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Abstract

The existence of ex-ante strong incumbents is a barrier to entry
in auctions for goods such as licenses. Introducing ine¢ ciencies that
favor entrants is a way to induce entry and thus create competition.
Designs such as the Anglo-Dutch auction have been proposed with
this goal in mind. We �rst show that indeed the Anglo-Dutch auction
fosters entry and increases the revenues of the seller. However, we
argue that a more e¤ective way could be to stage the allocation of the
good so that each stage reveals information about the participants. We
show that a sequence of English auctions, with high reserve prices in
early rounds, is a procedure with this property that is more e¢ cient
than any one-stage entry auction. Moreover, it also dominates the
Anglo-Dutch auction in terms of seller�s revenues.
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1 Introduction

One of the salient features of the recent wave of spectrum license auctions has
been the disparity of prices across experiences. As an example, the Dutch
auction (meaning, the auction in the Netherlands) of licenses for the new
UMTS fetched less than a third than the corresponding British auction in
per capita terms. One of the explanations proposed for such disparity is the
disparities accross countries in the ratio of incumbents to licenses, and the
e¤ects of this ratio on entry and competition for licenses. (See, for instance,
Klemperer, 1998b and Milgrom, 2004 .)
Certainly, insu¢ cient entry may limit competition during the bidding

process, leading to a low price. The entry decision of a �rm depends on a
comparison between its costs of participation and its expected bene�ts. For
a potential bidder the costs may include resources needed to assess the value
of the license, interest foregone on deposits, etc. These are sunk costs that
a �rm incurs before it knows whether it wins a license. Therefore, the �rm
will decide to participate only if it believes that its odds to win the auction
are su¢ cient.
But, why is the ratio of incumbents to licenses important in this regard?

First, incumbents are strong competitors. Indeed, they may have a client base
and lower expected network roll-out cost. That is, their expected valuation of
a license is higher. Also, their cost of market prospective may be signi�cantly
lower. If there are at least as many incumbents as licenses, then entrants
will probably assess as too likely that all licenses will end up in the hands
of incumbents, and then entry is not likely to occur. That needs not be
either ine¢ cient or problematic in terms of expected license revenue if there
are more incumbents than licenses. Yet, if the number of incumbents and
licenses coincide, the lack of entry will destroy all sources of competition,
and that will have an enormous e¤ect on revenue.
When attracting entrants is a goal, the allocation mechanism should favor

entrants over incumbents. For instance, Dutch (or �rst-price) auctions tilt
the allocation in favor of ex-ante weaker bidders, and thus weaker bidders
prefer Dutch auctions to e¢ cient, English auctions (see Maskin and Riley,
2000). Based on this fundamental insight, Paul Klemperer (see Klemperer,
1998a) and others have proposed the use of the so-called Anglo-Dutch auction
when a number of identical objects (licenses) are to be allocated and an
identical number of ex-ante stronger incumbents are potential buyers. An
Anglo-Dutch auction is a mixture of the two types of auction. It begins with
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an �English� phase during which the price rises until all but a number of
bidders that exceeds by one the number of objects drop out. At this moment
(and price), the auction switches to a second �Dutch�phase. In this stage,
only the remaining bidders can submit (simultaneous, sealed) bids and only
bids above the price at which the English phase stopped are allowed.
The �rst goal of this paper is to show in a very simple model how this auc-

tion indeed improves the expected revenues of the seller at the cost of sacri-
�cing e¢ ciency. But our main goal is to investigate other simple alternatives
that dominate, both in terms of e¢ ciency and revenues, the Anglo-Dutch
auction. We propose what we could term Anglo-Anglo auction: a two-stage,
English auction. The design is inspired by Burguet and Sákovics, 1996, and
consists of two English phases, the �rst one run with a (relatively high) re-
serve price. Instead of using ine¢ ciencies or allocation preference as the tool
to induce entry, what the two-stage, English auction uses is the information
conveyed by the (absence of) bidding in the �rst phase. Indeed, if some of
the participants in the �rst phase (incumbents included) are unwilling to bid
above the reserve price, they will be perceived as �weaker than expected�
bidders. Thus, potential entrants that did not venture to enter in the �rst
round may now consider doing so for the second round. We show that a
two-stage, English auction is more e¢ cient than both the English and the
Anglo-Dutch auctions. By allowing entry conditional on some private infor-
mation (entry conditional on bidding behavior), the two-stage entry auction
improves upon the most e¢ cient one-stage entry auction, namely, the English
auction. Moreover, we show that the gain in e¢ ciency (entry) bene�ts the
seller as well. Indeed, the revenues for the seller are higher in the two-stage,
English auction than in the Anglo-Dutch auction.
The analysis is carried out in an extremely simple model, presented in

Section 2, where entrants have to incur a cost before learning their valuations.
Moreover, valuations can take only two di¤erent values, although incumbents
have a higher probability of high valuation. We simplify further by assuming
only one unit for sale and one incumbent. The analysis of this model and
the results are presented in Section 3. Subsequently, we extend the model in
two main directions: multiple units and continuous valuations.
The extension to continuous types is relevant. Indeed, in the two-types

model, the Anglo-Dutch is allocationally e¢ cient, in the sense that the ob-
ject is never assigned to a bidder that competes against a bidder with higher
valuation. That is, the only ine¢ ciency may come from inappropriate (ex-
cessive) entry. The allocation is still tilted in favor of the ex-ante weaker
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bidder: when two bidders have the same type, an event with positive proba-
bility, the ex-ante weaker bidder will win the auction (will bid higher) with
higher probability. Yet one can suspect that by not considering the allo-
cation ine¢ ciency (a tool to reduce informational rents of ex-ante stronger
bidders) of Dutch auctions, their revenue generation potential is underesti-
mated. The analysis of the continuous valuations case necessarily relies on
numerical computations, since there is no analytical solution to asymmet-
ric Dutch auctions (the second stage of an Anglo-Dutch auction) and the
bidding behavior (when to bid) in a two-stage English auction has no sim-
ple closed form. Using numerical methods for a family of simple continuous
distributions, we obtain the same results as in the base model.
Then we consider multiple units (and the same number of incumbents).

Here entry decisions in the second stage of the two-stage, English auction
depends on the number of units that are sold in the �rst stage. The larger
the number of units left unsold the larger the number of entrants in the
second stage. In fact, under very extreme values of the parameters, the
e¤ect that the number of units available has on entry is very extreme. Only
in such cases can Anglo-Dutch auctions dominate in terms of revenues the
two-stage, English auction. Otherwise, our results for the one unit case hold
in the multiple unit case.

2 Rules of the auctions

There are q identical units available for sale and the same number of incum-
bents. Besides there is a su¢ ciently large number of potential entrants. In
order to learn his valuation and prepare his bid, an entrant has to incur a
cost c. To simplify the analysis, we assume that incumbents already know
their valuations and incur no further cost of participation. Each bidder has
demand only for one unit. Valuations are private and independently distrib-
uted. The valuations of incumbents and entrants are drawn from distribution
functions F1(v) and F2(v), respectively.

Rules of the Anglo-Dutch auction: Before bidding starts entrants de-
cide whether or not to incur cost c and to learn their valuations.1 The auction

1We will consider pure strategy equilibria in entry. That allows us to leave the to-
tal number of potential entrants unspeci�ed. Thus, we will assume at the outset some
exogenous order of entry that entrants would consider natural.
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starts as an English auction where bidders continuously raise their bids. We
use the clock modelling, so that once a bidder drops he cannot reenter the
auction. When q + 1 bidders are left, the auction switches to the Dutch
auction, or more precisely, to the discriminatory auction, which is a gener-
alization of �rst-price auction for multiple units. Thus, surviving bidders
simultaneously bid in this stage, and the q bidders with the highest bids will
win one license each. Winners pay their bids. In this Dutch stage, the price
at which the last bidder dropped out in the English stage is set as a reserve
price or minimum acceptable bid.
In the discrete valuation case, several bidders may drop out from the

English auction at a given price, leaving less than q + 1 bidders active. In
that case, we will assume that some of these simultaneously dropping bidders
are randomly selected to participate in the Dutch stage so that q+1 bidders
are still present.

Rules of the two-stage English auction: In the �rst stage the seller
sets a reserve price r, common to all units, and then entrants decide whether
to enter or not. Then the oral auction starts. Units are awarded to, at most,
the q last bidders to drop. The price is the maximum of r and the price at
which only q bidders stay. If less than q bidders o¤er the reserve price, so that
some units fail to sell in the �rst stage, these remaining units are auctioned
in the second stage with the reserve price now set equal to zero. Before this
second stage starts, entrants who did not enter in the �rst stage have a new
chance to enter and compete for the remaining units against incumbents and
�rst-stage entrants who abstained from bidding in the �rst stage. Again, if q0

units were left unsold after the �rst stage, they are awarded to the q0 bidders
at the price at which only these many bidders are left.

3 Discrete valuations, one unit case

Each bidder�s valuation may be v or v with v > v. Bidder 1, the incum-
bent, has probability �1 of having the high valuation v, and all other bidders
(entrants) have probability �2 of having high valuation. We assume that
�1 > �2.
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3.1 Anglo-Dutch auction

Assume that, apart from the incumbent, bidder 1, n bidders enter the auc-
tion. The English stage will stop at the price at which only two bidders
remain in the auction. Also, in this stage bidders�weakly dominant strategy
is to stay in the auction until the price reaches their valuations. Thus, if there
are more than two bidders with valuation v, the price will continue increasing
until it reaches this value. In such case, the English stage stops at price v,
two bidders are randomly selected to bid in the Dutch part, where they bid
v. On the other hand, if two or less bidders have valuation v, the English
stage stops at price v. In this case, bidders with high valuation, if any, stay
for the Dutch stage. If there are less than two bidders with high valuation,
then bidders among dropping (low valuation) bidders are randomly selected
so that two bidders take part in the Dutch stage. We assume that bidders
recognize each other, so that the identity of bidder 1 known. However, when
the English stage stops at price v, the participants in the Dutch part can-
not be sure whether their opponent has been randomly selected among the
dropping bidders (i.e., has a low valuation) or not (i.e., has a high valuation).

3.1.1 Bidding in the Dutch stage

We only need to analyze subgames in which the clock stops at price v in
the English stage. Assume bidder 1 and an entrant play the Dutch stage.
It is easy to see that there could be no pure strategy equilibrium in the
bidding game. Also, in equilibrium bidders bid v, the reserve price set by
the English stage, if that is their valuation. For valuation v bidders, we
consider only bidding in an interval. It is easy to rule out bidding (with
positive probability) strictly above the supremum of the set of bids that
the rival use with positive probability. That is, this supremum needs being
common to both bidders. Also, it is equally easy to rule out mass points at
such supremum, as is easy to rule out mass points (or "holes") anywhere in
the interior of the intervals of bids used in equilibrium. Finally, equilibrium
where the in�mum of the intervals are di¤erent, or di¤erent from v can be
ruled out as well: there is no point in bidding in the interior of an open
interval with zero probability of containing a rival bid. Finally, we can rule
out that both bidders�strategies contain a mass point at v, but we cannot
rule out that one of the bidders�strategy has a mass point there.
To avoid open-set problems, we assume that in case two bidders with
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di¤erent valuations tie in the Dutch auction then the winner is the one with
higher valuation. We will comment on this tie-breaking rule later.
Thus, let us characterize an equilibrium where bidders bid v when their

valuation is v, and bid on [v; b] when their valuation is v, for some b. The
entrant bids according to a distribution H2, and the incumbent, bidder 1,
bids according to a distribution H1. Clearly, bidders with valuation v expect
zero pro�ts. Since b is common and Hi, for i = 1; 2, has no atoms at b then
the expected pro�ts of either an entrant or the incumbent that has valuation
v when the clock stops at price v in the English stage equals [v� b]. Indeed,
by bidding b either bidder expects to win with probability 1. Since expected
pro�ts should be independent on the pure strategy played in a mixed strategy
equilibrium, we conclude that the entrant and the incumbent will expect the
same equilibrium pro�t upon entry if they have the same valuation.
This is in fact the way the Anglo-Dutch auction is expected to foster

entry. Indeed, notice that entrants with high valuation expect lower pro�ts
than incumbents in a standard English auction, since the rival has higher
expected valuation. The Dutch stage tilts competition in favor of entrants,
and in the case of discrete valuations, this is enough to perfectly level the
�eld.
In order to characterize b and Hi, for i = 1; 2, we need to consider the

posterior beliefs for each type of bidder about the rival bidder. Conditioning
of being one of the two bidders in the Dutch auction when the English auction
stopped at v, from the point of view of a rival with high type, an entrant�s
type is v with probability


2 =
�2

�2 +
(1��2)
n

:

Indeed, given that stopping price (i.e., conditioning on no more than 1 rival
bidder having high valuation), the rival knows that the entrant would be one
of the participants in the Dutch stage for sure if his valuation is high, and
with probability 1

n
in case his valuation is (as everybody else�s) low. Similarly,

the rival with high valuation updates his beliefs about the incumbent having
high valuation assigning this event a probability


1 =
�1

�1 +
(1��1)
n

:

Observe that 
1 > 
2. With these posteriors, the expected pro�t for bidder
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1 is, for all b on (v; b],

�1(b) = [(1� 
2) + 
2H2(b)] (v � b): (1)

Similarly, for bidder 2, and for all b in (v; b]

�2(b) = [(1� 
1) + 
1H1(b)] (v � b): (2)

Thus, given b, (1) and (2) characterize Hi, for i = 1; 2. Notice that since
�1(b) = �2(b) but 
1 > 
2, H2(b) < H1(b) for all b. That is, as is usually the
case in the Dutch auction, the ex-ante weaker bidder bids more aggressively.
Now we apply the condition that the in�mum of the intervals of both mixed
strategies should be v. Since only one bidder can have a mass point at that
in�mum, and H2(b) < H1(b) for all b, we conclude that H2(v) = 0. That is,
from (1)

�1 = (1� 
2) (v � v) = �2: (3)

Substituting in (1) and (2), we obtain

H2(b) =
1� 
2

2

b� v
v � b:

and

H1(b) =
1� 
1

1

b� v
v � b +


1 � 
2

1

v � v
v � b ;

so that
H1(v) =


1 � 
2

1

:

Also, using H2(b) = 1 we obtain

b = 
2v + (1� 
2) v:

The equilibrium when two entrants play the Dutch auction is even sim-
pler. Here both bidders are symmetric and update according to 
2 the proba-
bility that the rival has high type when he himself does. Then, their expected
pro�ts are given by (1), and using H2(v) = 0 we obtain that these pro�ts
equal (3). This implies that H2(b) obtained above still describes the equilib-
rium, except that now this is the common bidding strategy for both rivals.
We can summarize all that has been obtained in the following
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Lemma 1 If selected to play the Dutch stage when the English stage stops
at price v,
i) entrants expect zero pro�ts if their valuation is v and pro�ts (1� 
2) (v�

v) if their valuation is v independently of the identity of the rival,
ii) entrants bid independently of the identity of the rival, but more aggres-

sively than the incumbent.

We should comment now on the role of our tie-breaking assumption. We
assume that in case two bidders bid v, which occurs with positive probability
when the incumbent has valuation v and the entrant has valuation v, the
bidder with high valuation wins. This allows the latter to bid v and still
expect to win with probability 
2. That is, this allows the incumbent to
identify the lowest bid that still allows him to defeat the bid of a rival with
type v. Therefore, the tie-breaking assumption comes to play the role of a
smallest unit of money. Notice, however, that we do not need assuming that
the incumbent has preference when bidding against an entrant with type v.
That is, an entrant that may defeat the incumbent.
We now turn to the analysis of entry and the English stage.

3.1.2 Entry and bidding in the English stage

First we compute the pro�ts that an entrant expects net of the entry cost.
Notice that the entrant expects positive pro�ts only when his type is v and
no more than one other bidder has this type. His pro�ts in this case are
independent of the pure strategy (among the ones that belong to the support
of his equilibrium mixed strategy) that he chooses to play. One of these
strategies is to bid b = v, in which case he wins (v � v) when all rivals have
v or when the rival is the incumbent and bids v. This event has probability

[(1� �1) + �1H1(v)] (1� �2)
n�1 :

Thus, substituting for H1(v), the expected pro�ts of an entrant are

�a(n) = �2 (1� �2)
n�1

�
(�1 � �2)

(n� 1)�2 + 1
+ (1� �1)

�
(v � v)� c: (4)

This is a decreasing function of n. Entry occurs to the point where the
above expression is non negative, and the same expression is negative for
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n + 1. That is, treating n as a continuous variable, the number of entrants
in the Anglo-Dutch auction, na, satis�es �a(na) = 0.
Compare this entry decision with the entry decision in a standard English

auction. Again, treating n as a continuous variable, the number of entrants
in a standard English auction, ne, solves

�2 (1� �1) (1� �2)
ne�1 (v � v)� c = 0: (5)

Since (�1��2)
(n�1)�2+1

> 0, and �a(n) is decreasing in n, we conclude that

Lemma 2 The Anglo-Dutch auction promotes entry beyond what is obtained
in the standard English auction: na � ne.

To conclude with the Anglo-Dutch auction, we can compute the pro�ts
expected by the incumbent. Again, planning to bid v in the Dutch stage when
his type is v and the clock stops at v at the English stage, the incumbent�s
expects pro�ts are

�1 (1� �2)
n (v � v): (6)

3.2 Two-stage English auction

Assume that, besides the incumbent, k new entrants enter and learn their
valuations in the �rst stage and, if nobody bids, that is, if all bidders drop
before the reserve price r is called, then some additional l bidders enter in
the second stage. We look for a separating equilibrium where high valuation
bidders of the �rst stage prefer to bid (i.e., prefer to stay past the reserve
price r) while low valuation bidders abstain from bidding in the �rst stage.2

Thus, assume all bidders (entrants and incumbent) with valuation v stay
past the reserve price r 2 (v; v). Then it is weakly dominant to drop only
when the price in the �rst stage reaches v, since dropping before implies zero
pro�ts. Bidding in the second stage for all k + l + 1 participants is simple:
again it is weakly dominant to drop at a price equal to valuation.
Apart from entry, the only other important choice for a bidder with val-

uation v present at the �rst stage is between participating in this �rst stage

2Entrants that would not �bid�in the �rst stage even if their valuation is high would
not enter. Thus, the only pooling equilibrium having no �bids� in the �rst stage is one
where no entrants enter and all wait until the second stage. We will consider this case
below.
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and waiting in the hope that there is a second one. The incumbent will prefer
to bid in this �rst stage if

(1� �2)k(v � r) � (1� �2)k+l(v � v):
Indeed, in either case he will earn positive pro�ts, (v�v) in the second stage
or (v� r) in the �rst, only if no other participant has valuation v. Similarly,
�rst stage entrants with high type will prefer to bid if:

(1� �1)(1� �2)k�1(v � r) � (1� �1)(1� �2)k+l�1(v � v):
In both cases, the restriction can be written as:

r � v � (1� �2)l(v � v): (7)

We now turn to the entry decisions in each stage. If the second stage of
the auction takes place, potential new entrants learn that the incumbent and
the k entrants in the �rst stage all have low valuations. Thus, treating l as
a continuous variable, it satis�es3

�2(1� �2)l�1(v � v) = c: (8)

Notice that l is independent of r. Similarly, the zero pro�t (entry) condition
in the �rst stage is

�2(1� �1)(1� �2)k�1(v � r) = c: (9)

Certainly k and l are integers, and thus in general neither of the conditions
above are satis�ed with equality. That is, entrants expect �some�positive
pro�ts. Again, if there is a �natural�order for potential entrants to enter,
as we are assuming, and expected pro�ts in the �rst stage are no lower
than expected pro�ts in the second this creates no additional coordination
problems. Also, the seller could consider a small entry in the second stage
to keep entrants at their indi¤erence level.
If we compare (8) with (4), we can conclude that l � na. That is, the

number of new entrants in the second stage is at least equal to the number
of entrants in the Anglo-Dutch auction.

3In fact, it would be given by

l = maxfmj�2(1� �2)m�1(v � v) � cg:
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Let us de�ne r(k), for k = 1; 2::: as the solution in r of (9) above. Notice
that r(k) is decreasing in k. Also, denote by r�(0) the solution to (7) with
equality. This is the highest reserve price compatible with the incumbent
bidding in the �rst stage. Notice that r�(0) > r(1). Indeed, using (8) we
have

r�(0) = v � 1� �2
�2

c;

whereas r(1), substituting in (9) for k = 1, is

r(1) = v � 1

�2(1� �1)
c < r(0):

Finally, de�ne the reserve price r(0) as

r(0) = v � 1� �2
�2(1� �1)

c:

At r(0), an incumbent with high valuation expects the same pro�ts bid-
ding in the �rst stage of the two-stage English auction as in a standard
English auction. Notice that r�(0) > r(0) > r(1).
We should note that for any reserve price in [r(0); r�(0)] there exist two

equilibria. In one of them, the incumbent is expected not to participate in the
�rst stage no matter what valuation he has, and therefore the �rst stage never
sells the license. Thus, the second stage (and the whole two-stage English
auction) becomes a regular English auction. In the other equilibrium the
incumbent is expected to bid in the �rst round if his valuation is high, so
that in the second stage l new entrants enter. Given this, the incumbent
indeed prefers bidding in the �rst stage when his valuation is high. What is
important is that the �rst equilibrium does not exist for r 2 (v; r(0)), and
then we will only consider reserve prices in this range.

3.3 Comparing total surplus

One feature of both the Anglo-Dutch auction and the two-stage English
auction in this setting is that the license is assigned to the user that values
it most among the ones present at the round in which it is assigned. In a
more general, continuous type model this is true for the two-stage English
auction, but not for the Anglo-Dutch auction. Nevertheless, in our setting
e¢ ciency comparisons depend only on the entry decisions.
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The standard English auction maximizes the gains from trade among the
mechanisms at which entry occurs only at one point in time. Indeed, given
n entrants, a new entrant adds surplus only if the n � 1 previous entrants
and the incumbent all have valuation v and the new entrant has valuation v.
This event has probability �2(1� �1)(1� �2)n�1 and the increase in surplus
is (v� v) in this case. Trading this increased expected surplus with the cost
of entry c results in (5), the entry condition in an English auction. In this
sense, the Anglo-Dutch auction fosters entry beyond what is e¢ cient.
In a two-stage English auction, entry takes place at more than one point

in time. If the license is not assigned in the �rst stage, then new entrants will
enter to take part in a �nal, English auction. This second-stage entry condi-
tional on all �rst-stage participants having low type v is also (conditionally)
e¢ cient. Indeed, the expected surplus, given that there is a second stage, is

v +
�
1� (1� �2)l

�
(v � v)� lc

where l is given by (8). Now,

�
1� (1� �2)l

�
(v � v) = (v � v)

lX
m=1

�2(1� �2)m�1:

Notice that there are l terms on the right hand side, and they are decreasing
in m. Thus, the smallest one is �2(1� �2)l�1 (v � v). But this term is equal
to c, if (8) is satis�ed.
It should not come as a surprise that a two-stage entry mechanism may

result in a higher surplus than even the most e¢ cient one-shot entry. In fact,
this is so for any reserve price choices.

Proposition 3 The expected surplus in any two-stage English auction is
higher than in a standard English auction and therefore also higher than
in an Anglo-Dutch auction.

Proof. We have already established that the second stage entry l is condi-
tionally e¢ cient, i.e., that l minimizes (1��2)l (v � v)+ lc, also that l � ne,
and that l is independent of the reserve price, and therefore independent of
�rst stage entry k. Notice that for r = v + � and � small, (9) is (virtually)
the entry condition in the English auction, therefore k � ne for any r. Now,
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the total net surplus from a two-stage English auction given entry decisions
k � ne is

v � (1� �1)(1� �2)k
�
(1� �2)l (v � v) + lc

�
� kc

> v � (1� �1)(1� �2)k
�
(1� �2)n

e�k (v � v) + (ne � k)c
�
� kc

= v � (1� �1)(1� �2)n
e

(v � v)� (1� �1)(1� �2)k(ne � k)c� kc
> v � (1� �1)(1� �2)n

e

(v � v)� nec;

where the last line is the expected surplus in the standard English auction.
QED
According to the above proposition, any reserve price, including r = v

(+�), the one that maximizes entry in the �rst round and still allows a positive
probability of new entry in the second round, induces more e¢ cient entry
than the most e¢ cient one-shot entry auction. But what is the e¢ cient level
of �rst-stage entry in the two-stage English auction? The answer to this
question will also be relevant when discussing revenues. When there is a
second opportunity to experiment, i.e., to obtain valuation draws, assigning
the license in the �rst round has an opportunity cost above v. Then e¢ cient
entry in the �rst stage needs not be the highest compatible with screening
low valuation types. Indeed,

Lemma 4 Maximizing surplus in a two-stage English auction requires lim-
iting entry. In particular, e¢ cient entry k� satis�es

r(k�) = v + (v � v)
�
1� (1� �2)l�1 (1 + (l � 1)�2)

�
: (10)

Proof. The marginal contribution of a new entrant in the �rst stage of the
two stage English auction is

�2(1� �1)(1� �2)k�1[(1� �2)l (v � v) + lc]� c: (11)

Indeed, �2(1 � �1)(1 � �2)k�1 is the probability that the new entrant has a
high valuation v, and the rest of entrants have low valuation v. In this case,
we would have higher (gross) surplus with the additional entrant in the �rst
stage if future entrants were to have low type as well, which has probability
(1� �2)l. The additional (gross) surplus would be (v � v), but entry of the
second period entrants would also imply a cost lc, which a good realization
of a �rst stage entrant would save. Now, treating k and l as continuous
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variables and substituting equation (8), entry in the �rst stage should take
place until the point where

�2(1� �1)(1� �2)k�1(1� �2)l�1 (v � v) (1 + (l � 1)�2) = c:

It follows that e¢ cient �rst stage entry k� < ne. Now, �2(1 � �1)(1 �
�2)

k�1(v � r) = c. Substituting in (9), we obtain (10).QED

3.4 Comparing revenues

Revenues and e¢ ciency are intimately related. Indeed, disregarding the in-
teger problem, entrants expect zero pro�ts (net of the entry cost) both in a
standard English, an Anglo-Dutch, and a two-stage English auctions. There-
fore, we need only looking at total surplus (net of entry costs) and the pro�ts
of the incumbent when comparing the seller�s revenues in both auctions. The
incumbent�s pro�ts are �1 (1� �2)

n (v�v) both in the standard English and
in the Anglo-Dutch auctions, except that n may di¤er in both. Thus, the
revenues for the seller in each case are

R(ni) = v � (1� �2)
ni (v � v)� nic;

for i = e; a. We can compute R(n)�R(n� 1) for any n to obtain

R(n)�R(n� 1) = �2 (1� �2)
n�1 (v � v)� c:

This is decreasing in n. Thus, R(n) is maximized when this expression is
zero, i.e., when n = l (again, treating n as a continuous variable), increasing
for n < l, and decreasing for n > l. Compare this with entry decisions in
Anglo-Dutch and English auctions, obtained respectively from (4) and (5)
above. Since l > na > ne,

Proposition 5 The revenues of the seller are higher in the Anglo-Dutch
auction than in the standard English auction.

As conjectured, the Anglo-Dutch auction increases the revenues of the
seller by increasing entry.
Consider now the two-stage English auction. When maximizing revenues,

the seller needs only consider the maximum of the reserve prices compatible
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with any amount of entry, k, that is, r(k) de�ned above. Indeed, any two
values for the reserve price that induce the same �rst period entry (and also
the same second period entry) also induce the same total (gross) surplus and
the same cost of entry, whereas both the pro�ts of �rst period entrants and
incumbents are lower for the highest of the two reserve prices.
Then, let us compute the expected pro�t of the incumbent, i.e., �1(1 �

�2)
k(v � r(k)) for di¤erent values of k. Substituting (9), we can write this

expected pro�ts as
�1

1� �1
1� �2
�2

c:

Thus,

Lemma 6 The expected pro�ts of the incumbent evaluated at r(k), are in-
dependent of k.

In other words, from the point of view of the seller�s revenues, the reduc-
tion in reserve price that is necessary to attract one more entrant in the �rst
round exactly compensates the increase of competition obtained in this way,
starting from any level of entry k � 1. Thus, we have

Corollary 7 From the point of view of the seller, the optimal reserve price
is r(k�), which also maximizes total surplus.

Remark: If we select the equilibrium where the incumbent with high val-
uation bids in the �rst stage, in the range [r(0); r�(0)], then r�(0) may result
in higher revenues for the seller. 4

We are now ready to compare seller�s revenues in the Anglo-Dutch auction
and in the two-stage English auction.

4Notice that this amounts to make a take it or leave it o¤er to the incumbent. If the
seller has the ability to exclude bidders from future stages, this may be optimal. In fact,
McAfee and McMillan, 1988 have shown in a model that could be reduced to our model
except for its symmetry, that the optimal mechanism for a seller with this ability when
the number of potential buyers is unbounded is to induce one by one entry and o¤er each
entrant a (constant accross periods) price. With a �nite number of potential entrants,
this reserve price would have to be decreasing (see Burguet, 1996), so that buyers could
buy in future periods even if they reject the o¤er at the time they enter. The mechanism,
however, would have to be complemented with asymmetric subsidies even when buyers
are symmetric.
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Proposition 8 A two-stage English auction with appropriate reserve price
r(k�) results in higher revenues for the seller than the Anglo-Dutch auction.

Proof. The revenues for the seller in an Anglo-Dutch auction are

RAD = R(na) = v � (1� �2)n
a

(v � v)� nac;

whereas the revenues of the seller in a two-stage English auction with r =
r(k�), using the de�nition of r(k�), can be written as

R2S(r(k�)) = v � (1� �1)(1� �2)k
�+l(v � v)� k�c�

(1� �1)(1� �2)k
�
lc� �1

1� �1
1� �2
�2

c;

where the last term represents the pro�ts of the incumbent. Then, since at
k�; (11) equals zero, substituting this expression for c in that last term, we
have

R2S(r(k�)) = v � (1� �2)k
� �
(1� �2)l(v � v) + lc

�
� k�c:

Notice that, for all m � l,

(1� �2)m(v � v) +mc =
�
(1� �2)m�1 � �2(1� �2)m�1

�
(v � v) +mc �

(1� �2)m�1(v � v) + (m� 1)c:

Thus, repeating this for m = l; l � 1; :::; na � k�,

R2S(r(k�)) � v � (1� �2)k
� �
(1� �2)n

a�k�(v � v) + (na � k�)c
�
� k�c =

v � (1� �2)n
a

(v � v)�
�
(1� �2)k

�
(na � k�) + k�

�
c � RAD:

QED
In an Anglo-Dutch auction, the seller sacri�ces surplus to foster entry and

obtain higher revenues. A two-stage English auction increases the revenues
of the seller by improving the e¢ ciency of entry decisions. As a result, both
the revenues of the seller and the e¢ ciency of the allocation are higher than
what they are in a Anglo-Dutch auction.

4 Remarks on generalizations

In the previous sections we have analyzed a very stylized model of compe-
tition, where buyers�valuations could take one of two speci�c values. This
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was enough to illustrate the main insights behind the proposal to use Anglo-
Dutch auctions to foster entry in the presence of a strong incumbent. Indeed,
the incumbent bids less aggressively in the Dutch part, so that the probabil-
ity that an entrant obtains the good (license) at a pro�t is enhanced. This
fosters entry and enhances the revenues for the seller at an e¢ ciency cost:
excessive entry. The stylized model also shows that a two-stage English auc-
tion may be more appropriate to attain the goal of high revenues with no
cost of (and even enhancing of) e¢ ciency.
Yet, there is one aspect of Anglo-Dutch auctions that the discrete case

does not re�ect: the Dutch stage may introduce ine¢ ciency that goes beyond
excessive entry, i.e., allocation ine¢ ciency. Indeed, in asymmetric settings, a
Dutch auction may assign the good or license to a buyer di¤erent from the
one that has the highest willingness to pay. This ine¢ ciency is in general to
the advantage of both the entrant and the seller (see Maskin and Riley, 2000).

4.1 Continuous distributions

Thus, the �rst generalization we may consider is to assume continuous dis-
tributions of types, where this allocational ine¢ ciency appears. We assume
now that vi, the valuation of a buyer, is a (independent) realization of a con-
tinuous random variable. The incumbent draws his type from a distribution
F1(v), whereas all entrants draw their types from distribution F2(v). We
further assume that F1 stochastically dominates F2:
In the Anglo-Dutch auction, it is still weakly dominant for bidders to

stay in the auction up to the moment when the price reaches their respective
valuations. If the clock stops at price �, with two entrants as the remaining
bidders, then these bidders participate in a symmetric Dutch auction with
reserve price �, the one with highest valuation will win, and the revenues for
the seller will be equal to the expected value of the second largest valuation.
When one of the two remaining bidders is the incumbent, however, bidders
participate in an asymmetric Dutch auction. In general, bidding strategies in
this case, and expected revenues for the seller, can only be obtained through
numerical methods.
With respect to the two-stage English auction, and for any given reserve

price set by the seller, r, both the incumbent�s and entrants�optimal behavior
is to drop at a price equal to their willingness to pay, if they do participate in
any of the stages. Thus, we only need analyzing participation decisions. We
can conjecture that these will be characterized by two cut-o¤ values, w1; w2,
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such that the incumbent decides to participate in the �rst period if v1 � w1,
and any �rst period entrant i participates if vi � w2. Both of these values
will depend on the number of entrants in the �rst period and how many are
expected in the second. Treating entry as a continuous variable, then zero
pro�ts for entrants in both stages and indi¤erence between participating
and waiting both for entrants and the incumbent at their respective cut-o¤
valuations are the four equations that the solution (w1; w2; k; l) solves.
Using numerical computations, we have solved for the continuous model

with asymmetric, uniform distributions, Fi(v) = v
vi
, i = 1; 2, with 1 = v2 �

v1. The details are shown in the Appendix. In all cases analyzed, the total
surplus is higher under a two-stage English auction than under an Anglo-
Dutch auction. Revenues also follow this ranking except for one case: when
v1 = 1:2, and c = 0:072. This cost was chosen (as in all examples) so
that entrants in the Anglo-Dutch auction break even, the most favorable
case from the point of view of the seller. In this particular case, 2 entrants
enter the Anglo-Dutch auction. For these same values, the optimal reserve
price in a two-stage English auction is r = 2

3
, which generates zero entry

in the �rst stage of the two-stage English auction, and 2 entrants in the
second stage. (r = 2

3
is the maximum reserve price compatible with the

incumbent �bidding� in the �rst stage with positive probability, since the
expected highest bid from the two second period entrants is 2

3
. Consequently,

w1 = 1.) This obviously results in lower revenues for the seller (0:528, instead
of 0:531). Why is entry not higher in the two-stage English auction? The
answer has to do with the integer nature of entry. Indeed, with l = 2, entrants
expect positive pro�ts, equal to 0:0116. (Recall that entrants expect zero
pro�ts in the Anglo-Dutch auction with these values of the parameters.) Yet
with l = 3 they would expect negative pro�ts. The seller needs only setting
an entry fee in the second stage of the two-stage English auction above
0:0016 (much lower than 0:0116), which entrants would be willing to pay, to
improve upon the Anglo-Dutch auction.

4.2 More than one unit

We could also ask whether our results extend to the case where the seller has
more than one unit for sale, and the equality between the number of units
and the number of incumbents still holds. In the Appendix we consider the
case where 2 units are to be sold and there are 2 incumbents. Other things
are as in the model analyzed above. The main novelty here is that, in the
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second stage of a two-stage English auction, there is now a chance that one
of the units for sale is assigned in the �rst stage, but the other unit is still
available in the second stage. Let l1 be the number of second-stage entrants
in case 1 unit is left and l2 the number of second-stage entrants when 2 units
are still available. These are de�ned by

�2(1� �2)l1�1(v � v) = c; (12)

and

�2[(1� �2)l2�1 + (l2 � 1)�2(1� �2)l2�2](v � v) = c: (13)

Notice that the second stage is independent of the identity of the winner
of the �rst, given our assumptions. In the Appendix we show that the so-
cially e¢ cient entry and allocation in one-stage auctions is achieved using,
for instance, an English auction. However, a two-stage English auction al-
ways results in higher surplus than any one-stage auction. Thus, our results
on e¢ ciency carry over to this multiple-unit case.
With respect to the seller�s revenues a su¢ cient condition for the ranking

to be the same is l2 � 2(l1 + 1). In fact, this leaves a lot of slack. We
have obtained cases where the Anglo-Dutch auction performs better than
the two-stage English auction. However, these cases involve both extremely
low values of �2 and c so that even though no entry would take place in an
English auction, a large number of �rms would enter in an Anglo-Dutch or
a second stage of the two-stage English auction.

5 Concluding remarks

We have o¤ered theoretical support to the claim that an Anglo-Dutch auction
results in higher revenues than an ascending auctions when there are as many
licenses as incumbents. By favoring ex-ante weaker entrants, the Anglo-
Dutch auction fosters entry and this results in higher prices of licenses at the
cost of e¢ ciency. However, we have also proposed another simple alternative
to this Anglo-Dutch auction: a two-stage English auction. What we could
term an Anglo-Anglo auction. Instead of relying on ine¢ cient allocations
to induce entry, the two-stage English auction relies on information revealed
through bidding, an information on which entrants can condition their entry
decisions. As a result, entry is more e¢ cient and surplus is higher, which
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works to the advantage of the seller. Thus, this simple design not only
increases revenues but also the gains from trade.
There is one aspect in which the two-stage English auction is more com-

plex than the Anglo-Dutch auction: its intrinsic multistage nature. Indeed,
the Anglo-Dutch auction requires two stages, but no lag of time is needed
between them. On the contrary, in a two-stage English auction potential
new entrants should be given enough time to �enter �(�nd about their val-
uation, prepare a bidding strategy) before the second stage takes place. In
cases where this waiting is costly, this waiting cost would have to be weighed
against the gains that we have discussed. In any case, the conclusion of this
work is that the learning that takes place in dynamic designs may be a bet-
ter alternative than ine¢ ciencies when fostering competition through entry
is the goal.

6 Appendix

6.1 Continuous valuations

Consider the Anglo-Dutch auction. There are initially n entrants plus the
incumbent who participate in the English stage. A weakly dominant strategy
for bidders is to stay in the auction up to the moment when the price reaches
their respective valuations and then to drop out. Suppose that the bidder
with third highest valuation drops out at the valuation �. Then the remaining
two bidders participate in the Dutch stage with reserve price �. Suppose that
two bidders with the highest valuations are entrants. Then the expected
revenue for seller from the Dutch stage isZ v2

�

v(1� F2(v))f2(v)dv;

which is the expected value of the second highest valuation given that it
exceeds �. The density (on [0; �)) of the highest valuation � (reserve price)
among the remaining n� 1 bidders is

fn�1:n�1(�) = F2(�)
n�2f1(�) + (n� 2)F2(�)n�3F1(�)f2(�):

There are n(n�1) permutations when two bidders with the highest valuations
are entrants. Thus, the revenue for seller (times the probability of the event)
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accruing when two entrants play the Dutch part is

Rw;w = n(n� 1)
Z v2

0

�Z v2

�

v(1� F2(v))f2(v)dv
�
dF2(�)

n�2F1(�) (14)

= n(n� 1)
Z v2

0

v(1� F2(v))F2(v)n�2F1(v)f2(v)dv:

Suppose now that one of the two bidders with the highest valuations is
the incumbent. De�ne the truncated distributions

G2(v) � F2(v)� F2(�)
1� F2(�)

G1(v) � F1(v)� F1(�)
1� F1(�)

Let v = �2(b) and v = �1(b) be inverse bid functions, respectively, for entrant
and incumbent, de�ned on [�; b�], such that �i(�) = � and �i(b

�) = vi for
i = 1; 2. When an entrant bids b he wins with probability G1(�1(b)) and pays
his bid. Similarly, the distribution of an entrant�s bid is G2(�2(b)). Therefore
the expected revenue for the seller when accruing from an entrant-winner is

R2 =

Z b�

�

bG1(�1(b))dG2(�2(b));

and the expected revenue accruing from an incumbent-winner is

R1 =

Z b�

�

bG2(�2(b))dG1(�1(b)):

The distribution of � is

fn�1:n�1(�) = (n� 1)F2(�)n�2f2(�):

Then, the expected revenue accruing to the seller from an entrant when the
incumbent is one of the two bidders with the highest valuations is

Rw;s = n

Z v2

0

R2(1� F2(q))(1� F1(q))(n� 1)F2(q)n�2f2(q)dq; (15)

and the expected revenue accruing to the seller from the incumbent is

Rs;w = n

Z v2

0

R1(1� F2(�))(1� F1(�))(n� 1)F2(�)n�2f2(�)d�: (16)
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Thus, the total revenues of the seller are Rw;w +Rw;s+Rs;w. Notice that R1
and R2 depend on the (inverse) bidding functions �i(b). These have to be
computed using numerical methods.
Now we turn to a two-stage English auction. Again assume that, besides

the incumbent, k entrants enter in the �rst stage and, if nobody bids, some
additional l bidders enter in the second stage. Since �rst stage entrants must
bid at least the reserve price r, they will decide to participate in the �rst
stage bidding if their valuations will exceed a cut-o¤ value w2. Similarly, the
incumbent will decide to participate in the bidding if his valuation is above
a cut-o¤ value w1.
De�ne truncated distributions for i = 1; 2 as

Hi(v) �
Fi(v)

Fi(wi)
:

We can distinguish three cases: (1) v2 � w2 � w1 � 0, (2) v2 � w1 �
w2 � 0, (3) v1 � w1 � v2 � w2 � 0. (And two more separate cases when
k = 0 since then w2 does not exist: v2 � w1 � 0 and v1 � w1 � v2.) Here
we present only derivations of cut-o¤ points for the �rst case. Note that
once bidders decide to bid (both in the �rst and second stages) it is weakly
dominant for them to bid their true valuations. The cut-o¤ point w1 for the
incumbent is found when he is indi¤erent between obtaining the object in
stage 1 at reserve price r or waiting till stage 2 and obtaining it at the highest
valuation among k + l entrants. Thus,

(w1 � r)F2(w2)k =
Z w1

0

(w1 � v)dF2(v)lF2(v)k =
Z w1

0

F2(v)
lF2(v)

kdv; (17)

and the cut-o¤ point w2 for each of the k entrants satis�es

(w2 � r)F2(w2)k�1F1(w1) +
Z w2

w1

(w2 � v)F2(w2)k�1dF1(v) (18)

=

Z w2

w1

(w2 � v)F1(w1)dF2(v)lF2(v)k�1 +
Z w1

0

(w2 � v)F1(v)dF2(v)lF2(v)k�1:

Here we have an extra term since an entrant with valuation w2 will win
against an incumbent whose valuation takes value in (w1; w2). Rearranging,

(w1 � r)F2(w2)k�1F1(w1) +
Z w2

w1

F2(w2)
k�1F1(v)dv

=

Z w1

0

F2(v)
lF2(v)

k�1F1(v)dv +

Z w2

w1

F2(v)
lF2(v)

k�1F1(w1)dv:
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We can express both conditions using truncated distributions

w1 � r =
Z w1

0

F2(v)
lH2(v)

kdv

w1 � r + F1(w1)�1
Z w2

w1

F1(v)dv

=

Z w1

0

F2(v)
lH2(v)

k�1H1(v)dv +

Z w2

w1

F2(v)
lH2(v)

k�1dv:

Combining both equations givesZ w1

0

F2(v)
lH2(v)

kdv + F1(w1)
�1
Z w2

w1

F1(v)dv (19)

=

Z w1

0

F2(v)
lH2(v)

k�1H1(v)dv +

Z w2

w1

F2(v)
lH2(v)

k�1dv:

Let us de�ne the revenue of the seller from the incumbent by Rs, from
each of �rst-stage entrants by Rk, and from each of second-stage entrants
by Rl. The total revenue to the seller then is Rs + kRk + lRlF2(w2)kF1(w1).
Also de�ne the expected pro�t of each of �rst-stage entrants by Pk, and of
each of second-stage entrants by Pl.
For �xed entry (k; l) we solve the following maximization problem:

max
w1;w2

Rs(w1; w1) + kRk(w1; w2) + lRl(w1; w2)F1(w1)F2(w2)
k (20)

subject to constraint (19), and inequalities v2 � w2 � w1 � 0, Pk(w2; w1) � c
and Pl(w2; w1) � c. After solving for this, we can �nd the reserve price r
from either equation (17) or (18). Next we present expressions for revenues
Rs, Rk, Rl, and pro�ts Pk, Pl.
The expected revenue from the incumbent is

Rs =

Z v1

v2

J1(v)f1(v)dv +

Z v2

w2

J1(v)F2(v)
kf1(v)dv +Z w2

w1

J1(v)F2(w2)
kf1(v)dv +

Z w1

0

J1(v)F2(v)
k+lf1(v)dv: (21)
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The expected revenue from each of the k �rst stage entrants is

Rk =

Z v2

w2

J2(v)F1(v)F2(v)
k�1f2(v)dv +

Z w2

w1

J2(v)F1(w1)F2(v)
k+l�1f2(v)dv +Z w1

0

J2(v)F1(v)F2(v)
k+l�1f2(v)dv; (22)

and the expected revenue from each of the l second stage entrants is

Rl =

Z v2

w2

J2(v)f2(v)dv +

Z w2

w1

J2(v)H2(v)
kF2(v)

l�1f2(v)dv +Z w1

0

J2(v)H1(v)H2(v)
kF2(v)

l�1f2(v)dv: (23)

The expected pro�t of each of the k �rst stage entrants is

Pk =

Z v2

w2

(1� F2(v))F1(v)F2(v)k�1dv +
Z w2

w1

(1� F2(v))F1(w1)F2(v)k+l�1dv +Z w1

0

(1� F2(v))F1(v)F2(v)k+l�1dv � c; (24)

and the expected pro�t of each of the l second stage entrants is

Pl =

Z v2

w2

(1� F2(v))F2(v)l�1dv +
Z w2

w1

(1� F2(v))H2(v)kF2(v)l�1dv +Z w1

0

(1� F2(v))H1(v)H2(v)kF2(v)l�1dv � c: (25)

For numerical simulations we assume that valuations come from the uni-
form distributions on [0; vi]

Fi(v) =
v

vi
; (26)

with v2 � v1. The results from numerical simulations are summarized in
Table 1. We have �xed v2 = 1 for all simulations. Table 1 illustrates results
when v1 varies. The entry cost c was chosen to ensure that n entrants in
Anglo-Dutch auction earn exactly zero net pro�ts. With the uniform distri-
butions, and when �rst-stage entry is positive, one can show that w1 = w2
satis�es the equations for cut-o¤ points. Among the results presented in the
Table 1 only in one case the revenues of seller are lower in two-stage English
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auction than in Anglo-Dutch auction, namely, in the auction that does not
induce strictly larger (overall) number of entrants than Anglo-Dutch auction:
v1 = 1:2, c = 0:072, where RAD is equal to 0.531, and R2S = 0:528. Yet,
this is due to an integer problem. Indeed, two entrants expect substantial
positive pro�ts in the second stage of the two-stage English auction (0:0116
net of entry cost, in this case), yet a third one would expect negative pro�ts.
If we keep the pro�ts of entrants in the second stage to zero, for instance,
charging these entrants an entry fee of 0:0116; which would be paid in case
the incumbent did not bid (an event with probability 1/1.2), then R2S = 0:
547 and then the revenues for the seller would again be larger in the two-stage
auction.

Table 1: Numerical simulations of auctions for uniform distributions with
�v2 = 1

v1 c n SAD RAD k l w1 r S2S R2S

1 0:083 2 0:583 0:500 1 2 0:552 0:510 0:630 0:529
1 0:050 3 0:650 0:600 1 3 0:700 0:652 0:692 0:631
1 0:024 5 0:738 0:715 2 5 0:771 0:745 0:770 0:745
1:2 0:072 2 0:663 0:531 0 2 1:000 0:667 0:689 0:528
1:2 0:043 3 0:720 0:628 2 4 0:555 0:547 0:754 0:647
1:2 0:020 5 0:795 0:737 3 5 0:711 0:697 0:826 0:751
1:5 0:059 2 0:791 0:570 0 3 0:836 0:714 0:850 0:635
1:5 0:035 3 0:839 0:663 0 4 0:954 0:796 0:883 0:710
1:5 0:016 5 0:901 0:766 0 6 1:000 0:857 0:934 0:786
2 0:045 2 1:018 0:620 0 3 1:000 0:750 1:082 0:675
2 0:027 3 1:057 0:708 0 4 1:000 0:800 1:113 0:733
2 0:012 5 1:107 0:802 0 7 1:000 0:875 1:151 0:826

6.2 The two unit case

Again we show that the two-stage English auction is more e¢ cient than both
the standard English auction and the Anglo-Dutch auction for all reserve
prices r. The expected surplus for any one-stage auction is given by

S1 = 2v�f2�1(1��1)(1��2)n+(1��1)2[2(1��2)n+n�2(1��2)n�1]g(v�v)�nc;
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which is maximized by n such that

�2[(1��1)2f(1��2)n�1+(n�1)�2(1��2)n�2g+2�1(1��1)(1��2)n�1](v�v) = c;

and is achieved using an English auction. Thus, necessarily expected surplus
from Anglo-Dutch auction is at most equal to the expected surplus from the
standard English auction. The expected surplus for the two-stage English
auction is given by

S2 = 2v � f2�1(1� �1)(1� �2)k + (1� �1)2k�2(1� �2)k�1g[(1� �2)l1(v � v) + l1c]
�(1� �1)2(1� �2)k[f2(1� �2)l2 + l2�2(1� �2)l2�1g(v � v) + l2c]� kc: (27)

First we observe that k � n since the highest �rst-stage entry is achieved by
setting the reserve price r = v + ". De�ne l = n � k and rewrite expression
for S1 as follows:

S1 = 2v � f2�1(1� �1)(1� �2)k + (1� �1)2k�2(1� �2)k�1g[(1� �2)l(v � v) + lc]
�(1� �1)2(1� �2)k[f2(1� �2)l + l�2(1� �2)l�1g(v � v) + lc]� kc (28)

�(1� f2�1(1� �1)(1� �2)k + (1� �1)2[(1� �2)k + k�2(1� �2)k�1]g)lc:

Since l1 and l2 maximize expected surplus of the second stage when one and
two units, respectively, are available, it follows that

(1� �2)l1(v � v) + l1c � (1� �2)l(v � v) + lc
f2(1� �2)l2 + l2�2(1� �2)l2�1g(v � v) + l2c � f2(1� �2)l + l�2(1� �2)l�1g(v � v) + lc:

Comparing (28) with (27) implies that S2 > S1. We summarize the result in
the following lemma.

Lemma 9 The expected surplus in a two-stage English auction is higher than
in a standard English auction and an Anglo-Dutch auction.

Observe that the previous argument easily extends to more than two
units.
The revenues of the seller are the di¤erence between net surplus and the

pro�ts of incumbents. We have already demonstrated that the surplus is
higher in two-stage English auction than in the Anglo-Dutch auction. For
the Anglo-Dutch auction to yield higher revenues it must be that the part of
expected social surplus received by incumbents is smaller in the Anglo-Dutch
auction than in the two-stage second price auction.
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It can be shown, like in the case of one unit, that the revenues in a
two-stage auction are maximized either when there is no entry in the �rst
stage and we set the highest reserve price that induces incumbents with high
valuations to bid in the �rst stage, or when the entry level in the �rst stage
is (almost) socially e¢ cient. (It will not be exactly socially e¢ cient entry
level because now pro�ts of incumbents are not independent of entry k.) We
provide partial results on revenue rankings in both auctions. Consider the
case when k = 0 and

r = v � [(1� �1)f(1� �2)l2 + l2�2(1� �2)l2�1g+ �1(1� �2)l1 ](v � v):

Then the seller�s revenues in the two-stage English auction are

R2 = 2v � 2�1(1� �1)[(1� �2)l1(v � v) + l1c] (29)

�(1� �1)2[f2(1� �2)l2 + l2�2(1� �2)l2�1g(v � v) + l2c]
�2�1[�1(1� �2)l1 + (1� �1)f(1� �2)l2 + l2�2(1� �2)l2�1g](v � v):

It can be shown that the expected utility of incumbent in the Anglo-Dutch
auction take the same expression as in (one-stage) English auction

�1[(1� �2)n + (1� �1)n�2(1� �2)n�1](v � v): (30)

Thus the expected revenue of the seller in the Anglo-Dutch auction can be
written as

R1 = 2v � 2�1(1� �1)[(1� �2)n(v � v) + nc] (31)

�(1� �1)2[f2(1� �2)n + n�2(1� �2)n�1g(v � v) + nc]
�2�1[�1(1� �2)n + (1� �1)f(1� �2)n + n�2(1� �2)n�1g](v � v)� �21nc

It can be shown that the number of entrants in the Anglo-Dutch auction is
given by
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n = max fmj�2
��
�21(1� �2)m�1 +

1

m
2�1(1� �1)(1� �2)m�1 (32)

+
2

m(m+ 1)
(1� �1)2(1� �2)m�1

�
�

�1(1� �2) + 2
m+1

(1� �1)(1� �2) + (1� �1)�2
�1(1� �2) + �1m�2 + 2

m+1
(1� �1)(1� �2) + (1� �1)�2

+

�
m� 1
m

2�1(1� �1)(1� �2)m�1 + 2�1(1� �1)(n� 1)�2(1� �2)m�2

+
4(m� 1)
m(m+ 1)

(1� �1)2(1� �2)m�1 +
2

m
(1� �1)2(n� 1)�2(1� �2)m�2

�
�

1
m+1

(1� �2)2 + �2(1� �2)
1

m+1
(1� �2)2 + �2(1� �2) + m

2
�22

+
(m� 1)(m� 2)
(m+ 1)m

(1� �1)2(1� �2)m�1

+
m� 2
m

(1� �1)2(m� 1)�2(1� �2)m�2
�
(v � v) � cg:

We want to know when the revenue of the seller is higher in the two-stage
English auction (29), where entry is given by conditions (12) and (13), than
in the Anglo-Dutch auction where entry is given by the condition (32). First,
observe that when �1 = 0, n is given by

�2[(1� �2)n+1 + (n+ 1)�2(1� �2)n](v � v) = c

implying n = l2� 2. Di¤erentiating the expression in square brackets of (32)
with respect to �1 we obtain that the derivative is negative. The expression
in square brackets of (32) is also declining with respect to n. Therefore we
may conclude that higher probability �1 leads to lower entry n, and it is, at
most, l2� 2. Assuming that n = l2� 2 for all �1 holds, when comparing (29)
and (31), we obtain that R2S � R1S if

2�1(1� �1)[(1� �2)l1(v � v) + l1c] + 2�21(1� �2)l1(v � v)
� 2�1(1� �1)[(1� �2)l2�2(v � v) + (l2 � 2)c] + 2�21(1� �2)l2�2(v � v) + �21(l2 � 2)c

or

(1� �2)l1(v� v) + l1c� �1l1c � (1� �2)l2�2(v� v) + (l2 � 2)c�
�1
2
(l2 � 2)c:
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The inequality will hold if l2 � 2(l1 + 1), since (1 � �2)l1(v � v) + l1c �
(1 � �2)l2�2(v � v) + (l2 � 2)c. (Because l1 was chosen to minimize (1 �
�2)

l1(v � v) + l1c.)
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