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Abstract

Given an assignment market, we introduce a set of vectors, one
for each possible ordering on the player set, which we name the max-
payoff vectors. Each one of these vectors is obtained recursively only
making use of the assignment matrix. Those max-payoff vectors that
are efficient turn up to give the extreme core allocations of the market.
When the assignment market has large core (that is to say, the assign-
ment matrix is dominant diagonal and doubly dominant diagonal) all
the max-payoff vectors are extreme core allocations.

Keywords assignment game, core, extreme core points, max-payoff
vectors

1 Introduction

The assignment game (Shapley and Shubik, 1972) is a cooperative model
for a two-sided market where side payments are allowed. In this market a
product that comes in indivisible units is exchanged for money, and each
participant either supplies or demands exactly one unit. The units need not
be alike and the same unit may have different values for different participants.
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From these valuations, a matrix can be written which reflects the profit that
can be obtained by each buyer-seller pair if they trade. Shapley and Shubik
prove that the core of the assignment game is nonempty, and has a lattice
structure.

The first analysis of the extreme core allocations of the assignment game is
due to Balinsky and Gale (1987). There, they show how to check, by means of
the connectedness of a graph, whether a core allocation is an extreme point.
Also, attainable upper and lower bounds for the number of extreme core
allocations are provided. After that, Hamers et al. (2002) prove that every
extreme core allocation of an assignment game is a marginal worth vector,
although not all marginal worth vectors are in the core of the assignment
game, since these games are not convex in general.

In Núñez and Rafels (2003) we characterize the set of extreme core allo-
cations of the assignment game as the set of reduced marginal worth vectors.
The reduced marginal worth vectors are inspired in the classical marginal
worth vectors with the difference that, for a fixed permutation on the player
set, a reduction of the game is performed before each player is paid her
marginal contribution to her set of predecessors. Moreover, for convex games,
reduced marginal worth vectors coincide with the marginal worth vectors,
and thus this characterization provides a unified approach to the class of
convex games and the class of assignment games with regard to the extreme
core allocations.

However, to compute a reduced marginal worth vector of an assignment
game is quite cumbersome, since before determining the payoff to each agent
we must reduce the game by the procedure due to Davis and Maschler. In
our paper we present the set of max-payoff vectors, also one for each possible
ordering of the set of agents. For a fixed ordering on the player set, the
corresponding max-payoff vector is obtained recursively, only making use of
the assignment matrix. It turns up that every extreme core allocation of
the assignment game is a max-payoff vector. In fact, the set of extreme core
allocations of the assignment game coincides with the subset of max-payoff
vectors that are efficient. Only when the assignment matrix has dominant
diagonal and doubly dominant diagonal, the whole set of max-payoff vectors
coincides with the set of extreme core allocations of the market. The defini-
tion of dominant diagonal and doubly dominant diagonal assignment matrix
is due to Solymosi and Raghavan (2001), and these two properties together
characterize those assignment games with large core (and those assignment
game which are exact).

In Section 2, notations and the main known facts related to the assign-
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ment game are recalled. In Section 3 we introduce the set of max-payoff
vectors of an assignment game and prove it contains the set of extreme core
allocations. In fact the extreme core allocations of an assignment game are
those max-payoff vectors which are efficient. The particular case of assign-
ment games with a matrix that is dominant diagonal and doubly dominant
diagonal is analyzed in Section 4.

2 The assignment game

Let us consider a two-sided market with a finite set of buyers M of cardinality
|M | = m and a finite set of sellers M ′ of cardinality |M ′| = m′ , and let
A = (aij)(i,j)∈M×M ′ be a nonnegative matrix where aij represents the profit
obtained by the mixed–pair (i, j) ∈ M ×M ′ if they trade. Let n = m + m′

denote the cardinality |N | of N = M ∪M ′ .

The assignment problem (M, M ′, A) consists in looking for an optimal
matching between the two sides of the market. A matching µ ⊆ M × M ′

between M and M ′ is a bijection from some M0 ⊆ M to some M ′
0 ⊆ M ′

such that |M0| = |M ′
0| = min{|M |, |M ′|} . We write (i, j) ∈ µ as well as

j = µ(i) and i = µ−1(j) . We denote the set of matchings between M and
M ′ by M(M, M ′) . Moreover, we say a buyer i ∈ M is not assigned by µ
if (i, j) 6∈ µ for all j ∈ M ′ (and similarly for sellers).

We say a matching µ ∈M(M,M ′) is optimal for the market (M, M ′, A)
if for all µ′ ∈ M(M, M ′) , we have

∑
(i,j)∈µ aij ≥

∑
(i,j)∈µ′ aij , and will

denote the set of optimal matchings by M∗
A(M, M ′) . Given S ⊆ M and

T ⊆ M ′ , we denote by M(S, T ) and M∗
A(S, T ) the set of matchings and

optimal matchings of the submarket (S, T,A|S×T ) defined by the subset S of
buyers, the subset T of sellers and the restriction of A to S × T . If S = ∅
or T = ∅ , then the only possible matching is µ = ∅ and by convention∑

(i,j)∈∅ aij = 0 .

Assignment games were introduced by Shapley and Shubik (1972) as a
cooperative model for a two–sided market with transferable utility. Given
an assignment problem (M, M ′, A) , the player set is N = M ∪M ′ , and the
matrix A determines the characteristic function wA . Given S ⊆ M and
T ⊆ M ′ , wA(S ∪ T ) = max{∑(i,j)∈µ aij | µ ∈ M(S, T )} . Notice that a
coalition formed only by sellers or only by buyers has worth zero.

Shapley and Shubik proved that the core, C(wA) , of the assignment
game (M ∪ M ′, wA) is nonempty and can be represented in terms of any
optimal matching µ of (M, M ′, A) . Once fixed any such optimal matching,
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(u, v) ∈ RM × RM ′
is in the core if and only if ui ≥ 0 for all i ∈ M ,

vj ≥ 0 for all j ∈ M ′ , ui + vj ≥ aij for all (i, j) ∈ M ×M ′ , ui + vj = aij

if (i, j) ∈ µ and ui = 0 if i ∈ M is not matched by µ , while vj = 0 if
j ∈ M ′ is not matched by µ .

Moreover, the core has a lattice structure with two special extreme points:
the buyers–optimal core allocation, (u, v) , where each buyer attains his max-
imum core payoff, and the sellers–optimal core allocation, (u, v) , where each
seller does.

From Demange (1982) and Leonard (1983) we know that the maximum
core payoff of any player coincides with his or her marginal contribution:

ui = wA(M ∪M ′)− wA((M ∪M ′) \ {i}) for all i ∈ M , and
vj = wA(M ∪M ′)− wA((M ∪M ′) \ {j}) for all j ∈ M ′.

(1)

From (1), once fixed µ ∈ M∗
A(M,M ′) , and taking into account that ui +

vµ(i) = aiµ(i) , since (u, v) ∈ C(wA) , we get that the minimum core payoff of
a buyer i which is matched by µ is

ui = aiµ(i) + wA((M ∪M ′) \ {µ(i)})− wA(M ∪M ′) , (2)

while ui = 0 if i is not assigned by µ . Similarly the minimum core payoff
of a seller j which is matched by µ is

vj = aµ−1(j)j + wA((M ∪M ′) \ {µ−1(j)})− wA(M ∪M ′) . (3)

The two aforementioned extreme core allocations of the assignment game
are not, in general, the only ones. We will denote by Ext(C(wA)) the set of
extreme points of the core of (M ∪M ′, wA) .

By adding null rows or columns if necessary, we will assume from now on
that A is square, which means that the assignment problem has as many
buyers as sellers.

Following Solymosi and Raghavan (2001), an assignment game with as
many buyers as sellers (M ∪M ′, wA) has dominant diagonal if and only if,
once placed an optimal matching in the diagonal, aii′ ≥ aij′ for all j′ ∈ M ′

and aii′ ≥ aji′ for all j ∈ M . As these authors point out, this is equivalent
to saying that each agent has a null minimal core payoff. Since the property
of having null core payoff does not depend on the optimal matching placed
on the diagonal, it follows that, for all µ ∈ M∗

A(M, M ′) , the assignment
game has dominant diagonal if and only if, for all i∗ ∈ M , ai∗µ(i∗) ≥ ai∗j for
all j ∈ M ′ and ai∗µ(i∗) ≥ aiµ(i∗) for all i ∈ M .
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As mentioned in the introduction, Solymosi and Raghavan (2001) intro-
duce another important property of the assignmen matrices, namely dom-
inant diagonal dominance. An assignment game with as many buyers as
sellers (M ∪M ′, wA) has doubly dominant diagonal if and only if, once cho-
sen an optimal matching µ ∈M∗

A(M, M ′) , aij +akµ(k) ≥ aiµ(k)+aµ(k)j for all
i, j, k ∈ M . This property is proved in Núñez and Rafels (2002) to character-
ize those assignment games with the property of being buyer-seller exact An
assignment game is buyer-seller exact if, for each mixed pair (i, j) ∈ M×M ′

there exists a core allocation x ∈ C(wA) such that xi + xj = aij . Then, the
fact that an assignment matrix is doubly dominant diagonal does not depend
on the fixed optimal matching.

The two aforementioned properties together, that is to say, having domi-
nant diagonal and doubly dominant diagonal, characterize those assignment
games with large core and also those assignment games which are exact, as
it is proved in Solymosi and Raghavan (2001).

3 The max-payoff vectors

With the aim of determining the extreme core allocations of the assignment
game we introduce a set of vectors, the max-payoff vectors, one of them for
each possible ordering in the set of agents. An ordering θ on N = M∪M ′ is
a bijection from {1, 2, . . . , n} to N = M ∪M ′ . We then denote an ordering
θ by (k1, k2, . . . , kn) where, for all i ∈ {1, 2, . . . , n} , ki = θ(i) is the agent
that occupies place i . The set of predecessors of agent k∗ ∈ M ∪M ′ in the
ordering θ is P θ

k∗ = {k ∈ M ∪M ′ | θ−1(k) < θ−1(k∗) } , and the set of all
orderings on N is denoted by SN .

Definition 1 Let (M∪M ′, wA) be an assignment game. For all θ ∈ SN , the
max-payoff vector xθ(A) ∈ Rn related to θ is defined by xθ

k1
(A) = wA(k1) =

0 and, for all r ∈ {2, . . . , n} ,

xθ
kr

(A) =

{
maxi∈P θ

kr
∩M{0, aikr − xθ

i (A)} if kr ∈ M ′ ,
maxj∈P θ

kr
∩M ′{0, akrj − xθ

j(A)} if kr ∈ M .

Notice that to obtain the vectors xθ(A) the characteristic function is not
needed, but only the assignment matrix. When no confusion regarding the
assignment matrix can arise, we simple write xθ . Once fixed and ordering,
the first agent receives a null payoff and, after that, the payoff to the other
agents is defined by recurrence: each agent receives the maximum profit he
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can obtain by trading with one of his predecessors on the opposite side of the
market, after paying this partner what the vector xθ has already allocated
to him.

With no restrictions on the assignment matrix, the set of max-payoff
vectors, {xθ}θ∈SN

, contains all the extreme core allocations of the game.
That is, for every extreme core allocation it is possible to find an order θ on
the player set such that the given extreme coincides with xθ .

Theorem 2 Let (M ∪M ′, wA) be an assignment game with as many buyers
as sellers. Then

Ext(C(wA)) ⊆ {xθ}θ∈SN
.

Proof. Take x ∈ Ext(C(wA)) and consider the tight graph GwA(x) = (V,E)
with set of vertices V = M ∪M ′ and set of edges E = {{i, j} | i ∈ M , j ∈
M ′ , xi + xj = aij } . Such a graph can be associated to any core allocation
and by Hamers et al. (2002) we know that x ∈ Ext(C(wA)) if and only if
each connected component of GwA(x) contains at least one player k such
that xk = 0 .

Fix µ ∈ M∗
A(M,M ′) and select k1 ∈ M ∪ M ′ such that xk1 = 0 . If

k1 ∈ M , define k2 = µ(k1) , and if k1 ∈ M ′ , define k2 = µ−1(k1) . We define
θ(1) = k1 and θ(2) = k2 . We see now that, for any ordering θ on these
conditions, xθ

k1
= x1 and xθ

k2
= x2 . To prove this, let us assume, without

loss of generality, that k1 ∈ M . It is straightforward that xθ
k1

= 0 = xk1 .
Moreover,

xθ
k2

= max{0, ak1k2 − xθ
k1
} = max{0, ak1k2 − xk1} = ak1k2 − xk1 = xk2

where the third equality is due to the fact that (k1, k2) ∈ µ and x ∈ C(wA) ,
and thus ak1k2 − xk1 = xk2 ≥ 0 .

Assume, by induction hypothesis, that the first 2r players in the order
θ are defined, θ(l) = kl for 1 ≤ l ≤ 2r , in such a way that, for all l ∈
{1, 2, . . . , 2r} and odd, if kl ∈ M then kl+1 = µ(kl) and if kl ∈ M ′ then
kl+1 = µ−1(kl) . Assume also that, for all l ∈ {1, 2, . . . , 2r} , xθ

kl
= xkl

. Let
us prove that players in the positions 2r + 1 and 2r + 2 in the order θ can
be chosen that meet the same conditions.

Case 1: If there exists some agent k ∈ (M ∪M ′)\{k1, k2, . . . , k2r} connected
to some other agent in {k1, k2, . . . , k2r} , let us say there exist k ∈ (M ∪
M ′) \ {k1, k2, . . . , k2r} and k∗ ∈ {k1, k2, . . . , k2r} such that {k, k∗} ∈ E ,
then define k2r+1 = k and k2r+2 = µ(k) if k ∈ M and k2r+2 = µ−1(k) if
k ∈ M ′ .
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Let us consider now any order θ such that θ(l) = kl for all 1 ≤ l ≤ 2r+2
and prove that xθ

k2r+1
= xk2r+1 and xθ

k2r+2
= xk2r+2 . Let us assume, without

loss of generality, that k2r+1 ∈ M .

Notice that, from x ∈ C(wA) , we have xk2r+1 ≥ 0 and xk2r+1 + xj ≥
ak2r+1j for all j ∈ M ′ . Moreover, we know that xk2r+1 +xk∗ = ak2r+1k∗ , since
{k2r+1, k

∗} ∈ E . This implies xk2r+1 = ak2r+1k∗ − xk∗ ≥ ak2r+1j − xj for all
j ∈ M ′ . Thus, by induction hypothesis,

xθ
k2r+1

= max
j∈P θ

k2r+1
∩M ′

{0, ak2r+1j − xθ
j}

= max
j∈P θ

k2r+1
∩M ′

{0, ak2r+1j − xj} = ak2r+1k∗ − xk∗ = xk2r+1 .

Similarly, from x ∈ C(wA) we have that xk2r+2 ≥ 0 , xk2r+1 + xk2r+2 =
ak2r+1k2r+2 and xi + xk2r+2 ≥ aik2r+2 for all i ∈ M . This implies xk2r+2 =
ak2r+1k2r+2 − xk2r+1 ≥ aik2r+1 − xi for all i ∈ M . Thus, again by induction
hypothesis,

xθ
k2r+2

= max
i∈P θ

k2r+2
∩M
{0, aik2r+2 − xθ

i }

= max
i∈P θ

k2r+2
∩M
{0, aik2r+2 − xi} = ak2r+1k2r+2 − xk2r+1 = xk2r+2 .

Case 2: If no agent k ∈ (M ∪ M ′) \ {k1, k2, . . . , k2r} is connected to any
agent in {k1, k2, . . . , k2r} , then this means that all agents in (M ∪ M ′) \
{k1, k2, . . . , k2r} are in different components of the graph GwA(x) than agents
in {k1, k2, . . . , k2r} . Since in each connected component there exists an agent
whose payoff by x is zero, let us take one such agent.

Choose k ∈ (M ∪M ′)\{k1, k2, . . . , k2r} such that xk = 0 . If k ∈ M , let
us define k2r+1 = k and k2r+2 = µ(k) , and if k ∈ M ′ , let us define k2r+1 = k
and k2r+2 = µ−1(k) . We will see that, for any ordering θ such that θ(l) = kl

for all 1 ≤ l ≤ 2r + 2 , it holds xθ
k2r+1

= xk2r+1 and xθ
k2r+2

= xk2r+2 . To do
that, assume, without loss of generality, that k2r+1 ∈ M .

Since x ∈ C(wA) and xk2r+1 = 0 , from xk2r+1 + xj ≥ ak2r+1j, for all
j ∈ M ′ it follows that 0 ≥ ak2r+1j − xj for all j ∈ M ′ . Then, by induction
hypothesis,

xθ
k2r+1

= max
j∈P θ

k2r+1
∩M ′

{0, ak2r+1j − xθ
j} =

= max
j∈P θ

k2r+1
∩M ′

{0, ak2r+1j − xj} = 0 = xk2r+1 .
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Again, from x ∈ C(wA) , we have xk2r+2 ≥ 0 , xk2r+1 +xk2r+2 = ak2r+1k2r+2

and xi + xk2r+2 ≥ aik2r+2 for all i ∈ M . This implies xk2r+2 = ak2r+1k2r+2 −
xk2r+1 ≥ aik2r+2 − xi for all i ∈ M . Thus, also by induction hypothesis,

xθ
k2r+2

= max
i∈P θ

k2r+2
∩M
{0, aik2r+2 − xθ

i }

= max
i∈P θ

k2r+2
∩M
{0, aik2r+2 − xi} = ak2r+1k2r+2 − xk2r+1 = xk2r+2 .

Thus, for all x ∈ Ext(C(wA)) , we have obtained an ordering θ ∈ SN such
that x = xθ . 2

The converse inclusion of that proved in Theorem 2 does not hold in
general. To see that, consider for instance the assignment market defined by
the matrix

1’ 2’

1
2

3 4
0 2

and notice that the core is the convex hull of the three extreme points (2,
0; 1, 2), (3, 0; 0, 2) and (3, 1; 0, 1). If you take any ordering θ such that
buyer 1 is in the first place, xθ

1 = 0 and consequently xθ will never be a
core allocation. This assignment market has doubly dominant diagonal but
not dominant diagonal.

Consider also the assignment market defined by the matrix

1’ 2’ 3’

1
2
3

1 0 1
1 1 1
1 1 1

The core is the segment with extreme points (1, 1, 1; 0, 0, 0) and (0, 0,
0; 1, 1, 1). In this case the matrix has dominant diagonal but not doubly
dominant diagonal, since a12′ + a33′ < a13′ + a32′ . If we take any ordering
θ with buyer 1 in the first place and seller 2’ in the second place, we have
that xθ

1 = 0 and xθ
2′ = 0 , and this can never be achieved in the core of this

market.

However, if a max-payoff vector belongs to the core, it must be an extreme
point. This is a property that also holds for the marginal worth vectors
and the reduced marginal worth vectors in the general domain of arbitrary
coalitional games.
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Lemma 3 Let (M ∪M ′, wA) be an assignment game and θ ∈ SN . If xθ ∈
C(wA) then xθ ∈ Ext(C(wA)) .

Proof. Take xθ ∈ C(wA) and θ = (k1, k2, . . . , kn) . By definition of xθ ,
notice that for each kr , r ∈ {1, 2, . . . , n} , there exists a tight core constraint
of the form xθ

kr
= 0 or xθ

kr
+ xθ

k = w({kr, k}) for some k ∈ P θ
kr

. This linear
system of equalities shows that xθ ∈ Ext(C(wA)) . 2

In the following theorem we prove that in order to know if a max-payoff
vector is an extreme core allocation of the assignment game we only have to
check that it is efficient.

Theorem 4 Let (M ∪M ′, wA) be an assignment game with as many buyers
as sellers. Then

Ext(C(wA)) = {xθ, θ ∈ SN | xθ(M ∪M ′) = wA(M ∪M ′)} .

Proof. Take xθ for some θ ∈ SN . For all (i, j) ∈ M×M ′ , if θ−1(i) < θ−1(j) ,
then, by definition, xθ

j ≥ aij − xθ
i or equivalently xθ

i + xθ
j ≥ aij . Thus, if xθ

is efficient, xθ(M ∪M ′) = wA(M ∪M ′) , then it is a core allocation. Now,
by Lemma 3, xθ is an extreme core point. 2

Thus, to find the set of extreme core allocations, we have to compute all
the max-payoff vectors and then, once chosen an optimal matching µ , select
those max-payoff vectors that satisfy xθ

i + xθ
j = aij for all (i, j) ∈ µ .

By the proof of Theorem 2, notice that, given an extreme core allocation
x , to find an order in the player set such that x = xθ , we can restrict to a
particular set of orderings, those such that, once fixed an optimal matching
µ , agents occupying an odd place in the ordering are followed by their optimal
partners by µ . For µ ∈ M∗

A(M, M ′) , let us denote by Sµ
N this subset of

orderings on the set of agents,

Sµ
N =



θ = (k1, . . . , kn) ∈ SN

∣∣∣∣∣∣

for all r ∈ {0, 1, 2, . . . , n
2
− 1}

if k2r+1 ∈ M then k2r+2 = µ(k2r+1) and
if k2r+1 ∈ M ′ then k2r+2 = µ−1(k2r+1)



 .

Then, from Theorem 2 and Theorem 4 we can state without proof the fol-
lowing result.

Corollary 5 Let (M∪M ′, wA) be an assignment game with as many buyers
as sellers and let µ be an optimal matching. Then,

Ext(C(wA)) = {xθ, θ ∈ Sµ
N , | xθ

i + xθ
j = aij for all (i, j) ∈ µ} .
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As an application of the above result, we can obtain the extreme core
allocations of the assignment game defined by matrix

1’ 2’

1
2

3 4
0 2

For each ordering in Sµ
N , we compute the max-payoff vector and in boldface

we show those max-payoff vectors that are efficient, and thus the extreme
core allocations of the assignment market.

θ ∈ Sµ
N xθ = (u1, u2; v1′ , v2′)

(1,1’,2,2’) (0, 0; 3, 4)
(1,1’,2’,2) (0, 0; 3, 4)
(1’,1,2,2’) (3, 0; 0, 2)
(1’,1,2’,2) (3, 1; 0, 1)
(2,2’,1,1’) (2, 0; 1, 2)
(2,2’,1’,1) (3, 0; 0, 2)
(2’,2,1,1’) (4, 2; 0, 0)
(2’,2,1’,1) (4, 2; 0, 0)

Notice that it is simpler to obtain the extreme core allocations of the
assignment game by this method than by the reduced marginal worth vectors
(Núñez and Rafels, 2003). The reduced marginal worth vectors require the
computation of successive reduced games, while the max-payoff vectors xθ

are completely obtained from the assignment matrix. In addition to that,
to obtain the set of extreme core allocations not all the orderings of the set
of agents are needed, but only those orderings where, once fixed an optimal
matching, each agent is either preceded or followed by his or her optimal
partner.

4 The case of the assignment games with large

core

We will now assume that the assignment game (M ∪ M ′, wA) has domi-
nant diagonal and doubly dominant diagonal. From Solymosi and Raghavan
(2001) we know that these two properties together characterize those as-
signment games which have a large core. The concept of large core was
introduced by Sharkey (1982) for arbitrary coalitional games and is based
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on the notion of aspiration. An aspiration is a payoff vector x ∈ Rn that
satisfies coalitional rationality but may not satisfy efficiency. Thus, an as-
piration for the assignment game (M ∪ M ′, wA) is x ∈ RM × RM ′

such
that x(S) ≥ wA(S) for all S ⊆ M ∪M ′ . As it happens with an arbitrary
coalitional game, an assignment game has a large core if and only if for any
aspiration x ∈ RM ×RM ′

there exists y ∈ C(wA) such that xk ≥ yk for all
k ∈ M ∪M ′ .

Under the assumption that A has dominant diagonal and doubly dom-
inant diagonal, the next theorem states that all the max-payoff vectors xθ ,
for θ ∈ SN , are extreme core allocations. Moreover, the above two prop-
erties characterize the assignment games where the coincidence between the
set of max-payoff vectors and extreme core points holds.

Theorem 6 Let (M ∪M ′, wA) be an assignment game with as many buyers
as sellers. The following statements are equivalent:

1. A has dominant diagonal and doubly dominant diagonal.

2. Ext(C(wA)) = {xθ}θ∈SN
.

Proof. Let us assume that A has dominant diagonal and doubly dominant
diagonal, and consequently (M ∪M ′, wA) has large core. Notice first that,
for all θ ∈ SN , xθ is an aspiration of the assignment game (M ∪M ′, wA) .
To see that, for all S ⊆ M ∪ M ′ take µS an optimal matching for the
submarket formed by the agents in S , that is µS ∈ M∗

A(S ∩M,S ∩M ′) .
Then,

xθ(S) =
∑

(i,j)∈µS

(xθ
i + xθ

j) +
∑
k∈S

k not matched byµS

xθ
k ≥

∑

(i,j)∈µS

aij = wA(S) ,

where the inequality follows from Definition 1. Now, since (M ∪M ′, wA) has
large core, there exists x ∈ C(wA) such that xθ

k ≥ xk for all k ∈ M ∪M ′ .
But notice that, by Definition 1, for all i ∈ M , either xθ

i = 0 or there exists
j ∈ M ′ such that xθ

i + xθ
j = aij . This means that xθ

i cannot be decreased
and still give a core allocation. Similarly, for all j ∈ M ′ , either xθ

j = 0 or
there exists i ∈ M such that xθ

i + xθ
j = aij , and xθ

j can neither be lowered
and still give a core allocation.

Once we know that xθ = x belongs to the core, by Lemma 3 we know it
is an extreme point. Then {xθ}θ∈SN

⊆ Ext(C(wA)) and the other inclusion
follows from Theorem 2.
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Conversely, assume that all xθ are extreme core allocations. Take an
ordering θ such that all buyers enter in first place and after all sellers enter
in an arbitrary order. By Definition 1, xθ

i = 0 for all i ∈ M . This proves
that each buyer has a null minimum core payoff. Similarly, if we take an
order where all sellers enter in first place we see that in the corresponding
max-payoff vector all sellers receive a null payoff. This means that A is
dominant diagonal.

To see that A is also doubly dominant diagonal, for each mixed pair
(i, j) ∈ M × M ′ , take an ordering θ such that i occupies the first place
and j the second one. Again, by Definition 1, xθ

i = 0 and xθ
j = aij . Then,

xθ is a core allocation by assumption and xθ
i + xθ

j = aij . This means that
A is buyer-seller exact and consequently, by Núñez and Rafels (2002), A is
doubly dominant diagonal. 2

From the theorem above, if we have an assignment game (M ∪M ′, wA)
with large core (that is A has dominant digonal and doubly dominant di-
agonal), and once fixed an optimal matching µ ∈ M∗

A(M,M ′) , the set of
extreme core allocations coincides with the set of max-payoff vector corre-
sponding to the orderings in Sµ

N .
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