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Abstract

Although it is commonly accepted that most macroeconomic variables are non-

stationary, it is often difficult to identify the source of the non-stationarity. In par-

ticular, it is well-known that integrated and short memory models containing trending

components that may display sudden changes in their parameters share some statis-

tical properties that make their identification a hard task. The goal of this paper is

to extend the classical testing framework for I(1) versus I(0)+ breaks by considering

a a more general class of models under the null hypothesis: non-stationary fraction-

ally integrated (FI) processes. A similar identification problem holds in this broader

setting which is shown to be a relevant issue from both a statistical and an economic

perspective. The proposed test is developed in the time domain and is very simple to

compute. The asymptotic properties of the new technique are derived and it is shown

by simulation that it is very well-behaved in finite samples. To illustrate the usefulness

of the proposed technique, an application using inflation data is also provided.
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financial support from the Spanish Ministry of Education through grants SEC2003-04429 and SEC2003-

04476 and also from the Barcelona Economics Program of CREA.
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1. INTRODUCTION

Most macroeconomic variables seem to display a non-stationary and very persistent be-

havior (Granger, 1966). These variables are typically represented by models that are com-

posed of a trend and a cycle. Before Nelson and Plosser (1982), it was commonplace to

assume that the trend was linear. Nevertheless they showed that the hypothesis of a ran-

dom walk in the trend component could not be rejected for many widely used aggregate

macroeconomic variables and then, the use of unit roots became very popular. Processes

containing a unit root are very persistent, to the extend that all shocks have a permanent

effect on the future dynamics of the process.

This approach encountered soon many counterchallenges since the latter hypothesis is

hardly plausible for many economic variables. One of the most constructive was suggested

by Perron (1989) who proposed to consider models in which most shocks vanished quite

fast while only those related to very significant events (such as wars, deep economic crisis,

etc.) had a permanent impact. These ideas could be captured by using trend components

that might display sudden changes in their parameters (structural breaks) in an otherwise

short-memory process. Furthermore, he showed that breaks in the trend produce serial

correlation patterns that are similar to those of an integrated process. As a consequence,

classical unit root tests are not able to reject the latter hypothesis when in fact the DGP

is a short memory+breaks process, in spite of the very different dynamics and implications

that these models have. See Perron (2005) for a comprehensive survey on this area.

Another alternative to the unit root framework was suggested by Hosking (1981) and

Granger and Joyeux (1980) who, by considering fractional orders of integration showed that

it was possible to obtain processes with a richer class of persistence properties and long-run

behaviours. More specifically, fractionally integrated (FI) processes can accommodate long

memory (stationarity with hyperbolic correlation decay), non-stationary mean-reversion

(very persistent non-stationary processes with non-permantent shocks) and non-stationarity

without mean reversion (for instance, unit root processes). There is wide empirical and

theoretical support for the existence of these features in both macroeconomic and financial
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data that has motivated an active research in this field (see Henry and Zaffaroni, (2002)

and Robinson (2004) for recent surveys on this area).

Not surprinsingly, it is also difficult to provide an unambiguous answer as to whether a

process is fractionally integrated or is short memory plus some deterministic components

that may be perturbed by sudden changes, since the same identification problem as that

of the I(1) case holds here. The issue of detecting correlation patterns similar to those

of a FI process when the DGP is short memory containing deterministic terms that may

display breaks has been widely analyzed (see Mikosh and Starika, (2004), Bhattacharya

et al. (1983) , Giraitis et al. (2001) , Perron (1989), Künsh (1986), Teverosky and Taqqu

(1997), Diebold and Inhoue (2001) , Perron and Qu (2004) among many others). It is

generally concluded that the use of standard techniques devised for FI processes could lead

to the detection of spurious persistence when applied on short memory processes containing

breaks. The opposite effect is also well-documented, that is, conventional procedures for

detecting and dating structural changes tend to find spurious breaks, usually in the middle

of the sample, when in fact there is only fractional integration in the data (see Nunes et al.

(1995), Krämer and Sibbertsen (2002) and Hsu (2001)).

Consequently, although there is a broad consensus on the non-stationarity of most macro-

variables, it is often difficult to be sure about the source of the non-stationarity, that is,

whether it comes from a high degree of persistence or from the existence of parameter

unstability. From a statistical point of view, to solve correctly this issue is critical in order

to avoid misspecifications. But the question is also well-motivated from an economic point of

view. On the one hand, if a model is unstable, it would not be useful for policy simulations

since the Lucas’ critique (1976) would apply with full force. On the other, to have an

accurate picture of the duration of shocks is crucial in order to design most economic policies.

This has motivated a growing literature aimed to determine the persistence and stability

of some key economic variables in both macroeconomics and finance that has given rise

to interesting controversies1 since opposite conclusions are often reached. Typically, these

1To mention some examples, some authors have found strong persistence in series such as inflation, asset

returns, GNP, etc., (see, among others, Pivetta and Reis (2004), Ding, Granger and Engle (1993), Lobato and
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contributions only consider tests of integer integration versus short memory+structural

breaks (even in cases where there is empirical support for the hypothesis of FI), the reason

being that no formal test of non-stationary FI versus short memory+breaks is available.

Then, if the model is in fact FI, contradicting results are likely to be found when different

techniques are employed.2

The goal of this paper is to develop a simple testing device in the time domain that is able

to determine whether the observed non-stationarity is due to fractional integration (that is

able to encompass the I(1) model as a particular case) or to the existence of deterministic

trends, possibly containing breaks, in an otherwise short memory process.

To illustrate the simplicity and empirical usefulness of this technique, an application

using inflation data has been considered. This variable offers a good example of the above-

described problems, since in spite of the myriad of papers dealing with the study of its

persistence and stability properties, no consensus has been reached yet. Economic and

statistical support for the existence of FI behavior in inflation is provided and it is shown

that under the latter hypothesis some of the contradicting results that have been recently

found in the literature could be accounted for if inflation is FI.

In spite of the large literature for testing the hypotheses of I (1) versus FI (d) or versus

I (0) plus structural breaks, (SB), there are very few techniques that allow for testing FI

vs. SB. To the best of our knowlegde, this is the first one that allows for directly testing

non-stationary FI vs. I(0)+breaks. Other interesting contributions in this area are that

of Sibbertsen and Venetis (2004) who proposed a technique based on the comparison of

standard log-periodogram regression estimation of the memory parameter with its tapered

counterpart but this method is only valid for processes with d < 0.5. Hidalgo and Robinson

(1996) analyze the related, although different, problem of testing for structural breaks in a

Savin, (1998) and a long etc.). Nevertheless, these findings are often attributed to the existence parameter

unstability (see Levin and Piger (2003), Mikosh and Starica (2004), etc.), therefore arriving to opposite

conclusions about the duration of shocks to these variables.
2More specifically, tests of I(1) vs. I(0) + breaks would tend to reject the former hypothesis for large T

if the DGP is FI(d) with d < 1, but the power will be low in finite samples. On the other hand, as discussed

above, tests of I(0) vs. I(0)+ structurals breaks will tend to find spurious breaks if the process is FI.
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regression model when the residuals may exhibit long range dependence. Lazarova (2004)

extends the latter framework by allowing for long memory also in the regressors. Finally,

Dolado, Gonzalo and Mayoral (2005) propose an extension of the Perron (1989) and Zivot

and Andrew’s (1992) approaches (developed for testing I(1) vs. I(0) plus breaks with known

or unknown break date, respectively) along the lines of the Fractional Dickey-Fuller test

(Dolado, Gonzalo and Mayoral, 2002). The properties of this technique are still under

investigation.

The structure of the paper is the following. Section 2 presents the model and the hy-

potheses of interest. For the sake of clarity, the new test is presented in a sequence of steps:

Section 3 analyzes the simpler problem of testing for FI vs I(0) where no breaks are al-

lowed to exist. This framework constitutes the basis of the test presented in Section 4 that

allows for the presence of a break occurring at an unknown time. Asymptotic results as

well as finite sample simulations (Section 5) are provided. To illustrate the usefulness and

simplicity of the new technique, Section 6 analyzes the statistical properties of US inflation

data. Section 7 draws some final conclusions. All proofs are gathered in Appendix A while

critical values for the proposed tests are presented in Appendix B.

In the sequel, the definition of a FI (d) process that we will adopt is that of an (asymptot-

ically) stationary process, when d < 0.5 and that of a non-stationary (truncated) process,

when d ≥ 0.5. Those definitions are similar to those used in, e.g., Robinson (1994) or Tanaka
(1999) (see, Appendix A in Dolado, Gonzalo and Mayoral (2002) for details). Moreover, the

following conventional notation is adopted throughout the paper: [.] indicates integer part,

L is the lag operator, ∆ = (1−L) , Γ (.) denotes the gamma function, {πi (d)} represents
the sequence of coefficients associated to the expansion of ∆d in powers of L and are defined

as

πi (d) =
Γ (i− d)

Γ (−d)Γ (i+ 1) . (1)

All integrals are taken with respect to the Lebesgue measure; Bd (.) is standard fractional

Brownian motion (fBM) corresponding to the limit distribution of the standardized partial

sums asymptotically stationary (truncated) FI (d) processes3; Finally, w→ and
p→ denote

3According to the notation introduced in Marinucci and Robinson (1999) Bd (.) is a type II Brownian
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weak convergence and convergence in probability, respectively.

2. THE MODEL AND THE HYPOTHESES

In the following it is assumed that the data y1, ...., yT is generated as,

yt = β0Zt + δ0Vt (ω) + xt, t = 1, 2, ..., (2)

where,

∆dxt = ut, xt = 0 for all t ≤ 0, (3)

and,

Vt (ω) =

 Zt−TB t ≥ TB,
0 otherwise.

The process yt and the k × 1 vector Zt of non-stochastic variables4 are observable, β
and δ are k × 1 vectors or parameters and {ut} is an unobserved zero-mean process whose
spectral density is strictly positive at zero frequency. Moreover, {ut} is assumed to have a
Wold representation ut = Ψ (L) εt, where the coefficients ψj are such that

P∞
j=0 j

¯̄
ψj
¯̄
<∞

and {εt} is an unobserved i.i.d. zero mean process with unknown variance equal to σ2 and
µ4 = E |ε|4 = ησ4 < ∞. TB is the parameter describing the time when the break, if it

exists, occurs and the parameter ω = TB/T determines the location of the break point in

the sample. It verifies that

ω ∈ Ω = [ωL,ωH ] ⊂ (0, 1).

Recall that the objective of this paper is to determine the source of the non-stationarity

observed in a data set, more specifically whether it comes from a high degree of inertia

or from parameter unstability. Hence, the suspected non-stationarity is modelled in two

different ways. Under the null hypothesis yt is consider to be a non-stationary FI (d0)

process with no breaks. Then, δ is assumed to be equal to zero (no breaks) and non-

stationarity of yt requires d ≥ 0.5.5 Under H1, yt is short memory (d0 = 0) , but δ is

motion
4Zt will typically contain polynomials in t.
5For any d > 0, yt is FI and is stationary and invertible as long as −0.5 < d < 0.5.
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(partially or totally) unrestricted, allowing in this way for the possibility of breaks. It will

not be needed to make additional parametric assumptions on the structure of ut but, if ut

admits an ARMA(p,q) representation, yt will be an ARFIMA (p, d, q) process, (see Hosking,

(1981) and Granger and Joyeux, (1980)) under H0 or a trend-stationary ARMA(p,q) model

containing breaks under the alternative.

Therefore, if yt is defined as in (2) , the null and the alternative hypotheses can be written

as,

H0 : d = d0, δ = 0 for a d0 > 0.5,

and,

H1 : d = 0,

where at least some of the components of δ are unrestricted.

3. PRELIMINARIES: POINT OPTIMAL TESTS FOR FRACTIONAL

PROCESSES

The aim of this section is to present the main ideas that later on (Section 4) will be

used to build the test for FI (d) vs. I(0) + breaks. In particular, this section introduces as

a preliminary step a procedure for testing FI (d0) versus FI (d1) when no breaks in the

data are suspected. For the sake of clarity, the following subsection discusses the simplest

case where no deterministic components are allowed for, while subsection 3.2 extends this

framework by including such components.

3.1 Model without deterministic components

Let us first consider the DGP defined in (2) with β = δ = 0 under both hypotheses.

Although the goal of this section is to develop a test for (non-stationary) FI vs. short

memory (I(0)) , under the restriction β = δ = 0 it is easy to consider a slightly more general

framework. To illustrate how this generalization could be accomplished, in this subsection

the integration order of yt under the alternative hypothesis, d1, would be allowed to be in

the interval 0 ≤ d1 < d0 < 1.5. Therefore, under H1, yt could be short memory (d1 = 0) but
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also long memory (d1 ∈ (0, 0, 5)) and even non-stationarity (d1 > 0.5). Also, the integration
order of yt under the null, d0, would not be restricted to the non-stationary range of values

of d, but it could be any value bigger than d1. Then, the DGP will be,

yt = xt (4)

∆dixt = ut, i = {0, 1}.

Under the null hypothesis, the integration order of xt is d0 whereas under the alternative

hypothesis is d1 ∈ [0, d0). The problem of testing FI (d0) vs. FI (d1) can be seen as a

simple hypotheses test and, as such, the Neyman-Pearson Lemma provides for the most

powerful test.6 The power of this test would be an upper bound for the power function of

any test based on the same likelihood. Under gaussianity, minus two times the log-likelihood

function under the null hypothesis is (except for an additive constant) given by,

L (d,σ)|H0 =
³
∆d0y

´0
Σ−1

³
∆d0y

´
,

where ∆d0y =
¡
∆d0y1, ...,∆

d0yT
¢0
and Σ is the non-singular variance-covariance matrix for

(u1, ..., uT ) . Analogously, under the alternative hypothesis of FI (d1) , it is equal to,

L (d,σ)|H1 =
³
∆d1y

´0
Σ−1

³
∆d1y

´
,

with ∆d1y =
¡
∆d1y1, ...,∆

d1yT
¢0
. By the Neyman-Pearson Lemma, the most powerful test

of the null hypothesis of d = d0 vs. d = d1 rejects the null hypothesis for small values of

the likelihood ratio statistic L (d,σ)|H1− L (d,σ)|H0 . Consider first the simplest case where
ut = εt, so that Σ = σ2IT . The critical region (CR) can be written as,

∆d1y0∆d1y −∆d0y0∆d0y
σ2

< kT

Since σ2 is unknown, it should be replaced by a consistent estimator. Under the null

hypothesis, the obvious choice would be T−1
¡
∆d0y0∆d0y

¢
. After some manipulation, it is

obtained that the UMP rejects the null hypothesis for small values of the statistic,
6This approach is similar to the one proposed by King (1988) , Dufour and King (1991) and Elliott,

Rothemberg and Stock (1996) who analyzed Neyman-Pearson ´ s type tests in the context of testing for

unit roots against local autoregressive alternatives.
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R =
∆d1y0∆d1y
∆d0y0∆d0y

. (5)

The statistic in (5) is similar to the Von-Neumann ratio proposed in the framework of

efficient unit root tests (see Sargan and Bhargava (1983) and Bhargava (1986)). These

authors considered the problem of testing for a random walk versus an AR(1) process. To

do that, they proposed as test statistic a ratio of variances similar to (5) and they showed

that this statistic was locally most powerful.7 Notice that their statistic only has this

Neyman-Pearson interpretation when the value of the autoregressive parameter is equal to

zero under the alternative hypothesis.

It is possible to calculate the exact null distribution of R under Gaussianity via Imhof ´

s algorithm, since R involves a ratio of quadratic forms. Also, an approximate finite-sample

optimality theory might be constructed along the lines of that of Bhargava (1986). The

following theorem describes the asymptotic distribution of the proposed test statistic in a

more general situation where the assumption of gaussianity is not needed.

Theorem 1 Let yt be defined as in (4) with ut = εt and 0 ≤ d1 < d0 < 1.5. Then, under
the null hypothesis of FI (d0), with d0 < 1.5 the asymptotic distribution of (5) is given by,

1. if (d0 − d1) > 0.5,

T 1−2(d0−d1)
∆d1y0∆d1y
∆d0y0∆d0y

w→
Z 1

0
B2(d0−d1) (r) dr, (6)

2. and if (d0 − d1) < 0.5

T 1/2
³
∆d1y0∆d1y
∆d0y0∆d0y

− Γ(1−2(d0−d1))
Γ2(1−(d0−d1))

´
w→ N (0, V ) , if (d0 − d1) < 1/4

T 1−2(d0−d1)
³
∆d1y0∆d1y
∆d0y0∆d0y

− Γ(1−2(d0−d1))
Γ2(1−(d0−d1))

´
w→ RS, if 1/4 < (d0 − d1) < 1/2

(7)

where Bδ (r) is a fBM as defined in Marinucci and Robinson (1999) and RS is the

Rosemblatt distribution. Moreover, under gaussianity this is the most powerful test.

7Schmidt and Phillips (1992) showed that for a Gaussian likelihood the Lagrange multiplier principle also

leads to this expression.
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The results above can be generalized to values of d0 greater than 1.5, following Ming

(1998). Notice that the distribution only depends on the distance between the hypotheses,

(d0 − d1) , and not on the particular value of d0.8 Whenever (d0 − d1 > 0.5), the asymptotic
distribution is a functional of fractional Brownian motions. This is so because the process

in the numerator, ∆d1yt, is FI (d0 − d1) , with (d0−d1) > 0.5 and therefore, non-stationary.
Well-known results guarantee the convergence to fBM in this case. The situation is more

complicated when the filtered process ∆d1yt is stationary, that is, whenever (d0 − d1 < 0.5).
Even in the very simple framework considered in this subsection, two different asymptotic

distributions arise according to the values of the difference (d0−d1). The asymptotic distri-
bution will be normal as long as the difference (d0 − d1) is smaller than 1/4. Otherwise, the
Rosemblatt distribution applies (see Hosking, (1996)).9 Finally, notice that the distribution

depends upon the value of d1 and therefore no uniform most powerful test exists.

The following theorem states the consistency of the test proposed above. It turns out that

it remains consistent as long the true integration order is smaller than the value employed

as null hypothesis when running the test.

Theorem 2 Let yt be a FI (d∗) process defined as in (4) with ut = εt. Then, the probability

of rejecting the null hypothesis of d = d0 tends to 1 as long as d0 > d∗.

This result is very interesting because it underlines the importance of explicitly consider-

ing fractional alternatives and not just integer ones. To see this more clearly, suppose that

the true integration order is d∗ = 0.7 but a test of I (1) vs. I (0) is implemented. According

to the result of Theorem 2, since d0 = 1 > d∗ = 0.7, the test would tend to reject the

I (1) hypothesis in large samples. This suggests that traditional methods for testing I(1)

vs. I(0) (with or without structural breaks) could be overrejecting the hypothesis of strong

persistence in favor of short memory when the true model is fact strong persistent but with

8The cases (d0 − d1) = {1/2, 1/4} are discontinuity points in the asymptotic theory and they are not
considered in this theorem.

9Asymptotic distributions that depend upon the distance between the hypotheses have also been found

in Dolado, Gonzalo and Mayoral (2002) in a similar context.
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an integration order less than one. Section 5 reports a simulation study confirming the

arguments above (see Table 5.4).

Clearly, in the context of Theorem 1 d1 is not a single alternative but belongs to a set

of values. A complete description of this case, then, would entail the analysis of the power

envelope and the local asymptotic power, along the lines of Elliott et al. (1996) or Dufour

and King (1991) . Nevertheless, this analysis will be skipped here for the sake of brevity,

since this is not the main goal of the paper. As it was stated in the introduction, the interest

of this paper is to test FI (d) against alternatives that are short memory (possibly with

deterministic trends and breaks). This implies that the alternative hypothesis needs to be

d1 = 0. Therefore, our framework is different from that of the above-mentioned papers in

the sense that in this case H1 is in fact a single point. Henceforth only the case d1 = 0 will

be considered.

Theorems 1 and 2 just deal with the simplest case where ∆d0yt = εt does not have short

run structure. In the more general situation where ∆d0yt = ut, and ut is a short memory

process, the distributions in Theorem 1 would depend on some nuisance parameters and

therefore, should be corrected. If the parametric form of ut is known, an estimate of the

variance-covariance matrix Σ can be obtained and therefore the critical region of the most

powerful test would be given by,¡
∆d1y

¢0
Σ̂−11

¡
∆d1y

¢
(∆d0y)0 Σ̂−10 (∆d0y)

< kT ,

for consistent estimators, Σ̂0 and Σ̂1 of Σ, under H0 and H1 respectively. In the general

case where no information of the parametric form of ut is available, the statistic in (5) can

still be employed as long as a correction that takes into account the correlation structure

of ut is introduced. In the following, we explore in more detail the second alternative since

it has the advantage that no more additional assumptions on the structure of ut need to be

adopted. The following theorem presents the asymptotic behavior of the statistic defined

in (5) for the case where ut verifies the assumptions of Section 2. As mentioned before,

attention will be restricted to the case where d1 = 0 and d0 > 0.5.

Theorem 3 Let yt be defined as in (4) with d1 = 0 and d0 is a value greater than 0.5.
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Then, under the null hypothesis of FI (d0) the asymptotic distribution of (5) is given by:

T 1−2d0
y0y

∆d0y0∆d0y
w→ λ2

γ0

Z 1

0
B2d0 (r) dr,

where λ = σΨ (1) and γ0 = σ2
P∞
i=0 ψ

2
j .

The existence of correlation structure in ut introduces the nuisance term λ2/γ0 in the

asymptotic distribution. It is possible to estimate this factor by nonparametric kernel

techniques, analogous to those that are used in the estimation of the spectral density (see

Andrews (1991)). Then, the statistic in (5) can be corrected to account for the short term

correlation so that it is possible to recover the same asymptotic distributions as in Theorem

1. In particular, γ0 can be estimated under the null hypothesis simply by
P¡
∆d0yt

¢2
/T

whereas λ2 can be rewritten as:

λ2 = γ0 + 2
∞X
i=1

γi = 2πsu (0) .

Several estimators of this quantity have been proposed, see Andrews (1991) for an analysis

and comparison of the different techniques. One of the most popular is the Newey-West

estimator:

λ̂
2
= γ̂0 + 2

qX
i=1

(1− j/ (q + 1)) γ̂i

where γ̂i = T
−1PT

t=j+1 utut−j . Andrews (1991) also provides a guideline for choosing the

value of the lag truncation, q.10

3.2. Unknown deterministic components

Since most macroeconomic time series usually display a trending behavior or a level

different from zero, the test presented above need to be adapted in order to be invariant to

these components. Consider again model (2) where, in contrast to the previous subsection,

β is a vector of unknown constants. The existence of breaks is not allowed until Section

10As Andrews points out, a correct choice of q is very important since the perfomance of these estimators

can greatly depend on this choice.
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4, so again, δ is assumed to be equal to zero under both H0 and H1. When β is unknown,

the process xt in (2) is unobservable and then, an estimate of β is needed to carry out the

test. It follows from the Grenander-Rosenblatt theorem (Grenander and Rosemblatt, 1957)

that if a process is (trend) stationary, the trend function can be efficiently estimated by an

OLS regression. Then, taking the appropriate differences under both the null and under

the alternative hypothesis, a simple OLS regression would yield efficient estimates of β.

Equivalently, these estimates can be seen as the results of two constrained GLS regressions,

one imposing d = d0 and the other imposing d = 0. It follows (Lehmann (1959)) that

the most powerful invariant (MPI) test will reject the null hypothesis of d = d0 for small

values of minβL (d = 0,σ,β)−minβ L (d = d0,σ,β) . Then, the MPI test will reject the null
hypothesis for small values of the expression,

min
β
(y − Zβ)0Σ−1 (y − Zβ)−min

β

³
∆d0y −∆d0Zβ

´0
Σ−1

³
∆d0y −∆d0Zβ

´
, (8)

with Z = (Z 01, ..., Z 0T )
0 .

As it is common in this literature, the asymptotic behavior of the statistics are quite

sensitive to the nature of the regressors included in Zt. In the following, we present explicit

formulas for the constant mean (Zt = 1) and the linear time trend case (Zt = (1, t)). The

critical regions of the MPI tests (in the simplest case where ut = εt and d1 = 0) can be

written, after rearranging terms, as

Rc =

PT
t=1(yt − α̂1)

2PT
t=2(∆

d0(yt − α̂0))2
< k0T and R

τ =

PT
t=1

³
yt − α̂1 − β̂1t

´2
PT
t=2

³
∆d0(yt − α̂0 − β̂0t)

´2 < k0T , (9)

for the mean and mean+trend respectively, where α̂i and β̂i are the OLS estimators in

the constrained models. Notice that under H0, the process should be differenced prior to

the estimation of the deterministic components in order to have short memory residuals.

Then, α̂0 and β̂0 are computed as the OLS estimates in a regression of ∆
d0yt on ∆d01(t>0)

and ∆d0−11(t>0) (or equivalently, ∆d0t), where ∆δ1(t>0) =
Pt−1
i=0 πi (δ) and the coefficients

πi (.) are defined in (1) . Under H1, in turn, α̂1 and β̂1 are simply the OLS estimates of the

original process, yt on a constant or a constant and a trend for the Rc and Rτ , respectively.
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The following theorem presents the asymptotic properties of the test for the general case

where ut is allowed to have serial correlation and a constant term or a constant and a

linear trend are included under both hypotheses. Notice that this framework contains as a

particular case the Sargan and Bhargava statistic for testing d0 = 1 and d1 = 0.

Theorem 4 Let yt defined as in (2) with δ = 0 under both H0 and H1. Then, under the

null hypothesis of FI (d0) , with d0 ≥ 0.5, and Zt=(1) or Zt =
³
1 t

´
, the asymptotic

distributions of Rc and Rτ are given, respectively, by

• If Zt=(1),

T 1−2d0Rc = T 1−2d0
P
(yt − α̂1)

2P
(∆d0(yt − α̂0))

2

w→ λ2

γ0

Z 1

0
B
µ2
d0 (r)dr. (10)

where Bµd0 is a “demeaned” fBM , see Appendix A for its exact form.

• and if Zt =
³
1 t

´
,

T 1−2d0Rτ = T 1−2d0
P³

yt − α̂1 − β̂1t
´2

P³
∆d0(yt − α̂0 − β̂0t)

´2 w→ λ2

γ0

Z 1

0
B

τ2
d0 (r) dr.

where Bτ
d0
is a “detrended” fBM, see Appendix A for its exact form.

As in the I(1) vs. I(0) case, the estimation of deterministic components has a non-

negligible asymptotic effect. Critical values for the demeaned and detrended distributions

are reported in Appendix B, corresponding to the case where ut = εt. In the general

case where autocorrelation in ut is suspected, a semiparametric correction, as explained in

subsection 3.1, should be computed.

4. TESTING FRACTIONAL INTEGRATION VERSUS STRUCTURAL

BREAKS

In this section the assumption of δ = 0 under H1 is relaxed, allowing in this way for

the existence of breaks under the latter hypothesis. Perron (1989) was one of the first
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to show that standard unit root tests could conduct to misleading conclusions if the true

DGP was an I (0) process containing breaks in the deterministic components. This seminal

contribution was the starting point of a myriad of articles on the problem of distinguishing

between I (1) vs. I (0) + breaks.

Surprinsingly, there are very few contributions dealing with the more general topic of

testing for FI(d) vs. I (0) + breaks . Some authors have considered the problem of testing

for stationary FI (d) versus short memory with monotonic or non-monotonic trends (Kun-

sch (1986) and Sibbertsen and Venetis (2004), respectively). Another line of research has

explored the related topic of how to test for breaks in a long memory context (see Hidalgo

and Robinson (1996) and Lazarova (1994)) but again, these contributions only consider

stationary FI(d) processes and therefore cannot be applied in the framework of this paper.

Therefore, to the best of our knowlegde, this is the first contribution offering a unified

framework for testing non-stationary fractional integration (that includes the I(1) model as

a particular case) vs. trend stationarity with parameter unstability.

As in Section 3, the focus is placed on processes that under H0 are FI (d0), with 0.5 <

d0 < 1.5. This interval contains the unit root case but also other interesting behaviors that

have been shown of empirical relevance in economics. Under H1, the process of interest is

characterized as being I(0) with a possibly breaking trend. As in Perron (1989) and Zivot

and Andrews (1992), several models are considered according to the included deterministic

terms and the parameters that are allowed to break. For simplicity, attention will be

restricted to the case where there exists at most a single break. An extension to a multiple-

change environment can be entertained along the lines of Bai (1999) and Bai and Perron

(1998).

Let yt be defined as in (2). As discussed in Section 2, the null hypothesis is characterized

by the joint hypothesis d = d0 and δ = 0. Then, under H0, yt is the sum of a (fractionally)

integrated component and some (smooth) deterministic terms. Alternatively, under H1, the

process xt is short memory and therefore d = 0. Breaks are allowed by letting δ unrestricted.

If the time when the break takes place was known, the matrix Vt (ω) would be completely

determined and then, the test would reject the null hypothesis of (stable) fractional integra-
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tion for small values of infβ,δ L (d1 = 0,Σ,β, δ)−infβ L (d = d0,Σ,β, δ = 0) . In other words,
the critical region would be given by,

inf
β,δ
(y − Zβ − V δ)0Σ−1 (y − Zβ − V δ)− inf

β

³
∆d0y −∆d0Zβ

´0
Σ−1

³
∆d0y −∆d0Zβ

´
< kT ,

(11)

for some kT . Moreover, under gaussianity this will be the MPI test. But, since the date

break is in general unknown, the candidate for break point would be chosen as the one that

maximizes the likelihood (or alternatively, that minimizes the variance). As a consequence

of this estimation, optimality is lost. Two distinct cases may arise. The first is when the

interest is centered on change points in a known restricted interval, say Ω = [ωL,ωH ] for

0 < ωL < ωH < 1. This would be the case when one wants to test for changes initiated

by some institutional or political change that has occurred at a known time period. The

second is the case where no information is available a priori and hence, all points in (0, 1)

are of some interest. This situation may arise when one wants to apply a test of structural

break as a general diagnostic test of model adequacy. But considering the whole interval

(0, 1) would result in tests with very low power. Then, the minimization is carried out

in ω ∈ Ω, where Ω = [ωL,ωH ] for some 0 < ωL < ωH < 1. More specifically, when no

information on the location of the break is available, we will use the restricted interval

Ω = [0.15,0.85], following the suggestions in Andrews (1993) . In the case where there is no

short term correlation in ut, the test statistic becomes,

Rb =
infω∈Ω(

PT
t=1(yt − β̂

0
Zt − δ̂ (ω)0 Vt (ω))2)PT

t=2(∆
d0(yt − β̂

0
Zt))2

(12)

The asymptotic distribution depends upon the regressors contained in Zt and also on

the parameters that are allowed to break. In the following, we will analyze the four cases

considered by Perron (1989) and Zivot and Andrews (1992). In three of these models, Zt

contains both a constant and a linear trend but they differ on the parameters that are

allowed to break: Model 1 allows for an exogenous break in the level of the series, Model

2 allows for a change in the rate of growth and finally, Model 3 admits both changes. In

addition, we also consider “Model 0”11, where Zt only contains a constant that is allowed
11This case may be of interest when modeling series who do not seem to display a trend, such as inflation
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to break once in the sample.

To facilitate the statement of the theorem, the notation will be simplified by defining the

following dummy variables: DCt = 1, if t > TB and 0 otherwise and DTt = (t − TB) if
t > TB and 0 otherwise.

Theorem 5 Let yt defined as in (2) where Z contains a constant or a constant and a linear

time trend. Then, under the null hypothesis of FI (d0), with 0.5 < d0 < 1.5, the asymptotic

distribution of (12) is given by,

• If Zt = (1) ,

Model0 : R0b = T
1−2d0 infω∈Ω

P
(yt − α̂1 − (α̂2 − α̂1)DCt)2)P
(∆d0(yt − α̂0))

2

w→

λ2

γ0
inf
ω∈Ω

(

Z 1

0
(B

µB
d0
(r,ω))2dr)

where BµBd0 (r,ω) is the L2 projection residual from the continuous time regression,

Bd0 (r) = α̂1 + δ̂1dc (ω, r) +B
µB
d0
(r,ω) ,

and dc (ω, r) = 1 if r > ω and 0 otherwise.

• If Zt =
³
1 t

´
,

Model 1 : R1b = T
1−2d0 infω∈Ω(

P
(yt − α̂1 − (α̂2 − α̂1)DCt − β̂1t)

2)P³
∆d0(yt − α̂0 − β̂0t)

´2 w→

λ2

γ0
inf
ω∈Ω

(

Z 1

0
(B

τ1B
d0
(r,ω))2dr)

Model 2 : R2b = T
1−2d0 infω∈Ω(

P
(yt − α̂1 − β̂1t− (β̂2 − β̂1)DTt)

2)P³
∆d0(yt − α̂0 − β̂0t)

´2 w→

λ2

γ0
inf
ω∈Ω

(

Z 1

0
(B

τ2B
d0
(r,ω))2dr)

or interest rates.
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Model 3 : R3b = T
1−2d0 infω∈Ω(

P
(yt − α̂1 − (α̂2 − α̂1)DCt − β̂1t− (β̂2 − β̂1)DTt)

2)P³
∆d0(yt − α̂0 − β̂0t)

´2 w→

λ2

γ0
inf
ω∈Ω

(

Z 1

0
(B

τ3B
d0
(r,ω))2dr)

where B
τ iB
d0
, i={1,2,3} is the L2 projection residual from the continuous time regres-

sions,

Bd0 (r) = α̂1 + α̂2dc (ω, r) + β1r +B
τ1B
d0
(r,ω) ,

Bd0 (r) = α̂1 + β̂1r + β̂2dt (ω, r) +B
τ2B
d0
(r,ω) ,

Bd0 (r) = α̂1 + α̂2du (ω, r) + β̂1r ++β̂2dt (ω, r) +B
τ3B
d0
(r,ω) ,

where dc (ω, r) is defined as above and dt (ω, r) = r − ω for r > ω and 0 otherwise.

Appendix B gathers the critical values of the distributions above obtained by Monte Carlo

simulation for the case where Ω = [0.15, 0.85] and there is no short-term correlation, that

is, ut = εt. When correlation of ut is suspected, the nuisance parameters λ2 and γ0 can be

estimated according to the techniques detailed in the previous section.

Notice that if H0 is rejected, the test favors the hypothesis of I(0) possibly containing

breaks. At this stage, the theory for detecting breaks in I(0) processes applies. This theory

is more standard and has been studied in depth. For instance, Bai (1997) proposes to use

standard t− tests on δ. See also Perron (2005) for a recent survey on this topic.

5. FINITE SAMPLE RESULTS.

To explore the finite sample performance of the test developed in Section 4, the results

from some Monte Carlo experiments are reported. In all the experiments, the number of

replications was set equal to 5000. Processes were generated according to different DGP’s

(that will be detailed below). In all of them, innovations were drawn from independent

N (0, 1) distributions.

The first experiment was to test the FI(d) hypothesis for several values of d ∈ (0.5, 1.5),
when the true model was generated as the sum of i.i.d innovations plus some deterministic
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terms that contained breaks at different time points (ω = {0.20, 0.5, 0.80}), according to
Models 0 to 3. Different sizes of breaks were considered, both in the constant and in the

time trend. In particular, the size of the break in the constant was ξ1 ={0.01, 0.05, 0.1},

and in the time trend was ξ2 ={0.005, 0.01, 0.1}. No short-term semiparametric correction

was introduced to compute the statistics in this case. Very remarkably, the power was equal

to 100% in all cases even for moderate sample sizes (T=100). Next, short-term correlation

was introduced in the DGP. Tables 5.1. to 5-3 present the results of using Models 1-3 to test

the hypotheses of interest when the true DGP was an AR(1) process (with an autoregressive

coefficient equal to 0.5), plus some breaks. Different locations of the break point were also

tried (ω = {0.20, 0.5, 0.80}) but only the figures corresponding to ω = 0.5 are reported

since they were all very similar.

TABLE 5.1

Model 1: Power R1b test; S.L:5%.

True process (H1) : yt = ξ1DCt (ω) + 0.5yt−1 + εt; ω = 0.5

T=100 T=400

ξ1/H0 d0=0.6 d0=0.7 d0=0.8 d0=0.9 d0=1.1 d0=0.6 d0=0.7 d0=0.8 d0=0.9 d0=1.1

0.01 65.3% 89.5% 98.1% 99.1% 100% 86.3% 93.2% 98.3% 99.2% 100%

0.05 66.9% 89.3% 99.2% 99.1% 100% 86.3% 93.2% 98.6% 100% 100%

0.1 66.6% 90.7% 98.1% 99.0% 100% 86.7% 93.2% 98.2% 100% 100%

TABLE 5.2

Model 2: Power R2b test; S.L:5%.

True process (H1) : yt = ξ2DTt (ω) + 0.5yt−1 + εt; ω = 0.5

T=100 T=400

ξ2/H0 d0=0.6 d0=0.7 d0=0.8 d0=0.9 d0=1.1 d0=0.6 d0=0.7 d0=0.8 d0=0.9 d0=1.1

0.005 61.3% 85.5% 98.1% 99.1% 100% 85.3% 92.7% 97.3% 99.5% 100%

0.01 61.9% 86.3% 99.2% 99.1% 100% 85.2% 92.8% 97.6% 99.3% 100%

0.1 56.6% 84.7% 97.1% 99.0% 100% 81.2% 92.1% 97.3% 99.6% 100%
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TABLE 5.3

Model 3: Power R3b test; S.L:5%.

True process (H1) : yt = DCt (ω) + ξ2DTt (ω) + 0.5yt−1 + εt; ω = 0.5

T=100 T=400

(ξ1, ξ2)|H0 d0=0.6 d0=0.7 d0=0.8 d0=0.9 d0=1.1 d0=0.6 d0=0.7 d0=0.8 d0=0.9 d0=1.1

(0.01,0.005) 63.3% 87.5% 97.1% 99.1% 100% 87.3% 92.5% 96.3% 99.6% 100%

(0.05,0.01) 63.9% 87.3% 97.2% 99.1% 100% 87.3% 92.5% 96.3% 99.8% 100%

(0.1,0.1) 56.6% 82.7% 97.1% 99.8% 100% 89.2% 93.0% 95.3% 99.7% 100%

From Tables 5.1 to 5.3 it is seen that the size of the break has not a big impact on the

power which, as expected, improves when T and d0 increase, since the test is consistent and

the bigger is d0, the more distant H0 and H1 are.

Nevertheless, the latter fact should not lead to the wrong rule of always using a large

value of d0 for testing. It should be remembered that if the true DGP is FI (d∗) but the

integration order employed to run the test, d0, is bigger than the true integration order,

d∗, the test would tend to reject the null hypothesis of FI(d0) even if the true model is

fractionally integrated. This fact emphasizes the need of considering fractional hypotheses

and not just integer ones, since otherwise it is possible to reject strong persistence when,

in fact, it is the source of the non-stationarity in the data. To illustrate the last argument,

Table 5.4 presents the rejection frequencies computed from testing I (1) vs. I(0) +breaks

when the true DGP is a FI(d∗) model with d∗ = {0.6, 0.7, 0.8, 0.9} for models 1, 2 and 3. As
it can be seen from Table 5.4, rejection of the null hypothesis of I (1) is very likely to occur

even for values of d∗ close to d0 = 1. This result implies that in applications where only

integer values (I(1) vs. I(0)+breaks) are considered, the risk of overrejecting the hypothesis

of integration is very high if the true DGP is in fact integrated but of a smaller order than
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1.12

TABLE 5.4

Misspecification of H0

H0 : yt ∼ I (1) ; True DGP: yt ∼ FI (d∗) , d∗ < 1.
T=100 T=400

Model/d∗ d∗ = 0.6 d∗ = 0.7 d∗ = 0.8 d∗ = 0.9 d∗ = 0.6 d∗ = 0.7 d∗ = 0.8 d∗ = 0.9

Model 1 98.8% 87.2% 57.0% 28.2% 100% 99.8% 91.0% 41.3%

Model 2 92.3% 79.6% 49.6% 24.6% 100% 99.9% 84.2% 34.5%

Model 3 86.4% 60.22% 31.22% 13.25% 100% 99.9% 87.3% 32.5%

6. EMPIRICAL ILLUSTRATION

The study of the statistical properties of inflation and, in particular, its degree of per-

sistence and stability over time, occupies a privileged place in macro-econometrics since

this variable plays a central role in the design of the monetary policy and has important

implications for the behavior of private agents. Moreover, a new interest in the subject has

arisen in the last few years that has motivated a large number of empirical and theoretical

contributions. In spite of this great effort, there is no consensus in the literature about

the most appropriate way to model the inflation rate. On the one hand, there is abundant

empirical evidence that post-war inflation in industrial countries exhibits high persistence,

close to the unit root behavior. The papers of Pivetta and Reis (2004) for the USA and

O’Reilly and Whelan (2004) for the euro zone are some examples. On the other, some

authors have argued that the above-mentioned results are very sensitive to the employed

statistical techniques and that the observed persistence may be due to the existence of

unaccounted breaks, probably stemming from changes in the inflation targets of monetary

authorities, different exchange rate regimes or shocks in key prices. For instance, Levin and

Piger (2003) have found evidence of a break in the intercept of the inflation equation and,

conditional on this break, they argue that inflation shows very low persistence. Finally,
12Dolado, Gonzalo and Mayoral (2005) provide evidence that this is also the case when other traditional

methods (for instance, the Zivot and Andrew’s (1992) statistic) for testing I(1) vs. I(0)+breaks are employed
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Cogley and Sargent (2001, 2003) claim that non-stationary (integrated) representations of

inflation are implausible from an economic point of view, since they would imply an infi-

nite asymptotic variance, which could never be optimal if the Central Bank’s loss function

includes the variance of inflation. Then, they consider inflation as being a short memory

(I (0)) process.

The aim of this section is to shed further light on this controversy by applying the

techniques developed in this article. To facilitate the comparison with previous analysis,

the same data set as in Pivetta and Reis (2004) has been employed: The prive level, Pt, is

measured through the seasonally-adjusted quarterly data on the GDP deflator from the first

quarter of 1947 to the last quarter of 2003 (9 observations have been added with respect to

their analysis). This data has been obtained from the Bureau of Economic Analysis. Then,

inflation is computed as πt = 400 ∗ log(Pt/Pt−1), that is, it is the quarterly change of the
price level at an annualized rate. Figure 1 presents a plot of this data.
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U.S Inflation 1947.1 - 2003.4 

The contradicting results described above could be explained if the inflation rate was a

FI process. Unit root tests are known to have very low power against FI alternatives. This

could account for the non-rejection of the this hypothesis in some applications considering

inflation. On the other hand, if inflation is FI and standard techniques for detecting and

dating breaks are employed, it is well-known that spurious breaks are likely to be detected.

There is both economic and statistical support for the hypothesis of FI in inflation.

Gadea and Mayoral (2005) provide an economic justification for the existence of fractional
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integration in inflation data. They consider a sticky price model as in Rotemberg (1987),

where it is assumed that each firm faces a quadratic cost of changing its price. It is well-

known that when this is the case, the dynamics of prices are given by,

pit = ϑpit−1 + (1− ϑ) pi∗t , (13)

where p and p∗ represent the actual and optimal level of prices of firm i and the parameter

ϑ is a function of the adjustment costs and lies between zero and one. It captures the

extent to which imbalances are remedied in each period. Then, if ϑ = 1, there is not price

adjustment in period t and if ϑ = 0, the adjustment is perfect. Equation (13) can also be

written as:

∆pit = ϑ∆pit−1 + νit, (14)

with νit = (1− ϑ)∆pi∗t . Since costs may differ across firms, it is natural to consider the case

where ϑ may also depend on i. Then,

∆pit = ϑi∆pit−1 + νit. (15)

To build a price index, aggregation over a huge number of individual prices has to be

considered.13 The change in the price index ∆pt is defined as,

∆pt =
NX
i=1

∆pit.

Application of the aggregation results over heterogeneous agents established in Robinson

(1978), Granger (1980), and recently generalized by Zaffaroni (2004) guarantee that if the

distribution of ϑi verifies some (mild) semi-parametric restrictions, then ∆pt is a FI (d)

process.14 It follows that the higher the proportion of agents correcting the imbalances

13For instance, prices for the goods and services used to calculate the CPI are collected in 87 urban areas

throughout the United States and from about 23,000 retail and service establishments.
14Zaffaroni (2004) provides a full discussion of the required restrictions. In particular, ϑ should belong to

a family = of continuous distributions on [0,1) with density,

= (ϑ, d) ∼ cϑ−d as ϑ→ 0+ (16)
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between the actual and the optimal level of prices by a small amount each (i.e., ϑi ≈ 1),
the higher the inflation inertia.

From an applied point of view, evidence in favor of FI behaviour in inflation data has

been reported in several papers (see, among others, Delgado and Robinson (1994), Baillie,

Chung and Tieslau (1992, 1996), Backus and Zin, (1993) , etc.). Nevertheless, the methods

employed in these contributions are not robust to the existence of structural breaks. There-

fore, it remains to check whether the evidence supporting FI can be due to the existence

of structural breaks.

To begin the analysis, Table 6.1 presents the results of some standard tests for unit roots.

The first two columns contain the figures from the Augmented Dickey-Fuller (ADF) and the

Phillips- Perron (P-P) tests of I (1) vs. I (0) and the third one, those obtained by applying

the KPPS test of I (0) vs. I (1) . From the first two columns it is seen that when the unit

root model is tested against I (0) , the former is rejected. The opposite result is obtained

when the hypothesis are reversed (third column). In this case, also the I(0) is rejected

against the alternative of I(1).

TABLE 6.1

Unit root Tests

ADF P-P KPSS (I (0) vs. I (1))

Value of the test -3.49∗∗ -5.88∗∗ 0.67∗

Critical Values (5%) -2.87 0.463
∗,∗∗Rejection at the 5% and the 1% level, respectively.

The rejection of the I (1) and the I (0) hypotheses is compatible with the existence of both

fractional integration and also with some types of structural breaks. This is so because unit

with c ∈ (0,∞) . Many parametric specifications verify the above-mentioned restrictions, such as the
uniform or the Beta distribution.It is interesting to notice that the behavior of = (ϑ, d) within any interval
[0, γ] is completely unspecified.
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root tests are known to have some power against the latter DGP’s (see Lee and Schmidt

(1996) , Diebold and Rudebush (1991) and Perron (1989)).

The next step is to test for the suitability of the FI specification. Table 6.2 presents the

results of estimating d using different techniques: the semiparametric estimator proposed by

Geweke and Porter Hudak (GPH, (1982)) ,Non-linear least squares (NLS, see Beran (1995)) ,

Exact Maximum likelihood (EML, Sowell (1992)) and Minimun Distance (MD, Mayoral

(2004)). In all cases, fractional values of d ’far’ from both the I(0) and the I (1) hypothesis

are found.
TABLE 6.2

Estimation of d

GPH NLS EML MD

d̂ 0.51∗∗
(0.13)

0.59∗∗
(0.15)

0.61∗∗
(0.14)

0.58∗∗
(0.12)

Tests of fractional versus integer integration (d = 0 or 1) based on the values above are not

able to reject the FI hypothesis at the 5% signification level, confirming previous findings

about the existence of FI in inflation data (see the papers cited above). Nevertheless, it has

also been argued that estimates of d can be very imprecise15 and that tests of integer versus

fractional integration based on these estimates in general do not posses good properties.

Table 6.3 reports the results of testing the null hypothesis of I (1) versus the hypothesis of

fractional integration using both Wald-type techniques (the augmented Fractional Dickey-

Fuller test, see Dolado, Gonzalo and Mayoral, (2002,2004)) and LM ones (Tanaka, 1999).

In both cases the unit root hypothesis is rejected in favor of fractional integration.

15Parametric methods are very sensitive to the specified models and semiparametric ones are known to

be biased in the presence of strong short-term autocorrelation.
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TABLE 6.3

Tests of I(1) vs FI(d) .

d− Number of lags Aug. FDF16 LM test

H1 : d=0.6 d=0.7 d=0.8 d=0.9 d < 1

d0 = 0.7 -3.87∗∗ -3.76∗∗ -3.61∗∗ -3.46∗∗ -2.85∗∗

Critical Values (5%) -1.65

Finally, it remains to be checked whether the evidence in favor of FI can be due to the

existence of breaks in the intercept of the inflation equation as claimed by Levin and Piger,

(2003). Table 6.4 presents the values of testing FI against a short-memory process that

may contain a break in the intercept. Different values of d and also for different values of

lags to compute the Newey-West correction have been considered.

TABLE 6.4

LR tests FI(d) vs I(0) with one break in the constant.

d− Number of lags∗ 1 2 3 Crit. Values S.L.:5%

d0 = 0.6 0. 840 1. 282 1.492 0.3958

d0 = 0.7 0. 294 0. 432 0. 497 0.1752

d0 = 0.8 0. 102 0.162 0.182 0.0841

d0 = 0.9 0.035∗ 0.043 0.052 0.0403

d0 = 1 0.011∗ 0.012∗ 0.014∗ 0.0200

The suggested number of lags, following Andrews (1991) method was 3. These implies

that the null hypothesis of FI cannot be rejected against the alternative of I (0)+ breaks.

It is remarkable, however, that the null hypothesis of I(1) (permanent shocks) is rejected.

Summarizing, we have found evidence supporting the hypothesis of FI in inflation data

and we have checked that this specification is preferred to another one containing a break

in the intercept of the inflation equation. This finding has important implications when
16The number of lags to compute the AFDF test and to select the parametric model for the LM test have

been chosen according to the BIC criterion.
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computing estimates of the persistence of the process. Impulse responses of inflation com-

puted on I(1) specifications will deliver biased estimates that, specially in the medium and

long term, will tend to overestimate persistence if the process is FI (d), with d < 1. More-

over, other popular tools for analyzing persistence such as the sum of the autoregressive

coefficients could easily lead to wrong conclusions. Under this approach, if the sum of AR

coefficients is close to 1, the process is said to contain an (integer) unit root and therefore

is considered to be very persistent. But once FI is allowed for, this conclusion is clearly

wrong since the sum of the autoregressive coefficients of a FI(d) process is equal to one for

any d > 0. See Gadea and Mayoral (2005) for a more detailed discussion of this issue.

7. CONCLUSIONS

This paper analyzes the long-standing issue of determining the source of the non-stationarity

observed in many economic variables: whether it is a result of a high degree of inertia (very

persistent shocks) or it appears as a consequence of the existence of rare and unexpected

events that are able to change the underlying structure of the series (breaks). We have ex-

tended the traditional approach of testing I (1) versus I (0)+breaks by allowing for a richer

class of persistent behaviors under H0. In particular, the possibility of fractional integration

has been explicitly taken into account. It has also been shown that explicitly considering

FI processes is very relevant since tests of I (1) vs. I(0) +breaks tend to reject the former

hypothesis when the true DGP is a FI process with an integration order smaller than 1. The

asymptotic properties of the tests statistics as well as their finite sample behavior have been

analyzed. Finally, an empirical application that analyzes US inflation has been reported

and evidence of FI behavior has been found in this data set. This finding helps to reconcile

previous controversies that exist in the literature.
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APPENDIX A

Proof of Theorem 1

1. Under the null hypothesis, the process ∆d0yt equals εt and then a standard LLN for

i.i.d process guarantees that
P¡
∆d0yt

¢2
/T

p→ σ2. On the other hand, since under

the null ∆d1yt ∼ FI (d0 − d1) , with (d0 − d1) > 0.5, then T−2(d0−d1)
P
∆d1y2t

w→
σ2
R 1
0 B

2
(d0−d1) (r)dr, (see Akonom and Gourieroux, (1987)).

2. Under the null hypothesis, the variance of the (stationary) process yt is given by

σ2 Γ(1−2(d0−d1)Γ2(1−(d0−d1) (see Baillie, (1996)). Hosking (1996) provides for the asymptotic distri-

bution of
P³
∆d1y2t − σ2 Γ(1−2(d0−d1)

Γ2(1−(d0−d1)
´
. Whenever (d0 − d1) > 1/4, it is given by the

Rosemblatt distribution with cumulants defined in equations (5) and (6) in Hosking

(1996). If (d0 − d1)<1/4, the distribution is normal and the variance is defined in
Hannan (1976). ¥

Proof of Theorem 2

The asymptotic behaviour of the numerator depends upon the distance between the true

integration order of the process, d∗, and d1, the order employed to run the test under the

alternative hypothesis. Three different situations have to be distinguished.

1. (d∗ − d1) > 0.5.
Following the same reasoning as in the proof of Theorem 1, the denominator is Op (T ) ,

since ∆d0yt ∼ FI (d∗ − d0) is stationary and verifies a LLN. On the other hand the process
∆d1yt is a (nonstationary) FI (d∗ − d1) , and therefore

P
∆d1y2t = Op

¡
T 2(d

∗−d1)¢ . Then,
T 1−2(d0−d1)

P
∆d1y2t /

P
∆d0y2t is Op

¡
T−2(d0−d∗)

¢
, which tends to zero as long as d0 > d∗.

2. (d∗ − d1) = 0.5.
Notice first that, since d0 > d∗, then (d0 − d1) > 0.5. Also, since ∆d1yt ∼ FI (0.5), it fol-

lows that
P
∆d1y2t = Op (T logT ) , (see Ming (1998)). Then, T

1−2(d0−d1)P∆d1y2t /P∆d0y2t
is Op

¡
T 1−2(d0−d1)(log (T ))

¢
, which tends to zero as long as d0 > d1.

3. (d∗ − d1) < 0.5.
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Both the numerator and the denominator are (asymptotically) stationary and ergodic

now, therefore
P
∆d0y2t /

P
∆d1y2t = Op (1) . Notice that in this case (d0 − d1) ≶ 0.5. If d0 is

chosen such that (d0 − d1) > 0.5, it turns out that the test tends to zero at a rate T 1−2(d0−d1).
On the other hand, if d0 is chosen such that (d0 − d1 < 0.5) , it is easy to check that limT→∞P
∆d1y2t /

P
∆d0y2t <

Γ(1−2(d0−d1))
Γ2(1−(d0−d1)) , therefore T

A
³P
∆d1y2t /

P
∆d0y2t − Γ(1−2(d0−d1))

Γ2(1−(d0−d1))
´
, (where

A = 1/2 or 1 − 2 (d0 − d1) according to whether (d0 − d1) is greater or smaller that 1/4)
diverges to -∞, so that the null hypothesis will be rejected with probability 1.¥

Proof of Theorem 3

The proof of this theorem is straight forward given Theorem 1 and the results in Akonom

and Gourieroux (1987) .¥

Proof of Theorem 4

1. The denominator of Rc divided by T converges to γ0 since α̂0 is consistently estimated.

With respect to the numerator, notice that α̂1 =
PT
t=1 yt/T, and then,

TX
t=1

(yt − α̂1)
2 =

TX
t=1

Ã
α1 + xt − α1 − T−1

TX
t=1

xt

!
(17)

=
TX
t=1

xt
2 − T−1

Ã
TX
t=1

xt

!2
, (18)

where xt is a FI(d0) process as in (3) that does not contain any deterministic compo-

nent. Application of the continuous mapping theorem delivers,

T−2d0
TX
t=2

(yt − α̂1)
2 = T−2d0

TX
t=1

xt
2 − T−1

Ã
TX
t=1

xt

!2
w→ λ2(

Z 1

0
(Bµd0 (r))

2dr

where Bµd0 (r) = Bd0 (r)dr −
³R 1
0 Bd0 (r)dr

´
is a demeaned fBM.

2. Since the test is invariant to the true values of the deterministic components, let

us assume without loss of generality that the true DGP does not contain these
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componentes. From Marmol and Velasco (2002) it is known that,

T−2d0
X³

yt − α̂1 − β̂1t
´2 w→

λ2

ÃZ 1

0
B2d0 (r)dr −

µZ 1

0
Bd0 (r)dr

¶2
− 12

µZ 1

0
(r − 1/2)Bd0 (r)dr

¶2!
.(19)

As in the unit root case, the detrended fBM is given by Bτ
d0
(r) = Bd0 (r)dr −

4
³R 1
0 Bd0 (s) ds− 3/2

R 1
0 sBd0ds

´
+ 6r(

R 1
0 sB (s) ds− 2

R 1
0 sB (s) ds).

On the other hand, it is straight forward to show that under the null hypothesis:

T−1
X³

∆d0yt − α̂0 − β̂0t
´2 p→ γ0. (20)

Combining equations (19) and (20) the desired result is obtained.¥

Proof of Theorem 5

The proof of this theorem can be constructed along the lines of that of Theorem 1 in

Zivot and Andrews (1992) (Z&A henceforth). As they point out, there exist several ways of

proving this type of results. One way is to prove the weak convergence of the proposed test

statistics to some process L (.) and then, provided infω∈ΩL (ω) is a continuous functional of

L(.), to apply the continuous mapping theorem (CMT) to obtain the desired result. But,

in order to avoid the difficulty of establishing tightness (which is required in order to show

weak convergence), another method of proof will be used.

Following the notation in Z&A, let us define zitT (ω) for i = {0, 1, 2, 3} as the vector that
contains the deterministic components for each model under the alternative hypothesis.

For instance if i = 1, z1tT (ω)
0 =

³
1 t DCt (ω)

´
. We will also need a rescaled version

of the deterministic regressors, z̃iT (ω, r) = δiT z[Tr]T (ω) , where δ
i
T is a diagonal matrix of

weigths17. The test statistics can be rewritten as:

17For instance, in Model 1,

δ1T =


1 0 0

0 T 0

0 0 1

 .
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inf
ω∈Ω

Rib (ω) = inf
ω∈Ω

PT
i=1

¡
yit (ω)

¢2PT
i=2

¡
∆d0yit

¢2 , for i = {0, 1, 2, 3}, (21)

where yit = yt−zitT (ω)0
³PT

s=1 z
i
sT (ω) z

i
sT (ω)

0
´−1PT

s=1 zsT (ω) ys for i = {0, 1, 2, 3},∆d0y0t =
∆d0yt− α̂∆d0 and ∆d0yit = ∆d0yt− α̂∆d0− β̂∆d0−1 for i = {1, 2, 3}. Henceforth, only Model
1 will be considered. Proofs for models {0,2,3} are analogous and therefore, are omitted.

It is straight forward to check that under H0, T−1
PT
i=2

¡
∆d0y1t

¢2 p→ σ2. Now we will

derive the limiting distribution of the numerator of (21). The proof will be completed in

three steps, that will closely follow Z&A’s approach. In the first one, it will be shown the

numerator in (21) can be written as a functional g (., .) of the partial sum process XT (.)

defined as,

XT (r) = T
1/2−dσ−1

[Tr]X
i=0

πi (−d) ε[Tr]−i, (j − 1) < r < (j + 1) for j = 1, ..., T,

and a rescaled version of the deterministic components, z̃T (., .) . In the second step, it is

needed to show that (XT (.) , z̃T (., .)) jointly converge to (Bd (.) , z̃ (., .)) . Finally, it will be

checked that g is continuous with respect to (Bd (.) , z̃ (., .)) and then, convergence of the

statistics would follow by applying the CMT (third step).

First step. By expression (A.5) in Z&A,

T−2d inf
ω∈Ω

TX
i=1

¡
yit (ω)

¢2
=

Z 1

0
{σXT (r)− z̃T (ω, r)0

µZ 1

0
z̃T (ω, s)

0 z̃T (ω, s)0 ds
¶−1

×
µZ 1

0
z̃T (ω, s)

0 σXT (s)0 ds
¶
}2dr + opω (1)

= g[σXT , z̃T ] (ω) + opω (1) .

Second step. By Akonom and Gourieroux (1987) ,

T−2d0XT (.)
w→ Bd0 (.)

and by A&Z,

z̃1T (., .)→ z1 (., .) 18.

18For instance, z̃1T (ω, r)→ z̃1 (ω, r) =
³
1 r du (ω, r)

´0
.
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Since the limiting distribution of z̃T (., .) is degenerate, it follows that (XT (.) , z̃T (., .))

converge weakly to (Bd (.) , z (., .)) 19.

Third step. The final step is to show that g defines a continuous funtional with probability

1 with respect to the limit process (Bd (.) , z (., .)) . This is done in Z&A through a series of

steps (Lemmas A.2-A.4). The continuity of g follows from the continuity of a composition

of continuous functionals and the result of the theorem follows from the CMT. ¥

19The uniform metric is used in the first term whereas the d∗ metric is used in the second. See Z&A for

details.
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APPENDIX B

TABLE B1

Critical values R test

Simplest case: H0 : ∆d0yt = εt; H1 : ∆d1yt = εt

(d0 − d1)|T T = 100 T = 400 T = 1000

(d0 − d1) 10% 5% 1% 10% 5% 1% 10% 5% 1%

0.6 0.6681 0.6014 0.5066 0.7552 0.6832 0.5733 0.8156 0.7381 0.6290

0.7 0.3551 0.3043 0.2359 0.3752 0.3231 0.2564 0.3848 0.3315 0.2649

0.8 0.2032 0.1665 0.1231 0.2043 0.1670 0.1184 0.2010 0.1644 0.1180

0.9 0.1248 0.0962 0.0650 0.1212 0.0950 0.0637 0.1209 0.0944 0.0632

1.0 0.0793 0.0590 0.0378 0.0769 0.0566 0.0352 0.0752 0.0512 0.0342

1.1 0.0543 0.0382 0.0215 0.0510 0.0358 0.0192 0.0511 0.0359 0.0205

1.2 0.0376 0.0257 0.0133 0.0357 0.0244 0.0125 0.0364 0.0246 0.0125

1.3 0.0267 0.0178 0.0088 0.0254 0.0161 0.0082 0.0242 0.0160 0.0082

1.4 0.0197 0.0122 0.0058 0.0184 0.0117 0.0051 0.0185 0.0115 0.0051
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TABLE B2

Critical values Rc test

Simplest case: H0 : ∆d0(yt − α0) = εt; H1 : (yt − α1) = εt

d0|T T = 100 T = 400 T = 1000

d0 10% 5% 1% 10% 5% 1% 10% 5% 1%

0.6 0.5471 0.5074 0.4371 0.6366 0.5904 0.5159 0.6888 0.6426 0.5615

0.7 0.2701 0.2400 0.2003 0.2854 0.2563 0.2150 0.2958 0.2656 0.2203

0.8 0.1416 0.1228 0.0964 0.1434 0.1232 0.0944 0.1446 0.1248 0.0961

0.9 0.0797 0.0657 0.0487 0.0778 0.0640 0.0456 0.0775 0.0645 0.0470

1.0 0.0474 0.0381 0.0260 0.0452 0.0331 0.0242 0.0444 0.0300 0.0221

1.1 0.0298 0.0230 0.0148 0.0288 0.0215 0.0135 0.0291 0.0224 0.0148

1.2 0.0204 0.0151 0.0089 0.0193 0.0142 0.0083 0.0191 0.0141 0.0078

1.3 0.0138 0.0098 0.0051 0.0130 0.0093 0.0049 0.0127 0.0091 0.0051

1.4 0.0098 0.0066 0.0034 0.0093 0.0061 0.0031 0.0094 0.0063 0.0032
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TABLE B3

Critical values Rτ test

Trended case: H0 : ∆d0(yt − α0 − β0t) = εt; H1 : yt − α1 − β1t = εt

d0|T T = 100 T = 400 T = 1000

d0 10% 5% 1% 10% 5% 1% 10% 5% 1%

0.6 0.4864 0.4513 0.3948 0.5740 0.5351 0.4770 0.6258 0.5875 0.5255

0.7 0.2243 0.2053 0.1755 0.2417 0.2214 0.1925 0.2512 0.2304 0.1963

0.8 0.1100 0.0978 0.0815 0.1107 0.0984 0.0798 0.1122 0.0997 0.0830

0.9 0.0550 0.0478 0.0373 0.0540 0.0470 0.0369 0.0541 0.0470 0.0367

1.0 0.0293 0.0248 0.0179 0.0283 0.0239 0.0173 0.0277 0.0230 0.0169

1.1 0.0159 0.0132 0.0095 0.0154 0.0127 0.0089 0.0155 0.0126 0.0090

1.2 0.0093 0.0075 0.0051 0.0089 0.0070 0.0049 0.0087 0.0068 0.0046

1.3 0.0054 0.0042 0.0028 0.0051 0.0040 0.0024 0.0051 0.0039 0.0025

1.4 0.0033 0.0024 0.0015 0.0031 0.0024 0.0015 0.0030 0.0022 0.0014
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TABLE B4

Critical values R0b test

Model 0: H0 : ∆d0(yt − α0) = εt; H1 : yt − α1 − α2DCt (ω) = εt

d0|T T = 100 T = 400 T = 1000

d0 10% 5% 1% 10% 5% 1% 10% 5% 1%

0.6 0.4231 0.3992 0.3503 0.5194 0.4862 0.4325 0.5756 0.5403 0.4995

0.7 0.1891 0.1753 0.1584 0.2135 0.1973 0.1765 0.2246 0.2097 0.1852

0.8 0.0941 0.0844 0.0692 0.0966 0.0880 0.0733 0.0960 0.0874 0.0733

0.9 0.0452 0.0404 0.0335 0.0454 0.0309 0.0381 0.0463 0.0407 0.0293

1.0 0.0244 0.0212 0.0159 0.0238 0.0200 0.0158 0.0234 0.0190 0.0156

1.1 0.0141 0.0124 0.0081 0.0131 0.0111 0.0082 0.0132 0.0112 0.0071

1.2 0.0083 0.0079 0.0052 0.0083 0.0065 0.0042 0.0082 0.0064 0.0042

1.3 0.0053 0.0043 0.0034 0.0032 0.0043 0.0054 0.0051 0.0043 0.0023

1.4 0.0037 0.0025 0.0011 0.0024 0.0024 0.0034 0.0033 0.0023 0.0011
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TABLE B5

Critical values R1b test

Model 1: H0 : ∆d0(yt − α0 − β0t) = εt; H1 : yt − α1 − α2DCt (ω)− β1t = εt

d0|T T=100 T=400 T=1000

d0 10% 5% 1% 10% 5% 1% 10% 5% 1%

0.6 0.3901 0.3722 0.3393 0.4816 0.4570 0.4174 0.5348 0.5110 0.4716

0.7 0.1712 0.1601 0.142 0.1907 0.1791 0.1592 0.2001 0.1867 0.1683

0.8 0.0785 0.0727 0.062 0.0809 0.0743 0.0628 0.0823 0.0758 0.0653

0.9 0.0371 0.0333 0.0283 0.0372 0.0332 0.0276 0.0368 0.0331 0.0277

1.0 0.0185 0.0163 0.0129 0.0179 0.0157 0.0122 0.0170 0.0151 0.0120

1.1 0.0096 0.0081 0.0063 0.0092 0.0079 0.0060 0.0091 0.0078 0.0059

1.2 0.0052 0.0043 0.0032 0.0049 0.0041 0.0030 0.0048 0.0040 0.0029

1.3 0.0029 0.0020 0.0017 0.0027 0.0022 0.0015 0.0027 0.0022 0.0015

1.4 0.0017 0.0013 0.0009 0.0016 0.0012 0.0008 0.0016 0.0012 0.0008
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TABLE B6

Critical values R2b test

Model 2: H0 : ∆d0(yt − α0 − β0t) = εt; H1 : yt − α1 − β1t− β2DTt = εt

d0|T T = 100 T = 400 T = 1000

d0 10% 5% 1% 10% 5% 1% 10% 5% 1%

0.6 0.4059 0.3825 0.3469 0.4963 0.4715 0.4284 0.5495 0.5230 0.4779

0.7 0.1759 0.1641 0.1443 0.1959 0.1827 0.1626 0.2040 0.1906 0.1687

0.8 0.0805 0.0734 0.0627 0.0820 0.0746 0.0642 0.0834 0.0763 0.0655

0.9 0.0369 0.0331 0.0272 0.0365 0.0325 0.0272 0.0361 0.0326 0.0267

1.0 0.0153 0.0173 0.0124 0.0168 0.0147 0.0118 0.0166 0.0140 0.0112

1.1 0.0086 0.0075 0.0058 0.0083 0.0071 0.0056 0.0082 0.0070 0.0053

1.2 0.0044 0.0038 0.0028 0.0042 0.0035 0.0025 0.0040 0.0034 0.0025

1.3 0.0023 0.0019 0.0014 0.0021 0.0017 0.0012 0.0021 0.0017 0.0012

1.4 0.0012 0.0010 0.0007 0.0011 0.0009 0.0006 0.0011 0.0009 0.0006
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TABLE B7

Critical values R3b test

Model 3: H0 : ∆d0(yt − α0 − β0t) = εt; H1 : yt − α1 − α2DCt (λ)− β1t− β2DTt = εt

d0|T T = 100 T = 400 T = 1000

d0 10% 5% 1% 10% 5% 1% 10% 5% 1%

0.6 0.3654 0.3475 0.3181 0.4556 0.4352 0.4011 0.5098 0.4893 0.4513

0.7 0.1552 0.1464 0.1311 0.1764 0.1656 0.1495 0.1849 0.1743 0.1572

0.8 0.0692 0.0643 0.0563 0.0719 0.0662 0.0579 0.0735 0.0684 0.0595

0.9 0.0312 0.0290 0.0247 0.0315 0.0285 0.0244 0.0313 0.0285 0.0240

1.0 0.0150 0.0135 0.0110 0.0105 0.0126 0.0143 0.0104 0.0125 0.0140

1.1 0.0072 0.0064 0.0051 0.0070 0.0061 0.0048 0.0070 0.0060 0.0046

1.2 0.0037 0.0032 0.0025 0.0036 0.0030 0.0023 0.0034 0.0029 0.0022

1.3 0.0019 0.0016 0.0012 0.0018 0.0015 0.0011 0.0018 0.0015 0.0011

1.4 0.0010 0.0009 0.0006 0.0010 0.0008 0.0005 0.0010 0.0008 0.0006
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