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This paper proposes an alternative explanation to recurrent hyperinflations other than

bounded rationality by explicitly considering the global dynamics of an economy with

credit market frictions. In this paper we show that hyperinflations are self-generated and

are manifestations of the underlying global dynamic properties of an economy with per-

fect foresight rational agents that face credit rationing. Moreover, we find that economies

that are more credit constrained are more likely to experience recurrent hyperinflations.

JEL Classification: E44, E32.

Keywords: Nonlinear Dynamical Systems, Global Dynamics.

∗The authors would like to thank David Kendrick, Bruce Smith and Dave Kelly for their helpful com-

ments and suggestions. We would also like to thank the participants of the 9th Conference on Computational

Economics and Finance held in Seattle for their comments. Finally, we would like to thank the editor Cars

Hommes and two anonymous referees for their valuable suggestions. The source code used to compute the

nonlinear manifolds can be obtained upon request by writing to gomis@miami.edu.
†Correspondig Author: Address: 5250 University Drive, Coral Gables, FL 33124-6550, U.S.A.; Phone:

1-305-284-4397; Fax: 1-305-284-2985; E-mail: gomis@miami.edu. I would like to dedicate this paper to the

memory of Bruce Smith, a mentor and an inspiring figure in my life.
‡This author has been supported by the MCyt/FEDER Grant BFM2003-07521-C02-01 and the Centre de
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1 Introduction

Although the long run relationship between money and prices is a phenomenon that has

received a lot of attention by macroeconomists during the last century, the study of hyperin-

flations is rather new. One of the first studies on the subject can be attributed to Cagan’s

(1956) seminal work. He proposes a money demand function based on asset-market consid-

erations in order to study inflation dynamics, the money supply and inflationary finance. He

finds that in hyperinflationary periods movements in prices are much greater than movements

in real variables [8].1

Within the general equilibrium framework, Sargent (1986) shows that when governments

are unable to either reduce their fiscal deficits or finance them through capital, high seignorage

is required and high inflation rates are unavoidable [20]. On the other hand, Sargent and

Wallace (1987) generate a standard Laffer curve with two stationary rational expectations

equilibria where hyperinflations can occur as speculative equilibria converging to the high

inflation steady state. Their paper explains how inflation can grow even though seignorage is

stable [21].2 Similarly, Eckeisten and Leiderman (1992) explain the very large inflation rates

in Israel with an ever increasing Laffer curve [10].

Some other work on hyperinflations has incorporated expectations of a monetary reform to

explain the behavior of certain economic variables during hyperinflations. Bental and Eckstein

(1990) consider an economy where agents know in advance the whole future path of government

policies. In particular, agents know the date and composition of any stabilization package

which requires the budget to be balanced and keep the price level fixed [3]. In the same spirit,

1Households adjust their real balances according to expected inflation.
2In the same spirit, Evans and Yarrow (1981) [11] and Bruno and Fisher (1990) [6] interpret hyperinflations

as a situation in which the economy converges towards a high inflation steady state along the inflation tax

Laffer curve.
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Paal (2000) examines the possibility that pre-stabilization rates of inflation in Hungary after

World War II resulted from the anticipation of strict credit controls in the post-stabilization

period [18].

Finally, some authors have explored hyperinflations with learning and moving away from

rationality. Auernheimer (1976) [2], and Kiguel (1986) [16] show that in order to obtain a

hyperinflationary process one needs to assume adaptive expectations. In other words, within

Cagan’s framework, large budget deficits can result in hyperinflations only when agents make

systematic mistakes in forecasting inflation. More recently, Marcet and Nicolini (2004) con-

struct a general equilibrium model of bounded rational learning to account for the observations

of recurrent hyperinflations in the eighties [17].

To date only models with quasi rational agents are able to generate recurrent hyperinfla-

tions. An alternative explanation to recurrent hyperinflations is to consider the global prop-

erties of an economy with frictions. The overlapping generation framework is a rich source

of interesting dynamics, endogenous cycles, chaos, bifurcations or sunspot equilibria that can

help explain recurrent hyperinflations. Within this spirit, Boyd and Smith (1998) explore

how the presence of credit market frictions, whose severity is endogenous, affects capital and

inflation dynamics [4]. The authors find that if any monetary steady state equilibria exist,

there are generally two of them. One of these equilibria has a low capital stock and output

level, and it is necessarily a saddle. The other steady state has a high capital stock and output

level; either it is necessarily a sink, or its stability properties depend on the rate of money

creation. If the high capital stock steady state is not a sink for all rates of money growth, then

increases in the rate of money growth can induce a Hopf bifurcation. Hence dynamical equilib-

ria can display damped oscillations as well as limit cycles. The corresponding local properties

of this economy are not able to generate inflation dynamics consistent with hyperinflations.
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In particular, the local properties of the Boyd and Smith (1998) economy can only generate

quasi-periodic hyperinflations when very high steady state inflation rates are considered. As a

consequence, the resulting time series for the inflation rate are “too” cyclical. Furthermore, the

local properties are not able to predict isolated hyperinflations for moderately high inflation

rates. Moreover, Boyd and Smith (1998) are only able to examine local inflation dynamics

for a very small set of initial conditions; i.e, only those near the monetary steady state. As a

result, transition dynamics leading to recurrent hyperinflations can not be analyzed. Finally,

when considering a local analysis the potential time series patterns of the inflation rate can

not be greatly affected by the existence of other equilibria.

The goal of this paper is to show that global dynamic properties of an economy with

credit market frictions, the Boyd and Smith (1998) model, are consistent with the qualitative

behavior of recurrent hyperinflations. We take Cagan’s view that hyperinflations are indeed

self-generated and that they are manifestations of some underlying global stability properties

of the economy. In particular, we believe that the relevant dynamic properties to consider

are the global ones. In order to fully examine this possibility, we explore the evolution of a

credit constrained economy while providing a comprehensive description of the corresponding

geometric structures of the economy as it moves away from the steady states. We can then

study the time series patterns of the inflation rate nonlocally, allowing the possibility of other

steady state to affect its dynamics. In order to analyze these possibilities we employ algo-

rithms suggested by Gomis-Porqueras and Haro (2003) which help characterize the underlying

manifolds of this credit constrained economy [13].

In this paper we show that recurrent hyperinflations are consistent with the global prop-

erties of an economy with perfect foresight rational agents that face credit rationing. In this

environment the introduction of money reduces the capital stock but when the economy is
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credit constrained this has the effect of reducing the steady state return on savings. Thus,

the reduction in the per capita capital stock forces wages to decrease and hence borrowers are

able to provide less internal financing for their investment project, lowering the expected real

return on loans. Thus, the introduction of an additional asset diverts some savings away from

capital accumulation. Furthermore, high rates of inflation will reduce savings, increasing the

attractiveness of borrowing which worsens access to the credit market. Thus, higher rates of

inflation exacerbate credit market frictions, and can increase the rationing of credit.

Within this framework, we find that for relatively low money growth rates the time series

patterns of the inflation rate are relatively confined, with the exception of sudden bursts

followed by periods of deflation and price stability; converging finally to the steady state

inflation rate. As the money growth rate increases, the predicted time series for the inflation

rate becomes richer. The magnitudes of these sudden bursts tend to be smaller and more

frequent. Thus the potential for recurrent hyperinflations increases whenever an economy faces

credit market frictions and has large money growth rates. Finally, we find that economies with

more severe credit market frictions tend to experience more recurrent hyperinflations.

2 The Model

The basic goal of this paper is to understand the asymptotic behavior of an iterative process

while providing a comprehensive description of the geometric structures arising from a dynamic

model of a credit constrained economy. The underlying structure of this economy is based on

a standard monetary growth model where borrowing is subject to a costly state verification,

the Boyd and Smith economy (1998). By introducing credit market frictions –such as costly

state verification problems that have an endogenous degree of severity– we are able to predict
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that high inflation rates lead to more severe credit rationing, indeterminacy of equilibria and

endogenous arising volatility. We believe that these features can help explain inflation dy-

namics observed during recurrent hyperinflations when global properties of the economy are

considered.

Following Boyd and Smith (1998), the economy examined in this paper consists of an

infinite sequence of two-period lived overlapping generations. Within each generation, there

are “potential borrowers” and “lenders”. At each date a single final good is produced using a

Cobb-Douglas production function. All agents are endowed with one unit of labor, which is

supplied inelastically and there is no labor endowment when old. Furthermore, all agents only

care about old age consumption.

Potential borrowers have access to a linear stochastic technology for converting t goods

into date t+1 capital investments. Each potential borrower has one unit of investment project

which can only be operated at a scale, q. In order to finance capital investments, which are

subject to a costly state verification a la Williamson (1986) [23], they need to borrow from

lenders who can not access this technology. Loan contracts are offered by borrowers and are

either accepted or rejected by intermediaries (lenders) which take deposits, make loans, and

monitor the project as required by the contracts they accept. Thus, loan contract offers must

satisfy the expected return constraint for lenders:

∫

At

[Rt(z)bt − ρt+1γ]g(z)dz + xtbt

∫

Bt

g(z)dz ≥ rt+1bt;

where At (Bt) is the set of project returns for which verification (does not) occurs, z is the

return to the linear stochastic technology for converting t goods into t+1 capital with a proba-

bility density g(z), bt is the amount borrowed, ρt is the rental rate of capital, Rt is the promised

payment if z∈At, γ is the verification cost in terms of capital and xt the uncontingent payment

when z∈Bt. Moreover, the loan contract must also satisfy the appropriate incentive constraint;
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i.e, Rt(z)≤xt for z∈At.

The solution to the problem faced by borrowers is to offer a standard debt contract; where

the borrower repays principal plus interests if this is feasible, if not the borrower defaults on

the loan, the lender verifies the project return and retains any proceeds from it. Within this

environment, it is possible that among ex ante identical borrowers some will receive credit

and some will not. Borrowers who are denied credit will have no mechanism for bidding up

the expected return to a lender, and hence will be unable to bid credit away from funded

borrowers. Under credit rationing, the expected return on bank deposits is given by:

rt+1 =
qρt+1

bt

(

η −
γ

q
G(η) −

∫ η

0

G(z)dz

)

where η is the maximum expected return to a lender and G(z) is the probability distribution

of z. Potential borrowers prefer borrowing to lending under credit rationing iff:

ρt+1φ ≥ rt+1 = ψ
ρt+1

q − w(kt)

where ψ=q
(

η − γ/qG(η) −
∫ η

0
G(z)dz

)

, φ=ẑ − γ/qG(z) with ẑ being the average return on

the linear stochastic technology, and w(kt) are young wages.

Imposing market clearing for the capital stock kt, the no arbitrage condition between capital

and money, and assuming an intensive production function given by f(k)=Bkβ, the resulting

evolution for kt and mt for this economy is given by the following planar system:

kt+1 = φ(w(kt) −mt) = φ(B(1 − β)kβt −mt) (1)

mt+1 = σ
mt

Π(kt, mt)
=

σψBβ

k1−β
t+1 (q −B(1 − β)kβt )

mt, (2)

where σ denotes the money growth rate, Π is the inflation rate, B is a positive parameter and

0<β<1.3

3Note then that young wages are given by w(k)=B(1 − β)kβ .

7



Throughout the paper, we examine economies such that the per capita capital stock kt

and real balances mt satisfy 0≤mt<w(kt)<q, so that intermediation and external finance is

required, and money is valued in the economy. These inequalities describe the natural domain

in which the economy is defined.4

The straight line m=0 is invariant, and the 1-dimensional dynamics of the nonmonetary

equilibria is described by kt+1=φw(kt). The conditions on wages guarantees that the economy

without money has a unique capital steady state k0, which is an attracting steady state for

the 1-dimensional dynamics. For the 2-dimensional dynamics, we have that this nonmonetary

equilibria is given by z0=(φw(k0), 0) which is located at the natural boundary m=0. On the

other hand, the monetary steady state equilibria, m>0, are implicitly defined by the following

conditions:

k = φ(w(k) −m) (3)

Π(k,m) = σ; (4)

suggesting that the steady state rate of inflation is given by the money growth rate, σ. In

particular, the steady state inflation rate solves the equation Σ(k)=σ; where Σ(k) is the

continuous function given by:

Σ(k) =















1

ψ

q − w(k)

f ′(k)
if k > 0 ,

0 if k = 0 .

(5)

Note that the function Σ(k) vanishes for k̂=w−1(q) and has a unique maximum at kc=f
−1(q),

defining a critical steady state inflation rate σc=Σ(kc)=
1

ψ
f−1(q). If σ<σc, there are two mone-

tary steady states: a high steady state capital stock denoted by z1=(k1, m1) and a low steady

state capital stock denoted by z2=(k2, m2), where k1>k2 and mi=w(ki)−
1

φ
ki for i =1, 2. On

4The state of the economy is completely characterized by the per capita capital stock k and real balances

m. From now on, we will denote the state of the economy as z=(k, m).
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the other hand, if σ=σc both steady states coincide, and if σ>σc there are no economically

feasible steady states. This suggests then that the government has an upper bound on how

much money can be injected into the economy without losing its value; i.e, σ≤σc. Further-

more, the rate of inflation, Π(k,m), is a continuous function within the natural boundaries of

the problem, 0<m<w(k)<q, and it vanishes at the natural boundaries q=w(k) and m=w(k).

The existence of the costly state verification implies that the introduction of money reduces

the capital stock. In particular, the reduction in the per capita capital stock forces wages to

decrease and hence borrowers are able to provide less internal financing for their investment

project. Moreover, high rates of inflation will reduce the attractiveness of saving and increase

the attractiveness of borrowing, thus worsening access to the credit market. As a result, higher

rates of inflation exacerbate credit market frictions, and can increase the rationing of credit.

In terms of local dynamics, this economy is able to generate non-convergence phenomena

and indeterminacy of monetary equilibria. Monetary equilibria display non monotonic dy-

namics so that the economy oscillates while converging to the steady state.5 A local analysis

of this economy can not generate inflation dynamics qualitatively consistent with recurrent

hyperinflations. In particular, the local properties of the Boyd and Smith (1998) economy can

only generate quasi-periodic hyperinflations when very high steady state inflation rates are

considered. As a consequence the resulting time series for the inflation rate are then “too”

cyclical. Moreover, the resulting local properties are not able to predict isolated hyperinfla-

tions for moderately high inflation rates and they are only able to examine inflation dynamics

for a very small set of initial conditions; i.e, only those near the monetary steady state. As a

result, transition dynamics leading to recurrent hyperinflations can not be analyzed. Finally,

when considering a local analysis the potential time series patterns of the inflation rate can

5We refer to the original paper by Boyd and Smith (1998) for further details.
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not be greatly affected by the existence of other steady state equilibria.

In this paper we explicitly consider the possibility that the presence of money and financial

markets are a potential source of indeterminacies and endogenous volatility, as suggested by

Friedman (1960) [12] or Keynes (1936) [15]. In order to study complex dynamics a bifurcation

analysis of the credit rationed economy is warranted.6 Bifurcation problems usually involve

systems where the linearization of the original system has a very large, and possibly infinite

dimensional, stable part and a small number of “critical” modes which change from stable

to unstable as the bifurcation parameter exceeds a threshold. At this point a drastic change

occurs in a large portion of the phase space, which results in complex predicted time series.7

Finally, global bifurcation theory requires more than linearizing the dynamic equations at the

steady state. The stable and unstable manifolds have to be computed.

3 Computing Global Dynamics

There are several numerical methods, used in the dynamical systems literature, that let us

study the evolution of an economy as we move away from the steady state in an environment

where economic agents do not face uncertainty.8 With these techniques, one can learn more

6Earlier applications of bifurcation theory in economics include de Vilder (1996) in a 2-dimensional overlap-

ping generation model with productive investment and capital accumulation where agents behave rationally

and markets are competitive [9], Brock and Hommes (1997) in a heterogeneous agent cobweb model with

evolutionary strategy switching [5], and Pintus, Sands and de Vilder (2000) in an infinite horizon economy

with capital-labor substitution [19].
7Bifurcations represent a qualitative change in the dynamics caused by a change of one or more parameters

of the dynamical system. As a result, bifurcations are able to qualitatively change the orbit structure of a

given economy.
8In the dynamical system literature, local analysis refers to a linear description of the system and global

analysis refers to a nonlinear description.
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about the nonlinear properties of the stable and unstable manifolds of a given dynamical system

as a point in the phase space moves away from the steady state(s). Once we contemplate

nonlinear properties, the corresponding phase portrait of the system can be quite complicated

because of possible intersections of the stable and unstable manifolds. This situation can not

be observed when performing a local analysis. It is thanks to these nonlinearities that we can

capture new dynamical phenomena. In particular, when studying global dynamics we may

find strange attractors, suggesting that the iteration of virtually any point on it eventually

leads to seemingly random behavior. Therefore, a trajectory of a point between invariant sets

predicts large jumps. One can also find wandering cycles which are situations associated with

manifolds that are quite folded. The corresponding predicted time series allows for some degree

of periodicity. These types of phenomena observed when performing a global analysis have

the potential to qualitatively describe inflation dynamics during recurrent hyperinflations.

A first step towards a better understanding of the dynamical system is to identify its

invariant objects, and study their changes when varying the parameters of the dynamical

system. An invariant object is described by a subset of the phase space that is invariant under

the action of the dynamical system. The invariant objects are preserved through time and give

us an idea of the possible predicted time series. Among the invariant objects of a dynamical

system, the steady states (and periodic orbits) and their invariant manifolds are extremely

important.9 In general these manifolds are nonlinear. In particular, the stable manifold of a

steady state contains all the points that under the iteration of the map tend to it. On the

other hand, points on the unstable manifold of a steady state may tend to a stable cycle or

an attracting closed curve or a chaotic attractor.

9We use the word manifold since in general this mathematical object is not necessarily a curve, it can

represent a piece of a line, rectangle, etc, that folds into R
n as a curve or as a surface, etc.
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We are now going to briefly describe the parameterization method for invariant manifolds

associated to fixed points.10 The underlying idea behind these algorithms is to find the non-

linear properties of these manifolds by exploiting an invariance equation that analytically and

implicitly defines them. The natural invariant condition is the one that describes the steady

state, but instead of considering a single point, we consider an invariant object parameterized

by functions. We can then explore the nonlinear properties of the manifold through successive

local approximations of the invariance equation by considering the corresponding Taylor series

expansion. These expansions describe the object in a fundamental domain around the steady

state with high accuracy. We can then iterate this domain, capturing the nonlinear aspects of

the manifold.

In order to clarify ideas, let us define a discrete dynamical system in R
n. It is a pair

(X,F ), where X is a subset of R
n that contains all the variables describing the system, and

F :X →R
n is a map that describes the motion of the system as a function of time t and the

initial conditions X0=(x1
0, . . . , x

n
0 ). Typically, a dynamical system is given by a system of

equations such as these:

Xt+1 = F (Xt). (6)

Very often the dynamical system depends also on parameters α=(α1, . . . , αp) ∈ R
p. The

study of the changes in the qualitative structure of the solutions of the dynamical system when

parameters change is known as a bifurcation analysis of the model. Bifurcations involving

changes in the stability properties of steady states and periodic orbits are known as local

bifurcations. On the other hand, bifurcations characterized by collisions of stable and unstable

10In order to find more detailed information regarding the different algorithms that can be used to compute

the associated non local manifolds of a dynamical system, we refer the reader to Gomis-Porqueras and Haro

(2003) and the references therein. For instance, see [22, 7].
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manifolds of steady states and periodic orbits are referred as global bifurcations.

With the linear approximation, the stable and unstable eigenspaces (corresponding to

the eigenvalues of modules smaller and bigger than one, respectively), do not offer enough

information to study transitional dynamics during recurrent hyperinflations. The geometric

invariant objects associated with these linear subspaces trap the contracting and expanding

dynamics of the stable and unstable manifolds, Ws and Wu, respectively. Moreover, these

stable and unstable manifolds are invariant manifolds which emanate from the steady state(s).

Since the model we are studying is 2-dimensional, the invariant manifolds of a steady state

are 1-dimensional, that is, these are invariant curves. Thus, we are going to consider only

1-dimensional invariant manifolds, but most of the following methods can also be extended to

higher dimensional manifolds. Let F : X ⊂ R
n → R

n be the map describing the dynamical

system, and suppose that the origin is a steady state(s).11 The topological behavior near

the steady state(s) is fully explained by the matrix A=DF (0), provided that this matrix

does not contain eigenvalues in the unit circle (of modulus 1) as asserted by the Hartman-

Grobman theorem. In many instances, one can get differential or analytic equivalence using the

normal forms theorems of Poincare, Dulac and Siegel (see [1] or [14] for a detailed description

of the theorems). Our goal is to obtain a 1-dimensional invariant nonlinear manifold W

parameterized by the function W=W (τ), where W :I ⊂ R→R
n, so that the motion of the

parameter is just a multiplication by the corresponding eigenvalue λ.12 Since any point in the

invariant manifold will always be on the manifold under the action of the map, the resulting

11We can always achieve this situation by just translating the coordinates to the steady state(s).
12For the stable manifold we consider the eigenvalue that has absolute value less than one, for the unstable

manifold we consider the eigenvalue with absolute value larger than one.
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invariance equation for the dynamical system is given by:13

F (W (τ)) = W (λτ) . (7)

Note that the 0-order equation is F (W (0))=W (0); i.e. W (0)=0, which says that the steady

state(s) belongs to the manifold. Now if we take derivatives on both sides of the invariance

equation and set τ=0, we obtain the following 1-order equation:

ADW (0) = λDW (0). (8)

Hence, DW (0) must be an eigenvector of the linearized system whose eigenvalue is λ. So we

have that det(A−λI)=0, and DW (0)=w1, where Aw1=λw1. We can now obtain higher order

approximations of the manifold by considering Taylor series expansions around the steady

state. Recall that our goal is to find recursively the unknown vectors, wk ∀k>1, which are

given by:

W (τ) = w1τ + w2τ
2 + w3τ

3 + . . . (9)

In order to find these unknown vectors wk we have to consider Taylor series expansions of the

invariance equation. The left-hand side of the invariance, equation (7), up to order k is given

by:14

F (W (τ)) = F≤k(W<k(τ)) + Awkτ
k + . . . (10)

13Intuitively, when F is an invertible map, the unstable manifold is a curve through the steady state which

is mapped to itself by F−1. All points on the unstable manifold tend to the steady state under the iteration of

F−1. In other words, they tend to the steady state as if time moved backwards. However, in general F −1 may

not be a single valued function; i.e, F may be a noninvertible map. In this case, at least one inverse exists,

say F−1

k , such that all points of the unstable manifold tend to the steady state under the iteration of F −1

k .
14We introduce some notation: for instance, in the expression W (τ) = W<k(τ) + wkτk + . . ., W<k(τ) is the

(k − 1)-order approximation of W , wkτk is the k-order term and ‘. . .’ correspond to terms of higher order.
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and the right-hand side is given by:

W (λτ) = W<k(λτ) + wkλ
kτk + . . . . (11)

Collecting terms of the same order, we can find the kth-order vector of unknown coefficients of

equation (7) by matching polynomials up to order k. The resulting linear equation is given:

(A− λkI)τ kwk = W<k(λτ) − (F≤k(W<k(τ)))≤k = zkτ
k, (12)

where zk is a known vector of smaller order terms from the manifold and smaller and current

order terms from the dynamic equations. Solving for the unknown vector wk, we obtain the

following expression:

wk = (A− λkI)−1zk, (13)

provided that the matrix (A−λkI) is invertible. Notice that if we had previously computed

the diagonal form (or, if not possible, the Jordan form) of the matrix A, the calculation of the

unknown vector can be greatly simplified.15 Note that this is a recursive procedure since it

makes use of previously computed coefficients. In particular, we know that the fixed point is at

the origin, which corresponds to the constant term w0=0, and the eigenvalues of the Jacobian

corresponds to the linear term, w1. Thus, we can exploit this linear information to find higher

order terms in a recursive manner.

A possible analytical and computational obstruction of this algorithm is the fact that

(A−λkI) may be a singular matrix for a certain k>1. Under those circumstances, we say that

λ is a resonant eigenvalue of order k. This is certainly not the case, for instance, when we are

computing the stable and unstable manifolds of a saddle-type steady state. For example, in

a 2-dimensional map the Jacobian matrix, A, has two eigenvalues 0<|λ1|<1 <|λ2| and hence

15This algorithm is global in the sense that one can compute all the Taylor coefficients up to the first

resonance, a situation where we find the smallest value of k for which A − λkI is not invertible.
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λ1 6=λ
k
2 and λ2 6=λ

k
1 for any k>1. As a result, (A− λkI) is always invertible ∀k. This algorithm

also works when we have an attracting node steady state with 0 <|λ1|<|λ2|<1 for λ = λ1,

because λ2 6=λ
k
1 for any k,16, and for λ = λ2 provided that λk2 6= λ1 for any k.17

Notice that in numerical applications one has to truncate the Taylor series approximation,

and the accuracy is of the order of the first dropped term. These approximations are good in

a relatively larger neighborhood of the steady state when compared to the ones obtained by

linearization.

4 Global Bifurcations: A Parameterized Example

In order to study the global dynamic properties associated with a credit rationed economy

computer simulation is required. The algorithm that we have presented in the previous section

let us compute the associated manifolds for any parameterized credit constrained economy

given by equations (1) and (2).

The specific example that we present in this section follows the original Boyd and Smith

choice of parameter values, φ=1.8, ψ=0.35, B= 2, β=0.5, q=2 which allow us to study the

temporal evolution of the economy as the money growth rate increases; i.e, σ∈( 1

2
, 4). The

dynamical properties associated with this example are not exclusive to this particular choice

of parameter values. Our numerical analysis in different regions of the parameter space yield

qualitatively similar phenomena. For illustration purposes we present the global dynamic

properties associated with the Boyd and Smith choice of parameter values, which generate

time series that are qualitatively consistent with recurrent hyperinflations.

A first step is to consider the local bifurcations of the steady states; i.e, the study of the

16In this case, we are computing the fast stable manifold associated with fixed point.
17In this case, we are computing the slow stable manifold associated with fixed point.
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stability properties. This is summarized in Figure 1. The description of local and global

bifurcations are described in the Figures 2, 3,4 and 5. These figures display the invariant

objects computed with the algorithms described in the previous section.18

For low money growth rates, σ<σt=1.0286, there are only two economically feasible steady

states, the nonmonetary steady state, z0, which is an attracting node and the low capital stock

steady state, z2, which is a saddle.19

As the money growth rates increases a new monetary equilibrium is feasible, the high

capital stock steady state, z1, see Figure 1. When σ=σt, z0=z1 with k1= 3.24 and m1=0.00,

and there is a transcritical bifurcation. That is, z0 and z1 change their stability: z0 becomes

a saddle and z1 becomes an attracting node, see Figure 2.

After a node-focus transition at σ=σa=1.1672, the high capital stock steady state z1, with

k1=3.1296 and m1= 0.0304, becomes an attracting focus. The stability of the steady state

does not change, thus this is not a local bifurcation.

The drastic changes in the properties of the high capital stock steady state z1 as we increase

σ decrease the potential number of initial conditions for which the economy would converge

to the nonmonetary equilibria z0; reducing then hyperinflations a la Sargent and Wallace, see

Figure 2.

As we further increase the money growth rate, the associated manifolds of the steady

states start to fold. In particular, when σ=1.20, σ=1.50 and σ= 2.00, the associated unstable

manifold of the nonmonetary steady state z0 rolls up to z1, see Figure 2 and Figure 3.

As we increase the money growth rate, the unstable manifold of the nonmonetary steady

state z0 escapes the natural domain. Before this phenomenon occurs, the unstable manifold

of z0 and the stable manifold of z2 intersect each other, resulting in an heteroclinic bifurcation

18The thick black curve in Figures 2, 3, 4 and 5 denotes the boundary of natural domain for the system.
19The high capital stock steady state, z1, has negative real balances.
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when σ ∈ [2.19, 2.20], see Figure 3. Thus, for some values of σ in this interval, the unstable

manifold of z0 intersects the stable manifold of z2.
20 Thus, there are heteroclinic tangles,

so that the invariant manifolds are folded onto each other. However, in this model such

tangles are extremely small and the corresponding transition occurs for a very small range

of values of σ. This heteroclinic intersection allows for quite different dynamical behavior

in regions of the phase space that are fairly distant from the monetary steady states. We

then expect quite different inflation dynamics around this bifurcating money growth rate.

This sort of phenomenon can not be observed when performing a local analysis. This finding

then highlights the importance of considering properties of other steady state equilibria when

studying inflation dynamics.

Similarly, as we further increase the money growth rate, the manifolds become highly

nonlinear and folded. In particular, when σ=2.30, the unstable manifold associated with the

low capital steady state z2 rolls up to the high capital steady state, z1, see Figure 4. This

nonlinearity of the manifolds suggests the possibility of large jumps for economies that are

between folds. This is consistent with transition dynamics during recurrent hyperinflations.

When σ=2.40 the unstable manifold of z2 also escapes the natural domain, and a new

invariant object appears: an invariant circle. This object is a repelling closed curve, see

Figure 4. This closed curve defines a trapping region, that is the attracting set of z1, where

all the points inside this curve evolve to the high capital stock steady state z1 and inflation

converges asymptotically to its steady state value. On the other hand, the majority of points

20In general, intersections between the invariant manifolds of different saddle type steady states are called

heteroclinic intersections, and the intersection points are heteroclinic points. Notice that an heteroclinic point

x ∈ Ws
x1
∩Wu

x2
tends to distinct saddle points. When iterating forward, it tends to x1, and when backwards it

tends to x2. On the other hand, when x1 = x2, then the intersection between the manifolds and the intersection

points are called homoclinic.
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near the invariant curve but outside the trapping region slowly oscillate away from that region.

This dynamical phenomena involves the intersections between the stable an unstable man-

ifolds of z2, homoclinic intersections, which occurs when σ∈(2.32, 2.33), as we see in Figure 4.

Further numerical analysis of this homoclinic bifurcation shows that it is produced for values

when σ∈[2.322344, 2.322345], for which an homoclinic tangle exists. However, the correspond-

ing angle of intersection between the manifolds is extremely small and the tangles are not

visible. Moreover, the range of values of the parameter σ at which this tangle exists is so small

that it is not observationally relevant.

After this bifurcation the stable manifold of z2 rolls up such invariant curve. The resulting

motion looks cyclical, and after a transient period it tends to the low monetary steady state

z2. These dynamical properties are also consistent with what we observe during recurrent

hyperinflations.

If we further increase the money growth rate, the invariant circle vanishes in a subcriti-

cal Hopf-Neimark-Sacker bifurcation when σ=σh=2.4712, since z1 with k1= 1.8702 and m1=

0.3285 becomes a repelling focus. Thus, the inflation rate slowly oscillates away from the

high capital stock steady state z1, see Figure 5. This type of bifurcation occurs, in a planar

system, when eigenvalues are complex conjugates with modulus one. The change in stability

is accompanied by the appearance of closed curves for parameter values on one side of the

bifurcation point. In our model this is precisely when the repelling curve disappears.

After the Hopf-Neimark-Sacker bifurcation the high capital monetary steady state z1 is a

repelling focus, and the other two steady states z0 and z2 are saddle. Moreover, there is an

invariant curve that starts at z1 and ends at z2, which is the stable manifold of z2. The points

in such a curve move forward in time towards z2 and backwards to z1.

If we further increase the money growth rate, σ=σr=2.8558, we find a repelling focus-node
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transition in z1 with k1=1.0443 and m1=0.4417. Finally, when σ=σsn=2.857143 we find a

saddle-node bifurcation at z1 = z2 with k1=1.0000 and m1=0.4444. In planar systems such

as this one, a saddle-node bifurcation occurs when one of the eigenvalues is one and the other

is different from one in absolute value, and there is the merging and disappearance of two

hyperbolic equilibria, one attracting (or repelling) and a saddle.

As we can see, in this credit rationed economy bifurcations and changes in the stability

properties among different monetary steady states are more frequently observed when the

money growth rate increases, see Figure 1. Thus, the potential for richer time series patterns

are going to be associated with higher money growth rates. Furthermore, in all the cases

examined, the low steady state capital stock, z2, does not change its stability being always a

saddle point. As a result, the majority of interesting dynamics are going to be generated by

the dynamic properties of the high capital stock steady state, z1, and the global interaction

between the different steady states.

It is apparent from these numerical explorations that once we contemplate the nonlinear

properties of the dynamical system, the corresponding phase space can become quite compli-

cated because of the possible intersections of the stable and unstable manifolds. It is thanks

to the nonlinearities of these manifolds that we can capture new dynamical phenomena not

observed when performing a linear analysis. In particular, this credit constrained economy is

able to generate manifolds that “fold” as the money growth rate increases, predicting then

large jumps in the inflation rate and frequent periods of instability. In order to present these

possibilities more transparently, we calculate the different predicted time series of the infla-

tion rate as the money growth increases. The initial conditions considered are ko=2.00 and

mo=0.05 and mo=0.20, which are depicted by the R and G lines in Figure 6. Furthermore, in

order to highlight the importance of the nonlinearities of the manifolds, we consider an initial
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condition that is near the stable manifold of the low capital stock steady state z2, which we

depict by the B line in Figure 6.

Our numerical experiments show that for relatively low money growth rates, that is σ=1

and σ=1.5, the time series patterns of the inflation rate are relatively confined, with the

exception of sudden bursts in the inflation rate away from the steady state, followed by a

period of deflation and price stability. Finally, the economy converges to the steady state

inflation rate. This type of transition dynamics during a hyperinflation can only be observed

when performing a global analysis of the economy. Furthermore, these bursts in inflation rates

are only associated with initial conditions that are near the stable manifold of the low capital

stock z2, see Figure 6. This finding then suggests that hyperinflations in countries with low

inflation rates are less likely since there is a limited set of initial conditions that are able to

generate sudden bursts in the inflation rate but they can not be ruled out.

As the money growth rate increases, the predicted time series for the inflation rate becomes

more complex and interesting. In particular, when σ=2 and σ=2.20 the potential for sudden

bursts in the inflation rate is greater, the variation in the inflation rate increases with the con-

stant money growth rate and recurrent hyperinflations are less sensitive to initial conditions.

Moreover, the magnitude of the sudden bursts in the inflation rate tends to be smaller in com-

parison to economies with lower money growth rates but they are more frequent. Furthermore,

these recurrent hyperinflations are not confined to initial conditions near the stable manifold

of the low capital stock z2. Now the set of initial conditions that yield such behavior is larger

than in the previous case z2. The magnitude of the sudden bursts in the inflation rate are

smaller for initial conditions that are not close to the stable manifold of the low capital steady

state, z2.
21 Finally, when the value of the money growth rate is greater than one corresponding

21The higher the steady state inflation rate the more likely recurrent hyperinflations are going to be since
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to the homoclinic bifurcation range, the sudden bursts in the inflation rate tend to be more

periodic.

All these new rich time series patterns are a direct result of the nonlinear properties of the

stable and unstable manifolds of this dynamic model of a credit constrained economy. These

findings then suggest that the potential set of initial conditions that can yield recurrent hyper-

inflations substantially increases when credit market frictions are important and governments

have high inflation rates. Since higher inflation rates exacerbate credit market frictions and

can increase the rationing of credit, hyperinflations are more likely to be observed in economies

that are more credit rationed.

An important insight from the costly state verification literature is that the ability to

contribute to internal financing raises the expected return that a borrower can offer, reducing

the credit constraint. In order to see how important are these credit market frictions in

explaining recurrent hyperinflations given a certain inflation rate, we study how the associated

manifolds of this economy change as the role for internal financing becomes less important.

We can then compare the time series patterns between different credit constrained economies.

For any given money growth rate we find that economies that are more credit constrained

but otherwise identical, are more likely to experience more recurrent hyperinflations. Thus,

hyperinflations can occur in economies where there is a relatively low steady state inflation

rate but the credit market is highly rationed. This finding then highlights the importance of

considering credit market frictions when studying hyperinflation dynamics.

the set of initial conditions generating these sudden bursts are much larger.
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5 Conclusions

The goal of this paper is to propose an alternative to bounded rationality when studying

recurrent hyperinflations by explicitly considering credit market frictions. In this paper we

take Cagan’s view that hyperinflations are self-generated and are the manifestations of the

underlying global dynamic properties of the economy. In particular, we consider the temporal

evolution of an economy with perfect foresight rational agents that face credit rationing as the

economy moves away from the steady states.

We find that for relatively low steady state inflation rates the time series patterns of the

inflation rate are relatively confined, with the exception of sudden bursts followed by a period

of deflation and price stability; converging finally to the steady state inflation rate. As the

steady state inflation rate increases, the magnitude of the sudden bursts in the inflation rate

tends to be smaller and more frequent. Finally, we show that economies that are more credit

rationed, other things being equal, tend to experience more recurrent hyperinflations. This

finding highlights the importance of not just considering inflation rates and fiscal imbalances

but also examining the credit market frictions when studying recurrent hyperinflations.
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Figure 1: Local bifurcation diagram (stability of steady states).
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Figure 2: Invariant manifolds corresponding to a Transcritical bifurcation.
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Figure 3: Invariant manifolds corresponding to an Heteroclinic bifurcation.
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Figure 4: Invariant manifolds corresponding to an Homoclinic bifurcation and a repelling
invariant curve.
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Figure 5: Invariant manifolds corresponding to a Hopf bifurcation and destruction of the
repelling invariant curve.
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Figure 6: Evolution of the inflation rate for different money growth rates.
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