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Abstract

We identify in this paper two conditions that characterize the do-
main of single-peaked preferences on the line in the following sense:
a preference profile satisfies these two properties if and only if there
exists a linear order L over the set of alternatives such that these pref-
erences are single-peaked with respect L. The first property states that
for any subset of alternatives the set of alternatives considered as the
worst by all agents cannot contains more than 2 elements. The second
property states that two agents cannot disagree on the relative ranking
of two alternatives with respect to a third alternative but agree on the
(relative) ranking of a fourth one.
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JEL Classification Numbers: D71, C78

1 Introduction

Consider a set of alternatives and a set of agents, each of them endowed
with a preference relation over these alternatives. For any individual it is
easy to construct a linear ordering L of the alternatives such that, as we pick
alternatives along the ordering L, their rank in this individual’s preference
relation is either always increasing, or always decreasing, or first increasing
and then decreasing. Such an ordering is called an admissible orientation
of this agent. A profile of preference is said to be single-peaked if there
exists a linear ordering that is an admissible orientation for all agents. The
class of single-peaked preferences, first scrutinized by Black [3], is perhaps
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one of the most used preference domains when analyzing collective decision
problems. These preferences are known for instance to ensure the existence
of a Condorcet winner, the transitivity of the majority rule (Inada [7]), or to
allow the construction of strategy-proof social choice functions (Moulin [9]).
Yet, a major drawback of single-peaked preferences is that this class is, as we
have just seen, defined using an underlying linear order of the alternatives.
It follows that if we are given a class of preference profiles it is practically
impossible to know whether profiles in this class are single-peaked.! We
identify in this paper a pair of properties that do not mention any specific
linear ordering and that any single-peaked preference profile must satisfy,
thereby characterizing the domain of single-peaked preferences on the line.
Our result reads then as follows: a preference profile satisfies some properties
if and only if there exists a linear ordering such that the preferences are
single-peaked with respect to this ordering.

Failure for a preference profile to be single-peaked mainly comes from
the constraint imposed by the underlying linear-ordering: alternatives must
all “fit” in a one-dimensional space.? This is so when there are too many
individuals with too many different preferences, or when the set of alter-
natives is “too large”. Indeed, whenever there are at most two agents and
three alternatives any preference profile is single-peaked.?> We show that
single-peakedness may be lost, however, as soon as we add either another
agent or a fourth alternative. Adding a third agent creates a conflict if the
set of alternatives that are considered worst by at least one agent is too
large. A crucial observation is that a linear ordering L is an admissible
orientation for an agent if his worst alternative is not ordered between two
more preferred alternatives. Hence, any worst alternative must be either
the first or the last in the ordering L. It follows that the set of alterna-
tives that are considered worst by at least one agent must contain at most
two alternatives. Otherwise, we say that the preference profile admits an
a-contradiction. Single-peakedness may also be lost when adding a fourth
alternative instead of a third agent. This situation, a bit more technical, can
be summarized as follows. There is an alternative called the “pivot” and
three alternatives, such that the two individuals agree on the relative rank-
ing of one alternative (with respect to the pivot) but disagree on the relative
ranking of the two other alternatives. To illustrate this, consider for instance
two individuals, ¢ and j and three alternatives, a, b and c. If the preferences
are aP;bP;c and cP;bP;a, then it suffices to take an order that locates b in

'Bartholdi and Trick [2] show that single-peakedness can be identified in polynomial
time. While their approach could be suitable when given a specific profile it is of little
help if one wants to work with an entire class of profiles.

2Single-peakedness can be defined on other underlying structures than that of linear
orders. See for instance Demange [5] for single-peaked preferences on a tree.

3This assertion will not be proved. It is easily done by simply exhausting all possibili-
ties.



the middle.* Things can become more complicate when we introduce d, the
fourth alternative. Suppose that dP;b. Hence any linear order must either
locate d between a and b (if aP;d) or “beyond” a (if dP;a). If a is indeed j’s
worst alternative, i.e., ¢ and j both prefer d to b, then the only remaining
option is to locate d between a and b. But then we cannot construct any
linear order upon which preferences will be single-peaked if dP;b, because
in this case d should be located between b and c. If such a configuration
occurs we say that the profile admits a g-contradiction. Hence, not having
an « and a (-contradiction is necessary for a preference profile to be single-
peaked. Our main result states this is also sufficient, thereby providing a
characterization of single-peaked preferences on the line. As a byproduct,
these properties are shown to also characterize single-caved preferences.

The paper is organized as follows. Notations and the main definitions
are provided in Section 2 and our characterization theorem is stated and
proved in Section 3and we conclude in Section 4.

2 Preliminaries

2.1 Notations

Let N be the set of agents and X = {z1,...,2,} be a set of alternatives.’

For simplicity, we assume that X is finite. For any A C X, we denote by A€
the complementary set, A = X'\ A.

Let L denote any linear order over X, i.e., a complete, transitive, and
asymmetric binary relation. We say that two alternatives z and 2’ are
consecutive in L if zLz’ (resp. 2/Lz) and there does not exists another
alternative x” such that xLx” L' (vesp. a’Lx”Lz). The fact that k alter-
natives are consecutive in L when k& > 3 is defined similarly. In the sequel,
we shall assume that the order L is non-directed, which means that if L and
L’ are two linear orders such that for any z,2’ € X we have xLa’ < 'L’z
then L = L5

Each agent i € N is endowed with a complete, transitive, asymmetric
preference relation P; over X. For any set A C X, let w;(A, P;) be i’s least
preferred alternative in A, i.e.,

wi(A, P) ={x |V € A\{z}, 2'Pz}. (1)

Let w(A, P) = Ujenw;(A, P;). Similarly, let ¢;(A, P;) be i’s most preferred
alternative in A, i.e, t;(A, P;) = {z |V 2’ € A\{z}, x P2’} and let (A, P) =
Uienti(A, P;). For simplicity, we shall drop the mention to the preferences

4The preference relation aP;bP;c reads as follows: i’s most preferred alternative is a,
then b and c is his least preferred alternative.

5The sets X and N can be identical

5This last assumption is without loss of generality.



and write w;(A), w(A) and t;(A) whenever possible. Note also that any
preference relation P; is, in our context, also a linear order. However, to
gain in clarity we will not use the terminology “linear ordering” to qualify
a preference relation.

2.2 Single-peaked preferences

We first begin by recalling the textbook definition of single-peaked prefer-
ences.

Definition 1 A preference profile P is single-peaked if there exists a linear
order L such that for each agent : € N, and any two alternatives 2/, 2" € X,
t;(X)La'La" or " La' Lt;(X) imply 2’/ Pa”.

The set of single-peaked preferences is denoted 22°. Obviously, for any
agent i it is always possible to find a linear order L such that ¢;(X)La'Lz"
implies ' P;z”. For instance, we can take the trivial order L such that
alb < aP;b for all a,b € X. What is not always possible is the existence of a
common order L for all players, thereby making the domain of single-peaked
preferences a strict sub-domain of the domain of all preference profiles.

Definition 2 Given a preference relation P; and a set A C X, a linear order
L (over A) is an admissible orientation of A with respect to P; if for any
triple of alternatives of A, t;(A), 2/ and z” such that ¢;(A)Lx'Lz" (resp.
a La' Lt;(A)) we have 2/ Pa”.

We write .Z;(A, P;) to design the set of all linear orders that are admissi-
ble orientations of A with respect to P; (as we have mentioned, this set is al-
ways non-empty), and Z (A, P) stands for the set of all linear orders that are
admissible orientations for all individuals, i.e., Z(A, P) = Nien-Zi(A, ;).
For notational simplicity, we shall sometimes omit the preferences and write
Z;(A) and Z(A). We are now ready to provide an alternative definition of
single-peaked preferences.

Definition 3 A profile of preferences P is single peaked if £ (X, P) # ().

Observe that a profile of preference is not single-peaked if for any linear
ordering of the alternatives there is always an agent for whom there is one
alternative ordered between two preferred ones (his preferences are (locally)
U-shaped), i.e., L ¢ (A, P) = 3i € N,;x,2',2"” € A such that z,2’, and
a2 are consecutive in L (in this order) and 2’ = w;(z, 2', z").

3 Results

We begin our characterization by introducing two simple properties and
show that they are necessary for single-peakedness.



Definition 4 A preference profile P possesses an a-contradiction if there
exists a set of alternatives A C X such that fw(A) > 3.

Let 22 denote the set of all preference profiles that do not possess an a-
contradiction. The next Lemma states that belonging to ¢ is a necessary
condition for a profile P to be single-peaked.

Lemma 1 2° C 22,

Proof Let P ¢ &9, i.e., there exists A C X such that fw(A) > 3. Hence,
there exist distinct x, 2’ and x” such that {x,2’, 2"} C w(A), which implies
that there exist 4, j, k € N such that w;({z, 2/, 2"}) = z, wj({z,2',2"}) = 2/
and wy({x,2’,2"}) = 2. Tt follows that if L € £;(A) then L cannot rank
x between z’' and z”, ie., vLa’ = zLz"” and 2'Lxr = 2”Lx. Similarly, if
L € Z;(A) (resp. L € Z;(A)) then L cannot rank z’ between = and z”
(resp. z” between z and z’). We then have Nj—; j1-Z1(A) = 0, and thus
Z(X,P) =10, the desired result. [ |

Interestingly, the a-contradiction property sheds some light on why free
triples correspond to profiles which are not single-peaked. Recall that a free
triple occurs when we have three alternatives, a, b and ¢, and three individ-
uals, 7, j and k, such that aP;bP;c, bPjcPja and cPaPyb. Clearly, whenever
we have a free triple we have an a-contradiction, and thus, according to
Lemma 1, single-peakedness does not hold. Now, if we change one agent’s
preference without changing his worst alternative, then the free triple disap-
pears but, according to Lemma 1, the new profile is still not single-peaked.
That is, single-peakedness is a more stringent requirement than the absence
of free triples.

The second property we identify concerns the case when the “conflict”
between individuals’ preferences come from the preference relation of two
individuals only. Since there are only two individuals, the conflict cannot
come from the worst alternatives (this is captured by the a-contradiction).
The second source of conflict we identify deals with the relative ranking of
intermediate alternatives.

Definition 5 A profile of preferences P possesses a [3-contradiction if there
exists two individuals, 4, j € N, and a set of 4 alternatives {a, b, ¢, d} such
that:

(i) They are opposite in a triple: aP;bP;d, dPjbP;a. Alternative b is called
the pivot.

(it) They coincide in ranking cP;b, cP;b.

Observe that if there is a $-contradiction between preferences P; and P;
then agents ¢ and j “agree” to set alternatives a and d as the end points



of a common admissible orientation. The disagreement arises however with
alternatives b and ¢. Let 22° denote the set of preference profiles that do
not possess a [-contradiction. The next Lemma states that if a profile of
preferences has a §-contradiction then it it is not single-peaked.

Lemma 2 2° c 9P,

Proof Let P ¢ . Then, there exists i,j € N and a,b,c,d € X
such that aP;bP;c and dP;b, and cP;jbP;a and dP;b. Observe that L € .Z;
implies that L cannot rank ¢ between any pair (z,2’) € {a,b,d}. Similarly, if
L € Z; then L cannot rank d between any pair (z,2') € {a, b, c}. Therefore,
LNY # 0= 4NY C{L,L'} where aLbLdLc and aL’dL'bL'c. Observe
that w;(a, b, d) = b, which implies that b cannot be ranked between a and d,
and thus L ¢ .%;. Similarly, it can be shown that L' ¢ £}, which completes
the proof. [ |

The previous two properties show two simple structures on a preference
profile conducing to non single-peakedness. As our main result shows, they
are in fact the only plausible causes. We characterize thus, the nature of
preference profiles that are single-peaked on a line. Notice that Theorem 1
do also provide a characterization of the single-peaked domains.

Theorem 1 P° = 2% PP,

Before proving the theorem let us comment briefly on it. Observe that
if A C X and Z(A,P) = 0, then £ (X,P) = (. Similarly, if for any
coalition S C N we have Njcs.Z(A, P;) = 0, then Nieny % (A, P;) = 0 as
well. Theorem 1 shows that, to some extent, the converse also holds. More
precisely, if £ (X, P) = () then there exists either a set A of three alternatives
and a set S of three players such that .Z(A, (P;)ies) = 0 or a set B of four
alternatives and two players ¢ and j such that Z(B, (P;, P;)) = 0.

Proof That #° C 27 N 22 is obtained combining Lemmata 2 and 1.
To prove the reverse inclusion, consider any profile P € 228N 2. We show
that we can construct a linear order L such that for alli € N, L € Z(X, P;).
To this end, consider the following sequence of sets: X; = w(X), and for
any t > 1, Xy = w((Up<r Xn)¢). Note that P € £ = §X; < 2 for all
t=1,....

We first consider the collection of all sets X; such that #.X; = 2, which we
denote Ay, As, ..., ordered as the sets X;.” Consider first A1, and denote
one of its element [; and the other r1, and let L be the linear ordering
over Xj such that lyLry. Clearly, L € Z(A;,P). We now proceed by
induction to show that we can augment L to include also a relation over

"That is, if there are two sets A, and A, such that h < k' then there exists two sets
X; and X, such that t < ¢’



the elements A; U Ao U ... Ayq. That is, suppose now that for some t >
1 we have constructed an ordering L such that L € Z(Up<iAp, P). Let
Airq = {z,2'} and the define the sets R = {z, 2’ \w({lt,z,2'}) and S =
{z, 2’ \w({r:, z,2'}). In words, the set R (resp. S) contains the alternatives
that are candidates to be just “after” I; (resp. “before” r;). Note that since
P has no a-contradiction, R and S are both non-empty. We claim that
we can pick two distinct alternatives such that one belongs to R and the
other to §. If this were not possible, then we should have R = S = 1
and R = S. Hence, to prove the claim it suffices to show that R and S
both containing one identical alternative, say x, yields to a contradiction.
Observe that 2/ ¢ R implies that 3 i € N such that 2/ € w({l;,z,2'}).
It follows that I; P2’ and zP;z’. Using the induction hypothesis we obtain
re = wi((X \ AU {lt, r¢}), which implies 2’ P;r;. Now, since a’ ¢ S either,
3 j € N such that 2’ = wj({z,2,7}) and thus zP;2’ and r,P;ja’. Like for
individual ¢ it can be shown that a’P;l;. We then have a (-contradiction
with P; and Pj, where the pivot is «’.

Without loss of generality let then z € R and 2’ € S such that x # 2/,
and let l;11 = z and r;y1 = 2. Augment now the ordering L with the follow-
ing relations Iy Llyy1Lriy1Lry. We claim that L € Z({J;, <, An). Suppose
not. Then, there exists ¢ € N and three alternatives consecutive in L, say
a, b and ¢, such that w;({a,b,c}) = b. Observe that the induction hypoth-
esis (and how L is constructed) guarantees that {a,b,c} € {l1,...,l;} and
{a,b,c} & {r1,...,r}. It cannot be either that {b,c} = {l41,r41}, for
otherwise we would have l;; ¢ R. Similarly (reasoning with S), it can be
shown that we must have {a,b} # {l;y1,7+1}. Hence, the only possibil-
ity is either {a,b,c} = {l;—1,l;,li41} or {a,b,c} = {riy1,re,me—1}. Without
loss of generality, suppose that l; = w;(ly—1,l;,lt+1). In this case, by the
induction hypothesis, we have l;_1 P;l; = [;P;r;. Since l; and r; were both
selected at stage, say k (i.e., Ay = Xj), there must exist another indi-
vidual j with Iy = w;j((Up<p Xn)¢). Therefore, r¢Pjl; and l;11Pjl;. Since
L € Z(Up<; An), rePjly = 1 Pjli—1. We then have a (-contradiction with
alternatives l;_1,l;, l;+1 and r; (where [; is the pivot), contradicting P € PP,

We now consider the sets X; such that $X; = 1. Let Aj,..., A; be
the sequence of pairs previously obtained and let L be the ordering over
Up<i Ar we just constructed. Let A = Up—; __Ap. Denote by c(l), .. ,cgo
all the alternatives (if any) that appeared before Aj, ordered as in the the
sequence {X;}. Similarly, for 1 < t < k, let ¢f,...,cl" all singletons (if
any) that appeared after A; and before A;y;. That is, if ¢ is such that
X; = Ay then X4 = {c}'}. Finally, let c,lg, ..., % all singletons (if any)
that appeared after Ap. We now show that we can augment the ordering L
by including the elements (cj, ..., Ar).



Consider first c,lC and augment L with lkLc,lger. We claim that L €
ZL(AU{c}}). If not, there exists i € N and three alternatives consecutive
in L, say z, ' and 2", such that w;({z,2’,2"}) = 2/. Like before, it can be
shown that these three alternatives must be either l;_1, I, c,l€ or c}g, Thy Th—1-
W.l.o.g. suppose it is the first triple. Hence, 3 j € N such that {;,_; P;l;, and
c,lnglk. Note that by construction we have indeed c}gPhlk, vV h € N. Since
L € Z(A), ly_1Pjly, = 1 Pjry. Observe now that 34 € N such that 7Pl
(for otherwise I and r; would not be a pair selected in the first step of the
proof) and since ly_1 € Ag_1 and I € Ay, we then have ri Pl Pilp—1. We
then have a S—contradiction between FP; and P; where c,i is the pivot.

Consider now ci. We claim that we can augment L either with lkLc,iLcirk
or with lkLcﬁLcirk. Suppose we cannot. The same analysis as for ci rejects
the cases in which ci € w(lk—_1, cz, l)) and ci € w(r, ci,rk,l)). Like before,
this implies that there exists i € N such that w;({ly, ck,c3}) = ci. (and a dif-
ferent j such that w;({c, ct,rx}) = ¢} from which we can deduce that there
is a f—contradiction between P; and P; with lk,c}f,cz,rk where c,lC is the
pivot. Once we have set lkc}chier (or lkLciLcier), L can be augmented
with the remaining alternatives sufficient to augment L in the same direc-
tion, i.e., setting lyLel Led ... Ley ' Legry, (vesp. lxLefLey .. Le2 Leg Lry).
The proof that L augmented this way remains an admissible orientation for
all individuals is as before and thus is omitted.

For 1 < h < k a similar reasoning can be used to show that we can aug-
ment L with either lhc}ll oo Mg or with T C}Lrh.g This completes
the proof. |

The absence of the basic contradictions is therefore, the fundamental of
any single-peaked profile. Since the a-contradiction requires the participa-
tion of at least 3 individuals, the following corollary is straightforward.

Corollary 1 If 4N = 2 then 2° = 2.

Similarly, if there are only three alternatives single-peakedness boils
down to the absence of an « contradiction:

Corollary 2 If 41X = 3 then 2% = 2.

Another preference domain, similar to single-peakedness, is the class of
single-caved preferences.” A profile P is single-caved if there exists a linear
order L such that for each agent i € N, and any two alternatives 2/, 2" €
X\w;(X), wi(X)La'Lz" or z" L' Lw;(X) imply «”P;z’. For a preference
relation P;, the reverse relation, P; is defined as follows: 2/P;x if and only
if zP;2’, and we denote P the profile (P;);cy. Similarly, let & be the set of

8The string ¢}, . . ., cf° can be included indifferently to the left of I; (in increasing order)
or to the right of 1 (in decreasing order).
9Some authors call such preferences single dipped (e.g., Klaus et al. [8]).



profiles that are reversed of profiles of 2. It is easy to see that a profile P
is single-caved if and only if P is single-peaked.

We now show that Theorem 1 also provides a characterization of the
domain of single-caved preferences. This characterization can be made either
using the reverse of a single-caved profile (which is single-peaked) or using
the reverse versions of the o and §-contradictions.

Definition 6 A preference profile P possesses an o/-contradiction if there
exists a set of alternatives A C X such that #t(A) > 3.

Definition 7 A profile of preferences P possesses a (3’-contradiction if there
exists two individuals, 4,7 € N, and a set of 4 alternatives {a,b, c,d} such
that (i) They are opposite in a triple: aP;bP;c, cPjbPja; (i) They coincide
in ranking dP;b, dP;b.

Denote by 22°C set of preference profiles that are single-caved, and by
L@O‘/, and 27 those without an o/-contradiction and a [3'-contradiction,
respectively.

Proposition 1 2°¢ = @' 0 pF' =" »* nz".

Proof  The proof of the first equality follows the same steps as that of
Lemmata 1 and 2 and Theorem 1 and is left to the reader. The second
equality follows from the fact that P is single-caved if and only if P is
single-peaked. |

We now apply our characterization result to the class of acyclical prefer-
ences defined by Ergin [6]. He showed that these preferences are necessary
and sufficient to obtain Pareto efficiency, group strategy-proofness and con-
sistency of a wide range of allocation problems including, among others,
college admission, Gale and Shapley’s marriage matching model, or house
allocation. Ergin defined acyclicity by means of two properties. One of these
properties considers capacity constraints, which we shall not consider here.
As Ergin pointed out, this property is often suppressed as it has no bite in
assignment or matching models with quota equal to one as in the marriage
model. The second property is a condition on orderings, requiring that there
is no two orderings P; and P; and three alternatives x, 2’ and z” such that
the following holds,

zPx'Pa”  and  1'Pjx. (2)

Let 27 be the set of profiles that does not satisfy Eq. (2).1 We then have
the following result,

10Gince Egin worked with a model encompassing house allocation or college admission
he called colleges’ or houses’ preferences priority structures. Note however, that in this
context priority structures are, like preferences, linear orderings. To be consistent with
the rest of the paper we adapted Ergin’s terminology to our framework.



Proposition 2 #7 ¢ 25,

Proof Let P ¢ 2°. From, Theorem 1 is follows that P has either an
a or a f-contradiction (or both). Suppose first that P ¢ £2¢. Hence,
there exists 7,7,k € N and x,2’,2” € X such that, say x = w;(z,2’,2"),
' = wj(z,2',2") and 2" = wy(x,2',2"”). Wlo.g. suppose that zP,z'P).
Since w;(x,2',2") = x we then have 2" P;x.1! This satisfies Eq. (2), which
implies that P ¢ 227, Suppose now that P ¢ 8. Thus there exist i,j € N
and z,2’,2” such that Pz’ Pix” and 2" Pja’ Pjz. (We can disregard the
relation with respect to the fourth alternative). This obviously satisfies Eq.
(2), which completes the proof. |

Using Proposition 2 and Theorem 1 in Ergin [6] we can then deduce for
instance that in the marriage model the deferred acceptance can only be
group-strategyproof and Pareto efficient when preferences of the side not
proposing are single-peaked.

4 Conclusion

Our results first show that two agents and four alternatives or three agents
and three alternatives are enough to make a preference profile not single-
peaked. What is perhaps more surprising is that we also obtain the reverse
statement: if a profile is not single-peaked then there must be two or three
agents without a common admissible orientation (over four or three alter-
natives, respectively). That is, if single-peakedness breaks down because of,
say, ten agents, then it must also breaks down because of two or three of
these agents.

As far as we know, Bartholdi and Trick [2] is the only paper that identifies
single-peakedness without using an a priori linear order of the alternatives
to be ranked. Their approach differs from ours, however, since they do not
provide a set of properties that characterize single-peakedness, as we do.
Instead, they provide an algorithm to find admissible orientations and show
that given a preference profile single-peakedness can be stated in polynomial
time.'?

The understanding of preferences that allow this kind of representation
constitutes one of the main problems of, among other fields, Strategy-proof
Social Choice. Inspired by classical results (Moulin [9]), a huge amount
of literature has discussed two of its main features. First, the general-
ization of the notion of single-peakedness to non-linear structures, in the
search of new non-manipulable rules. Second, the deep analysis of voting by

11f o' Pex P! then it suffices to consider individual j instead of s.

12To proceed they transform the problem of finding a linear ordering into a matrix
problem and apply an algorithm originally proposed by Booth and Lueker [4]. See also
Trick [11] for an algorithm to check single-peakedness on a tree.
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committees (see Barbera et al. [1]) show that single-peakedness is the seed
of non-manipulability in several domains. In a recent paper, Nehring and
Puppe [10] show the relevance of this approach.
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