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Abstract

We provide a different axiomatization of the core interpreted as a reasonable set

(Milnor, 1952) and introduce a new property, called max-intersection, related with the

vector lattice structure of cooperative games with transferable utility. In particular, it is

shown that the core is the only solution satisfying projection consistency, reasonability,

max-intersection and modularity.
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1 Introduction

The core of a transferable utility game (a game) (Gillies, 1959) has been widely studied and

axiomatized in game theory. This solution concept can be interpreted as a reasonable set

in the sense of Milnor (1952), since it assigns to every player at most his maximal marginal

contribution. In spite of the fact that this property is desirable, at least from a normative

point of view, as far as we know it has not been employed in the well-known axiomatizations

of the core. The aim of this work is to provide a different axiomatic characterization of the

core using reasonability, but also to introduce a new property inspired in the vector lattice

structure of the games.

In a previous paper, Llerena and Rafels (2005) show that any game can be expressed as

the maximum of a finite collection of convex games, all of which have the same efficiency

level. This result suggests to consider the behavior of the core with respect to the maximum

operation performed on games. We call this axiom max-intersection: the payoff vectors in the

solution of the maximum game remain in the solution of the games involved in the decom-

position, and vice-versa. This axiom is quite intuitive for solutions based on objections. We

complete our axiomatic framework with projection consistency and modularity. Consistency

is, perhaps, the most fundamental property used in this field (see Thomson, 1990, 1996 and

Driessen, 1991 for surveys on consistency). Roughly speaking, this principle says that there

is no inconsistency in what the players of the reduced game will get in both the original game

and the reduced game. Projection consistency has been used by Funaki (1995) and recently

by Bhattacharya (2004) to characterize the core and the Equal division core (Selten, 1972),

respectively. Modularity extends the triviality axiom (Keiding, 1986) to the class of modular

games. To justify this axiom it is important to point out that modularity is satisfied by the

main solution concepts. So, in this sense, modularity forces the solution to be the ”natural”

for modular games.

The paper is organized as follows. Section 2 presents the general notation and some
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definitions. Section 3 contains the main result: the core of a game is the only solution

satisfying projection consistency, reasonability, max-intersection and modularity.

2 Notation and definitions

Let U be a set of potential players that may be finite or infinite. A cooperative game with

transferable utility (a game) is a pair (N, v) where N = {1, . . . , n} ⊂ U is a finite set of players

and v : 2N −→ R is the characteristic function with v(Ø) = 0, where 2N denotes the set of all

subsets (coalitions) of N . We will use S ⊂ T to indicate strict inclusion, that is S ⊆ T but

S 6= T . By |S| we will denote the cardinality of the coalition S ⊆ N . The set of all games is

denoted by Γ.

Let RN stand for the space of real-valued vectors indexed by N , x = (xi)i∈N , and for all

S ⊆ N , x(S) =
∑

i∈S xi, with the convention x(Ø) = 0. For each x ∈ RN and T ⊆ N , xT

denotes the restriction of x to T : xT = (xi)i∈T ∈ RT . A game is convex (Shapley, 1972) if,

for every S, T ⊆ N , v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). A game (N, v) is called modular if

there exists a vector x = (x1, . . . , xn) ∈ RN such that for every S ⊆ N , v(S) =
∑

i∈S xi.

The set of feasible payoff vectors of the game (N, v) is defined by X∗(N, v) := {x ∈

RN |x(N) ≤ v(N)}, and the pre-imputation set of the game (N, v) by X(N, v) := {x ∈

RN |x(N) = v(N)}. A solution is a mapping σ which associates with any game (N, v) a subset

σ(N, v) of the set X∗(N, v). Notice that the solution set σ(N, v) is allowed to be empty or

a singleton. We say that a solution σ is Pareto optimal (P-OPT) if σ(N, v) ⊆ X(N, v) for

(N, v) ∈ Γ.

The core of the game (N, v) is defined by C(N, v) := {x ∈ X(N, v) | x(S) ≥ v(S) for all S ⊆

N}.
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3 An axiomatic characterization of the core

We start this section by defining the properties we use to characterize the core. To introduce

consistency first we need to define reduced games.

Definition 1 Let v ∈ GN , x ∈ RN and ∅ 6= T ⊂ N . The projected reduced game

relative to T at x is defined as the game (T, rT
x (v)) such that

rT
x (v)(S) :=


0 if S = ∅,

v(S) if ∅ 6= S ⊂ T,

v(N)− x(N\T ) if S = T.

The intuition here is that if the members of N \ T leave, no cooperation with them

is possible anymore but the commitment to their payoffs has to be honored by the grand

coalition T in the reduced game. Moreover, since no cooperation with the players out of the

game is possible, the worth of each coalition S ⊂ T in the reduced game remains what it was

in the original game.

Let σ be a solution on Γ. Then, σ satisfies

1. projection consistency (P-CONS) whenever the next condition is satisfied: if

(N, v) ∈ Γ, ∅ 6= T ⊂ N and x ∈ σ(N, v), then (T, rT
x (v)) ∈ Γ and xT ∈ σ(T, rT

x (v)).

2. reasonability (REAS) if, for all (N, v) ∈ Γ, all x ∈ σ(N, v) and all i ∈ N , xi ≤

max
S⊆N\{i}

{v(S ∪ {i})− v(S)}.

3. max-intersection (MAX-INT) if σ(N,max{v, w}) = σ(N, v)∩σ(N,w), for all games

(N, v), (N,w) with v(N) = w(N).

4. modularity (MOD) if for any modular game (N, v) generated by the vector x ∈ RN ,

σ(N, v) = {x}.

Theorem 2 The core is the only solution on Γ satisfying projection consistency, reasonabi-

lity, max-intersection and modularity.
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Proof:

Clearly, the core satisfies P-CONS, REAS, MAX-INT and MOD.

Let σ be a solution on Γ satisfying the above properties and (N, v) ∈ Γ. First we prove that

σ satisfies P-OPT. Indeed, let x ∈ σ(N, v) and i ∈ N . By P-CONS, xi ∈ σ({i}, r{i}x (v)).

Since ({i}, r{i}x (v)) is the modular game generated by y = r
{i}
x (v)({i}) ∈ R, by MOD xi =

r{i}x (v)({i}) = v(N)−
∑

j∈N\{i}

xj , and thus x(N) = v(N).

To show the inclusion C(N, v) ⊆ σ(N, v), let x ∈ C(N, v) and define the modular game

(N,wx) generated by x: wx(S) := x(S) for all S ⊂ N . Clearly, wx = max{wx, v}. By

MAX-INT, σ(N,wx) = σ(N,wx) ∩ σ(N, v), which implies σ(N,wx) ⊆ σ(N, v). Finally, by

MOD {x} = σ(N,wx), and thus x ∈ σ(N, v).

To show the reverse inclusion, first consider the case (N, v) with |N | = 1. Since C(N, v) =

{v(N)} and C(N, v) ⊆ σ(N, v), by P-OPT we can conclude that σ(N, v) = {v(N)}. If

|N | ≥ 2, from Llerena and Rafels (2005) we know that there is a finite collection of convex

games (N, v1), . . . , (N, vk) such that

v = max{v1, . . . , vk}, with v(N) = v1(N) = . . . = vk(N). (1)

By MAX-INT

σ(N, v) =
k⋂

j=1

σ(N, vj). (2)

Let x ∈ σ(N, v) and consider the convex game (N, vj), with j ∈ {1, . . . , k}. By (2), x ∈

σ(N, vj), and by REAS,

xi ≤ max
S⊆N\{i}

{vj(S ∪ {i})− vj(S)} = vj(N)− vj(N \ {i}),∀ i ∈ N, (3)

where the equality follows from the convexity of the game (N, vj). Now, by P-OPT,

x(N \ {i}) ≥ vj(N \ {i}). Or, equivalently, x(S) ≥ vj(S) for any coalition S ⊂ N with

|S| = n− 1. From the convexity of the game (N, vj), and taking into account the inequality

(3): xi ≤ vj(N)− vj(N \ {i}), it is straightforward to check that the projected reduced game

(N \ {i}, rN\{i}
x (vj)) is also a convex game. By P-CONS, xN\{i} ∈ σ(N \ {i}, rN\{i}

x (vj)).
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REAS together with the convexity of the projected reduced game implies that, for any player

l ∈ N \ {i},

xl ≤ rN\{i}
x (vj)(N \ {i})− rN\{i}

x (vj)(N \ {i, l}). (4)

From the definition of the projected reduced game we have that,

xl ≤ vj(N)− xi − vj(N \ {i, l}). (5)

Thus, by P-OPT we can conclude that, for any coalition S ⊂ N with |S| = n − 2, x(S) ≥

vj(S).

Following the same argument, and taking into account that the projected reduced game

has the transitive property (i.e. for any (N, v) ∈ Γ, all x ∈ RN and all ∅ 6= S ⊂ T ⊆ N ,

rS
xT

(rT
x (v)) = rS

x (v)), we can conclude that, for any coalition S ⊆ N , x(S) ≥ vj(S). Hence,

for any j ∈ {1, . . . , k},

σ(N, vj) ⊆ C(N, vj). (6)

Combining expressions (1), (2) and (6), and taking into account that

C(N, v) = C(N,max{v1, . . . , vk}) =
k⋂

j=1

C(N, vj),

we obtain

σ(N, v) =
k⋂

j=1

σ(N, vj) ⊆
k⋂

j=1

C(N, vj) = C(N, v),

which concludes the proof. 2

The following examples show that the above axioms are independent:

1. Let σ0(N, v) := ∅, for each (N, v) ∈ Γ. Then, σ0 satisfies P-CONS, REAS and

MAX-INT, but not MOD.

2. Let σ1 be the equal division core defined by

σ1(N, v) :=
{

x ∈ X(N, v) | for all S ⊆ N, there is i ∈ S withxi ≥
v(S)
|S|

}
.

Then, σ1 satisfies P-CONS, MAX-INT and MOD, but not REAS.
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3. Let it be

σ2(N, v) := {x ∈ X(N, v) | v({i}) ≤ xi ≤ bv
i , for all i ∈ N},

where bv
i = v(N)−v(N\{i}), for all i ∈ N . Then, σ2 satisfies MAX-INT, REAS and

MOD, but not P-CONS.

4. Let it be

σ3(N, v) := {x ∈ X(N, v) | xi ≤ v({i}), for all i ∈ N}.

Then, σ3 satisfies P-CONS, REAS and MOD, but not MAX-INT.
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