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Abstract

This paper proposes a new time-domain test of a process being I(d), 0 < d ≤ 1, under the
null, against the alternative of being I(0) with deterministic components subject to structural

breaks at known or unknown dates, with the goal of disentangling the existing identification

issue between long-memory and structural breaks. Denoting by AB(t) the different types of

structural breaks in the deterministic components of a time series considered by Perron (1989),

the test statistic proposed here is based on the t-ratio (or the infimum of a sequence of t-ratios)

of the estimated coefficient on yt−1 in an OLS regression of ∆dyt on a simple transformation

of the above-mentioned deterministic components and yt−1, possibly augmented by a suitable

number of lags of ∆dyt to account for serial correlation in the error terms. The case where

d = 1 coincides with the Perron (1989) or the Zivot and Andrews (1992) approaches if

the break date is known or unknown, respectively. The statistic is labelled as the SB-FDF

(Structural Break-Fractional Dickey- Fuller) test, since it is based on the same principles as

the well-known Dickey-Fuller unit root test. Both its asymptotic behavior and finite sample

properties are analyzed, and two empirical applications are provided.
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and Univ.de Montreal for helpful comments. Special thanks go to Benedikt Pöstcher for help in one of
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1. INTRODUCTION

This paper proposes a new test for the null hypothesis that a time-series process exhibits

long-range dependence (LRD) against the alternative that it has short memory, but suffers

from structural shifts in its deterministic components. The problem of distinguishing be-

tween both types of processes has been around for some time in the literature. The detection

of LRD effects is often based on statistics of the underlying time series, such as the sample

ACF, the periodogram, the R/S statistic, the rate of growth of the variances of partial

sums of the series, etc. However, as pointed out some time ago in the applied probability

literature, statistics based on short memory perturbed by some kind of nonstationarity may

display similar properties as those prescribed by LRD under alternative assumptions (see

e.g. Bhattacharya et al., 1983, and Teverosky and Taqqu, 1997). In particular, this is the

case of short-memory processes affected by shifts in trends or in the mean. In a certain

sense, it can be thought that the inherent difficulty of this identification problem originates

directly from the fact that some of the statistics used to detect LRD were originally pro-

posed to detect the existence of structural breaks (see Naddler and Robbins, 1971). More

recently, a similar issue has re-emerged in the econometric literature dealing with financial

data. For example, Ding and Granger (1996), and Mikosch and Starica (2004) claim that

the LRD behavior detected in both the absolute and the squared returns of financial prices

(bonds, exchange rates, options, etc.) may be well explained by changes in the parameters

of one model to another over different subsamples due to significant events, such as the

Great Depression of 1929, the oil-price shocks in the 1970s or the Black Monday of 1987.

On the contrary, Lobato and Savin (1998) conclude that the LRD found in the squared

returns is genuine and, thus, not an spurious feature.

A useful starting point to pose this problem is to give some definitions of LRD (see e.g.,

Beran, 1994, Baillie, 1996, and Brockwell and Davies, 1991). In the time domain, LRD is

defined for a stationary time series {yt} via the condition that limj→∞
P
j

¯̄
ρy(j)

¯̄
= ∞,

where ρy denotes the ACF of sequence {yt} . Typically, for series exhibiting long-memory,
this requires a hyperbolic decay of the autocorrelations instead of the standard exponen-
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tial decay. In the frequency domain, LRD requires that the spectral density fy(ω) of the

sequence is asymptotically of order L(ω)ω−ν for some ν > 0 and a slowly varying function

L(.), as ω ↑ 0. Both characterizations are not necessarily equivalent, but for fractionally
integrated processes of order d (henceforth, I(d)), to which we restrict our attention in the

rest of the paper when defining the null hypothesis. Specifically, yt is said to be I(d) if (for

some constants cρ and cf ) ρy(j) ≈ cρ j2d−1 for large j and d ∈ (0, 12), fy(ω) ≈ cf ω−2d

for small frequencies ω, the variance of the partial sums of the series increases at the rate

T 1+2d, and the normalized partial sums converge to fractional Brownian motion (fBM).

Hence, fractional integration is a particular case of LRD.

In view of these properties, a simple way to illustrate the source of confusion between

an I(d) process and a short-memory one subject to structural breaks is to consider the

following simple data generating process (DGP). Let yt be generated by an I(0) process

whose mean is subject to a break at a known date TB,

yt = α1 + (α2 − α1)DUt(λ) + ut, (1)

where ut is a zero-mean I(0) process with autocovariances γu(j), λ = TB/T is the fraction

of the sample where the break occurs, and DUt(λ) = 1(t > TB), with 1 < TB < T , is

an indicator function of the breaking date. Then, denoting the sample mean by yT , it is

straightforward to show by means of the ergodic theorem that the sample autocovariances

of the sequence {yt}Tt=1, given by

eγT,y(j) = 1

T

T−jX
t=1

ytyt+j − (yT )2, j ∈ N, (2)

behave as follows when T ↑ ∞,

eγT,y(j)→ γu(j) + λ(1− λ)(α2 − α1)
2 a.s., (3)

for fixed j ≥ 1 and λ ∈ (0, 1). From (3), it can be observed that, even if the autocovariances
γu(j) decay to zero exponentially as j ↑ ∞ for longer lags as ut is I(0), the sequence of
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sample autocovariances, eγy(j), approaches a positive constant given by the second term in

(3) as long as α2 6= α1. Thus, despite having a non-zero asymptote, the ACF of the process in

(1) is bound to mimic the slow (hyperbolic) convergence to zero of LRD.1 This presumption

can be confirmed by performing a small Monte Carlo experiment. We simulate 1000 series

of sample size T = 20, 000, such that yt is generated according to (1), with λ = 0.5,

α1 = 0, εt ∼ n.i.d. (0, 1) . Three cases are considered: (α2 − α1) = 0 (no break), 0.2 (small

break) and 0.5 (large break). Then, in order to examine the consequences of ignoring the

break in the mean in (1), we estimate the order of fractional integration, d, of the series by

means of the well-known Geweke and Porter-Hudak (GHP, 1983) semiparametric estimator

at different frequencies ω0 = 2π/g(T ), including the popular choice in GPH estimation of

g(T ) = T 0.5. From the results in Table 1, it becomes clear that the estimates of d increase

monotonically with the size of the shift in the mean, giving the wrong impression that

yt is I(d), d > 0 when it happens to be I(0) (a more detailed explanation can be found

in Perron and Qu, 2004). Additionally, Figure 1 depicts, for T = 20, 000, the estimated

ACFs of two processes. The first one is a process like (1), with λ = 0.5 and ut being an

AR(1) process with a parameter equal to 0.7, while the second one is an I(d) process with

d = 0.3. As can be inspected, except for the first few autocorrelations, the ACFs behave

very similarly in both cases. Thus, this type of result illustrates the source of confusion

which has been stressed in the literature. The problem aggravates even more when the

DGP contains a break in the trend. For example, using the same experiment with a DGP

given by yt = α1 + β1DT
∗(λ)t + εt , with DT ∗t (λ) = (t− TB)1(TB+1≤t≤T ) , β1 = 0.1, and

εt ∼ n.i.d (0, 1) yields estimates of d in the range (1.008, 1.0310), depending on the choice
of frequency, well in accord with the results of Perron (1989) about the lack of consistency

of the DF test of a unit root in such a case.
1This result has been recently generalized by Mikosch and Starica (2004) to the case of multiple breaks

in the mean.
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Fig. 1. Sample ACF of an I(d) and an I(0)+break processes.

Table 1

GPH Estimates of d (DGP(1))

Frequency T 0.5 T 0.45 T 0.4 T 0.35

α2 − α1 = 0.0 -0.004 -0.004 -0.003 -0.005

α2 − α1 = 0.2 0.150∗∗ 0.212∗∗ 0.298∗∗ 0.404∗∗

α2 − α1 = 0.5 0.282∗∗ 0.3709∗∗ 0.477∗∗ 0.585∗∗

∗∗Rejection of the null hypothesis d=0 at 1% significance level (s.l.).

Along this way of reasoning, similar results about the possibility of confusing other types

of nonlinear models with I(d) processes have been derived very recently in slightly different

frameworks to the one discussed in (1). First, there is Parke’s (1999) error duration (ED)

model, which considers the cumulation of a sequence of shocks that switch to 0 after a

random delay that follows a power law distribution, so that if the delays were of infinite

extent the process would be a random walk, and if of zero extent, an i.i.d. process. Con-

trolling the probability that a shock survives for k periods, pk, to decrease with k at the
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rate pk = s2d−2 for d ∈ (0, 1], Parke shows that the ED model generates a process with

the same autocovariance structure as an I(d) process, i.e., γy(j) = O(T 2d−1) for large j.

Secondly, there are Granger and Hyung ’s (1999) and Diebold and Inoue’s (2001) models

which consider processes that are stationary and short memory, but exhibit periodic regime

shifts, i.e., random changes in the mean of the series. For example, consider a DGP with

yt = mt+εt and ∆mt = qtηt, where ∆ = (1− L), and such that qt follows an i.i.d. binomial
distribution where qt = 1 with probability p and qt = 0 with probability (1− p), and εt and
ηt are independent i.i.d. processes. Then, by assuming that the regime-shift probability p

declines at a certain rate as the sample size increases, i.e., p = O(T 2d−2), it can be shown

that the variance of the partial sums in this model will be related to the sample size in just

the same way as in an I(d) process, i.e., increasing at the rate T 1+2d. Therefore, the message

to be drawn from all these works is that modelers face a hazard of mis-identification when

the incidence of structural shifts is linked to the sample size in a particular ad− hoc way.
On the whole, the class of models described above are nonlinear models capable of re-

producing some observationally equivalent characteristics of I(d) processes, albeit not all.2

Moreover, they do so as long as the incidence of the shifts is related to the sample size

in the specific fashion described earlier, which may be too restrictive in practice. For this

reason, we consider more relevant for practitioners to develop a test statistic which helps

to distinguish an I(d) process from a short-memory process subject to a small number of

breaks, in the spirit of DGP (1). Since among the I(0) processes subject to breaks, the

ones having more impact on empirical research are those popularized by Perron (1989),

which are tested against I(1) processes as the null, our main contribution in this paper is to

extend Perron’s testing approach to the more general setting of I(d) processes, with d ∈ (0,
1], instead of d = 1. For the most part, our analysis in the sequel will focus on the case of

a single break, although we briefly conjecture about how to deal with processes containing

more breaks.

In parallel with Perron (1989) who uses suitably modified Dickey-Fuller (DF) tests for

2Davidson and Sibbersten (2003) have recently demonstrated that the normalized sequence partial sums

of {yt} generated by the ED and the other periodic regime shift models do not converge to fBM.
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the I(1) vs. I(0) case in the presence of regime shifts, our strategy lies upon generalizing

the Fractional Dickey-Fuller (FDF) approach proposed by Dolado, Gonzalo and Mayoral

(DGM, 2002, 2004) to test I(1) vs. I(d), 0 ≤ d < 1, but now suitably modified to test

I(d) vs. I(0) cum structural breaks. In DGM (2002) it was shown that if the order of

fractional integration under the alternative is 0 ≤ d < 1 and no deterministic components
are present, then an unbalanced OLS regression of the form ∆yt = φ ∆dyt−1 + εt, yields

a consistent test of H0 : d = 1 against H1 : d ∈ [0, 1) based on the t-ratio of bφols in
the previous regression model.3 If the error term in the DGP is autocorrelated, then the

regression should be augmented with a suitable number of lagged values of ∆yt. The degree

of integration under the alternative hypothesis (d1) can be taken to be known (in a simple

alternative) or estimated with a T
1
2 -consistent estimator (in a composite alternative).4 If

deterministic components, µ(t), are present under the null (say, a constant or a linear trend),

DGM (2004) derive a FDF test now based on the regression ∆yt = H(L)µ(t)+φ∆dyt−1+εt,

where H(L) = ∆− φ∆dL.

Despite focusing on the test of I(1) vs. I(d) processes, DGM (2002) show that their

results could be generalized to the case where the degrees of fractional integration under

the null (d0) and the alternative (d1) verify the inequality d1 < d0. Accordingly, we propose

in this paper a new test of I(d) vs. I(0) cum structural breaks, namely d0 = d ∈ (0,
0.5)∪ (0.5, 1]5 and d1 = 0, along the lines of the well-known procedures proposed by Perron
(1989) when the date of the break is taken to be a priori known, and the extensions of

Banerjee et al. (1992) and Zivot and Andrews (1992) when it is assumed to be unknown.

3To operationalise the FDF test , the regressor ∆dyt−1 is constructed by applying the truncated binomial

expansion of the filter (1− L)d to yt, so that ∆dyt =
Pt−1

0 πi(d) yt−i, where πi(d) is the i-th coefficient in

that expansion given by πi = Γ (i− d) /Γ (−d)Γ (i+ 1) with Γ (.) the Gamma function.
4Empirical applications of such a testing procedure can be found in DGM (2003), whereas a generalization

of the FDF test in the I(1) vs. I(d) case allowing for deterministic components (drift/ linear trend) under

the maintained hypothesis has been developed in DGM (2004).
5Although the case of d = 0.5 was treated in DGM (2002), it constitutes a discontinuity point in the

analysis of I(d) processes; cf. Liu (1998). For this reason, as is often the case in the literature, we exclude this

possibility in our analysis. Nonetheless, to simplify notation in the sequel, we will refer to the permissable

range of d under the null as 0 < d ≤ 1.
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To avoid confusion with the FDF for unit roots, the test presented hereafter will be denoted

as the Structural Break FDF test (SB-FDF henceforth). It is based on the t-ratio of bφols in
an OLS regression of the form ∆d0yt = Π(L)AB(t) + φ yt−1 + εt, where Π(L) = ∆d − φL

and AB(t) captures different structural breaks. As in Perron (1989), we will consider the

following possibilities: a crash shift, a changing growth shift, and a combination of both.6

At this stage it should be stressed that a test that extends Perron’s DF testing approach

of I(1) vs. I(0) cum structural breaks to a null of I(d) with d ∈ (0, 1] can be very useful in
order to improve the power of the DF test when the true process is I(d) but d < 1. In such

an instance, Sowell (1990) and Krämer (1998) have shown that the DF and ADF tests are

consistent, i.e. they reject the null of I(1) with probability one as the sample size tends to

infinity. However, the simulation results in Diebold and Rudebusch (1991) indicate that the

power against fractional alternatives in finite samples can be low in some cases . To obtain

further evidence on this issue, we report in Table 2 the rejection frequencies of Zivot and

Andrews (1992) generalization of Perron’s (1989) DF test in the case where the true DGP

is an I(d) process with 0 < d < 1, and I(1) is tested against I(0) cum a changing growth

shift, assuming that TB is unknown. The number of replications is 5, 000 and εt ∼ n.i.d (0,
1). As can be observed, when T = 100, the rejection frequencies of the I(1) null hypothesis

are high for values of d up to 0.7 but then, as one would expect, falls drastically as d gets

closer to unity. For T = 400, this reduction in power occurs when d is above 0.8. In light

of our previous discussion about the confound of LRD and structural breaks, these results

seem to imply that, when the true series is I(d), for low and moderate values of d, one is

bound to find structural breaks “too often”, whereas for high values of d, the false null of

I(1) will hardly be rejected. Thus, this evidence supports the need of a test where the null

6Note, however, that extensions to more than one break, along the lines of Bai and Perron (1998) and

Bai (1999) should not be too difficult to devise once the simple case of a single break is is worked out. Some

discussion on this case can be found in Section 4.
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is I(d).

TABLE 2

Power of DF test of I(1) vs. I(0)+breaks

Regression Model: ∆yt = α+ βt+ γDT ∗t (0.5) + φyt−1 + εt

DGP: ∆d0yt = εt; εt ∼ n.i.d (0, 1)
Sample size/d0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T=100 100% 100% 99.9% 99.7% 94.4% 73.0% 38.0% 14.2% 4.0%

T=400 100% 100% 100% 100% 100% 99.9% 93.5% 49.9% 8.9%

Lastly, to place our SB-FDF test in the existing literature, it is convenient to differentiate

between several characterizations of the process governing the evolution of a time series

under the null and alternative hypotheses. These different characterizations depend upon

the degree of integration of the series and the potential existence of structural breaks in its

deterministic components. Specifically, four possibilities can be considered: (I) I(0) and no

structural breaks; (II) I(0) and structural breaks; (III) I(d) and no structural breaks, and

(IV) I(d) and structural breaks. The cases (I) against (II), and (I) against (III) have been

extensively analyzed in the literature; cf. for the former see Perron (2005), and for the latter

see Robinson (2003). The case (III) against (IV), when 0 < d < 0.5, has also been treated,

among others, by Hidalgo and Robinson (1996) when the break date is assumed to be

known, and by Lazarova (2003) who extends their analysis to the case where the break date

is considered to be unknown. Using a frequency-domain approach, Hidalgo and Robinson

(1996) derive a test statistic whose limiting distribution under the null of no break is chi-

squared for the former case, whereas in the case of an unknown break critical values need

to be obtained by bootstrap methods (see Lazarova, 2003). Sibbertsen and Venetis (2004)

have also studied the case where there are only shifts in mean, the break date is considered

to be unknown, and 0 < d < 0.5. Their test is based upon the (squared) difference between

the GPH estimator of d and its tapered version, which converges to zero under the null

of no break and diverges under the alternative of a break. It has a limiting chi-squared
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distribution if the errors are gaussian; otherwise, again bootstrap methods need to be used

to obtain critical values. The case (II) versus (IV) has been treated by Giraitis, Kokoszka

and Leipus (2001) who analyze how large the size of the mean shift in an I(0) series has to

be in order to be mistaken with a stationary long-memory process (0 < d < 0.5) in a given

sample.

In comparison to all these previous works, the case considered in this paper is (III)

against (II) which surprisingly has received much less attention in the literature. This is

the case that can really help in solving the identification issue between LRD and SB which

can be extremely relevant for at least three reasons: (i) shock identification (persistent

vs. transitory), (ii) forecasting (do we need a long-history of the time series or only a

short past will be of much use in forecasting?), and (iii) detection of spurious fractional

cointegration (see Gonzalo and Lee, 1998). Indeed, Giraitis, Kokoszka and Leipus (2001)

and the comments by Robinson to Lobato and Savin (1998) have stressed the importance of

constructing a proper test statistic to distinguish between these alternative specifications.

However, so far, the only attempt in this direction that we know of is Mayoral (2004a)

whose approach relies upon a LR test in the time domain, but which is can only be applied

to non-stationary processes under the null. Thus, to the best of our knowledge, there is not

yet any available test in the literature for testing I(d) versus I(0) cum structural breaks

allowing for both stationary and non-stationary processes under the null-hypothesis. This

is the goal of the proposed SB-FDF test, which additionally presents the advantage of not

requiring a correct specification of a parametric model and other distributional assumptions,

besides being computationally simple since it is based on an OLS regression.

The rest of the paper is organized as follows. In Section 2 we derive the properties of

the FDF test for I(d) vs. I(0) in the presence of deterministic components, like a constant

or a linear trend, but without considering breaks yet, to next discuss the effects on this

test of ignoring structural breaks in means or slopes when they exist.7 Given that, as

7Note that the FDF tests proposed in DGM (2002, 2004) refer to the case of I(1) vs. I(d). Thus, this

section extends our previous results to the new setup of I(d) vs. I(0), with d ∈ (0, 1].
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discussed above, the power of this test can be severely affected by parameter changes in

the deterministic component of the process, the SB-FDF test of I(d) vs I(0) with a single

structural break at a known or an unknown date is introduced in Section 3, where both

its limiting and finite-sample properties are analyzed in detail. Section 4 contains a brief

discussion of how to modify the test to account for autocorrelated disturbances, in the spirit

of the ADF test, leading to the SB-AFDF test (where “A” stands for augmented versions

of the test-statistics) and conjectures on how to generalize the testing strategy to multiple

breaks, rather than a single one. Section 5 contains two empirical applications; the first

application deals with long U.S GNP series, where the stochastic or deterministic nature of

their trending components has engendered some controversy in the literature; the second

application centers on the behavior of the absolute values and squares of financial log-

returns series, which has also been subject to some dispute. Finally, Section 6 concludes.

Appendix A gathers the proofs of theorems and lemmae while Appendix B contains the

tables of critical values for the cases where the limiting distributions are non-standard.

2. THE FDF TEST FOR I(d) vs. I (0)

2.1 Preliminaries

Before considering the case of structural breaks, it is convenient to start by analyzing the

problem of testing I(d), with 0 < d ≤ 1, against trend stationarity, i.e. d = 0, along the lines
of the FDF framework for the general case of I(d0) vs. I(d1) processes. The motivation

for doing this is twofold. First, taking an I (d) process as a generalization of the unit root

parameterization, the question of whether the trend is better represented as a stochastic or

a deterministic component arises on the same grounds as in the I (1) case. And, secondly,

the analysis in this subsection will provide the foundation for the treatment of the general

case where non-stationarity can arise due to the presence of structural breaks.

Under the alternative hypothesis, H1, we consider processes with an unknown mean µ or

a linear trend (µ+ βt),

yt = µ+
εt1(t>0)

∆d0 − φL
, (4)
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yt = µ+ βt+
εt1(t>0)

∆d0 − φL
, (5)

where, εt is assumed to be i.i.d.(0, σ2ε ), with 0 < σ2 <∞, and d0 ∈ (0, 1]. Hence, under
H1,

∆d0yt = α+∆d0δ + φyt−1 + εt, (6)

∆d0yt = α+∆d0δ + γt+∆d0−1ϕ+ φyt−1 + εt, (7)

where α = −φµ, δ = µ, γ = −φβ and ϕ = β. For simplicity, hereafter we write εt1(t>0) = εt.

Under H0, when φ = 0, ∆d0yt = ∆
d0µ + εt in (6) and ∆d0yt = µ∆d0 + β∆d0−1 + εt in

(7).8 Thus, E(∆dyt) = ∆dµ and E(∆dyt) = ∆d(µ + βt), respectively. Note that ∆dµ =

µ
Pt−1
i=0 πi (d) and β∆d−1 = β

Pt−1
i=0 πi (d− 1) where the sequence {πi(ξ)}∞i=0 comes from

the expansion of (1− L)ξ in powers of L and the coefficients are defined as πi(ξ) = Γ(i−
ξ)/[Γ(−ξ)Γ (i+ 1)]. In the sequel, we use the notation τ t (ξ) =

Pt−1
i=1 πi (ξ) . Also note that

τ t (d) for d < 0 induces a deterministic trend which is less steep than a linear trend and

coincides with it when d = −1 since τ t (−1) =
Pt−1
i=0 πi (−1) = t. As demonstrated in DGM

(2004), τ (.) is a concave function for values of d < 0, being the function less steep the

smaller (in absolute value) d is. Under H1, the polynomial Π (z) =
³
(1− z)d − φz

´
has

absolutely summable coefficients and verifies Π (0) = 1 and Π (1) = −φ 6= 0. All the roots
of the polynomial are outside the unit circle if −2d < φ < 0. As in the DF framework, this

condition excludes explosive processes. Consequently, under H1, yt is I (0) and admits the

representation

yt = µ+ ut, or yt = µ+ βt+ ut,

ut = Λ (L) εt, Λ (L) = Π (L)
−1 .

8Note that ∆dt = ∆d∆−1 = ∆d−1, after suitable truncation.
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Computing the trends τ t (ξ) , ξ = d or d − 1 in (6) or (7) does not entail any difficulty
since it only depends on d0, which is known under H0. As discussed earlier, the case where

d0 = 1 and a linear trend is allowed under the alternative of d1 = d, 0 < d < 1, has been

analyzed in DGM (2004) where it is shown that the FDF test is (numerically) invariant to

the values of µ and β in the DGP.

Next, we derive the corresponding result for H0 : d0 = d, d ∈ (0, 1] vs. H1 : d1 = 0. The
following theorem summarizes the main result.

Theorem 1 Under the null hypothesis that yt is an I (d) process defined as in (4) or (5)

with φ = 0, the OLS coefficient associated to φ in regression model (6) , φ̂
µ

ols, or (7) , φ̂
τ

ols,

respectively is a consistent estimator of φ = 0 and converges at a rate T d if 0.5 < d ≤ 1
and at the usual rate T 1/2 when 0 < d < 0.5. The asymptotic distribution of the associated

t− statistic, ti
φ̂ols
, i ={µ, τ} is given by

ti
φ̂ols

w→
R 1
0 B

i
d (r)dB (r)³R 1

0

¡
Bid (r)

¢2
d (r)

´1/2 , if 0.5 < d ≤ 1,
and

ti
φ̂ols

w→ N (0, 1) , if 0 < d < 0.5,

where w→ denotes weak convergence and Bid (r) with i ={µ, τ} is the L2 projection residual
from the continuous time regressions9 Bd (r) = α̂0 + α̂2r

−d + Bµd (r) and Bd (r) = α̂0 +

α̂1r
−d + α̂2r

1−d + α̂3r +Bτ
d (r) , respectively.

The intuition for this result is similar to the one offered by DGM (2002) in the case of

I(1) vs. I(d) processes with 0 < d < 1. The different nature of the limiting distributions

depend on the distance between d0 and d1. When d0 (= 1 in the DGM case ) and d1 are

close, then the asymptotic distribution is asymptotically normal whereas it is a functional

9The parameters α̂0, α̂1, α̂2, and α̂3 solve minα0,α1
R 1
0

¯̄
Bd (r)− α̂0 − α̂1r

−d ¯̄2 dr and

minα0,α1,α2,α3
R 1
0

¯̄
Bd (r)− α̂0 − α̂1r

−d + α̂2r
1−d + α̂3r

¯̄2
dr for the constant and constant and trend

cases, respectively.
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of fBM when both parameters are far apart. Hence, since in our case d0 = d, 0 < d ≤ 1,
and d1 = 0, asymptotic normality arises when 0 < d < 0.5. Also note that d0 = 1 renders

the standard DF limiting distribution.

The finite-sample critical values of the cases considered in Theorem 1 are presented in

Appendix B (Tables B1 and B2). Three sample sizes are considered, T = 100, 400 and

1, 000, and the number of replications is 10, 000. Table B1 gathers the corresponding critical

values for the case where the DGP is a pure I(d) without drift (since the test is invariant

to the value of µ), i.e, ∆dyt = εt with εt ∼ n.i.d (0, 1) , when (6) is considered to be the
regression model. Table B2, in turn, offers the corresponding critical values when (7) is

taken to be the regression model. As can be observed, the empirical critical values are close

to those of a standardized N(0, 1) (whose critical values for the three significance levels

reported below are −1.28, −1.64 and −2.33, respectively, ) when 0 < d < 0.5, particularly
for T ≥ 400. However, for d > 0.5 the critical values start to differ drastically from those of

a normal distribution, increasing in absolute value as d gets larger.

As for power, Table 3 reports the rejection rates at the 5% level (using the effective sizes

in Table B2) of the FDF test in (7) in a similar Monte Carlo experiment to the one above,

where now the DGP is an i.i.d. process cum a linear trend, i.e., yt = α + βt + εt, with

α = 0.1, β = 0.5. The main finding is that, except for low values of d and T = 100 where

rejection rates of the null still reach 55%, the test turns out to be very powerful in all the

other cases.
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TABLE 3

Power (Corrected size: 5%)

Regression Model: ∆d0yt = α+ δτ t(d) + γt+ ϕτ t(d− 1) + φyt−1 + εt

DGP: yt = α+ βt+ εt; α = 0.1, β = 0.5, εt ∼ n.i.d (0, 1)
d0/ Sample size T = 100 T = 400 T = 1000

0.2 54.9% 98.9% 100%

0.4 98.4% 100% 100%

0.7 100% 100% 100%

0.9 100% 100% 100%

1.0 100% 100% 100%

2.2 The effects of structural breaks on the FDF test of I(d) vs. I(0)

Following Perron’s (1989) analysis in his Theorem 1, our next step is to assess the effects

on the FDF tests for I(d) vs. I(0) of ignoring the presence in the DGP of a shift in the mean

of the series or a shift in the slope of the linear trend. Let us first consider the consequences

of performing the FDF test with an invariant mean, as the one discussed above, when the

DGP contains a break in the mean. Thus, yt is assumed to be generated by,

DGP 1 : yt = µ0 + ζ0DUt(λ) + εt, (8)

where εt ∼ iid(0,σ2ε) and DUt (λ) = 1(TB+1≤t≤T ). Ignoring the break in the mean, the

SB-FDF test will be based on regression (6) which is repeated for convenience

∆dyt = α+ δτ t(d) + φyt−1 + εt. (9)

Then, the following theory holds.

Theorem 2 If yt is given by DGP 1 in (8) and regression model (9) is used to estimate φ,
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when TB = λT for all T and 0 < λ < 1, then, as T →∞, it follows that,

φ̂ols
p→ dσ2ε[C

2
1 (d)−C2(d)]
D (d,σ2ε)

, if 0 < d < 0.5,

φ̂ols
p→ dσ2

[ζ20λ (1− λ) + σ2ε]
, if 0.5 < d ≤ 1,

and,

tφ̂ols
p→−∞, if 0 < d ≤ 1,

where
p→ denotes convergence in probability,

D
¡
d,σ2ε

¢
= C21 (d) [ζ0λ (1− λ) + σ2ε]−C2{ζ20(2− λ− λ1−d)

³
2λ− λ1−d − 1

´
+ σ2ε},

and

C1 (d) = Γ (2− d) , C2 (d) = Γ2 (1− d) (1− 2d) .

Theorem 2 shows that, under the crash hypothesis, the limit depends on the size of

relative shift in the mean, ζ0. Note that if λ = 0 or λ = 1, i.e., when there is no break,

then bφols p→ −d. This result is quite intuitive since, being yt ∼ I(0) under DGP 1, the
covariance between ∆dyt and yt−1 is π1(d) = −d. Further, for d = 1, the expression in part
(a) in Theorem 1 of Perron (1989) is recovered, generalizing therefore his results to the more

general case of d ∈ (0, 1]. Moreover, the fact that bφols converges to a finite negative number
implies that T 1/2bφols for d ∈ (0, 0.5), T dbφols for d ∈ (0.5, 1) and the corresponding t-ratios
in each case will diverge to −∞. Thus the FDF test for I(d) vs. I(0) would eventually
reject the null hypothesis of d = d0, 0 < d0 < 1, when it happens to be false. Notice,

however, that, as in Perron’s analysis, the power of the FDF test will be decreasing in the

distance between the null and the alternative, namely as d gets closer to its true zero value,

and in the size of the break, namely as ζ0 gets larger relative to σ
2
ε.

Next consider the case where there is a (continuous) break in the slope of the linear trend,

such that yt is generated by,

DGP 2 : yt = µ0 + β0t+ ψ0DT
∗
t (λ) + εt, (10)
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where DT ∗t (λ) = (t − TB)1(TB+1≤t≤T ). The FDF test is again implemented ignoring the
breaking trend, that is, it is computed in the regression,

∆dyt = α+ γt+ δτ t(d) + ϕτ t(d− 1) + φyt−1 + εt. (11)

Theorem 3 If yt is given by DGP 2 in (10) and regression model (11) is used to estimate

φ,when TB = λT for all T and 0 < λ < 1, then, as T →∞, it follows that

tbφols p→ +∞ if 0 < d < 0.5,

and,

tbφols p→ 0, if 0.5 < d ≤ 1.

In contrast to the result in Theorem 2, the FDF is unambiguously inconsistent when a

breaking trend is ignored. The intuition behind this result, which again extends part (b)

of Theorem 1 in Perron (1989) to our more general setting, is that bφols is Op(T−d) with a
positive limiting constant term for d ∈ (0, 1] and that the sample s.d (bφols) is Op(T−1/2),
implying that the t-ratio is Op(T 1/2−d). Therefore, it will tend to 0, for d ∈ (0.5, 1], and to
+∞, for d ∈ (0, 0.5).
In sum, the FDF test for I(d) vs. I(0) without consideration of structural shifts is not

consistent against breaking trends and, despite being consistent against a break in the

mean, its power is likely to be reduced if such a break is large. Hence, there is a need for

alternative forms of the FDF test that could distinguish an I(d) process from a process

being I(0) around deterministic terms subject to structural breaks.

3. THE SB-FDF TEST OF I(d) vs. I(0)WITH STRUCTURAL BREAKS

Given the above considerations, we now proceed to derive the SB-FDF invariant test for

I(d) vs. I(0) allowing for structural breaks under H1. To account for structural breaks, we

consider the following variant of (5) as the maintained hypothesis,

yt = AB(t) +
at1(t > 0)

∆d − φL
, (12)
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where AB(t) is a linear deterministic trend function that may contain breaks at unknown

dates (in principle, just a single break at date TB would be considered) and at is a stationary

I (0) process. In line with Perron (1989) and Zivot and Andrews (1992), the null hypothesis

of I(d) will be implied by a value of φ = 0 whereas φ < 0 means that the process is I(0).

In line with these papers, three definitions of AB(t) are considered,

Case A : AAB(t) = µ0 + (µ1 − µ0)DUt (λ) , (13)

Case B: ABB(t) = µ0 + β0t+ (β1 − β0)DT
∗
t (λ) , (14)

Case C: ACB(t) = µ0 + β0t+ (µ1 − µ0)DUt (λ) + (β1 − β0)DTt (λ) . (15)

Case A corresponds to the crash hypothesis, case B to the changing growth hypothesis

and case C to a combination of both. The dummy variablesDUt (λ) andDT ∗t (λ) are defined

as before, and DTt (λ) = t1(TB+1≤t≤T ) with λ = TB/T.

Initially, let us assume that the break date TB is known a priori and that at = εt where

εt is an i.i.d(0, σ2) process. Then, the SB-FDF test of I(d) vs. I(0) in the presence of

structural breaks is based on the t-ratio of the coefficient φ in the regression model,

∆dyt = ∆
dAiB(t)− φAiB(t− 1) + φyt−1 + εt, i = A, B, and C. (16)

As above, the SB-FDF test is invariant to the values of µ0, µ1, β0 and β1under H0.

Following the discussion in section 2.1, it is easy to check that under H1 : φ < 0, yt is I(0)

and is subject to the regime shifts defined by AiB(t). Conversely, under H0 : φ = 0, the

process is I(d) with E[∆d(yt −AiB(t))] = 0. Using similar arguments to those employed in
Theorem 1, the following theory holds.
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Theorem 4 Let yt be a process generated as in (12) with at = εt ∼ i.i.d
¡
0, σ2

¢
. Then,

when TB = λT for all T and 0 < λ < 1, under the null hypothesis of φ = 0, the OLS

estimator associated to φ in regression model (16) , as T →∞, is consistent. The asymptotic
distribution of the associated t− ratio is given by,

tibφ(λ) w→
R 1
0 B

∗i
d (λ, r)dB (r)³R 1

0 B
∗i
d (λ, r)

2 d (r)
´1/2 if d ∈ (0.5, 1],

tibφ(λ) w→ N(0, 1) if d ∈ (0, 0.5),

where B∗id (., .) is the L2 projection residual from the corresponding continuous time regres-

sions associated to models i = {A, B, and C}, defined in Appendix A.

Although it was previously assumed that the date of the break TB is known, in general

this might not be the case. Thus, we explore in what follows how to implement the SB-FDF

test under this more realistic situation.

For that, we follow the approach in Banerjee et al. (1992) and Zivot and Andrews (1992)

by assuming that, under H0, no break occurs, that is, φ = 0, µ0 = µ1 and β0 = β1, implying

that (12) can be written as,

∆d (yt − µ0) = at, if i = A, t = 1, 2, ..., (17)

or,

∆d (yt − µ0 − β0t) = at, if i = {B and C}, t = 1, 2, ..., (18)

where at is an I(0) process. As discussed before, under the alternative hypothesis, the

process is I(0) and may contain a single break in (some of) the parameters associated to

the deterministic components, that occurs at an unknown time TB = λT, λ ∈ Λ ⊂ (0, 1) .
Then, the potential break point under H1 will be estimated in such a way that gives the

highest weight to the I(0) alternative. The estimation strategy will therefore consist in

choosing the break point that gives the least favorable result for the null hypothesis of I(d)

using the SB-FDF test in (16) for each of the three cases, i = A, B, and C. The t−statistic
on φ̂

i

ols, tbφ(λ), is computed for the values of λ ∈ Λ = (0.15, 0.85), following Andrews’ (1993)
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choice of range, and then the infimum (most negative) value would be chosen to run the

test. Thus, the test would reject the null hypothesis when

inf
λ∈Λ

tbφ(λ) > kiinf,α,
where kiinf,α is a critical value to be provided in Appendix B. Under these conditions, the

following theory holds.

Theorem 5 Let yt be a process generated as in (17) or (18) with at ≡ εt ∼ i.i.d
¡
0, σ2

¢
and

possibly µ0 = β0 = 0. Let Λ be a closed subset of (0, 1). Then, under the null hypothesis

of φ = 0, the asymptotic distribution of the t− statistic associated to φ in regression model
(16), (with AAB(t) if yt is generated by (17) and A

B
B(t) or A

C
B(t) if yt is generated in (18))

is given by,

inf
λ∈Λ

tibφ(λ) w→ inf
λ∈Λ

R 1
0 B

∗i
d (λ, r) dB (r)³R 1

0 B
∗i
d (λ, r)

2 d (r)
´1/2 if d ∈ (0.5, 1], i = {A, B and C}

and,

inf
λ∈Λ

tibφ(λ) w→ N(0, 1) if d ∈ (0, 0.5).

To compute critical values of the inf SB-FDF t-ratio test, a pure I (d0) process with

εt ∼ n.i.d.(0, 1) has been simulated 10, 000 times, whereas the three regression models (A,
B, and C) have been considered for samples of size T = 100, 400, 1000. Notice hat the

sequence {tibφ(λ)} are normally distributed and perfectly correlated. Hence, as shown in the
proof of Theorem 5, the inf of this sequence corresponds to a N(0, 1) as well. However,

in finite samples, there are several asymptotically negligible terms which depend on the

product (1 − λ)−1T−2δ, 0 < δ < 1, which may be sizeable for sufficiently large (small)

values of λ (δ) at a given T (see equation A.2 in the Appendix). Tables B3, B4 and B5

in Appendix B report the corresponding critical values which, due to the presence of those

terms, are larger (in absolute value) than the critical values of the SB-FDF test reported

in Tables B1 and B2 when considering the left tail. Even for T = 1000, the critical values

for d ∈ (0, 0.5) are to the left of those of a N(0, 1) and, in unreported simulations, we
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found that they slowly converge to them for sample sizes with around 5000 observations.

Thus, for smaller sample sizes, we advice to use the effective critical values rather than the

nominal ones.

In order to examine the power of the test, we have generated 5000 replications of DGP

2 (10) with sample sizes T = 100 and 400, where λ = 0.5, i.e., a changing growth model

with a break in the middle of the sample. Both regression models B and C , in (16), have

been estimated. Rejection rates are reported in Table 4 where, in order to compute the

size-corrected power, the corresponding critical values in Tables B4 and B5 have been used.

The power is very high except when d = 0.1 and T = 100 but even in this case it is close to

50% when T = 400.10

TABLE 4

Power inf SB-FDF, I(d) vs. I(0) + S.B.

Regression Model: ∆dyt = ∆dAiB(t)− φAiB(t− 1) + φyt−1 + εt, i = {B,C}
dgp: yt = µ0 + β0t+ ψ0DT

∗
t (λ) + εt; µ0 = 1, β0 = 0.5, λ = 0.5, εt ∼ n.i.d (0, 1)

ψ0 = 0.1 ψ0 = 0.2

RModel B RModel C RModel B RModel C

d0/Sample size T=100 T=400 T=100 T=400 T=100 T=400 T=100 T=400

0.1 15.6% 50.3% 14.5% 48.9% 13.7% 48.9% 12.4% 47.4%

0.3 67.4% 74.9% 26.2% 73.5% 66.3% 73.4% 62.9% 71.3%

0.6 99.7% 100% 68.8% 100% 99.8% 100% 99.6% 100%

0.7 100% 100% 98.0% 100% 100% 100% 100% 100%

0.9 100% 100% 99.9% 100% 100% 100% 100% 100%

10In DGM (2002, 2004), we provide both Monte-Carlo and analytical results showing that the FDF test

for I(1) vs. I(d) processes has better size-corrected power, except for very local alternatives (and even in

this case the loss in power is small), than other available time-domain tests in the literature, like Tanaka’

s (1999) LM test. Unreported calculations (available upon request), show that this is also the case for our

new I(d) vs. I(0) testing setup.
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4. AUGMENTED SB-FDF TEST AND MULTIPLE BREAKS

The limiting distributions derived above are valid for the case where the innovations are i.i.d.

and no extra terms are added in the regression equations. If some autocorrelation structure

are allowed in the innovation process, then the asymptotic distributions will depend on some

nuisance parameters. To solve the nuisance-parameter dependency, two approaches have

been typically employed in the literature. One is the non-parametric approach proposed by

Phillips and Perron (1988) which is based on finding consistent estimators for the nuisance

parameters. The other, which is the one we follow here, is the well-known parametric

approach proposed by Dickey and Fuller (1981) which consists of adding a suitable number

of lags of ∆dyt to the set of regressors (see DGM, 2002). As Zivot and Andrews (1992) point

out, a formal proof of the limiting distributions when the assumption of i.i.d. disturbances

is relaxed is likely to be very involved. However, along the lines of the proof for the AFDF

test in Theorem 7 of DGM (2002), it can be conjectured that if the DGP is ∆dyt = ut1(t>0)

and ut follows an invertible and stationary ARMA(p, q) process αp(L)ut = βq(L)εt with

E |εt|4+δ <∞ for some δ > 0, then the inf SB-FDF test based on the t-ratio of bφols in (19)
augmented with k lags of ∆dyt will have the same limiting distributions as in Theorem 5

above and will be consistent when T → ∞ and k → ∞, as long as k3/T → 0. Hence, the

augmented SB-FDF test (denoted as SB-AFDF) will be based on the regression model,

∆dyt = ∆
dAiB(t)− φAiB(t− 1) + φyt−1 +

kX
j=1

ςj∆
dyt−j + at, i = A,B, and C. (19)

Although a generalization of the previous results to multiple breaks is not considered

in this paper, it is likely that this extension can be done following the same reasoning

as in the procedure devised by Bai and Perron (1998). In their framework, where there

are m possible breaks affecting the mean and the trend slope, they suggest the following

procedure to select the number of breaks. Letting sup FT (l) be the F - statistic of no

structural break (l = 0) vs. k breaks (k ≤ m), they consider two statistics to test the null of
no breaks against an unknown number of breaks given some specific bound on the maximum

number of shifts considered. The first one is the double maximum statistic (UDmax) where

22



UDmax = max1≤k≤m supFT (l) while the second one is supFt(l + 1/l) which test the null of

l breaks against the alternative of l+1 breaks. In practice, they advise to use a sequential

procedure based upon testing first for one break and if rejected for a second one, etc., using

the sequence of supFt(l+1/l) statistics. Therefore, our proposal is to use such a procedure

to determine λ1, ..., λk in the AB(t) terms in (16). By continuity of the sup function

and tightness of the probability measures associated with tbφols , we conjecture that a similar
result to that obtained in Theorem 5 would hold as well, this time with the sup of a suitable

functional of fBM. Derivation of these results and computation of the corresponding critical

values exceeds the scope of this paper but they are in our future research agenda.

5. EMPIRICAL APPLICATIONS

In order to provide some empirical illustrations of how easy the SB-FDF test can be used

in practice, we consider the following two applications.

5.1 Real GNP.–

The first application deals with the log. of a long series of U.S. real GNP, yt, which basi-

cally corresponds to the same data set used in Diebold and Senhadji (1996) (DS henceforth)

in their discussion on whether GNP data is informative enough to distinguish between trend

stationarity (T-ST) and first-difference stationarity (D-ST). The data are annual and range

from 1869 to 2001 giving rise to a sample of 133 observations where the last 8 observations

have been added to DS´s original sample ending in 1995; cf. Mayoral (2004b), for a detailed

discussion of the construction of the series. Since this series is based on the historical annual

real GNP series constructed by Balke and Gordon (1989), it is denoted as GNP-BG.11

According to DS’s analysis, there is conclusive evidence in favor of T-ST and against

D-ST. To achieve this conclusion, DS follow Rudebusch (1993)’s bootstrap approach in

computing the best-fitting T-ST and D-ST models for the series. Then, they compute the

exact finite sample distribution of the t-ratios of the lagged (log. of) GNP-BG level in

11Following DS (1996), we have also implemented the SB-FDF test to a long series of U.S. real GNP based

on the historical annual series of Romer (1989). The results, available upon request, are not reported since

they are very similar to those displayed in Table 5.
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Fig. 2. Plot of (logged) real GNP-BG series.

an augmented Dickey-Fuller (ADF) test for a unit root when the best-fitting T-ST D-ST

models are used as the DGPs. Their main finding is that the p-value of the ADF test is very

small under the D-ST model but quite large under the T-ST model, providing overwhelming

support in favour of the latter model. Nonetheless, as DS acknowledge, rejecting the null

does not mean that the alternative is a good characterization of the data. Indeed, Mayoral

(2004b) has pointed out that when the same exercise is done with the well-known KPSS test,

where the null is TS-T, it is also rejected in both series. This inconclusive outcome leads

this author to conjecture that, since both the I(0) and I(1) null hypotheses are rejected,

it may be the case that the right process is an I(d), 0 < d < 1. Considering values of d

in the range 0.6-0.7, she finds favorable evidence for an I(d) using the FDF test of I(1)

vs. I(d), which rejects the null, and a LR test of I(d) vs. I(0), which does not reject the

null. Nonetheless, from inspection of Figure 2, where the log. of GNP-BG is displayed, one

could as well conjecture that the data are generated by a T-ST process subject to some

structural breaks as in Perron (1989). Hence, given the mixed evidence about the data

being generated either by an I(d) process or by an I(0) process cum structural breaks, this

example provides a good illustration of the usefulness of the SB-FDF test.
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In Table 5, we report the t-ratios of the inf SB-AFDF test constructed according to

(19) where up to three lags of ∆dyt have been included as additional regressors in order

to account for residual correlation. The critical values that have been employed are those

reported in Tables B4, B5 for T = 100. Values of d in the non-stationary (albeit mean-

reverting) range (0.5, 1) have been used to construct ∆dyt and ∆dAiB(t), i = B, and C,

since the trending behaviour of the series precludes the use of model A which does not

include a linear trend in the maintained hypothesis.

TABLE 5

inf SB-AFDF Tests

GNP-BG series

Model Model B Model C

Lags/d 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

0 1.594 0.257 -0.963 -2.088 1.598 0.268 -0.946 -2.067

1 -3.660† -3.792† -3.976† -4.216† -3.622 -3.755† -3.940† -4.181

2 -3.384 -3.719 -4.047 -4.376 -3.335† -3.667 -3.993 -4.320†

3 -2.587 -2.939 -3.003 -3.311 -2.564 -2.910 3.260 -3.620

C.V. (95%) -3.85 -4.25 -4.54 -4.88 -4.15 -4.53 -4.86 -5.20

†number of lags chosen by the AIC criterion. ∗Rejection at the 95% s.l.

As can be inspected, the null of I(d) cannot be rejected at the conventional significance

level. Interestingly, this result against T-ST is reinforced by application of the conventional

Zivot and Andrews’ (1992) inf test for the null of I(1), with two lags, which yields values

of −4.23 (model B) and −5.03 (model C) against 5% critical values of −4.42 and −5.08,
respectively. However, concluding that the series is I(1) may not be correct (see Table 2),

given the results of the SB-AFDF test which does not reject the null for large values of d,

yet below unity.

In sum, the evidence provided by the SB-FDF test seems to point out that the GNP-BG

series behaves as an I(d) process with a large d. This result is qualitatively consistent with
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other empirical investigations of fractional processes in GNP, such as Sowell (1992), on the

basis that GNP is obtained by aggregating heterogeneously persistent sectorial value added

which, according to Granger’s (1980) aggregation argument, yields long memory. In the

same direction, recently Michelacci (2004) has shown that if Gibrat’s law fails and small

firms grow faster than big firms, as empirical evidence suggests, aggregate output should

exhibit a fractional order of integration.

5.2 Financial returns.–

The second application deals with the (absolute values and squared) financial returns

series, rt, obtained from the Standard & Poor’s 500 composite stock index over the period

January 2, 1953 to October 10, 1977 (the number of observations is 6217). This series has

been modelled in several papers where it has been argued that shifts in the unconditional

variance of an ARCH or GARCH model may induce the typical ACF of a long memory

process (see, inter alia, Ding et al., 1996, Lobato and Savin (1998), and Mikosch and Starica,

2004). Notice that, although the sample considered in these papers are quite longer than

ours, we restrict our sample to 1953-1977 because Mikosch and Starica (2004) claim that

there is a single structural break in the constant term of a GARCH (1,1) model over that

period, as a consequence of the first oil crisis in 1973.12 Since our proposed approach refers

to a single shift, we deem this an appropriate choice of sample size. Further, the end

of the sample has been chosen so that the potential break date in included in the range

λ ∈ [0.15, 0.85] used to implement the inf SB-AFDF test. From Figure 3, where the stock

returns are depicted, it becomes clear that the series experiences a higher variance after

1973. Figures 4a and b shows the ACF for the absolutes values, |rt|, and the squares, r2t ,
respectively, which display the typical plateau for longer lags, as if LRD were present. The

results of performing the inf SB-AFDF test for an unknown break date in version A ( no

trend) of model (19) are shown in Table 6, where the number of lags is k = 15 (further

lags were insignificant), and only values of d < 0.5 have been used, in agreement with the

12For example, the estimates of the GARCH (1,1) model σ2t = α0+α1σ
2
t−1+β1h

2
t−1 yield α0 = .325x10

−6,

α1 = 0.150, β1 = 0.600 for T=1953-1972 and α0 = .1.40x10
−5, α1 = 0.150, β1 = 0.600 for T=1953-1977.

26



1956.12 1960.07 1964.11 1668.12 1972.12 1976.11

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Fig. 3. Plot of S&P 500 daily returns, 1953-1977.

estimates of d obtained from the estimation of ARFIMA models applied to both series.

Since the sample size in this case is large enough to use the N(0, 1) approximation for the

limiting distribution, a 5% critical value of -1.64 is used. The main finding is that the null

hypothesis of I(d) cannot be rejected for moderate values of d, in the range 0.1−0.4 for |rt|,
and 0.1−0.3 for r2t , which contain the estimated values of d for this data set.13 Note that in
the case of |rt|, the null of d = 0.4 could be almost rejected at the 10% level (with a c.v. of

-1.28) whereas it is clearly rejected in the case of r2t at the 5% level.14 Hence, overall , the

SB-AFDF test yields some evidence in favor of these transformation of the stock returns

behaving during 1953-1977 as I(d) processes with a low degree of fractional integration. Of

course, fractional integration and structural breaks can cohabit (for an empirical illustration

see Choi and Zivot, 2005), yet its consideration is beyond the scope of this application.

13The estimated values of d using the GPH approach with g(T ) = T 0.5, are bd = 0.4005 for the absolute

values, and bd = 0.3241 for the squares of the returns.
14This conclusion is reinforced when we perform the test for the nonstationary null of d = 0.6. With a 5%

c.v. of -2.54 (see the left panel in Table B3), the values of the test for the absolute values and the squares

are -4.63 and -6.15, respectively. Thus the null is strongly rejected.
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TABLE 6

inf SB-AFDF tests

S&P 500 data 1953-1977

d 0.1 0.2 0.3 0.4

|rt| 2.561 1.549 0.294 −1.214
r2t 1.063 0.037 -1.216 -2.680∗

∗Rejection at the 95% s.l.; rt = logPt − logPt−1.

6. CONCLUSIONS

One of the recent identification issues in time series is the difficulty in distinguishing long-

memory from structural breaks. This can be extremely relevant for at least three reasons:

(i) shock identification (persistent vs. transitory), (ii) forecasting (do we need a long-

history of the time series or only a short past will be of much use in forecasting?), and (iii)

detection of spurious fractional cointegration. In order to contribute to solve this empirical

identification problem, in this paper we provide a simple test of the null hypothesis of a
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process being I(d), d ∈ (0, 1] against the alternative of being I(0) with deterministic terms
subject to structural changes at known or unknown dates. The test, denoted as Structural

Break Fractional Dickey-Fuller (SB-FDF) test, is a time-domain one, performs fairly well

in finite samples in terms of power, and it is easy to implement since it relies on a time-

series OLS regression. Denoting by AB(t) the different types of a single structural break

considered by Perron (1989), the SB-FDF test is based on the t-ratio of the coefficient on

yt−1 in an OLS regression of ∆dyt on ∆dAB(t), AB(t − 1) and yt−1. A suitable number of
lags of ∆dyt may be added to account for serially correlated errors. When d ∈ (0.5, 1] its
asymptotic distribution is nonstandard and critical values are simulated. By contrast, when

d ∈ (0, 0.5), it is asymptotically normally distributed. In future research we plan to extend
the proposed testing approach to multiple breaks along the lines discussed in Section 4 of

this paper, as well as to test I(d0) versus I(d1) cum structural breaks with d0 > d1.
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APPENDIX A

Proof of Theorem 1

The proof of consistency of φ̂
i
ols is analogous to that of Theorem 1 in DGM (2004) and

therefore is omitted.

With respect to the asymptotic distributions, consider first the case 0.5 < d ≤ 1, where
the process is a non-stationary FI (d) under the null hypothesis. Define Bid (r) to be the

stochastic process on [0, 1] that is the projection residual in L2[0, 1] of a fractional Brownian

Motion projected onto the subspace generated by the following: 1) i = µ :
³
1, r−d

´
and

2) i = τ :
³
1, r−d, r1−d, r

´
. That is,

Bd (r) = α̂0 + α̂1r
−d +Bµd (r) ,

and,

Bd (r) = α̂0 + α̂1r
−d + α̂2r

1−d + α̂3r +B
τ
d (r) ,

where Bd (r) is Type-I fBM, as defined in Marinucci and Robinson (1999). Then, a straight-

forward application of the Frisch-Waugh Theorem yields the desired result.

The case where 0 ≤ d < 0.5 is similar to that consider in DGM (2004) and thus is omitted

for the sake of brevity.¥

Proof of Theorem 2

The result is obtained from using the weighting matrix ΥT = diag(T 1/2, T 1/2−d, T 1/2) if

d ∈ (0, 0.5), and ΥT = diag(T 1/2, 1, T 1/2) if d ∈ (0.5, 1], in the vector of OLS estimators of
θ = (α, δ, φ)0 in model (9) such that bθ = Υ−1T [Υ−1T X 0XΥ−1T ]

−1Υ−1T X
0z, where the rows of

the matrix X are given by xt = (1, τ t(d), yt−1) while the elements of the vector z are defined

as zt = ∆dyt. Assuming µ0 = 0 in (8) (due to the invariance of the limiting distribution

of the test to the value of µ0 in DGP 1) then the following set of results hold (with the

omitted sums limits going from 2 to T ):

1. limT→∞
P

τ t
T 1−d =

1
C1(d)

,

2. limT→∞
P

τ2t
T 1−2d

P
τ2t =

1
C2(d)

, if d ∈ (0, 0.5) and lim P
τ2t = O(1) if d ∈ (0.5, 1],
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3.
P
yt−1
T

p→ ζ0(1− λ),

4.
P
y2t−1
T

p→ [σ2ε+ζ
2
0(1−λ)]

C1(d)
,

5.
P

τ tyt−1
T 1−d

p→ ζ0(1−λ1−d)
C1(d)

,

6.
P

∆dyt
T1−d

p→ 1−λ1−d
C1(d)

,

7.
P

τ t∆dyt
T = ζ0[1−λ1−2d]

C2(d)
Op(T

1−2d) if d ∈ (0, 0.5) andP
τ t∆

dyt = Op(1) if d ∈ (0.5, 1],

8.
P
yt−1∆dyt
T

p→−dσ2ε.

To obtain the expressions for C1(d) and C2(d), notice that the j-th coefficient in the

binomial expansion of (1 − L)d is πj(d) = Γ(j−d)
Γ(−d)Γ(j+1) ∼ 1

Γ(−d)j
−(d+1). Also notice that

since
P∞
i=0 πj(d) = 0 for any d > 0, then τ t =

Pt−1
i=0 πj(d) = −

P∞
i=t πj(d) =

1
Γ(−d)t

−d (see

Davidson, 1994, p.32). Hence,P
τ t ' 1

Γ(−d)
PT
s=2 t

−d ' 1
Γ(−d) .

1
(−d)(1−d)T

1−d, where Γ(−d)(−d)(1 − d) = Γ(2 − d) ≡
C1(d).

Likewise, for d ∈ (0, 0.5),P
τ2t ' 1

Γ2(−d)
PT
s=2 t

−2d ' 1
Γ2(−d) .

1
(−d)2(1−2d)T

1−2d, where Γ2(−d)(−d)2(1−2d) = Γ2(1−
d)(1− 2d) ≡ C2(d).
Finally, denoting the elements of the matrix A= [Υ−1T X

0XΥ−1T ] by aij (i, j = 1, 2, 3),

its determinant by det(A) and the element of the vector Υ−1T X
0z by bi (i = 1, 2, 3), notice

that limT→∞ bφols = (a22 − a212)b3/det(A) if d ∈ (0, 0.5) and limT→∞ bφols = a22b3/det(A) if
d ∈ (0.5, 1]. Substitution of the corresponding limiting expressions above yields the required
result.¥

Proof of Theorem 3

Similar to Theorem 2, using the weighting matrix ΥT = diag(T 1/2, T 3/2, T 1/2−d, T 3/2−d,

T 1/2) if d ∈ (0, 0.5), and ΥT = diag(T 1/2, T 3/2, 1, T 3/2−d, T 1/2) if d ∈ (0.5, 1], in the vector
of OLS estimators of θ = (α, γ, δ, ϕ, φ)0 in model (11) such that

bθ = Υ−1T [Υ−1T X 0XΥ−1T ]
−1Υ−1T X

0z,
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where the rows of the matrix X are given now by xt = (1, t, τ t(d), τ t(d − 1), yt−1) while
the elements of the vector z are zt = ∆dyt , under the assumption that µ0 = β0 = 0 in (10)

(due to the invariance of the limiting distribution of the test to the value of µ0 and β0 in

DGP 2).¥

Proof of Theorem 4

The proof of this result is similar to that of Theorem 1 where, in this case, the correspond-

ing ‘detrended’ fractional Brownian motion are obtained in the continuous time regressions

defined as,

BAd0 (r) = α̂0 + α̂1du (λ, r) + α̂2r
−d + α̂3r

−ddu (λ, r) +B∗Ad0 (r,λ) ,

BBd0 (r) = α̂0 + α̂1r + α̂2dt
∗ (λ, r) + α̂3r

−d + α̂4r
d−1 + α̂5r

−ddt∗ (λ, r) r−d +B∗Bd0 (r,ω) ,

and,

BCd0 (r) = α̂0 + α̂1r + α̂2du (λ, r) + α̂3dt
∗ (λ, r) + α̂4r

−d + α̂5r
d−1

+α̂6r
−ddu (λ, r) + α̂7r

−ddt∗ (λ, r) +B∗Cd0 (r,ω) ,

for modelsA, B and C, respectively, where du (λ, r) = 1 if r > λ and 0 otherwise, dt∗ = r−λ
if r > λ and 0 otherwise.¥

Proof of Theorem 5

1) Case 0.5 < d ≤ 1
The proof of this theorem is constructed along the lines of that of Theorem 1 in Zivot and

Andrews (1992) (Z&A henceforth). They present an alternative approach to the traditional

‘fidi plus tightness’ method based on first showing that a set of relevant variables jointly

converge and then using the Continuous Mapping theorem to complete the proof.

Following the notation in Z&A, let us define zitT (λ) for i = {A, B, and C} as the
vector that contains the deterministic components for each model under the alternative

hypothesis that depends explicitly on the break fraction and the sample size. For instance
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if i = A, zAtT (λ)
0 =

³
1, DUt (λ) , τ t (d0) , (τ t (d0)DUt (λ))

´
. We will also need a

rescaled version of the deterministic regressors, z̃iT (ω, r) = δiT z[Tr]T (λ) , where δiT is a

diagonal matrix of weights. The test statistics of interest is,

inf
λ∈Λ

tiφ(λ) = inf
λ∈Λ

T−d
PT
i=2

¡
∆d0yit−1 (λ) εt

¢³
T−2d

PT
i=1

¡
yit−1 (λ)

¢2´1/2
s (λ)

, for i = {A, B and C}, (A.1)

where yit = yt − zitT (λ)0
³PT

s=1 z
i
sT (λ) z

i
sT (λ)

0
´−1PT

s=1 zsT (λ) ys,

∆dyit = ∆
dyt − zitT (λ)0

Ã
TX
s=1

zisT (λ) z
i
sT (λ)

0
!−1 TX

s=1

zsT (λ)∆
dysfori = {A,B, and C},

and s2 (λ) is the usual estimator of the residual variance (see Z&A for its exact definition).

Henceforth, only Model A will be considered where, for brevity, the superscript i is dropped.

Proofs for the other models {B and C} are analogous and, therefore, are omitted.

The statistic in (A.1) can be rewritten as a functional g of XT , z̃T , T 1/2−d
P
z̃T εt, σ

2

and s2 plus an asymptotically negligible term, (see equations (A.1) and (A.2) in Z&A),

where

XT (r) = T
1/2−dσ−1

[Tr]X
i=0

πi (−d) ε[Tr]−i, (j − 1) < r < (j + 1) for j = 1, ..., T.

By expression (A.5) in Z&A,

T−2d
TX
i=2

¡
yit−1 (ω)

¢2
=

Z 1

0
{σXT (r)− z̃T (ω, r)0

µZ 1

0
z̃T (ω, s)

0 z̃T (ω, s)0 ds
¶−1

×
µZ 1

0
z̃T (ω, s)

0 σXT (s)0 ds
¶
}2dr + opλ (1)

= H1[σXT , z̃T ] (ω) + opλ (1) ,

and by (A.6) in Z&A,

T−d
TX
i=2

yit−1 (λ) εt = H2[σXT , z̃T , T
1/2−dX z̃T εt] (λ) + opλ (1) ,

37



T−2d0XT (.)
w→ Bd0 (.) ,

where the symbol opλ (1) denotes any random variable ϑ(λ) such that supλ∈Λ |ϑ(λ)| p→ 0.

Since the limiting distribution of z̃T (., .) is degenerate, it follows that (XT (.) , z̃T (., .))

converge weakly to (Bd (.) , z (., .)).15

Lemmas A.1-A.4 in Z&A guarantee that the processes XT , z̃T , T 1/2−d
P
z̃T εt, σ

2 and

s2 jointly converge and that the functional g is continuous. The final result follows from

the continuity of a composition of continuous functions and the CMT.

2) Case 0 < d < 0.5

Let us start considering Case A: DGP: ∆dyt = εt and regression model,

∆dyt = αDUt(λ) + φyt−1 + εt,

with λ ∈ [λ0, λ1] = Λ, 0 < λ0 < λ1 < 1, and εt are i.i.d (0, 1) (we assume known variance

for simplicity). Then, the t-ratio of bφols when the break date is at a fraction λ (= TB/T ) of
the sample size T , denoted in short as tbφ(λ) is given by,

tbφ(λ) =

(PT
1 εtyt−1
T 1/2

−
PT
r+1 εt

T 1/2

PT
TB
yt−1

T d+1/2
1

1− λ

1

T 1/2−d

)
×

PT
1 y

2
t−1

T
−
ÃPT

TB
yt−1

T d+1/2

!2
1

1− λ
.
1

T 1−2d


−1/2

.

The following results in Hosking (1996) and DGM (2002) will be used:

(i) T−1/2
PT
2 εtyt−1

w→ N [0, Γ(1− 2d) / Γ2(1− d)],
(ii) T−(d+1/2)

PT
TB
yt−1

w→ N [0, Γ(1− 2d) / Γ(1− d)Γ(1 + d)(1 + 2d)],
(iii)T−1

PT
2 y

2
t−1

p→ Γ(1− 2d) / Γ2(1− d).
We want to compare tbφ(λ) with,

τ =
T−1/2

PT
2 εtyt−1n

T−1
PT
2 y

2
t−1
o−1/2 ,

15The uniform metric is used in the first term whereas the hybrid uniform/L2 d∗ metric is used in the

second (see Z&A for further details).
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which, from (i) and (iii), converges in distribution to a standard normal. For this consider

the function,

fT (x, z) =
aT − 1

1−λxz
(bT − x2 1

1−λ
1

T 2δ1
)1/2

,

where aT = T−1/2
PT
2 εtyt−1, bT = T−1

PT
2 y

2
t−1 ≥ 0, and δ0 + δ1 = 1 − 2d > 0 with

0 < δ0, δ1 < 1. The domain is −T−δ1 [bT (1 − λ)]1/2 < x < T−δ1 [bT (1 − λ)]1/2. A simple

two-dimensional mean value expansion yields,

fT (x, z)− fT (0, 0) = f 0xT (ex, ez) x+ f 0zT (ex, ez) z,
where (ex, ez) = (ϑx, ϑz), 0 < ϑ < 1, and the partial derivatives are given by,

f 0xT (x, z) =
aT

(1−λ)T2δ1 x− bT
1−λz

(bT − x2 1
1−λ

1
T 2δ1

)3/2
,

f 0zT (x, z) =
− 1
1−λx

(bT − x2 1
1−λ

1
T 2δ1

)1/2
.

Note that,

tbφ(λ) = fT (T −δ0
PTB
1 yt−1
T d+1/2

, T −δ1
PTB
1 εt

T 1/2
),

and that τ = fT (0, 0). Hence,

sup
λ∈Λ

¯̄̄
tbφ(λ) − τ

¯̄̄
≤ sup

λ∈Λ

¯̄
f 0xT (ex, ez)¯̄

¯̄̄̄
¯T −δ0

PT
r+1 yt−1
T d+1/2

¯̄̄̄
¯+ supλ∈Λ

¯̄
f 0zT (x, z)

¯̄ ¯̄̄̄¯T−δ1
PT
r+1 εt

T 1/2

¯̄̄̄
¯ .

Now, T−(d+1/2)
P[Tλ]
1 yt−1 converges to fBMwhile T−1/2

P[Tλ]
1 εt converges to BM. There-

fore, supλ∈Λ

¯̄̄̄
T −δ0

PT
TB

yt−1
Td+1/2

¯̄̄̄
and supλ∈Λ

¯̄̄̄
T −δ1

PT
TB

εt

T1/2

¯̄̄̄
are op(1). Observe further that,

sup
λ∈Λ

¯̄
f 0xT (ex, ez)¯̄ = sup

λ∈Λ

¯̄̄̄
¯̄ aT
(1−λ)T2δ1 x− bT

1−λz

(bT − x2 1
1−λ

1
T 2δ1

)3/2

¯̄̄̄
¯̄ (A.2)

≤
supλ∈Λ

¯̄̄
aT

(1−λ)T 2δ1
¯̄̄
|x|+

¯̄̄
bT
1−λ

¯̄̄
|z|

infλ∈Λ
¯̄̄
(bT − x2 1

1−λ
1

T 2δ1
)3/2

¯̄̄
≤

¯̄̄
aT

(1−λ1)T 2δ1
¯̄̄
supλ∈Λ |x|+

¯̄̄
bT
1−λ1

¯̄̄
supλ∈Λ |z|¯̄̄

(bT − 1
1−λ1

1
T 2δ1

supλ∈Λ x2)3/2
¯̄̄ .
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From (ii) and (iii), note that bT
p→ Γ(1− 2d)/Γ2(1− d), and that,

sup
λ∈Λ

T −δ0
ÃPTB

1 yt−1
T d+1/2

!2
p→ 0, sup

λ∈Λ
T −δ1

ÃPTB
1 εt

T 1/2

!
p→ 0. (A.3)

Hence the denominator in (A.2) is bounded away from zero with probability approaching

one. In view of (A.3), the numerator in (A.2) is bounded in probability. Now, both results

imply,

sup
λ∈Λ

¯̄̄
tbφ(λ) − τ

¯̄̄
p→ 0.

Consequently, infλ∈Λ tbφ(λ) has the same asymptotic distribution as infλ∈Λ τ which of
course is the distribution of τ .

The proofs for Cases B-C follow along similar lines by considering the following regression

model,

∆dyt = αDT ∗t (λ) + φyt−1 + εt,

where DT ∗t (λ) = (t−TB)1(TB+1≤t≤T ) and the rest of assumptions are as above. Then, the
t-ratio of bφols when the break date is at a fraction λ (= TB/T ) of the sample size T , is given
by,

tbφ(λ) =

(PT
1 εtyt−1
T 1/2

−
PT
TB
t∗εt

T 3/2

PT
TB
t∗yt−1

T d+3/2
3

(1− λ)3
1

T 1/2−d

)
.

PT
1 y

2
t−1

T
−
ÃPT

TB
t∗yt−1

T d+3/2

!2
3

(1− λ)3
.
1

T 1−2d


−1/2

,

where t∗ = t − TB. Use of the result T−(d+3/2)
PT
TB
t∗yt−1 = Op(1) (non-degenerate) has

been made (see Marmol and Velasco, 2002). Then, considering the function,

fT (x, z) =
aT − 3

(1−λ)3xz

(bT − x2 3
(1−λ)3

1
T 2δ1

)1/2
,

where aT and bT are defined as above, the proof is identical to the one in the previous

case.¥

40



APPENDIX B

Tables B1 and B2 gather the critical values of the distributions of FDF tests for testing

I (d) vs. I (0) + deterministic components presented in section 2.1, whereas Tables B3- B5

present the corresponding critical values for the SB-FDF tests presented in section 3, for

testing I (d) vs. I (0) + structural breaks with λ ∈ [0.15, 0.85].

TABLE B1

Critical Values for the FDF test of I(d) vs. I(0)+

deterministic components based on Estimated tµφols in (6)

Sample Size T = 100 T = 400 T = 1000

d0/ s.l. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.1 -1.547 -1.894 -1.891 -1.326 -1.698 -2.397 -1.308 -1.668 -2.352

0.2 -1.567 -1.9497 -1.983 -1.367 -1.814 -2.420 -1.350 -1.727 -2.390

0.3 -1.640 -2.003 -1.991 -1.439 -1.832 -2.520 -1.407 -1.784 -2.432

0.4 -1.683 -2.132 -2.132 -1.573 -1.862 -2.578 -1.432 -1.805 -2.512

0.6 -2.641 -2.201 -2.546 -2.075 -2.407 -3.099 -2.028 -2.382 -3.004

0.7 -2.769 -2.364 -2.720 -2.252 -2.577 -3.208 -2.217 -2.540 -3.180

0.8 -2.804 -2.50 -2.837 -2.394 -2.689 -3.320 -2.397 -2.710 -3.326

0.9 -2.812 -2.599 -2.929 -2.551 -2.857 -3.497 -2.485 -2.784 -3.351
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TABLE B2

Critical Values for the FDF test of I(d) vs. I(0)+

deterministic components based on Estimated tτφols in (7)

Sample Size T = 100 T = 400 T = 1000

d0/ s.l. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.1 -1.567 -1.913 -2.788 -1.368 -1.733 -2.442 -1.229 -1.638 -2.383

0.2 -1.616 -1.957 -2.815 -1.719 -1.797 -2.470 -1.589 -1.648 -2.404

0.3 -2.049 -2.096 -2.845 -1.853 -1.801 -2.528 -1.767 -1.677 -2.429

0.4 -2.138 -2.166 -2.897 -2.051 -1.847 -2.678 -1.795 -1.747 -2.487

0.6 -2.694 -3.021 -3.658 -2.560 -2.894 -3.560 -2.488 -2.800 -3.407

0.7 -2.935 -3.257 -3.895 -2.824 -3.131 -3.764 -2.773 -3.086 -3.750

0.8 -3.159 -3.480 -4.087 -3.067 -3.367 -3.921 -3.011 -3.320 -3.930

0.9 -3.366 -3.700 -4.390 -3.291 -3.590 -4.143 -3.250 -3.553 -4.094
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TABLE B3

Critical Values the SB-FDF test of I(d) vs. I(0)+ Breaks

based on Estimated points of the inf tAbφ(λ) in (16)
Sample Size T=100 T=400 T=1000

d0 / s.l. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.1 -2.056 -2.427 -3.075 -1.739 -2.100 -2.807 -1.599 -1.975 -2.698

0.2 -2.271 -2.630 -3.349 -1.936 -2.297 -2.955 -1.738 -2.115 -2.827

0.3 -2.443 -2.784 -3.499 -2.119 -2.459 -3.085 -1.989 -2.334 -2.992

0.4 -2.668 -2.989 -3.645 -2.387 -2.726 -3.450 -2.236 -2.593 -3.188

0.6 -3.236 -3.532 -4.161 -2.999 -3.342 -4.009 -2.545 -2.918 -3.219

0.7 -3.519 -3.847 -4.484 -3.331 -3.634 -4.221 -2.911 -3.241 -3.538

0.8 -3.761 -4.069 -4.692 -3.602 -3.875 -4.437 -3.325 -3.561 -3.861

0.9 -3.978 -4.266 -4.852 -3.870 -4.137 -4.613 -3.638 -3.784 -4.043
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TABLE B4

Critical Values the SB-FDF test of I(d) vs. I(0)+ Breaks

based on Estimated points of the inf tBbφ(λ) in (16)
Sample Size T=100 T=400 T=1000

d0/ s.l. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.1 -2.251 -2.601 -3.269 -1.833 -2.201 -2.901 -1.664 -2.044 -2.769

0.2 -2.447 -2.792 -3.463 -2.055 -2.417 -3.044 -1.846 -2.198 -2.864

0.3 -2.648 -3.003 -3.657 -2.267 -2.614 -3.266 -2.116 -2.455 -3.103

0.4 -2.929 -3.256 -3.913 -2.574 -2.918 -3.628 -2.402 -2.739 -3.393

0.6 -3.556 -3.853 -4.514 -3.331 -3.649 -4.300 -3.22d -3.534 -4.131

0.7 -3.937 -4.249 -4.803 -3.728 -4.026 -4.642 -3.652 -3.959 -4.536

0.8 -4.252 -4.544 -5.191 -4.086 -4.390 -4.904 -4.087 -4.353 -4.923

0.9 -4.587 -4.882 -5.474 -4.458 -4.707 -5.213 -4.442 -4.507 -5.201
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TABLE B5

Critical Values the SB-FDF test of I(d) vs. I(0)+ Breaks

based on Estimated points of the inf tCbφ(λ) in (16)
Sample Size T=100 T=400 T=1000

d0 /s.l. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.1 -2.449 -2.810 -3.448 -1.951 -2.333 -3.016 -1.758 -2.129 -2.867

0.2 -2.683 -3.032 -3.7070 -2.201 -2.568 -3.200 -1.946 -2.303 -2.984

0.3 -2.895 -3.250 -3.962 -2.429 -2.770 -3.406 -2.238 -2.577 -3.241

0.4 -3.179 -3.524 -4.176 -2.755 -3.112 -3.788 -2.554 -2.881 -3.506

0.6 -3.848 -4.151 -4.797 -3.519 -3.856 -4.529 -3.379 -3.682 -4.253

0.7 -4.209 -4.533 -5.196 -3.938 -4.239 -4.789 -3.815 -4.106 -4.693

0.8 -4.540 -4.8580 -5.494 -4.298 -4.577 -5.069 -4.238 -4.525 -5.090

0.9 -4.892 -5.197 -5.809 -4.628 -4.901 -5.406 -4.579 -4.859 -5.410
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