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Optimal Targets in Small and Large Networks, Using
Game Theory

Antoni Calvó-Armengol∗ Inés Moreno de Barreda†

Abstract. We define a model of peer effects where the
intra-group externality is rooted on the network of bilat-
eral influences in the population, rather than consisting
on an average effect. Using game theory, we then map
the geometric intricacies of this network structure to the
distribution of equilibrium outcomes. Nash equilibrium
turns out to be well-described by Bonacich network cen-
trality, used in sociology. We then exploit the network
variance of peer effects to identify optimal network tar-
gets, key groups. Key groups correspond to the highest
inter-central groups, a new network measure that sub-
sumes collective optimality concerns. Although intended
for small networks, the key group policy coupled with a
more standard geometric attack turns out to be optimal
for large scale free networks when 2.33 < β < 3. We
then apply our model to terrorist networks, and identify
the Achille’s heel of the 11S cell. (This version: May, 30
2005)

The influence of group outcomes on its members’
individual behavior is documented in many ethno-
graphic and empirical studies, and ranges from crim-
inal activity, teen pregnancy and drug use to aca-
demic achievements and labor outcomes (Durlauf
2004). The generative mechanisms of peer effects,
though, remain a black-box. In fact, most mod-
els of peer effects simply assume an average group
influence, and derive consequences. But peer ef-
fects often arise in small groups, for which averages
need not be well defined. Besides, averaging pre-
sumes that the intra-group externality is homoge-
neous across group members, which rules out right
away any potential heterogeneity in group exposure.
And this closes the door to policy interventions tai-
lored to the pattern, rather than just the aggregate
features, of the intra-group influences.
Here, we take the opposite direction. First, we
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start with a detailed description of the intra-group
interaction structure. This is simply the collection
of all the bilateral influences in the group. Second,
we map the inner intricacies of this interaction struc-
ture to the distribution of peer effects across group
members. Third, we exploit this variance of peer ef-
fects to identify optimal group targets so as to ma-
nipulate the overall group outcome. We then apply
this general model to terrorist networks, and iden-
tify the Achille’s heel of the 11S network. Lastly,
we extend our model, originally intended for small
networks modelled as graphs, to the case of large
networks described by statistical objects.

A general model of peer networks Each
agent i = 1, ..., n selects an effort xi ≥ 0, and gets
a payoff ui(x1, ..., xn) strictly concave in own effort
xi. Net of bilateral influences, agents are identical.
Bilateral influences ∂2ui/∂xi∂xj = σij are a given
that can vary across pairs. When σij > 0, an in-
crease in the effort of j creates an incentive for i to
increase his effort in turn. We talk of strategic com-
plementarity in efforts. When σij < 0, instead, an
extra effort from j triggers a downwards shift in i’s
effort in response. We say that efforts are strategic
substitutes.
Let σ= min{σij | i 6= j} and σ = max {σij |

i 6= j}. Assume that ∂2ui/∂x2i < min{σ, 0}, that is,
own marginal returns decrease more steeply with xi
than any cross marginal returns do.
We decompose additively the matrix of cross ef-

fects Σ = [σij ] into an idiosyncratic concavity ma-
trix, a global (uniform) substitutability matrix, and
a local complementarity matrix.
Let λ = σ−σ. The case σ = σ is straightforward,

and take λ > 0. λ measures the dispersion in cross
effects.
Let γ = −min{σ, 0} ≥ 0. If σ ≥ 0, then γ = 0.

Otherwise, σ < 0 and γ > 0.
Let gij = (σij + γ)/λ, for i 6= j, and gii = 0. This

is just a centralization followed by a normalization
of the cross effects. By construction, 0 ≤ gij ≤ 1.
G = [gij] is the adjacency matrix of a network g
that captures the strength of relative payoff comple-
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mentarities across all pairs. When σij = σji, G is
symmetric, and g is un-directed. When σij ∈ {σ, σ}
for all i 6= j with σ ≤ 0, G is a (0, 1)−matrix, and
g is un-weighted.
Finally, let σii = −ψ − γ, where ψ > 0.
Let U denote the square matrix of ones. Then:

Σ = −ψI− γU+ λG.

Bilateral influences boil down into the combina-
tion of an idiosyncratic effect, a global interaction,
and a local interdependence. The global effect −γU
is uniform across group members. The matrices−ψI
and λG are here to compensate for this global effect
when required. First, as σii < −γ, an extra nega-
tive shift is added to the diagonal terms ∂2ui/∂x2i of
−γU. This is −ψI. Second, when σij > σ, an extra
positive shift is added to the out-of-diagonal terms
∂2ui/∂xi∂xj of −γU. This is λG.
A linear-quadratic approximation of the payoff

function is then:

ui(x;Σ) = αxi−1
2
(ψ−γ)x2i−γ

nX
j=1

xixj+λ
nX
j=1

gijxixj .

We take α > 0.

The Bonacich-Nash linkage We use game
theory to map the network of cross influences g to
individual outcomes.
Agents choose their efforts simultaneously and

independently. Then, likely outcomes correspond
to Nash equilibria, where each agent optimizes his
choice taken the others’ as a given. An interior
Nash equilibrium x∗(Σ) = (x∗1, ..., x

∗
n) is such that

∂ui/∂xi(x
∗) = 0 and x∗i > 0, for all i. Let 1 be the

vector of ones. Existence of interior Nash is obtained
whenever the linear system:

−Σ · x = [ψI+ γU− λG] · x = α1 (1)

has a non-negative solution. Note that this system
has a unique solution everywhere, except on a set of
Lebesgue measure zero. We provide conditions such
that this unique generic solution is non-negative.
Absent any bilateral influence (γ = λ = 0), all

agents choose the same equilibrium effort α/ψ. Oth-
erwise, agents’ equilibrium efforts depend on the
pattern of cross effects (g) and their intensity and
sign (γ and λ).
We first comment on the role of γ and λ. Let n =

2 and g12 = g21 = 1. When λ < ψ + 2γ, the equi-
librium efforts in the dyad are x∗i = α/(ψ+2γ−λ).
If γ = 0 and λ > 0, agents reap complementarities
from their dyad partner, and choose an effort level

above the optimal value for an isolated agent, α/ψ.
When λ = 0 and γ > 0, equilibrium efforts decrease
in γ as global substitutability adds to the concavity
in own efforts and exhausts marginal returns below
the optimal single agent value.
More generally, letM(g,λ∗) =[I−λ∗G]−1, where

λ∗ = λ/ψ. M(g, λ∗) is well-defined and non-
negative if and only if λ∗ is strictly smaller than
the inverse of the largest eigenvalue of G (Debreu
and Herstein 1953). Then:

M(g, λ∗) = [I− λ∗G]−1 =
+∞X
c=0

λ∗cGc.

This infinite sum converges by the bound on λ∗.
The components mij(g, λ

∗) ≥ 0 of M count the
total number of paths on g between i and j, with
c−length paths discounted by λ∗c. The total num-
ber of paths spanning from i in g, bi(g, λ

∗) =Pn
j=1mij(g, λ), is the Bonacich network centrality

of agent i in the network g (Bonacich 1987).
Under the condition on λ∗, the Nash equilibrium

is uniquely defined and proportional to the vector of
Bonacich centralities (Ballester et al. 2005a):

x∗(Σ) =
α

ψ + γb(g, λ∗)
b(g, λ∗), (2)

where b(g, λ∗) =
Pn

i=1 bi(g, λ
∗).

Let x∗ =
Pn

i=1 x
∗
i . This is the aggregate equilib-

rium effort, increasing in α and λ∗, but decreasing
in γ and ψ. More generally, x∗ increases in every
σij . Strengthening a single cross effect spills over
to a higher overall group outcome (Ballester et al.
2005a). In particular, when g is un-weighted, g ⊂ g0
implies x∗(g0) > x∗(g).
Now, the intra-group externality is not homoge-

neous across agents, but varies with network loca-
tion:

x∗i (Σ) =
bi(g, λ

∗)
b(g, λ∗)

x∗(Σ).

Bonacich centrality captures the variance in peer ef-
fects, and measures individual exposure to the group
influence.

Network inter-centrality and key player
The Bonacich-Nash linkage has implications for
public policy. A standard policy intervention fine-
tunes the exogenous payoff parameters (α, ψ, γ and
λ) to achieve the desired objective on, say, group
outcome. Instead, the planner can decide to manip-
ulate the network of cross effects g, for instance by
removing some agents from the group. By doing so,
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the pattern of cross effects changes, and so does the
aggregate group outcome.
We identify the optimal network targets, the key

groups. Key groups are such that, once removed,
the planner achieves the highest overall reduction
in group outcome, compared to any alternative sub-
group removal of same size.
For concreteness, let the planner remove a single

agent k. Σ−k is the matrix obtained from Σ by
setting σik = σki = 0, for all i. The key player k∗

solves:

k∗ ∈ argmax{x∗(Σ)− x∗(Σ−k) | k = 1, ..., n}. (3)
This is a finite optimization problem, with at least
one solution. From now on, take g un-directed.
Define the inter-centrality of node i by:

ci(g, λ
∗) = bi(g, λ

∗) +
X
j 6=i
[bj(g, λ

∗)− bj(g
−i, λ∗)].

This is the sum of i’s own centrality plus i’s con-
tribution to every other agent centrality. It turns
out that the key player solving (3) is the agent with
highest inter-centrality (Ballester et al. 2005a):

k∗ ∈ argmax{ck(g, λ∗) | k = 1, ..., n}.
Bonacich centrality measures ego-centered influ-
ences, and captures individual strategic behavior.
Inter-centrality also accounts for cross-contributions
in ego-centered influences, and captures group opti-
mal concerns. In fact:

ck(g, λ
∗) =

b2k(g, λ
∗)

mkk(g, λ
∗)
.

mkk(g, λ
∗) counts the total number of self-loops

in g that start and end at k. Holding bk(g, λ
∗)

constant, k’s inter-centrality decreases with the
share in Bonacich centrality due to self-loops,
bk(g, λ

∗)/mkk(g, λ
∗).

More generally, the group inter-centrality of S =
{i1, ..., is} with cardinality #S = s is:

cS(g, λ
∗) = ci1(g, λ

∗) + ...+ cis(g
−i1−...−is−1 , λ∗),

for every labeling of members in S. The key group
S∗ of size s then has highest group inter-centrality:

S∗ ∈ argmax{cS(g, λ∗) | #S = s}.
In practice, finding the key group is computation-

ally demanding, an NP -hard problem. A simple
greedy algorithm that iteratively chooses an opti-
mal vertex from the network provides an approx-
imated solution. This algorithm is in polynomial

time, with an approximation error bounded from
above by 1/e ≈ 36.79% (Ballester et al. 2005b).

Terrorist networks We now apply the gen-
eral peer networks model to terrorist networks. We
start with a network payoff function that captures
the main concerns of a terrorist network organiza-
tion. Then, the Bonacich-Nash linkage associates a
level of activity to each terrorist as a function of his
location in the conspiracy network. Finally, the key
group policy identifies optimal group targets in the
terrorist network.
The network disruption policy we propose tackles

purposefully and directly the terrorist organization’s
activities, and causes the major possible harm to it.
The geometric disruption of the terrorist network is
a means to destabilize the group activities, rather
than an objective per se.
Title 22, Section 2656f(d) of the United States

Code defines terrorism as a “premeditated, polit-
ically motivated violence perpetrated against non-
combatant targets by sub-national groups or clan-
destine agents, usually intended to influence an au-
dience.” Thus, terrorist organizations need to rec-
oncile two antagonistic interests. On one hand,
they mobilize and coordinate resources to perpetrate
agreed-upon and purposeful targeted actions. On
the other hand, they face the permanent external
threat of law enforcement and thus seek to remain
clandestine. In substance, terrorist and conspiracy
organizations face an inherent trade-off between in-
ternal coordination and external vulnerability (Mc-
Cormick and Owen 2000, Baccara and Bar-Isaac
2005).
Network forms of organization solve this trade-

off adequately. First, network links allow coordina-
tion across directly linked members, while the net-
work overlap across such sub-entities induces coor-
dination for the whole organization. Coordination
both before and during the attacks is, indeed, a key
pre-requisite for the kind of high-scale lethal actions
of 11S in New-York or 11M in Madrid. Second,
decision-making in a networked organization is, by
essence, highly decentralized. Each sub-entity can
react on its own and carry on when others’ are de-
stroyed. As such, networks constitute more flexible,
adaptive and resilient structures than classical hi-
erarchies, where a breach in the chain of command
jeopardizes the whole group operations. In fact, the
late unraveling of the clandestine groups responsible
for the 11S and 11M attacks found out sparse and
decentralized network organizations (Krebs 2002,
Rodríguez 2004).
A terrorist organization is modelled by an un-
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directed and un-weighted network g involving n ter-
rorists, with gij ∈ {0, 1} and gij = gji. Network
links correspond to coordination channels. xi is the
level of operations by terrorist i, and x =

Pn
i=1 xi

the overall group activity.
The terrorist clandestine organization faces a

trade-off between coordination and vulnerability.
This is reflected in the following objective function,
at the group level:

u(x1, .., xn;g) = αx+ λ
nX
i=1

nX
j=1

gijxixj − γx2. (4)

The vulnerability cost is −γx2. Vulnerability in-
creases with the level of activity in proportion with
the current volume of operations. The group out-
come is αx + λ

Pn
i=1

Pn
j=1 gijxixj , and increases

with the collaborative links in the organization net-
work. The vulnerability and coordination parame-
ters (γ, α, λ) depend on the environment where the
organization operates, its communication possibili-
ties, and level of internal conflict. A terrorist orga-
nization is fully described by (g,α, λ, γ).
Suppose that all terrorists have the same number

of links in g. Let gi =
Pn

j=1 gij = g/n. When γn >
λg, the optimal level of operations maximizing (4)
is then αn/2(γn−λg). It increases with the value of
each collaborative agreement (λ) and their number
(g), but decreases with the vulnerability cost γ.
In a hierarchical organization, the chain of com-

mand and authority dictates the behavior of each
member in the hierarchy. In a networked organi-
zation, instead, decision-making is decentralized at
the level of each individual. The equilibrium that
emerges from these decentralized decisions then acts
as an implicit self-enforcing contract, or focal point,
for the actions of the organization members. The
network of collaborative agreements g becomes a key
organization variable to determine this focal point.
Consider a terrorist organization (g,α, λ, γ). The

individual terrorists’ objective functions are:

ui(x1, .., xn;g) = αxi + λ
X
j

gijxixj − γxix.

Individual objectives aggregate into the organiza-
tion goal, u(x;g) =

Pn
i=1 ui(x;g). The terrorists’

objectives fit into our general peer network model:·
∂2ui

∂xi∂xj
(x1, ..., xn;g)

¸
= −γI− γU+ λG.

Suppose that γ > λ
√
g + n− 1. Using a crude up-

per bound on highest eigenvalues (Cvetkovíc et al.

1997), we conclude that terrorists’s outcomes are:

x∗(g,α, λ, γ) =
α

γ

b(g, λ/γ)

1 + b(g, λ/γ)
.

The organization overall activity x∗ is increasing and
concave in the total number of paths b(g, λ/γ) in g.
In particular, when gi = g/n for all i, x∗ is increasing
and concave in the network connectivity g. Recall
that, in this case, the optimal level of operations is
αn/2(γn − λg), an increasing and convex function
of g. One can then easily compute, for every given
(α, λ, γ), a uniquely defined value for g that decen-
tralizes the optimal value of operations. More gener-
ally, the organizational design problem (that we do
not explicitly tackle here) consists on characterizing
the whole network geometry (not only its connectiv-
ity) whose corresponding focal point is optimal for
(4) (Corbo et al. 2005, Jackson 2005).

The 11S terrorist cell We illustrate the key
group policy for the case of the Al Qaeda cell that
perpetrated the 11S attack.
We restrict our analysis to the 19 terrorists that

were travelling on-board during the attacks. The
network of communication links connecting them is
reconstructed in Krebs (2002) with publicly released
information on communication and friendship ties
among the 19 terrorists. See Figure 1.
The network consists in four different and inter-

twinned sub-entities with four to five terrorists each.
Each sub-entity constitutes a commando that was
flying in the same plane. Members of a same com-
mando need not know each other directly previous to
the attack. Terrorists in the same plane are, some-
times, two to three steps away from in each other
in the network. This network is sparse. The most
connected terrorist knows directly only seven out of
nineteen terrorists. The average path length is 4.75,
and four intermediate brokers are needed, on aver-
age, to convey information between two distinct and
distant terrorists. Low connectivity, high sparsity
and high path length guarantee the security of the
terrorist organization and its resilience to local dis-
mantlement. One week before the 11S, though, the
terrorists strengthened their network links to the ex-
tent that average path length decreased by as much
as 40%, thus facing higher risks. The new and tran-
sitory contacts added to the dormant permanent
network created network shortcuts useful for last-
minute coordination. Maximal connectivity stays
below seven all along.
Previous works single out optimal network targets

by ranking terrorists according to some arbitrary
centrality measure such as connectivity, closeness or
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betweenness. Connectivity just counts direct links,
closeness measures distance to others, and between-
ness counts shortest paths crossing through a given
individual. All these measures are purely geometric
in nature. Because they lead to different ranking of
network nodes, they identify different optimal group
targets.
Our approach is different.
First, we view individuals as pursuing objectives

that reflect the coordination-vulnerability trade-off
characteristic of a terrorist organization. These ob-
jectives depend on the pattern of collaborative links.
Second, using game theory, we compute the organi-
zation’s focal point for the decentralized decision-
making process in the network. This focal point
yields to a Bonacich-Nash linkage that maps net-
work structure into group behavior. Third, we set
up and solve the problem of optimally reducing
the network level of operations by eliminating some
suitably selected targets in the network. The key
group optimal target is the one with highest inter-
centrality. This novel network measure captures the
inter-dependent pattern of behavior induced at equi-
librium by the direct and indirect network links.
The inter-centrality ranking does not coincide

with the connectivity, closeness or betweenness
rankings. See Figure 2. They thus result in differ-
ent policy prescriptions. Interestingly, for a target
group of size four, and contrarily to alternative pre-
scriptions, the key group policy removes scattered
terrorists in the network and disrupts every existing
plane commando. Note that the key group prescrip-
tion relies on the inter-centrality measure which is
completely agnostic about the internal network or-
ganization into four distinct commandos. Yet, the
key player prescription dismantles the four comman-
dos. Contrarily to other network measures, it is
able to identify these four distinct sub-entities whose
overlap generates the whole network.
To pursue the comparison across policy prescrip-

tions based on different network measures, we com-
pute the overall reduction in the organization output
when the highest ranked terrorists are progressively
removed, up to a maximum of five individual tar-
get removals (one quarter of the organization size).
See Figure 3. We express the activity reduction in
percentage terms.

Large networks Our game theoretical charac-
terization of optimal network targets is well-suited
(and intended) for small networks. In what follows,
we extrapolate the key player policy to large scale
networks described by statistical objects. We show
that, even with arbitrary large populations, a key

player attack is a first-best policy compared to a
geometric attack in all scale free networks with con-
nectivity parameter 7/3 < β < 3.
Consider a large network described by its connec-

tivity distribution. A network is scale free when this
distribution follows a power law. Because of their
high polarization in connectivity values, scale free
networks are very fragile against geometric attacks
directed to their network hubs (Albert et al. 2000,
Bollobás and Riordan 2003).
In fact, geometric attacks are only a second-best

disruption policy for a large class of power law dis-
tributions. The reason is the following.
Take two hubs of identical connectivity in a scale

free network. A geometric attack selects network
targets based solely on their connectivity. The two
hubs are thus interchangeable targets for this policy.
Although they have exactly the same number of di-
rect connections, the two hubs may well differ by
the structure of, say, their two-links away contacts,
in terms of size or connectivity. More generally, the
two hubs may differ by their larger circle of friends.
Because of this, they need not contribute equally to
the network functioning. A key player policy allows
precisely to discriminate among these two hubs and
singles out the one whose removal causes the highest
harm to the network operations.
We identify exactly the class of scale free networks

for which a geometric attack coupled with key player
targeting constitutes a first-best disruption policy.
Capital letters correspond to random variables,

and small letters to realizations.
Consider a random graph G on a population of

n agents. This is a joint distribution on the set of
n(n − 1) possible links. We assume that each link
is assigned a positive probability. Let g be a real-
ization of this process. This is just a collection of
un-weighted links gij ∈ {0, 1}. Agent i has exactly
gi =

Pn
j=1 gij direct contacts in g, i’s degree. We as-

sociate a probability distribution PG to the random
graph G given by PG(z) =

Pn
i=1 PrG{gi = z}/n,

the probability with which a randomly chosen node
in the average network has degree z.
From now on, we take γ = 0. To spare on nota-

tions, let α = β = 1.
Consider a realization g ofG. Using (2), the equi-

librium aggregate outcome is:

x∗(g) = n+ λ
X
i

gi + λ2
X
i

g2i + o(λ2).

Remove an agent k from the terrorist group. The
new network is g−k, and the group outcome changes
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accordingly:

x∗(g)− x∗(g−k) = 1 + 2λgk − λ2gk(1− gk)

+2λ2
X

j:gkj=1

gj + o(λ2).

Removing an agent from the group has both a direct
and an indirect effect. The direct effect results from
the reduction in group size and network connectiv-
ity. This is 1 + 2λgk − λgk(1 − gk). The indirect
effect accounts for the response of those that stay
in the network to the agent removal. At a second
order in λ, only the agents directly connected to k
in g are concerned. This is:

η(g, λ; k) = 2λ2
X

j:gkj=1

gj . (5)

The value of η(g, λ; k) depends on the connectivity
of k’s direct contacts, and on λ. Given a network
g and a target k, it is maximal when λ hits its up-
per bound λmax, equal to the inverse of the highest
eigenvalue of g.
Suppose that a geometric attack prescription

identifies two candidates k and k0 with, gk = gk0 .
The planner is indifferent between removing any of
them, and picks the actual target randomly from
this pool.
The direct effect of removing either k or k0 is in-

deed identical. Yet, k and k0 may have different
friendship structures and, for instance, η(g, λ; k) >
η(g, λ; k0). Then, removing either k or k0 has a
different sizeable indirect effect on group outcome
reduction. Here, the optimal policy should single
out k unambiguously as the actual target. The
key player policy precisely operates this optimal se-
lection as, by definition, the key player maximizes
x∗(g)− x∗(g−k).

Key players in large networks We bound
the relative gains in outcome reduction when we
amend the geometric attack prescription with a key
player selection device.
For each realization g of G, the geometric attack

policy identifies a pool {k | gk = a} of target candi-
dates with identical connectivity a. Under geometric
attack alone, the target is selected (say, uniformly)
among this pool. When geometric attack is coupled
with a key player policy, the selected target k∗ is
such that:

k∗ ∈ argmax{η(g, λ; k) | gk = a}.
Conditional upon removing hubs of connectivity a,
the random graph G induces a distribution η(G, λ |

a) over indirect gains. The gains from a key player
selection within a pool of hubs with degree a is of
the order of the standard deviation of η(G, λ | a).
We compute the variance of this random variable.
Consider the degree distribution PG(z) associated

to the random graph G. Fix some agent k with
degree gk = a, and let j such that gkj = 1, j is
a direct contact of k. First, note that the degree
distribution of j is proportional to zPG(z). Next,
assume that the degrees of k’s direct contacts are
independent from each other. The variance of the
joint connectivity

P
j:gkj=1

gj of k’s direct contacts
is then proportional to:

a

­z3®
hzi −

Ã­
z2
®

hzi

!2 , (6)

where h·i is the standard notation for the expected
value under PG.
Let m be the highest degree in the sup-

port of PG(z), and d the average degree, d =P
z∈IN PG(z)/n. Then:

max{V ar [η(G, λ | a)] | λ,m} = V ar [η(G, λmax | m)] .
Using (5) and (6), we get:

V ar [η(G, λmax | m)] = 4λ4maxm
­z3®
hzi −

Ã­
z2
®

hzi

!2 .
Let G be a scale free network with a power law de-
gree distribution PG(z) ∝ z−β. Using the spectrum
of a power law distribution (Chung et al. 2003), we
get:

V ar [η(G, λmax | m)] ∝


d
¡
m
d

¢−1
, if 4 < β

d
¡
m
d

¢3−β
, if 2.5 < β < 4

1
d

¡
m
d

¢3β−7
, if β < 2.5

.

Note that the variance exhibits a phase transition
at β = 2.5, that mimics the phase transition for the
highest eigenvalue of a scale free network in Chung
et al. (2003).
Let now the maximum connectivity increase with-

out bound, m ↑ +∞. Given the scale free nature of
the connectivity distribution, the ratio of the max-
imal to the average connectivity m/d also increases
without bound whenever β > 2. Then:

lim
m/d↑+∞

V ar[η(G, λmax | m)] =
½ ∞, if 7/3 < β < 3
0, otherwise

.

The highest key player policy gains are proportional
to the standard deviation of η(G, λmax | m). These
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gains are bounded away from zero as the popu-
lation size increases if and only if β takes values
between 2.33 and 3. This range of values is fre-
quently encountered in real-life large-scale networks
(Albert and Barábasi 2002, Jackson and Rogers
2005). Therefore, beyond small networks, a coupled
geometric attack-key player policy is also optimal in
most practical applications for large networks.
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Figure 1 — The 11S on-board terrorist network from
Krebs (2002).

Figure 2 — The 11S on-board terrorist ranking for the
inter-centrality, closeness and betweenness network mea-
sures.

Figure 3 — The graph in the top shows the percent-
age decrease in organization output when we remove the
highest ranked individuals according to inter-centrality,
closeness, betweenness and connectivity. Average corre-
sponds to a uniform random selection of the targets. We
compute the inter-centrality for λ∗ = 0.22133, just be-
low its upper bound, equal to the inverse of the largest
eigenvalue of g. In case of ties, we compute the aver-
age output decrease. The graph in the bottom shows
the ratio (minus 1) of the percentage decrease in out-
put for the key player inter-centrality prescription rela-
tive to the percentage decrease for alternative prescrip-
tions (closeness, betweenness and connectivity), and for
different values of λ∗. Note that inter-centrality in-
creases with λ∗, whereas connectivity, closeness and be-
tweenness are parameter-free. Also, when λ∗ → 0,
bi(g, λ

∗) = 1 + λ∗gi + o(λ∗) and inter-centrality and
connectivity prescriptions converge towards each other
as λ∗ → 0.
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