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Abstract

We consider a dynamic model where traders in each period are matched randomly into pairs who then

bargain about the division of a fixed surplus. When agreement is reached the traders leave the market.

Traders who do not come to an agreement return next period in which they will be matched again, as

long as their deadline has not expired yet. New traders enter exogenously in each period. We assume that

traders within a pair know each other’s deadline. We define and characterize the stationary equilibrium

configurations. Traders with longer deadlines fare better than traders with short deadlines. It is shown

that the heterogeneity of deadlines may cause delay. It is then shown that a centralized mechanism that

controls the matching protocol, but does not interfere with the bargaining, eliminates all delay. Even

though this efficient centralized mechanism is not as good for traders with long deadlines, it is shown

that in a model where all traders can choose which mechanism to use, no delay will be observed.
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1 Introduction.

The driving force of most bargaining models is the assumption or stylized fact that people prefer to realize

gains early rather than late. If bargaining partners do not care about the time of agreement, there is no

incentive to come to agreements in the first place and bargaining could go on forever. The eagerness to reach

early agreements is usually modeled by introducing a discount factor strictly less than one. This approach

has of course been very successful in obtaining elegant and intuitive results that yield important insights

about which aspects influence bargaining outcomes. Most notably, Rubinstein’s (1982) seminal alternating

bargaining game shows that players bargaining about the division of a fixed surplus will agree immediately

and the more patient a player is, the bigger the share he will obtain. Two very patient players will share the

surplus approximately equally with the first proposer having a slight advantage.

In this paper we want to consider deadlines as an alternative or additional way to express a preference

for early agreements in bargaining. Deadlines are present in many real bargaining situations: In (pre-)trial

negotiations an agreement between prosecutor and defence attorney must be reached before the jury presents

the verdict; the re-sale of a concert ticket must be concluded before the concert takes place; a renewal of a

contract must often be negotiated before the current contract expires. It is often easier for a person to state

by which date an agreement must be reached (say a month from now) than to make precise how much he

is willing to pay extra to have an agreement today rather than tomorrow. For example, a visiting scholar,

returning to Europe from the US two days from now, may be in need to sell his car fast, while another visiting

scholar just arriving to the US may be willing to wait and look around for two weeks before buying a car.

Moreover, software agents that bargain on behalf of people using the internet must often be programmed

with a deadline in order to ensure the termination of the protocol in which they take part.

Our work is motivated by the large growth of person-to-person trade that takes place on the Internet.

For example, the leader in this field, eBay, has already over 150 million registered users worldwide, some 60

million of which are defined as ”active”, having bid or listed items in the past year. In the early stages, eBay

was used to selling collectibles by means of auctions. Nowadays, it is an economy of its own, selling all kinds

of goods. Used cars, for example, are now the most valuable category on eBay. Although the auction format

remains the default option, about 30 percent of the goods sold on eBay are now sold at fixed, so called, “buy-

it-now” prices. Currently eBay is planning to introduce “want-it-now” and “best offer” options whereby a

buyer can haggle directly with the seller.1 The recent acquisition of Skype (a global P2P telephony company)

by eBay will help facilitate more direct bargaining between buyers and sellers. One to one bargaining over

the Internet is likely to become an important part of economic activity as a result of this.
1Source: The Economist (2005).
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The two assumptions we adopt in our model — exogenous arrival rates of buyers and sellers and existence

of deadlines — are particularly suitable for modeling such interactions. In a global market, covering different

time zones, and without opening or closing hours, traders will keep arriving at a steady rate each day.

Deadlines are typically used in online auctions2 and also by software agents that do price comparisons online.

In addition, from a user interface perspective, deadlines — rather than discount rates — are the most easily

understood and convenient way for people to communicate their degree of impatience to the marketplace.

Furthermore deadlines may be part of the good: concert or airline tickets are worthless after the date of

the event or flight. The buyer may need to get the good by a specific date, say for a birthday or Christmas

present.

This paper studies the interaction of large groups of buyers and sellers who arrive at an exogenous rate

to the market. Buyers and sellers are randomly matched into pairs and bargaining takes place in each match

about the division of the surplus. We assume that the size of the surplus is fixed in order to focus on the

effect of heterogeneous deadlines. If an agreement is reached, the traders disappear with their gains from

the market. If there is no agreement, and a trader’s deadline has expired, the trader will disappear from

the market with no surplus. In the case of disagreement and a non-expiring deadline, the trader returns

next period in which he will again be matched, with a different partner. The deadline of this trader has

then been reduced by one. We assume that inflowing traders are heterogeneous with respect to deadlines. A

trader with deadline i has in total i opportunities to come to an agreement with his assigned partner. After

i disagreements the trader receives zero surplus and disappears from the market.

Although entry is assumed to be exogenous and constant over time, the total mass of buyers and sellers

present in the market may change over time because exit is endogenous. On top of that, the proportion of

traders with short deadlines may change over time if traders with short deadlines are more likely to come

to agreements then traders with long deadlines, since we do not assume that exiting traders are replaced

by new traders of the same type. We will be interested in the stationary state of the model, where the

total mass of traders and the relative frequencies of deadlines remain constant over time. This allows us to

focus on how the distribution of deadlines of the new traders flowing into the market affects the outcome of

bargaining, payoffs and the possible existence of delays. Although it is not the main aim of this paper to

give an explanation for the existence of delays in bargaining, it is worth emphasizing that delay may exist

even though there is perfect information in our model and immediate agreement is always Pareto optimal.

Most models of bargaining aimed at explaining the existence of delay are either based on the assumption of

imperfect information so that the passing of time can signal relevant information about valuations (e.g., Sobel

and Takahashi (1983) and Admati and Perry (1987)) or they employ the multiplicity of equilibria to construct

2The seller can typically choose between auction formats with a duration of 1, 3, 5, 7, or 10 days.
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credible threats (e.g., Haller and Holden (1990) and Sakovics (1993)). Exceptions are, among others, Merlo

and Wilson (1995) in an environment where the bargaining set changes over time in a stochastic manner and

Fershtman and Seidmann (1993) who allow for endogenous commitments to not accept proposals that are

worse than previously rejected proposals.

We assume that there is perfect information about the deadlines of both traders. We define and show

the existence of a stationary equilibrium. We show that in equilibrium, traders with longer deadlines achieve

higher payoffs than those who have shorter deadlines. We then show that it is possible that when traders with

relatively long deadlines are matched they choose, in equilibrium, not to trade and go back to the market

where they could be matched (in the next period) with a trader with a short deadline. We characterize, in

terms of the distribution of deadlines of traders who flow into the market in every period, whether and when

such delays will occur. We then examine the comparative statics of our analysis and show that delay can

occur frequently and can have a large negative effect on welfare.

We then propose a simple centralized matching mechanism which eliminates this inefficiency: The mech-

anism simply matches traders with the same deadline (but does not interfere with how traders bargain once

they are matched). We show that in equilibrium all trade takes place immediately. The centralized matching

mechanism shields traders with short deadlines. We are therefore able to show that if all traders can choose

which mechanism to use, then all trade will take place in the centralized mechanism (because liquidity fol-

lows the traders with the shorter deadlines). This holds even when there is no delay in the decentralized

mechanism.

Although deadlines seem a very natural way of expressing time preferences by people and even though

bargaining partners are often tied to personal deadlines, the theory of bargaining has not had much to say

about how deadlines affect bargaining. In contrast to the current paper, this literature considers two person

bargaining with a common deadline. This starts with the finite horizon version of the Rubinstein bargaining

model (St̊ahl, 1972), which shows that the first mover advantage decreases with the number of bargaining

rounds. In some experimental set-ups participants have a limited time to come to agreements. In most

cases agreements occur close to the deadline or deadlines may even be missed. (See Roth, Murnighan and

Schoumaker, 1988). Yildiz (2004) explains why agreements are often reached close to the deadline when the

deadline is fixed, but that agreement is immediate in case of stochastic deadlines. Ma and Manove (1993)

consider a model of bargaining with a known deadline in which players can make proposals and can delay

their proposals, but in which the offers are received with some random delay after having been made. They

show that players will start by delaying making proposals, then make proposals that are sometimes rejected.

Agreements tend to be agreed upon near the deadline and sometimes no agreement is reached before the

deadline expires. Ponsati (1995) analyzes a bargaining game between two players over two outcomes with
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a deadline. The players have opposed preferences about the outcomes but the exact utility the players

experience from the outcomes is private information. Players basically have to decide how long to wait

before giving in to the opponent’s preferred outcome. Ponsati (1995) shows that many concessions are made

exactly at the deadline but not just before (but possibly much earlier). The deadline may also be missed

altogether. Fershtman and Seidmann (1993) show in a complete information setting that agreements will

only be reached at the deadline when bargainers are committed not to accept a proposal that is worse than

a previously rejected proposal.

Our paper also relates to the large literature on dynamic matching and bargaining, beginning with Ru-

binstein and Wolinski (1985) and summarized in Gale (2000). A dynamic matching and bargaining game

constitutes a natural model of decentralized trade when there are many traders on both sides of the market.

Most closely related to our paper is Samuelson (1992), who also incorporates bargaining into a market with

matching. He considers buyers and sellers with heterogenous valuations and shows that two traders who

could realize a positive surplus from trading, may decide to break up negotiations and look for alternative

partners, with which they can make even more profitable agreements. The current paper has in common

with Samuelson (1992) that the disagreement point of a pair of traders is endogenously determined by the

outside options generated by the market, and that this is different from the one of the bargaining problem

studied in isolation. A difference is that in Samuelson (1992) the surplus to be divided depends on the actual

match and is not known, whereas the disagreement payoff for a particular trader is constant over time. Also

related is Jackson and Palfrey (1998), who consider a market where traders with heterogeneous valuations

can return after disagreement, but without new traders flowing in. They assume a finite number of trading

or matching rounds which in the light of our paper can be considered as a common deadline for all traders.

Jackson and Palfrey (1998) show that for a robust set of distributions of buyer and seller valuations the

constrained efficient trading rule is not attainable. The intuition for this is that trades in one period create

an externality on the distribution of traders who are rematched in the next period. Their paper has in com-

mon with ours that traders only agree when that is better than their outside option, and that this outside

option changes over time. In our paper the outside option changes because of the deadline becoming tighter,

while in Jackson and Palfrey (1998) the outside option is affected, through the matching probabilities and

distribution of valuations, by the externality caused by other traders’ agreements.

Finally, our paper considers what will happen when traders can choose between two market institutions.

Existing literature, for the most part, has confined its attention to the analysis of different market mechanisms

in isolation. Comparisons between different market mechanisms are usually done from the perspective of the

seller, asking which mechanism a single seller would prefer under the assumption that buyers have no choice

but to participate in the chosen mechanism (as in, e.g., Milgrom and Weber, 1982). A small number of
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papers has considered the endogenous distribution of mechanisms (see, e.g., McAfee, 1993 and Peters, 1994)

but in models where competing sellers choose a type of auction through which to sell and buyers select in

which auction to participate. That is, the implication of the assumption that traders are free to choose the

exchange mechanism through which to trade on the outcome of competition between different mechanisms

was mostly studied in asymmetric models that favor sellers over buyers. More recently, Neeman and Vulkan

(2005) studied competition between a decentralized bargaining mechanism and a centralized market where

traders are privately informed about their valuation. They show that, in equilibrium, all trade will take place

via the centralized market.

The rest of the paper is organized in the following way: Section 2 presents the general model. In section 3

we define and show existence of stationary equilibria and analyze their properties. In section 4 we introduce

the centralized matching mechanism and show that traders will choose to use it and that no delay will occur.

In section 5 we discuss how the model and results are extended to the case where the distributions of deadlines

for buyers and sellers are asymmetric. Section 6 concludes. Proofs are collected in the Appendix.

2 The Model

We consider a model with a continuum of sellers and buyers (of mass 1 each) flowing into the market every

period. All sellers have one unit of a good they produced at zero cost and all buyers have unitary demands

for this good, which they all value at one. The only difference between different traders is their deadline. The

deadline of a trader is an integer number from {1, 2, ..., N} that indicates how many periods are remaining

for this trader to conclude a deal. If a trader fails to conclude a deal at the last opportunity he misses his

deadline and his utility is zero. That is, a trader with deadline 1 will have to make a deal immediately or

his opportunity will be lost. Such a trader will be willing to accept any deal that gives him a positive utility.

On the other hand, traders with a long deadline will be able and willing to reject certain deals and wait for

better opportunities in the future.

We assume that proportion pi of the sellers (buyers) that flow into the market place every period has

deadline i. The procedure for closing trades is as follows: in each period t ∈ Z each buyer is matched with

a seller. One trader in each pair is chosen at random and becomes the proposer (with probability one half).

This trader makes a proposal which can be accepted or rejected. In the first case trade takes place and

traders disappear from the market. In the second case no trade takes place and both traders go back to

the market and become matched next period (with different partners), as long as their deadlines have not

expired. Of course, their deadline will then be reduced by one.

We will be interested in the steady state or stationary equilibrium, which will be defined formally below.
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A stationary equilibrium is an equilibrium where all buyers (sellers) with the same deadline make and accept

the same proposals (independent of the time period t) and where the mass of traders in the market place and

the distribution of deadlines among the buyers (sellers) (denoted by q) remains constant over time. There

are two different scenarios possible. In the first scenario, which we will refer to as the no delay case, trade

occurs in each matching. In this case the stationary distribution q of deadline types is simply given by p,. In

the second case, which we will refer to as the delay case, there is no trade taking place in some matches. In

this case the stationary distribution q will be different from the inflow distribution p.

We will assume that traders discount late trades by a factor δ ≤ 1. It will become clear later on that the

role of the discount factor is not as important as in standard bargaining models. The reason is that, as will

be shown, traders with longer deadlines will close better deals than traders with shorter ones. This gives

traders an incentive to make deals early, even if the discount rate is equal to one. However, if we do not allow

for discounting of utilities, there is no cost of having delay, as long as deadlines are never missed.

We assume throughout this paper that traders that are matched know each other’s deadline. The proposal

made by one of the traders may thus depend on his deadline and that of his partner. In a companion paper

we analyze the case where deadlines are private information.

3 Equilibrium Analysis

A pure strategy for a trader specifies the offers he makes when chosen as a proposer and the offers he accepts

as a responder, both as a function of his own deadline, as well as of his trading partner’s deadline. In its

full generality, the strategy could also depend on the time period t and on the received and rejected offers

in the past by this trader. When some traders do not accept the proposal received, the total mass of buyers

and sellers around in the next period will be strictly more than one. Also, the distribution of deadlines may

change. In principle, the optimal strategy for a trader depends on the current and future distributions of

deadlines. If these distributions change over time, the optimal strategy of a trader does not only depend

on his deadline or the one of his current trading partner, but also on the exact moment that he enters the

market. That obviously complicates our (and the trader’s) task.

However, since all traders that enter will leave within N periods, the total mass of traders present in the

market at any time will never explode. The total mass of traders in any period t remains bounded above

by N through time and (at least a subsequence) will in fact converge and eventually the distribution of

deadlines will settle down on a stationary distribution. We will be interested only in how traders behave in

this stationary state, and we will not be worried over how and how fast the distribution settles down.

A stationary equilibrium is almost completely characterized by the expected equilibrium payoff wi of a
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Figure 1: Feasible and unfeasible disagreement points

trader with deadline i. (For convenience we denote w0 = 0.) From the vector of expected payoffs w one

can almost completely reconstruct the associated stationary equilibrium strategies. One needs to distinguish

three cases in the bargaining process between two traders with deadlines i and j. The three cases correspond

to the disagreement point being in the interior of the feasible set, outside of the feasible set, or on the Pareto

frontier. The first two cases are illustrated in Figure 1. Although the third case may seem very peculiar and

non-generic, this case is very important and relevant for the existence of a stationary equilibrium because of

the fact that the disagreement points are determined endogenously.3

A responder with deadline i must accept any proposal that gives her strictly more than δwi−1 and reject

any proposal that gives her strictly less than δwi−1. In equilibrium she must also accept a proposal of exactly

δwi−1 whenever it is in the strict interest of the proposer to do so. (That is, when 1 − δwi−1 > δwj−1,

where j is the deadline of the proposer. This corresponds to Fig. 1a.) The reason is that the proposer

could guarantee acceptance with probability one by just offering slightly more to the responder. This implies

that, in equilibrium, the responder must accept a proposal of exactly δwi−1. Only in the peculiar case where

1−δwi−1 = δwj−1 a responder may accept the proposal of δwi−1 with any probability between zero and one.

This is the case if the disagreement point is exactly on the Pareto frontier.

Similarly, in a stationary equilibrium, a proposer with deadline i (when matched with a trader with

deadline j) must offer exactly δwj−1 to his trading partner when δ(wi−1 + wj−1) < 1. Offering strictly

more cannot be optimal while offering strictly less would result in rejection and a strictly lower payoff. If

δ(wi−1 + wj−1) > 1, as is indicated in Fig. 1b, any acceptable proposal would yield a payoff strictly less

3This parallels the fact that in a mixed strategy equilibrium of a normal form game a player is indifferent between two of its
pure strategies while, generically, no two pure strategy combinations yield any player the same payoff.

8



than δwi−1, in case of acceptance. Hence, in this case the proposer must make sure that the proposal

will be rejected. He can offer anything up to (but not including) δwj−1. Again, in the peculiar case that

δ(wi−1 + wj−1) = 1 the proposer has many options of offering deals that will be rejected for sure as well as

offering exactly δwj−1. What is important for the equilibrium outcome is the probability that trade will take

place when i is matched with j. We will denote this probability by Eij . From these probabilities one can

then calculate the mass zi of sellers (buyers) with deadline i.

3.1 Definition and existence of equilibrium

We now formally define a stationary subgame perfect equilibrium configuration.4

Definition 1 We call (z, w, E) = ((z1, ...., zN ), (w1, ..., wN ), E) ∈ <N
+ × <N

+ × <N×Na stationary subgame

perfect equilibrium configuration (with T -delay) if the following holds:

1.
∑N

i=1 zi = 1 + T

2. E is an N ×N symmetric matrix with Eij = 1 if δ(wi−1 + wj−1) < 1, Eij = 0 if δ(wi−1 + wj−1) > 1

and Eij ∈ [0, 1] otherwise.

3. zN = pN ; zi = pi + zi+1(
∑

j qj(1− Ei+1j)) where qj = zj/(1 + T )

4. wi = 1
2δwi−1 + 1

2 (
∑N

j=1 qj(max{δwi−1, 1− δwj−1}) for all i.

This definition requires some further explanation. The mass of traders with deadline i is denoted by zi.

Condition 1 says that the total mass of traders equals 1 + T . Given that per period a mass of 1 of new

traders enters, one can interpret T as the amount of delay: T/(T + 1) is the fraction of traders that will

postpone their trade by (at least) 1 period. The matrix E indicates the probability with which the pair of

traders (i, j) will come to an immediate agreement. If Eij = 1, proposer i will offer responder j δwj−1 and

keep the rest 1 − δwj−1 ≥ δwi−1 and this will be accepted. If 1 − δwj−1 < δwi−1, trader i will not want

to make an acceptable proposer to j and Eij = 0. For example, he may offer at most 1 − δwi−1 to j but j

will then not accept. Condition 3 is the stationarity condition. The total mass of traders with deadline i in

any period t + 1 equals the mass of new traders (pi) plus the mass of traders with deadline i + 1 present in

period t who decide to postpone their trade and wait for better times (these either reject proposals or make

unacceptable proposals). Finally, condition 4 describes the relation between the expected equilibrium payoffs

for traders with different deadlines, by linking bargaining outcomes with the endogenous disagreement points:

A responder with deadline i obtains always δwi−1 either because that is what is exactly offered or because
4We do not use the term stationary subgame perfect equilibrium, as that would implicitly refer to strategies. As argued

above, the strategies cannot always be pinned down exactly.
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an unacceptable offer is refused. A proposer with deadline i will offer to a responder with deadline j δwj−1

only if this yields the proposer more than her disagreement payoff.

We first show the existence of a stationary subgame perfect equilibrium configuration.

Theorem 2 For any inflow distribution p and any discount factor δ ∈ (0, 1] there exists a stationary subgame

perfect equilibrium configuration.

3.2 Properties of the equilibrium

We next show that in any stationary subgame perfect equilibrium configuration, the expected equilibrium

payoff is strictly increasing in the deadline. Although this result seems intuitive, it is not trivial. In particular,

it is not true that traders with deadline i + 1 can simply adopt the strategy of a trader with deadline i in

order to guarantee at least the payoff of that trader, since the offers received may differ. The proof uses

induction with respect to deadlines and condition 4 of Definition 1.

Theorem 3 In any stationary subgame perfect equilibrium configuration we have, for all i, wi < wi+1.

The theorem illustrates that having a relatively distant deadline is good in terms of expected payoffs.

Since acceptable equilibrium proposals to a trader with deadline j equal δwj−1, these traders receive better

offers than traders with a near deadline. When making an acceptable proposal, only the deadline of the

responder matters (as each pair is split up immediately after disagreement and no counteroffer can be made).

The probability of making acceptable proposals is both weakly decreasing in one’s own deadline and in the

partner’s deadline. Agreements are immediate when at least one of the partners has a near deadline, but

delay may occur when both traders have a distant deadline.

Corollary 4 In a stationary subgame perfect equilibrium configuration, if traders with deadlines i and j trade

with probability strictly less than one (that is, if Eij < 1), then any pair of traders (i′, j′) 6= (i, j) with i′ ≥ i

and j′ ≥ j trades with probability 0 (that is, Ei′j′ = 0). Similarly, if traders with deadlines i and j trade

with probability one (Eij = 1), then any pair of traders (i′, j′) with i′ ≤ i and j′ ≤ j trades with probability 1

(Ei′j′ = 1). Furthermore, E1j = Ei1 = 1 for all i and j.

3.3 (In)existence of delay

In this subsection we investigate the necessary and sufficient conditions for the existence of an equilibrium

without delay. We also characterize the equilibrium strategies precisely for such an equilibrium configuration,

and we perform comparative statics exercises. It is immediate from conditions (1) and (3) in Definition 1

that T = 0 implies that zi = pi. That is, the stationary distribution of deadlines coincides with the inflow
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distribution. This is rather intuitive as the no delay assumption implies that no trader remains in the market

for more than one period in such an equilibrium.

Suppose there exists a stationary subgame perfect equilibrium configuration with 0-delay. To emphasize

the distinct case of no delay, we let vi(= wi) denote the expected payoff a trader with deadline i obtains in

this equilibrium. For convenience we denote v0 = 0.

A responder with deadline j will accept any trade that yields him x > δvj−1 and reject any proposal

that yields x < δvj−1. In the equilibrium, a proposer of type i will offer to a trader of type j exactly δvj−1

which will be accepted with probability one. Hence, a proposer of type i keeps 1 − δvj−1 for himself when

meeting a type j. Note that this is independent of i. Also observe that proposer of type i could have made

an unacceptable proposal, in which case his payoff would equal δvi−1. In any equilibrium without delay, we

must thus have δvi−1 ≤ 1− δvj−1. It follows immediately that for i > 1

vi = v1 +
1
2
δvi−1 (1)

since with probability 1/2 trader i is offered δvi−1 and with probability 1/2 he obtains the same payoff that

a trader with deadline 1 gets, conditional on being the proposer. It follows that

vi = v1(1 +
1
2
δ + ... + (

1
2
δ)i−1) = v1(1− (

1
2
δ)i)/(1− 1

2
δ). (2)

Note that v1 > 0 since otherwise we must have vi = 0 for all i, which is impossible. It follows thus from

(2) that vi+1 > vi for all i. Before knowing one’s type the expected payoff in this equilibrium is one half

(given that there is no delay), so

1
2

=
N∑

i=1

pivi = v1

N∑

i=1

pi(1 +
1
2
δ + ... + (

1
2
δ)i−1). (3)

Hence,

v1 =
1/2∑N

i=1 pi(1 + 1
2δ + ... + ( 1

2δ)i−1)
=

(1− 1
2δ)

2
∑N

i=1 pi(1− ( 1
2δ)i)

. (4)

We summarize our findings thus far in the following proposition.

Proposition 5 In an equilibrium without delay, the expected equilibrium payoff of a trader with deadline j

equals

vj =
1− ( 1

2δ)j

2
∑N

i=1 pi(1− ( 1
2δ)i)

(5)

In particular, in an equilibrium without delay vN < 2v1.
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If it is optimal for the N type to make an acceptable proposal to another N type, then it is optimal for

all types to make acceptable proposals all the time. Namely, for the highest type to be willing to make an

acceptable proposal, it must hold that

1− δvN−1 ≥ δvN−1 ⇔ vN−1 ≤ 1/(2δ)

while for i to be willing to make an acceptable proposal to j it must hold that

1− δvj−1 ≥ δvi−1 ⇔ vi−1 + vj−1 ≤ 1/δ

which is satisfied since we know that vi−1 ≤ vN−1 for all i. From (5) we can verify that

vN−1 =
1− ( 1

2δ)N−1

2
∑N

i=1 pi(1− ( 1
2δ)i)

.

Hence, the existence of delay depends on the parameters of the model as the following result summarizes.

Theorem 6 There exists an equilibrium without delay if and only if

1− (1
2δ)N−1

2
∑N

i=1 pi(1− ( 1
2δ)i)

≤ 1
2δ

(6)

In this case there is exactly one equilibrium without delay. In this equilibrium, a responder of type j accepts

any offer x ≥ δvj−1 (and rejects any other offer) while a proposer of type i proposes exactly δvj−1 to a trader

of type j. Here vj is as defined in Proposition (5).

It follows immediately from our equilibrium existence result in Theorem 2 and the previous theorem that

an equilibrium with delay must exist whenever no equilibrium without delay exists.

Corollary 7 In case the inequality in (6) is not satisfied, there exists an equilibrium with delay.

3.4 Comparative statics and special cases

From the necessary conditions for the existence of an equilibrium without delay in Theorem 6 we obtain

immediately

Corollary 8

1. For N = 2, and for any inflow distribution p, there exists a unique stationary subgame perfect equilib-

rium configuration, and there is no delay in it.
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2. Suppose there exists a stationary subgame perfect equilibrium configuration without delay with inflow

distribution p, and let p′ first-order stochastically dominate p. That is,
∑i

1 pj ≥ ∑i
1 p′j for all i.

Then there also exists a stationary subgame perfect equilibrium configuration without delay with inflow

distribution p′. Moreover, the expected payoff for any trader decreases when the inflow distribution

shifts from p to p′.

3. Suppose there exists a stationary subgame perfect equilibrium configuration without delay when the dis-

count factor is equal to δ. Then there exists also a stationary subgame perfect equilibrium configuration

without delay for any lower discount factor δ′ ≤ δ (for the same inflow distribution p).

4. For given probability distribution p = (p1, ..., pN ) and natural number K, define pK
j+K = pj for 1 ≤ j ≤

N and pK
i = 0 otherwise.

For δ < 1 and K large enough, there exists a stationary subgame perfect equilibrium configuration

without delay when the inflow distribution is given by pK .

For δ = 1 and any K, there exists a stationary subgame perfect equilibrium configuration without delay

when the inflow distribution is given by pK if and only if there exists a stationary subgame perfect

equilibrium configuration without delay when the inflow distribution is given by p.

5. For given probability distribution p = (p1, ..., pN ) and natural number K, define pK
j×K = pj for 1 ≤ j ≤

N and pK
i = 0 otherwise.

For δ < 1 and K large enough, there exists a stationary subgame perfect equilibrium configuration

without delay when the inflow distribution is given by pK .

For δ = 1 and K large enough, there does not exist a stationary subgame perfect equilibrium configura-

tion without delay when the inflow distribution is given by pK .

These results are quite intuitive. First, when the highest deadline is equal to 2, delaying an agreement is

not very attractive since then one becomes a trader with deadline 1. With probability one half one becomes

a responder in which case one is forced to accept the zero offer. Hence, it is not possible to get an expected

payoff above one half by delaying. Hence, two traders with deadline 2 will agree immediately.

The second result states that shifting the distribution towards longer deadlines will not increase the

likelihood of delay. Even though such a shift increases the probability that two traders with long deadlines

meet, it reduces the incentive to delay as it becomes less likely to be matched in future periods with traders

with short deadlines. The expected payoff of any trader decreases as her probability of meeting traders with

relatively high deadline increases.
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The third result states the existence of a lower bound on the discount factor to make delay a possible

equilibrium phenomenon. For lower discount factors the cost of delay is so high that it never pays off to

delay, even when it is very likely that next period one is matched with a trader with very low deadline. Of

course, in the extreme case of a discount factor equal to zero, the situation is equivalent to one where all

traders have to agree immediately, that is, where all traders effectively have a deadline equal to 1.

The fourth and fifth result state that when the deadlines of all traders are increased enough (by a constant

or factor K), delay will disappear as long as there is some cost to delay. The reason is that the gains of being

matched with relatively low deadlines (i.e. deadline K + 1 or K, respectively) compared to being matched

with traders with the highest deadline (i.e., K + N or KN) is rather small, so that it is not worth waiting

for, whenever waiting is costly. On the other hand, when there is no cost of waiting (δ = 1), it is (for large

K) worth waiting in (5) where the difference between traders’ deadlines increases, but not necessarily so in

(4), where the difference between traders’ deadlines remains the same.

The corollary indicates that equilibrium configurations with a positive amount of delay can exist only if

a sufficiently large proportion of traders has a short deadline and if traders are sufficiently patient. Only in

these circumstances traders with high deadlines have incentives to wait for better times, when matched with

likewise traders. On the other hand, when many traders have short deadlines, the probability of delay will

be small. Also, when traders are very patient, the cost of delay is rather small. In order to get some insight

in the probability and cost of delay caused by deadlines, we will consider now some special cases.

Remark 9 In the special case of the uniform distribution (pi = 1/N) one obtains

vN−1 =
N(1− (1

2δ)N−1)

2
∑N

i=1(1− ( 1
2δ)i)

=
N(1− ( 1

2δ)N−1)

2(N − δ/2
1−δ/2 (1− (1

2δ)N )

Whether vN−1 ≤ 1/(2δ) depends on the parameters δ and N . For example, for δ = 0.9 this is true unless

N ∈ {4, 5, 6, 7}. On the other hand, for δ = 0.99 this is true only for N = 2 and for N > 98. For δ = 0.999

this is true only for N = 2 and for N > 998.

Remark 10 It is difficult to obtain data on actual distributions of deadlines. In order to get some idea of

how these distributions may look like, we examined the durations of auctions on eBay. Sellers on eBay choose

the duration of their auction, which can be 1, 3, 5, 7, or 10 days. Sellers who are not in a rush to sell may

choose the maximum duration of ten days, in the hope to attract more potential bidders. Of course, sellers

who need to sell fast will choose a shorter duration. Sellers may also choose a short duration in the hope that

buyers who are in a rush to buy will bid more aggressively. We collected data from eBay on the distribution

of durations of online auctions for four different goods. These data are presented in Figure 2. Note that
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the distributions of auction durations of laptops and blackberries are clearly distinct. For these reasons, we

believe that the choice of auction duration by the seller can be viewed as a rough proxy for the deadline of this

seller. Using these data as a proxy for the distribution of deadlines we find that each of these distributions

leads to a stationary subgame perfect equilibria configuration with delay when traders have a discount factor

close to 1.
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Figure 2: Auction duration for various goods on eBay.

Example 11 In order to illustrate how much delay may occur, we calculate a pure stationary subgame perfect

equilibrium configuration with delay for an example with deadlines 1 through 6. The inflow distribution is

assumed to be p = (0.235, 0.108, 0.077, 0.090, 0.090, 0.400) and the discount factor is chosen to be δ = 0.995.

It can be shown that there exists a stationary subgame perfect equilibrium configuration with T -delay where

T = 0.45 and the stationary distribution equals z = (0.167, 0.1, 0.124, 0.132, 0.194, 0.283)×1.45. The expected

payoffs realized by the traders is given by w = (0.287, 0.430, 0.505, 0.559, 0.602, 0.638). The pairs of traders

who do not come to an agreement are in the set {(3, 6), (4, 4), (4, 5), (4, 6), (5, 5), (5, 6), (6, 6)}. Clearly, since

many trades are delayed and there is discounting, there are inefficiencies. Figure 3a illustrates how delay

affects the distribution of deadlines in the stationary state. Figure 3b plots all disagreement points. The red

ones correspond to traders who prefer to delay trade.
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Fig 3a: Mass of new and delayed traders. Fig 3b: Feasible (green) and unfeasible (red)
disagreement points.

4 Centralized deterministic matching

We have seen that delay will occur in many instances, and the examples have also demonstrated that the

amount and cost of delay may be substantial. In this subsection we introduce a new market or matching

mechanism that has the property that no delay will occur. Moreover, we subsequently show that when all

traders can choose whether to participate in this mechanism or in the random matching mechanism discussed

before, all traders will choose the mechanism where no delay occurs, even though this implies that traders

with longer deadlines cannot benefit from this.

Our mechanism works as follows. We order the sellers and the buyers in increasing deadlines and then

we match the j-th seller with the j-th buyer. For the case where the distribution of deadlines for buyers and

sellers is the same, this simply means that each buyer (seller) with deadline i will be matched with a seller

(buyer) with deadline i.

We claim that when traders are matched in this way, all trading partners will immediately agree. Moreover,

each trader’s expected payoff is equal to 1/2. Namely, consider first the case of traders with deadline 1. Since

they are matched with a trader with the same short deadline, they will obtain 1 when they are chosen as

proposer and 0 otherwise. Now consider any trader with deadline i > 1 and suppose that traders with

deadline i′ < i expect a payoff of 1/2. Then a responder with deadline i will accept any offer above δ/2. A

proposer with deadline i will offer exactly δ/2 to its partner and keep 1 − δ/2 for himself. In expectation a

trader with deadline i thus obtains a payoff of 1/2.

Theorem 12 The mechanism where traders with the lowest deadlines are matched yields no delay and an

expected payoff of 1/2 to each trader, independent of his deadline.

Remark 13 We implicitly assume that the central ”match-maker” observes the deadlines of traders perfectly
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in order to match traders with the same deadline. If the match-maker cannot observe the deadlines and has

to rely on self-reporting of deadlines, traders would have incentives to understate their true deadline. In such

a case incentives can be restored by refusing re-entry of traders whose reported deadline has expired.

4.1 Endogenous choice of mechanism: unraveling

Above we have argued that the centralized mechanism is more efficient than the random matching mechanism

whenever there exists delay in the latter. This would seem to suggest that the centralized mechanism should

be used from a welfare point of view. On the other hand, traders with long deadlines may make higher profits

under the random matching scheme and are therefore reluctant to participate in the efficient mechanism. It

is in their interest to have trade taking place through the random matching model. Of course, the opposite

is true for the traders with short deadlines. In this subsection we analyze what happens when traders are

given the choice to participate in one or the other mechanism. Can both mechanisms co-exist or will one

dominate the other?

In each period there is an inflow of new traders. Each of those chooses between the random matching

mechanism (RM) and the efficient centralized mechanism (CM). Then matching takes place according the

chosen mechanism amongst the traders that have chosen the same mechanism. We assume that traders

choose once and for all one of the mechanisms. Hence, traders that do not conclude a trade return next

period (if their deadline has not expired yet) and will be matched in the same mechanism.5 We will again

be interested in the steady state equilibrium.

Note that if all traders coordinate on the same mechanism, nobody has an incentive to deviate as no trading

partner would be found in the rival mechanism. To avoid these artificial corner solutions we assume that each

new trader with small positive probability ε chooses a mechanism at random. This implies that a positive

mass of traders is present in each mechanism, so that a trading partner is found with positive probability.

We denote by Γε the game where traders choose consciously between mechanisms with probability 1−2ε and

choose each mechanism with probability ε unconsciously. We will be interested in the choices of the traders

in the limit when ε approaches zero.

Note that the endogenous choice by traders may be such that in one of the mechanisms more buyers than

sellers enter, and vice versa in the other mechanism. We have not dealt with asymmetric distributions.6 If

in RM more buyers than sellers participate, some buyers will remain unmatched. If in CM more buyers than

sellers participate, buyers with the highest deadlines will remain unmatched. Instead of dealing explicitly
5If traders could choose in each period between mechanisms and could thus switch from one to the other, the analysis is

altered, specifically in the random matching mechanism. Namely, each trader here would have the possibility to switch next
period to the centralized mechanism and obtain a payoff of 1/2. Hence, none of such traders (except the one with expiring
deadlines) would accept proposals below δ/2.

6It is possible to extend the analysis to asymmetric distributions and masses. See section 5 for details.
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with asymmetric distributions, we will focus on symmetric equilibria. Assuming that the inflow distribution

for sellers and buyers is the same, as we have done throughout the paper, the situation for buyers and sellers

with the same deadline is exactly the same, and symmetric equilibria will exist. We will show that the only

symmetric equilibrium is where, in the limit, all traders go to CM.

Theorem 14 In a symmetric equilibrium (where buyers and sellers with the same deadline behave identically)

when traders can choose between the efficient centralized mechanism and the random matching mechanism,

all traders with deadline strictly less than N will choose the efficient one. Only traders with deadline N may

choose RM, but in any case they obtain the same payoff of 1/2 as they would obtain in CM.

The intuition for this result is that traders with the lowest deadlines in RM will make the lowest expected

payoffs. This expected payoff is strictly below 1/2. No trader would consciously choose the RM option given

the guaranteed payoff of 1/2 in CM. Hence, only a few traders with deadline N may choose to do so in order

to take advantage of the few traders who by mistake choose RM.

5 Asymmetric markets

We have assumed throughout the paper that the number of sellers and buyers flowing into the market is the

same. We also assumed that the distribution of deadlines is the same for buyers and sellers. This allowed us

to simplify the exposition. However, this simplification is not crucial to our main results and both of these

assumptions can be relaxed. In this section we discuss briefly how this can be done and why our main results

will remain to hold.

Let pi denote the mass of sellers with deadline i flowing into the market, and let (1+ b)p′i denote the mass

of buyers with deadline i flowing into the market. Without loss of generality we may assume that
∑N

i=1 pi = 1

and
∑N ′

i=1 p′i = 1. If b > 0 then the buyers form the long side of the market. Obviously, in this case there

will always be buyers who will not get matched in any single round. That means that there will certainly be

delay among the buyers, and also that some buyers may miss their deadline, since some buyers may never be

matched with a seller before his deadline expires. However, we will be interested in the possibility of delay

on the (short) side of the sellers.

The definition of a stationary subgame perfect equilibrium configuration can be generalized in a straight-

forward manner. Namely, it will be a tuple (zB , zS , wB , wS , E), where zB
i and zS

j denote the mass of buyers

(sellers) with deadline i (j) and where wB
i and wS

j denote the expected payoff of a buyer (seller) with deadline

i (j). The N ′ ×N matrix E indicates the probability of agreement in a pair where buyer i and seller j are

matched. If
∑

zS
j = 1 + T (and thus

∑
zB
i = 1 + b + T ) and T > 0, there will be delay among sellers. The
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stationarity condition for buyers must now take into account not only that some buyers remain from the

previous period because they made or rejected unacceptable proposals, but also those buyers who were not

matched in the last period.

It can be shown that on both sides of the market the payoffs are strictly increasing in deadlines. The

payoffs will typically be lower on the long side of the market because of the positive probability of not being

matched. When the ratio of buyers per seller is very high (b >> 1, buyer’s payoffs will be close to zero. In

this extreme case there is no reason for sellers to delay since they can appropriate almost all of the surplus,

even when matched with a buyer with a long deadline. For such extreme cases there is thus no need to

discuss an alternative matching mechanism. In more moderate settings, the occurrence of delay on the short

side of the market will depend on the distribution of deadlines of inflowing buyers and sellers in a way that is

very similar to what we have described in section 3. In particular, assuming the existence of an equilibrium

without delay on the short side of the market, equations (1) and (2) hold for the payoffs of the sellers. For

the payoffs of the buyers similar expressions can be written. These will include the probability of not being

matched, b/(b + 1). From these equations and the assumption of no delay, one can get explicit expressions

for the payoffs of all traders. As in section 3, the condition for no delay occurring in equilibrium is that when

two traders with the highest deadlines meet, they prefer to agree, that is when δwS
N−1 + δwB

N ′−1 ≤ 1. It is

interesting to note that when there is delay on the short side of the market, the longer side benefits since the

probability of being matched is increased.

If delay (on the short side) occurs in the random matching mechanism, then again a centralized mechanism

of matching can reduce or eliminate the delay. Moreover, when traders endogenously choose which mechanism

to use, most of the trade takes place in the centralized mechanism and no delay occurs on the short side

of the market. The crucial idea of the centralized mechanism is as before: We order the traders on both

sides of the market by increasing deadlines and match the n-th seller with the n-th buyer. It is beyond the

scope of the present paper to analyze the centralized mechanism in its full generality. To illustrate how the

centralized mechanism works, let us now consider different distributions but equal mass (that is, b = 0). Let

us also assume that p1 = p′1.

Under these assumptions traders with deadlines 1 are matched among each other. Each of them will

obtain a payoff of one half. Traders with deadlines above 1 will be matched with traders with deadlines

above 1, but the deadlines of two bargaining partners need not be the same. Suppose p2 ≤ p′2. In this case

there are less sellers than buyers among the traders with deadline 2. This in turn implies that such sellers are

matched, in our centralized mechanism, with probability one to buyers with deadline 2. Such a match results

in immediate agreement with expected payoff of one half for each trader, since the proposer will always offer

δ/2. It is not difficult to verify that when in all matches with traders with deadlines above 1 such offers are
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made, no trader has an incentive to deviate and all traders obtain an expected payoff of one half.

When traders can choose between the random matching mechanism and the centralized one described

above, all traders will obtain a payoff of one half. Namely, if some were to obtain a higher payoff, others

must obtain less. But each trader can guarantee a payoff of one half by choosing CM. Only if a few traders

choose RM by mistake, some other traders with the highest deadline may be willing to choose RM and take

advantage. However, only very few will be able to do this and the resulting payoff will be equal to one half,

even for these traders.

6 Conclusions

We have shown that, in the context of a dynamic matching and bargaining market, heterogeneous deadlines

can be successfully incorporated to model situations where traders have different degrees of time pressure. Our

model captures that many real-life bargaining situations are framed in terms of deadlines (”When do I need

to have an agreement?”) rather than in terms of discounting (”How much am I willing to sacrifice to have an

agreement today rather than tomorrow?”). For example, agents that trade on behalf of other people are often

given a deadline. Stationary equilibria are shown to exist, for any initial distribution of trader’s deadlines.

The steady state equilibrium has the intuitive property that the more patient traders receive higher expected

payoffs. Depending on the distribution of deadlines of new traders, this induces these traders sometimes

to delay agreement when matched with similar traders. In an equilibrium with delay a trader with a long

deadline may initially reject proposals, while later on he will accept the same or worse offers, because his

outside option deteriorates over time. We consider this a realistic feature of bargaining. Compared to the

initial inflow distribution of deadlines, in an equilibrium with delay the steady state distribution is shifted

towards longer deadlines. This negatively affects all traders, but in particular those who are very much

pressed by time. A directed mechanism that matches traders with the same deadline removes any delay and,

moreover, guarantees all traders the same payoff. The availability of such a mechanism will attract, in first

instance, the exploited traders with short deadlines. An unravelling argument then shows that in fact all

trade will take place in this directed matching market.

Since the focus of the present paper is on the effect of deadlines on bargaining outcomes, we adopted some

simplifying assumptions, mainly for ease of exposition. We discuss briefly some possible generalizations.

First, we adopted the bargaining protocol of a single take-it-or-leave-it offer by a randomly chosen pro-

poser. The resulting outcome of this protocol when traders with deadlines i and j are matched is in fact

the Nash Bargaining Solution of the division of a unit with disagreement points δwi−1 and δwj−1. It is

well known that many other bargaining procedures lead to the same solution. For example, we could have
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assumed a Rubinstein type of model with very frequent alternating offers.

Second, instead of assuming that the negotiation ends and the pair is broken up after a rejected offer,

we could also have allowed traders to decide whether to keep negotiating with the same trader. However,

since traders have perfect information about their deadlines, this would not make any difference. If traders

agree not to close a deal now, because of better outside options for both of them, they will surely agree not

to postpone looking for those outside options.

Third, we assumed that traders within a pair know each other’s deadline. In a companion paper we

examine the case where deadlines are private information. It is shown that not only delay can take place,

but that deadlines can be missed altogether. This occurs when a proposer with an expiring deadline prefers

taking the risk of making a proposal that patient responders will reject. This happens when the proportion

of short deadlines is high.

Finally, we assumed that the surplus to be divided between any two traders is fixed. In this respect we

followed Rubinstein and Wolinski (1985) and Binmore and Herrero (1988). It would be clearly more realistic

to have buyers with a distribution of valuations and sellers with a distribution of costs. Samuelson (1992)

shows that delay may occur, even without the presence of deadlines and even when all pairs have a positive

gain from trade. The reason is simply that traders may expect even larger gains of trade in future matches.

Gale (2000) and Satterthwaite and Shneyerov (2003) allow for distributions of buyer’s valuations and seller’s

costs in a dynamic matching and bargaining model. Of course, their focus is on the convergence of equilibria

of such model to Walrasian equilibria as the time period between consecutive rounds goes to zero. In such a

model delay could occur whenever low valuation buyers are matched with high cost sellers. However, since the

prices at which trade occurs converge to the Walrasian equilibrium price, delay is avoided by having buyers

with valuation below this price and sellers with costs above this price leave the market. When deadlines are

introduced, however, it is possible for high valuation buyers and low cost sellers to delay when they have

both long deadlines. Also, high cost sellers and low valuation buyers may enter the market as they can find

profitable trades when matched with short deadline traders.

It should also be mentioned that although our model deals with buyers and sellers, it also applies to

other settings of two-sided matching markets, such as workers and firms, authors and co-authors, or men

and women. (See, e.g., Shimer and Smith, 2000.) In these situations one usually assumes that the surplus is

not fixed but depends on the characteristics of the partners. The subject of study is then to determine who

matches up with whom. For example, will there be positive assortive matching whenever this is efficient?

Clearly, our model needs to be enriched in order to deal with these type of questions. In any case, it seems

plausible that the introduction of heterogeneous deadlines will affect these matching models in similar ways.

Delay may occur and inefficient matches may form whenever the partners are pressed by time.
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Appendix: Proofs

Proof of Theorem 2

Let Z = {z ∈ <N
+ :

∑
i zi ≥ 1 and zi ≤ N +1− i} and let W = {w ∈ <N

+ : w1 ≤ w2 ≤ . . . ≤ wN ≤ 1}. Let

M denote the set of all symmetric N ×N matrices with entries in the interval [0, 1]. Consider the following

correspondence G : Z ×W → Z ×W ×M:

G(z, w) = {(z, w,E) : Eij = 0 if δ(wi−1 + wj−1) > 1 and

Eij = 1 if δ(wi−1 + wj−1) < 1}

and the following mapping H : Z ×W ×M→ Z ×W :

H(z, w,E) = (z̃, w̃)

where

z̃N = pN , z̃i = pi +
zi+1∑

k zk
(

N∑

j=1

zj(1− Ei+1j)) for i < N

and

w̃i =
1
2
δwi−1 +

1
2

∑
k zk

(
N∑

j=1

zj(max{δwi−1, 1− δwj−1}).

Note that z̃i ≤ pi + zi+1 ≤ 1 + N + 1− (i + 1) = N + 1− i and that w̃i ≤ w̃i+1 ≤ 1 when wi−1 ≤ wi so

that H really maps into Z ×W .

We now combine G and H to construct a correspondence F : Z ×W → Z ×W as follows:

F (z, w) = {H(z, w,E) : (z, w, E) ∈ G(z, w)}.

F is an upper semi-continuous correspondence from a non-empty, compact, convex set Z × W into itself

such that for all (z, w) ∈ Z × W , the set F (z, w) is convex and non-empty. Convexity of F (z, w) is of

course immediate in the case of a singleton set. Suppose (z̃, w̃) = H(z, w,E) and (z̃′, w̃′) = H(z, w, E′)

are two different elements of F (z, w) and let α ∈ [0, 1]. By the definition it follows immediately that

w̃ = w̃′ = αw̃ + (1− α)w̃′. On the other hand,

αz̃i + (1− α)z̃′i = pi +
zi+1∑

k zk


∑

j

zj(1− (αEi+1j + (1− α)E′
i+1,j))


 .

We conclude that αH(z, w, E) + (1 − α)H(z, w, E′) = H(z, w, αE + (1 − α)E′) ∈ G(z, w). Then Applying
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Kakutani’s fixed point theorem delivers the required result. 2

Proof of Theorem 3

Obviously, 0 = w0 < w1. Assume that w0 < w1 < . . . < wi for some i ≥ 1. It is immediate from

condition 4 that then wi+1 > wi since (by the induction step) wi > wi−1 and max{δwi, 1 − δwj−1} ≥
max{δwi−1, 1− δwj−1} for all j. 2

Proof of Corollary 8

1. For N = 2 we have

v1 =
1− 1

2δ

2(p1(1− 1
2δ) + (1− p1)(1− ( 1

2δ)2))

=
1

2 + δ(1− p1)
≤ 1

2
≤ 1

2δ

2. Define S(p) =
∑N

i=1 pi(1− ( 1
2δ)i). Let p′ first-order stochastically dominate p. Define

p1 = p

p2 = (p′1, p2 + p1 − p′1, p3, ..., pN )

p3 = (p′1, p
′
2, p3 + p1 + p2 − p′1 − p′2, p4, ..., pN )

... = ...

pN = p′

Clearly, 0 < S(pi) ≤ S(pi+1) for all i and therefore 0 < S(p) ≤ S(p′). Therefore

1
2δ
≥ 1− ( 1

2δ)N−1

2S(p)
≥ 1− ( 1

2δ)N−1

2S(p′)
.

From Proposition (5) it follows that vj(p)/vj(p′) = S(p′)/S(p) ≥ 1, with strict inequality whenever

p = p′.

3. Let L(δ) = δ − ( 1
2 )N−1δN −∑N

i=1 pi(1 − ( 1
2δ)i). We will show that L(δ) is increasing for δ < 1 which

proves the claim as Theorem 3 states that there exists an equilibrium without delay if and only if

L(δ) ≤ 0. Observe that for all natural numbers N and any δ ∈ [0, 1)

2N−1 −NδN−1 > 2N−1 −N ≥ 0
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so that

L′(δ) = 1− NδN−1

2N−1
+

N∑

i=1

pi
iδi−1

2i
> 0.

4. This follows from Theorem 6. Namely, for δ < 1 we have

1− (δ/2)K+N−1

2
∑

pi(1− (δ/2)K+i)
→ 1

2
<

1
2δ

.

For δ = 1, we have
1− (1/2)K+N−1

2
∑

pi(1− (1/2)K+i)
≤ 1

2

if and only if
∑

i

pi

(
(1/2)K+i − (1/2)K+N−1

) ≤ 0

if and only if
∑

i

pi

(
(1/2)i − (1/2)N−1

) ≤ 0.

5. This follows from Theorem 6. Namely, for δ < 1 we have

1− (δ/2)KN−1

2
∑

pi(1− (δ/2)Ki)
→ 1

2
<

1
2δ

.

For δ = 1, we have
1− (1/2)KN−1

2
∑

pi(1− (1/2)Ki)
≤ 1

2

if and only if
∑

i

pi

(
(1/2)Ki − (1/2)KN−1

) ≤ 0.

However, it is easily verified (by dividing by (1/2)K and taking the limit) that the left-hand side is

strictly positive for large K.

2

Proof of Theorem 14

Let ε > 0 be small. Consider a symmetric equilibrium of Γε and let vCM
i and vRM

i denote the equilibrium

payoffs of the traders with deadline i in CM and RM, respectively. (Recall that because of the ”unconscious

traders” there are always traders of any type present in any mechanism, although the total mass of such

traders may be small.) We know that vCM
i = 1/2, for any trader with deadline i. In particular, vCM

1 = 1/2.
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On the other hand, vRM
1 < 1/2 as we have established in Theorem 3. So traders with deadline 1 will

certainly choose CM in equilibrium. In fact, all traders with deadline i where vRM
i < 1/2 must choose CM.

That means that all traders with deadline j who voluntarily choose RM must have vRM
j ≥ 1/2. These will

be the traders with the higher deadlines, according to our result in Theorem 3. That is, for some j > 1,

only traders with deadline j, j + 1, ..., N will voluntarily choose RM and vRM
j ≥ 1/2. Let us assume for the

moment that j < N . Note that a trader with deadline j can at most expect to obtain 1/2 when matched

with a similar trader, and strictly less than 1/2 when matched with a trader with a higher deadline. Namely,

he will be offered δvRM
j−1 < 1/2 and must offer more than δvRM

j > δvRM
j−1 . The payoff obtained conditional

on being matched with a trader with deadline above or equal to j is thus bounded away from 1/2. He can

make a payoff strictly above 1/2 when matched with a trader with a lower deadline, but the probability of

this occurring is of the order ε. Hence, the trader with deadline j will obtain vRM
j < 1/2, which means he

will prefer to choose the mechanism CM.

Thus the only possibility for traders voluntarily choosing RM is when only traders with deadline N do

so. This means that vRM
N−1 ≤ 1/2, and thus, δvRM

N−1 < 1/2. This means that when two traders with deadline

N are matched they will agree to trade, i.e., there will be no delay. It follows that vRM
N > 1/2. All traders

with the longest deadline will choose RM. When they get matched among each other, which is very likely

(as it occurs with probability at least 1 − ε), they will obtain, in expectation, exactly 1/2. When matched

with traders with lower deadlines, they will get a higher payoff, but of course this happens with probability

close to zero. In the limit, all traders with deadline less than N choose CM and obtain a payoff equal to 1/2.

Traders with deadline N choose RM and also get a payoff equal to 1/2. 2
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