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Abstract

The purpose of this paper is to generalize the theory of “equal share analysis”, devel-

oped by Selten in 1972, to the one in which every player has a positive weight. We show

that for any positive vector of weights, α ∈ RN

++, it is always possible to find a coalition

structure and a payoff vector forming a proportional regular configuration.

JEL Classification Numbers: C71

1 Introduction

The present work stands in cooperative game theory and relies in the notion of “equal share

analysis”, another insight on cooperative games introduced by Selten (1972). In contrast

with most of cooperative game theory analysis, he assumes that any outcome of cooperation

cannot be separated from the coalitions that they are going to form, and so, his analysis
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gives a coalition structure and an allocation to the players. His assumptions are expressed

in the form of three hypothesis, observed empirically by Selten, about the outcome of a

characteristic function game with restricted cooperation (a game).

The first hypothesis is that an exhaustive coalition structure will be formed, which means

that there are no coalitions with incentives to merge. The second hypothesis asserts that

the payoff vector will has a strong tendency to be in the equal division core, a set-solution

concept which is an extension of the core. A payoff vector is in the equal division core if no

coalition can divide its value equally among its members and, in this way, give more to each

of the members than what they receive in the payoff vector. After giving a complete and

transitive order of strength within the players based on the characteristic function, the third

hypothesis says that within a coalition a stronger player will not receive less than a weaker

player.

In consequence, a result of the game is a configuration, that consists of a coalition structure

B = (B1, . . . , Bm) which is a partition of the set of players N = {1, . . . , n} into permissible

coalitions, and a payoff vector x = (x1, . . . , xn) ∈ RN , that can be interpreted as the reward

to each player. A configuration that satisfies all three hypothesis above is said to be regular.

Selten (1972) shows that a regular configuration exists for any game.

The equal division core was proposed by Selten (1972) to explain some outcomes ob-

served in experimental cooperative games. He showed with experimental games from differ-

ent sources in the literature and from his own experimentation that 76% of the cases conform

to all three hypotheses. Moreover, Selten (1987) says that “experimental evidence clearly

suggests that equity considerations have a strong influence on observed payoff division”.

We can find several other descriptive theories in the literature based on equity consid-

erations, namely equal excess theory (Komorita, 1979) and the equal division kernel (Crott

and Albers, 1981). For instance, Klijn et al.(2000) provided five characterizations of the

egalitarian solution (Dutta and Ray,1989) for the case of convex games and all of them in-
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volve a stability property coming from the concept of the equal division core. More recently,

Branzei et al.(2004) introduced and analyzed the egalitarian solution and the equal division

core for convex cooperative fuzzy games and Bhattacharya (2004) provides an axiomatic

characterization of the equal division core.

In the equal share analysis, Selten (1972) considers that all the players have the same

weight. This assumption is in many situations much too restrictive as we will see in Section

5. Following this idea we introduce the proportional division core as a generalization of the

equal division core. This extension was already mentioned by Selten (1978) with the name of

equity core, but as far as we know there have not been further studies in this direction. The

proportional division core depends on a positive vector α of weights of the players. Roughly

speaking, a payoff vector is in the proportional division core if no coalition can divide its

value proportionally to α and, in this way, give more to all its members than the amount

they receive in the payoff vector.

The main goal of this paper is, following Selten’s work, to extend his result of existence

of regular configurations to the case where not all the players have the same weight. Besides

the concept of the proportional division core, we introduce a complete and transitive order

of strength with respect to α within the players, which, in case that all players have the same

weight, coincides with the order of strength given by Selten (1972). Thus, we consider that

a coalition structure and a payoff vector is a proportional regular configuration if it satisfies

the generalizations of the three hypothesis given by Selten. That is to say, the coalition

structure is exhaustive, the payoff vector is in the proportional division core associated to

the coalition structure, and it preserves the order of strength with respect to α among the

players in the same coalition. Our main result in this paper is that for any game (with or

without restricted cooperation) and for any vector α ∈ RN
++ we can always guarantee the

existence of a proportional regular configuration.

The outline of the paper is as follows. In Section 2, we provide the preliminary definitions
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and notation. In Section 3 we introduce the order of strength with respect to α. In Section 4,

we give the existence theorem of proportional regular configurations. In Section 5, we discuss

an application to the class of financial cooperative games (Izquierdo and Rafels, 2001). We

prove that for this class of games the grand coalition and the proportional solution is always

a proportional regular configuration with respect to the capitals invested by the players,

but it is not generally a regular configuration à la Selten. Since the proportional solution

plays an important role into financial cooperative games, this enforces our intuition about

the necessity of taking into account the weights of the players.

2 Preliminaries

Let N = {1, 2, . . . , n} be the player set. A coalition is a subset of N , and P is the set of

permissible coalitions that contains at least all the individual coalitions: {i} ∈ P for all i ∈ N

and ∅ ∈ P. To every coalition S ∈ P a real number v(S) is attached, which is called the

worth of that coalition. We say (P, v) is a transferable utility game in characteristic function

form with restricted cooperation (a game). The characteristic function satisfies v(∅) = 0 and

v(S) ≥
∑

i∈S v(i) for all S ∈ P.

We write α ∈ RN
++ to denote α ∈ RN and αi > 0 for i = 1, . . . , n. We consider α ∈ Rn

++

the player’s vector of weights and α(S) =
∑

i∈S αi for any S ⊆ N , where α(∅) = 0.

A vector x ∈ RN is called a payoff vector to the players. The ith coordinate xi of x

represents the payoff to player i ∈ N .

A coalition structure B = (B1, . . . , Bm) is a partition of N into permissible coalitions

Bj ∈ P, j = 1, . . . , m, and the imputation set for the coalition structure B, IB(P, v), is the

set of payoff vectors satisfying the following conditions

(i)
∑

i∈Bj
xi = v(Bj), for j = 1, . . . , m,
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(ii) xi ≥ v(i), for i = 1, . . . , n.

A result of the game is a configuration (B1, . . . , Bm; x1, . . . , xn) that consists of a permis-

sible coalition structure B = (B1, . . . , Bm), and a payoff vector x = (x1, . . . , xn) ∈ IB(P, v).

A coalition structure (B1, . . . , Bm) is called exhaustive if and only if for any coalition

S ∈ P which is the union of some Bj , we have

(1) v(S) ≤
∑

Bj⊆S

v(Bj).

This means that nothing can be gained by forming a larger permissible coalition from several

coalitions of an exhaustive structure.

For every S ∈ P, we define the proportional share of S by v(S)
α(S) . Thus, given a game (P, v)

with a permissible coalition structure B and a vector of weights α ∈ Rn
++, the proportional

division core of v associated to B with respect to α (Vilella, 2004) is the following set

(2) PDCα
B(P, v) =

{

x ∈ IB(P, v) | for all S ∈ P, there exists i ∈ S with xi ≥
v(S)

α(S)
αi

}

.

For the case where all the weights are equal, we obtain the equal division core concept due to

Selten (1972) that we denote by EDCB(P, v) = {x ∈ IB(P, v) | for all S ∈ P, there exists i ∈

S with xi ≥
v(S)
|S| }.

3 The order

Our main purpose in this section is to establish a transitive and complete order of strength

between the players. Following Selten we name it the order of strength with respect to α.

Firstly we define a transitive but non-complete order of precedence, next we give a process

to decrease the game that will allow us to define a complete and transitive order of strength

with respect to α.
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3.1 Order of precedence with respect to α

A coalition structure B = (B1, . . . , Bm) is a proportional maximal share structure of a game

(P, v) if

(3)
v(Bj)

α(Bj)
= max

C∈Qj

{ v(C)

α(C)

}

for j = 1, . . . , m,

where Q1 = P and Qj = {S ∈ P | S ⊆ N \ (B1 ∪ · · · ∪ Bj−1)}, for j = 2, . . . , m.

The proportional share payoff vector x = (x1, . . . , xn) associated to the coalition structure B,

is defined for all i ∈ N as

xi =
v(Bj)

α(Bj)
αi, where i ∈ Bj .

Those payoff vectors associated to proportional maximal share structures will play an impor-

tant role in the definition of the order of precedence. We denote by m̄α(P, v) the set of all

proportional share vectors associated to proportional maximal share structures. Formally,

m̄α(P, v) =
{

x ∈ RN | there exists a proportional maximal share structure

B = (B1, . . . , Bm), such that for all i ∈ N, xi =
v(Bj)

α(Bj)
αi where i ∈ Bj

}

.

Now we introduce some definitions necessary to define the order of precedence.

Two players i, j ∈ N, i 6= j, are undistinguished with respect to α ∈ RN
++, and we denote

this by i ⋍v
u j, if and only if there are two vectors x, y ∈ m̄α(P, v) such that xi > xj and

yi < yj .

Two players i, j ∈ N are equal in precedence with respect to α ∈ RN
++, and we denote this

by i ⋍v
p j, if and only if it is possible to find a chain of players i1, i2, . . . , ik, beginning with

i1 = i and ending with ik = j, such that

i = i1 ⋍v
u i2 ⋍v

u · · · ⋍v
u ik−1 ⋍v

u ik = j.

Observe that, two neighbouring players ir, ir+1 are undistinguished and the chain of players

allows repetitions of players. Obviously, the relation of equality in precedence is transitive
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and symmetric. We write i 6⋍v
p j if two players i, j ∈ N are not equal in precedence with

respect to α.

Given two players i, j ∈ N, i 6= j, we say that player i strictly precedes player j with

respect to α ∈ RN
++, and we denote this by i ≻v

p j, if i and j are not equal in precedence

w.r.t. α and there is at least one x ∈ m̄α(P, v), such that xi > xj .

The following Lemma 1 summarizes some technical properties that are useful to prove

Proposition 3.2. The proof follows directly.

Lemma 3.1. Let (P, v) be a game, α ∈ RN
++ a vector of weights and i ≻p j. Then we have,

(a) There is no x ∈ m̄α(P, v) where xj > xi.

(b) Player j does not strictly precede player i (i.e. j ⊁p i).

(c) For all x ∈ m̄α(P, v), xi ≥ xj and at least one is strict.

(d) If there is x ∈ m̄α(P, v) such that xj > xi, then i ⊁p j.

With the following example we illustrate the previous definitions and we show that the

condition (c) of Lemma 3.1 is not enough to establish the strict order of precedence.

Example 1. Consider the following four-player game v where all coalitions are permissible,

i.e. P = 2N ,

v(12) = 0,

v(1) = 0, v(13) = 1, v(123) = 0,

v(2) = 0, v(14) = 0, v(124) = 3, v(1234) = 0,

v(3) = 0, v(23) = 0, v(134) = 3,

v(4) = 0, v(24) = 2, v(234) = 0,

v(34) = 0.

1If there is no confusion, and in order to simplify notation, we will omit the game v in i ⋍v
u j, i ⋍v

p j and

i ≻v
p j.
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Giving weights α = (1, 1, 1, 1) to the players, we obtain the following three proportional

maximal share structures with the corresponding proportional payoff vectors,

({1, 2, 4}, {3}; (1, 1, 0, 1))

({1, 3, 4}, {2}; (1, 0, 1, 1))

({2, 4}, {1, 3}; (0.5, 1, 0.5, 1))

Denote the payoff vectors by x = (1, 1, 0, 1), y = (1, 0, 1, 1), z = (0.5, 1, 0.5, 1). Since y1 > y2

and z1 < z2, it follows that 1 ⋍u 2, and so 1 ⋍p 2. Since x2 > x3 and y2 < y3 it follows that

2 ⋍u 3 and then 2 ⋍p 3. Since 1 ⋍p 2 and 2 ⋍p 3, then 1 ⋍p 3. Notice that players 1 and 3 are

not undistinguished but they are equals in precedence. Moreover we have, x1 > x3, y1 = y3,

z1 = z3. Hence, Lemma 3.1 (c) is not enough to establish the strict order of precedence.

There is no chain of undistinguished players between 1 and 4, so they are not equals in

precedence. Nevertheless, z4 > z1, x1 = x4 and y1 = y4, therefore 4 ≻p 1. By the same

reasoning we see that 4 ≻p 2 and 4 ≻p 3. Thus, we can say that 4 ≻p 3 ⋍p 2 ⋍p 1.

Notice that in this example we have found a transitive and complete binary relation of

precedence with respect to α in one step, but this is not a general fact. Sometimes, we will

have players which cannot be compared in this first step. Then, as we will see in the next

subsection, we should decrease the game and follow with other steps.

Considering that, for any i, j ∈ N , i %p j if and only if either i ≻p j or i ⋍p j , in the

following proposition we state, and the proof is left to the reader, that %p is transitive.

Proposition 3.2. Let (P, v) be a game and α ∈ RN
++ the players’ vector of weights. If i %p j

and j %p k, then i %p k for any i, j, k ∈ N .

Unfortunately, we still may have non-comparable players, thus the precedence relation is

generally incomplete.

Following Selten (1972), we call peers the players who are incomparable by the precedence

relation %p . Formally, two players i, j ∈ N, i 6= j are called peers with respect to α if and
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only if they are not equal in precedence (i 6⋍p j) and xi = xj for all x ∈ m̄α(P, v).

To make the precedence relation complete, we will define a decreased game.

3.2 Proportional decreased game with respect to α

In order to compare the players who are incomparable in the original game, we decrease the

game by steps. In every step of this process we decrease the previous game by giving to the

coalitions with the higher proportional share the proportional share just below. To do this,

consider the set of proportional shares v(S)
α(S) for all non-empty coalitions S ∈ P. The different

values obtained can be ordered as b1 < b2 < · · · < br, r ≥ 2. Notice that in the special case

where v(S)
α(S) = b1, for all S ∈ P, S 6= ∅, we do not have any decreased game.

The proportional decreased game v1 of v is the game (P, v1), defined by

v1(S) =















v(S) if v(S)
α(S) < br,

α(S) br−1 if v(S)
α(S) = br,

for all S ∈ P.

We denote by vk the decreased game of vk−1 for k = 2, . . . , r − 1, and we call it the k−th

proportional decreased game of v.

By repeating this process r − 1 times, the remaining proportional shares are b1 < b2, and

we obtain the last decreased game (P, vr−1), where vr−1(S)
α(S) = b1 for all S ∈ P. Therefore,

vr−1(S) = b1α(S), for all S ∈ P.

Due to the structure of the decreased game it is not difficult to see that in the last

proportional decreased game (P, vr−1), the proportional share payoff vector for any coalition

structure (B1, . . . , Bm) is xi = b1αi, for all i ∈ N .
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3.3 Order of strength with respect to α

The aim is to define a complete preference relation which analogously to Selten (1972) we

call order of strength with respect to α. To this end, we use the proportional decreased game

to compare players who are incomparable in the original game. By repeating this process in

a finite number of steps we obtain a complete and transitive order of strength of the players.

Like Selten (1972) says, we could complete this precedence relation by considering two

players as equally strong whenever they are peers, but then there are some cases in which

this relationship does not reflect obvious differences between some players. Therefore, we

define a more refined order of strength by considering that one of two peers is stronger than

the other if he or she precedes the other in the proportional decreased game.

Since every proportional maximal share structure of the original game is also a pro-

portional maximal share structure of the proportional decreased game, it seems natural to

consider the proportional decreased game in order to compare the players who are peers in

the original game.

Let (P, v) be a game, α ∈ RN
++ the weights of the players, and (P, vk), for k = 1, . . . , r−1,

the family of its decreased games. A player i ∈ N is stronger or indifferent than a player

j ∈ N with respect to α, i %s j, if and only if one of the following three conditions holds:

1. Player i precedes player j with respect to α in the original game, (i.e. i %v
p j).

2. There exists k ∈ {1, . . . , r − 1} such that i, j are peers in the original game v and also

in vt, for t = 1, . . . , k − 1, and player i precedes player j with respect to α in the k-th

proportional decreased game vk, (i.e. i %vk
p j).

3. Players i and j are peers in the original game v and in all the decreased games vt for

t = 1, . . . , r − 1.

In the next theorem we prove that %s is a transitive and complete binary relation on
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N = {1, . . . , n}.

Theorem 3.3. Let (P, v) be a game and α ∈ RN
++ the weights of the players. The order of

strength with respect to α, %s, is transitive and complete.

Proof. It is trivially complete, since given two players either they are comparable in an

intermediate step of the process or they are peers until the end of the process. In this case it

is not difficult to see that in the last proportional decreased game (P, vr−1) the proportional

share payoff vector for any coalition structure is xi = b1αi for all i ∈ N , then we can compare

the players by their weights.

Let us prove transitivity. Let i, j, k ∈ N such that i %s j and j %s k then we must prove

that i %s k. If i %v
p j and j %v

p k then by Proposition 3.2 i %v
p k. Therefore, by definition

i %s k. In case that i %v
p j and j, k are peers in v, it is not difficult to prove that i 6⋍p k and

i 6⋍p j. Since we assumed i %v
p j and we have i 6⋍p j, then there exists a vector x∗ ∈ m̄α(P, v)

such that x∗
i > x∗

j . Since j and k are peers, it holds x∗
j = x∗

k. Therefore x∗
i > x∗

k. This proves

that i ≻v
p k and so i %s k. In all other cases the proof follows equivalently.

In the next section we introduce the proportional regular configuration with respect to α

and we prove its existence for any game and for any weights system of the players.

4 Existence

A result of the game is a configuration that consists of a coalition structure and a payoff

vector. Among them, we define the proportional regular configurations as follows.

Definition. Given a game (P, v), a configuration (B1, . . . , Bm; x1, . . . , xn) is called a pro-

portional regular configuration with respect to α ∈ RN
++ if it satisfies the following three

hypothesis:
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1. The coalition structure B = (B1, . . . , Bm) is exhaustive (see (1)).

2. The payoff vector x = (x1, . . . , xn) is in the proportional division core associated to B

with respect to α (see (2)).

3. The payoff vector x preserves the order of strength w.r.t. α between the players in the

same coalition. Thus, if two players i and j belong to the same coalition Bk and i ≻s j,

then we have xi ≥ xj .

Before proving the general existence theorem we need to develop some technical results.

In the first one we show some relationship between the order of strength %s w.r.t. α and the

weights of the players.

Lemma 4.1. Let (P, v) be a game and let B = (B1, . . . , Bm) be a proportional maximal share

structure with respect to α ∈ RN
++ (see (3)), for any k ∈ {1, . . . , m} and i, j ∈ Bk we have

(a) If v(Bk) > 0 (respectively if v(Bk) < 0) and αi > αj, then i %s j (respectively i -s j).

(b) If v(Bk) > 0 (respectively if v(Bk) < 0) and i ≻s j, then αi ≥ αj (respectively αi ≤ αj).

Proof. Let us prove (a). Let x be the proportional payoff vector associated to B. For all

k ∈ {1, . . . , m} and all i ∈ Bk,

xi =
v(Bk)

α(Bk)
αi.

For i, j ∈ Bk, since αi > αj and v(Bk) > 0, it holds that

xi =
v(Bk)

α(Bk)
αi >

v(Bk)

α(Bk)
αj = xj .

If there exists y ∈ m̄α(P, v) such that yi < yj , we obtain i ⋍v
u j or equivalently i ⋍s j. In the

other case i ≻v
p j and then i %s j.

To prove (b), take into account (a) and the completeness of %s.
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Next we see that for any proportional maximal share structure, the corresponding pro-

portional division core is non-empty.

Lemma 4.2. Let (P, v) be a game, α ∈ RN
++ and B = (B1 . . . , Bm) a proportional maximal

share structure with respect to α. Then, the proportional share payoff vector x ∈ RN defined

by xi = v(Bk)
α(Bk)αi, for all i ∈ Bk where k = 1, . . . , m, belongs to PDCα

B(P, v).

Proof. Let B = (B1, . . . , Bm) be a proportional maximal share structure with respect to α and

x = (x1, . . . , xn) the corresponding proportional share payoff vector. Assume there exists a

coalition S ∈ P such that xi <
v(S)
α(S)αi for all i ∈ S, and let k∗ = min{k ∈ {1, . . . , m} | S∩Bk 6=

∅}. Hence, S ⊆ N \ (B1 ∪ · · ·∪Bk∗−1) which in case that k∗ = 1 it is S ⊆ N . Let i ∈ S ∩Bk∗ .

Since B = (B1, . . . , Bm) is a proportional maximal share structure, we have

xi =
v(Bk∗)

α(Bk∗)
αi = max

S∈Qk∗

{ v(S)

α(S)

}

αi,

where Qk∗ = {S ∈ P | S ⊆ N \ (B1 ∪ · · · ∪ Bk∗−1)} as defined in (3). Thus, this is a

contradiction with xi <
v(S)
α(S)αi for all i ∈ S, since S ⊆ N \ (B1 ∪ · · · ∪ Bk∗−1) and S ∈ P.

Consequently, we have that for all S ∈ P there exists a player i ∈ S such that

xi ≥
v(S)

α(S)
αi.

Since x is an imputation for the coalition structure B, we have proved that x ∈ PDCα
B(P, v).

With the next result we prove that, if a given coalition structure of N is not exhaustive,

we can always find a coarser exhaustive coalition structure.

Lemma 4.3. Given a game (P, v) and a non-exhaustive permissible coalition structure,

(B1, . . . , Bm), there exists {J1, . . . , Jk}, a partition of M = {1, . . . , m} and an exhaustive

permissible coalition structure (B′
1, . . . , B

′
k) such that,

(a) B′
r =

⋃

j∈Jr
Bj , for r = 1, . . . , k,
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(b) v(B′
r) ≥

∑

j∈Jr
v(Bj), for r = 1, . . . , k.

Proof. Consider Q the set of all permissible coalition structures that we can get from the

union of several coalitions from the given coalition structure (B1, . . . , Bm). That is to say

Q =
{

(C ′
1, . . . , C

′
k) | exists a partition {J1, . . . , Jk} of M, and C ′

r =
⋃

j∈Jr

Cj , C ′
r ∈ P

and v(C ′
r) ≥

∑

j∈Jr

v(Cj), for r = 1, . . . , k
}

.

Since (B1, . . . , Bm) ∈ Q, the set Q is non-empty. And let (B′
1, . . . , B

′
k) ∈ Q be such that

∑k
i=1 v(B′

i) is maximal among all the coalition structures in Q.

We prove that (B′
1, . . . , B

′
k) is exhaustive. Assume it is not, then there exists ∅ 6= J ′ ⊆

L = {1, . . . , k} such that

(4) B =
⋃

t∈J ′

B′
t ∈ P and v(B) >

∑

t∈J ′

v(B′
t).

It is not difficult to see that (B, (B′
t)t∈L\J ′) is a coalition structure that belongs to Q.

Moreover, by (4) we have

v(B) +
∑

t∈L\J ′

v(B′
t) >

∑

t∈L

v(B′
t),

but this involves a contradiction since we have chosen (B′
1, . . . , B

′
k) ∈ Q such that the addition

of their worths is maximal. Therefore, (B′
1, . . . , B

′
k) must be exhaustive.

Finally, the next theorem shows that for any cooperative game, with or without restricted

cooperation, and for any vector of weights α ∈ RN
++ we can always guarantee the existence of

at least one proportional regular configuration with respect to α. This is the generalization

of the corresponding result in Selten (1972) concerning the equal share concept.

Theorem 4.4. For any game (P, v) and all α ∈ RN
++, there always exists a proportional

regular configuration with respect to α.
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Proof. Let (B1, . . . , Bm) be a proportional maximal share structure with respect to α and

consider the configuration (B1, . . . , Bm; x1, . . . , xn) where

xi =
v(Bk)

α(Bk)
αi, for all i ∈ Bk, k = 1, . . . , m.

By Lemma 4.2 we have that (x1, . . . , xn) ∈ PDCα
B(P, v).

Now we prove that the payoff vector x preserves the order of strength w.r.t. α of the

players.

Let i, j ∈ Bk, and i ≻s j. If v(Bk) 6= 0, by Lemma 4.1 if v(Bk) > 0 then αi ≥ αj and if

v(Bk) < 0 then αi ≤ αj . Therefore in both cases the next inequality holds

xi =
v(Bk)

α(Bk)
αi ≥

v(Bk)

α(Bk)
αj = xj .

If v(Bk) = 0, then xi = xj = 0, thus it holds xi ≥ xj .

Finally, if (B1, . . . , Bm) is exhaustive, then (B1, . . . , Bm; x1, . . . , xn) is a proportional re-

gular configuration w.r.t. α. If it is not exhaustive, by Lemma 4.3, there exists J1, . . . , Jr a

partition of M = {1, . . . , m} and an exhaustive permissible coalition structure (B′
1, . . . , B

′
r)

such that,

1. B′
k =

⋃

j∈Jk
Bj , for k = 1, . . . , r,

2. v(B′
k) ≥

∑

j∈Jk
v(Bj), for k = 1, . . . , r.

Then,

∑

i∈B′
k

xi =
∑

i∈∪j∈Jk
Bj

xi =
∑

j∈Jk

∑

i∈Bj

xi =
∑

j∈Jk

v(Bj) ≤ v(B′
k), for k = 1, . . . , r.

Therefore,

v(B′
k) −

∑

i∈B′
k

xi ≥ 0, for k = 1, . . . , r.

Now, we define the payoff vector (y1, . . . , yn) where

yi = xi +
v(B′

k) −
∑

i∈B′
k
xi

|B′
k|

, for all i ∈ B′
k where k = 1, . . . , r.
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We will see that (B′
1, . . . , B

′
r; y1, . . . , yn) is a proportional regular configuration w.r.t. α.

Clearly y ∈ IB′(P, v) and y ∈ PDCα
B′(P, v). Moreover, the vector y preserves the order

of strength with respect to α. We have to prove that, if i, j ∈ B′
k, and i ≻s j, then yi ≥ yj .

Assume that yi < yj , this implies xi < xj , where x ∈ m̄α(P, v). By Lemma 3.1(d), we have

i ⊁v
p j. Since xi < xj , for the vector x ∈ m̄α(P, v), players i, j are not peers in v. Therefore,

either i ≃v
p j or i ≺v

p j which, by definition, implies i -s j and this is a contradiction with

i ≻s j. Thus we have yi ≥ yj and this proves that (B′
1, . . . , B

′
r; y1, . . . , yn) is a proportional

regular configuration w.r.t α.

Notice that the above theorem gives a constructive way to find some proportional regular

configurations.

5 An application

In this section, we apply this proportional share analysis to the class of financial cooperative

games (Izquierdo and Rafels, 2001). In this class of games, the set of players is a group of

investors N = {1, . . . , n}, such that each of them has an amount of money ci > 0, i = 1 . . . , n

that he or she wishes to invest. We assume that the bank offers a yield that increasingly

depends on the amount of money deposited and that investors may combine their resources,

c(S) =
∑

i∈S ci, S ⊆ N , and invest them in the bank. The characteristic function is given by

v(S) = c(S)i(c(S)) where i(c(S)) is the yield that coalition S gets by joining their resources.

Let us denote by pc(v) =
(

v(N)
c(N) ci

)

i∈N
the proportional allocation of the game. Next we

prove that for this class of games (N ; pc(v)) is always a proportional regular configuration

with respect to the capitals invested by the players.

Proposition 5.1. Let (P, v) be a financial cooperative game with capitals c = (c1, . . . , cn) ∈

RN
++ and N ∈ P. Then, (N ; pc(v)) is a proportional regular configuration with respect to c.
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Proof. Since N is a permissible coalition then it is exhaustive. By its own structure, financial

cooperative games satisfy v(S)
c(S) ≤ v(N)

c(N) for all ∅ 6= S ∈ P. Therefore, it is not difficult to

see that pc(v) ∈ PDCc
N (P, v), and the grand coalition N is always a proportional maximal

share structure. Therefore, from the proof of Theorem 4.4, the proportional allocation, pc(v),

preserves the order of strength w.r.t. c among the players.

However, although (N ; pc(v)) is a proportional regular configuration and generally the

proportional allocation plays an important role into financial cooperative games, the following

example shows that this solution is not generally a regular configuration if we analyze the

problem à la Selten.

Example 2. Let (P, v) be a three-player game, where the players are a group of investors.

The capitals to invest are c1 = 3000, c2 = 600 and c3 = 3500. Suppose that the yield offered

by the bank is given by

i(c(S)) =































0% if c(S) < 3600,

10% if 3600 ≤ c(S) < 5000,

12% if c(S) ≥ 5000.

Let us assume that players 1 and 2 cannot form a coalition unless it includes player one. Thus,

the set of permissible coalitions is P = {{1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}. Therefore, the

game is,

v(1) = 0, v(12) = 360,

v(2) = 0, v(13) = 780, v(123) = 852,

v(3) = 0.

As the reader may check, the order of strength with respect to α = (1, 1, 1) is 2 ≺s 3 ≺s 1.

Therefore, although N is exhaustive and pc(v) = (360, 72, 420) is in the equal division core,

it does not preserve the order of strength w.r.t α = (1, 1, 1) since player 1 is stronger than

player 3 and pc,1 = 360 < pc,3 = 420. Thus, (N ; pc(v)) is not a regular configuration à la

17



Selten, whereas by Proposition 5.1 it is a proportional regular configuration with respect to

c = (3000, 600, 3500).

pc(v) = (360, 72, 420)

pc(v) = (360, 72, 420)

Regular configurations

EDCN (P, v)PDCc

N
(P, v)

Proportional regular configurations

Figure 1: This figure corresponds to the proportional division core and the equal division core of

Example 2.

The shadowed zones in the two triangles in Figure 1 represents respectively PDCc
N (P, v)

and EDCN (P, v). Inside, in both cases, with the black lines we have highlighted the subset

of payoff vectors that preserve the order of strength in each of the cases. Observe that, in the

first triangle this corresponds to the set of payoffs in the PDCc
N (P, v) satisfying x2 ≤ x1 ≤ x3,

and pc(v) = (360, 72, 420) belongs to this subset. In the second triangle the shadowed zone

corresponds to the payoffs in the EDCN (P, v) satisfying x2 ≤ x3 ≤ x1.
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