to X̃r . As a consequence, the algorithms to compute the lexi-
cographic center of (M ∪ M ′, wA) and (M ∪ M ′, wAc) finish at the same
time, that is s = s′ . Then, Xs+1 = {u, v)} + X̃s′+1 or equivalently
ν(wA) = (u, v) + ν(wAc) . 2

6 Concluding remarks

In this paper we have related to every assignment market a canonical form,
the core of which is the translation of the core of the original market. We
first want to remark that in the characterization of this canonical form Ac

(Theorem 4) the buyer-seller exact representative Ar plays a fundamental
role since it guarantees that the minimal core payoffs of agents i ∈ M and
j ∈ M ′ can be subtracted from the worth of the mixed-pair coalition and
still have a non-negative profit.
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Secondly, the usefulness of the canonical form Ac lies on the fact that
the computation of some solutions for the canonical form gives, by means of
translation, the same solution for the original market.

This is the case of the extreme core allocations. We know a simple pro-
cedure to compute these extreme points which is only valid for assignment
games with large core (see Izquierdo et al., 2006). However, once the ex-
treme core points of the canonical representative have been obtained, their
translation by the vector of minimal core payoffs are the extreme core points
of the original market.

Since the τ -value of the assignment game is the midpoint between the
buyers-optimal and the sellers-optimal core allocations, this τ -value is the
translation, by the vector of minimal core payoffs, of the τ -value of the
canonical representative. Also the kernel of the assignment game is proved
in the paper to be the translation by the vector of minimal core payoffs of
the kernel of its canonical representative. And the same happens to the
nucleolus. Thus, if we had a simple procedure to compute the nucleolus or
the kernel of those assignment games with large core, we would obtain by
translation the same solution applied to the original assignment market.

Other solution concepts, when applied to assignment markets, do not be-
have so regularly with respect to the canonical representative: this is the case
of the Shapley or the stable sets. As for the Shapley value of an assignment
game, it is well-known that it usually does not belong to the core. How-
ever, Hoffmann and Sudhölter (2005) have recently proved that exactness
(that is to say, being dominant diagonal and doubly dominant diagonal) is
a sufficient condition to guarantee that the Shapley value of the assignment
game is a core allocation. We can then define a single-valued solution, the
translated Shapley value φt(wA) , for the assignment game as the translation
of the Shapley value of its canonical representative, φ(wAc) , by the vector
of minimal core payoffs, that is, φt(wA) = (u, v) + φ(wAc) . By Theorem
4, φt(wA) is a core selection but it will not coincide, in general, with the
Shapley value of the assignment game (M ∪M ′, wA) .

Finally, it seems that the use of the canonical representative will allow us
to prove how to determine, just from the assignment matrix, the dimension
of the core of an assignment game. Also, this canonical representative seems
to be a useful tool to prove the existence of an stable set for an arbitrary
assignment market. But these will be the subjects of subsequent papers.

20



References

[1] Davis M, Maschler M (1965) The kernel of a cooperative game. Naval
Research Logistics Quarterly, 12, 223–259.

[2] Demange G (1982) Strategyproofness in the Assignment Market Game.
Laboratoire d’Econométrie de l’École Politechnique, Paris. Mimeo.
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