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Abstract

For each assignment market, an associated bargaining problem is defined and some

bargaining solutions to this problem are analyzed. For a particular choice of the disagree-

ment point, the Nash solution and the Kalai–Smorodinsky solution coincide and give the

midpoint between the buyers-optimal core allocation and the sellers-optimal core alloca-

tion, and thus they belong to the core. Moreover, under the assumption that all agents

in the market are active, the subset of core allocations that can be obtained as a Kalai-

Smorodinsky solution, from some suitable disagreement point, is characterized as the set

of stable allocations where each agent is paid at least half of his maximum core payoff.

All allocations in this last set can also be obtained by a negotiation procedure à la Nash.
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1 Introduction

The aim of this paper is to make a connection between cooperative games in coalitional form

and cooperative bargaining theory, for a particular situation which is that of the bilateral

assignment markets.

In a bilateral assignment market a product that comes in indivisible units is exchanged

for money, and each participant either supplies or demands exactly one unit. The units need

not be alike and the same unit may have different values for different participants. From

these valuations, a matrix can be defined which reflects the profit that can be obtained by

each buyer-seller pair if they trade.

Assuming that side payments are allowed, Shapley and Shubik (1972) define the assign-

ment game as a cooperative model for this bilateral market. In this model, utility is identified

with money, and so an allocation is a vector of incomes such that the sum of payoffs of each

optimally matched pair equals the output of that pairing. Moreover, an allocation is stable if

no agent can match a different partner in such a way that the output of this pairing exceeds

the sum of their payoffs. They prove that the core of the assignment game coincides with the

set of stable allocations and is always nonempty.

The necessity of an analysis of the bargaining possibilities inherent in an assignment

market is already highlighted in the work of Shapley and Shubik. As far as we know, the first

work in this direction is due to Rochford (1984), where some core allocations are selected by

means of classical cooperative bargaining theory. In Rochford’s work, the optimal matching is

assumed to be given exogenously; matched pairs then engage in a pairwise bargaining process

which is solved symmetrically, after defining threats based on the outside opportunities given

the current payoff to other pairs. Some sort of “complete information” is thus assumed

in the market. Notice that in this two–person context the Nash solution (Nash, 1950), the

Kalai-Smorodinsky solution (Kalai and Smorodinsky, 1975) and all other symmetric solutions

coincide. It is precisely in the determination of the threats where the interaction among the
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whole set of players enters the model once again. Since the threats are understood as the

bargainers’ rational expectations of the consequences of not reaching an agreement, given a

tentative stable allocation, the threat of an agent is the most he could obtain by matching a

different partner and paying him according to this tentative allocation.

Rochford then defines a set of equilibria (the symmetrically pairwise-bargained allocations

or SPB allocations) which are stable under rebargaining, and shows that this set coincides

with the intersection of the kernel (a well-known set solution for transferable utility coop-

erative games defined by Davis and Maschler, 1965) and the core of the assignment game.

After Granot (1995) and Driessen (1998), we know that the kernel of an assignment game

is a subset of the core and thus the set of SPB allocations coincides with the kernel of the

assignment game.

Crawford and Rochford (1986) define a symmetrically pairwise-bargained equilibrium in

which threats are defined recursively by means of a reduced game and, once threats and

a bargaining solution are specified, agents have fixed preferences for matches. Thus, in this

model, the equilibrium matching is defined endogenously, but there is no guarantee in general

that the bargained solution will be in the core of the assignment game, nor even that it will

be efficient.

The model in Bennett (1988) can be seen as an extension of Rochford’s model, when the

optimal matching is not fixed beforehand and the bargaining process, although still pairwise,

is not necessarily symmetric. The bargained solutions in this model lead to core allocations

and, conversely, all core allocations can be reached by suitable bargained equilibria.

Finally, Kamecke (1989) presents a non-cooperative game in which the agents construct a

matching and pairwise-bargained allocations which also remain in the core, while Moldovanu

(1990) generalizes the work of Rochford to assignment games without transferable utility. In

this last model, threats are computed by means of reduced games and the negotiation is also

symmetric and pairwise.

All these papers have in common that they apply the cooperative bargaining theory to
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the assignment market but always under the assumption that negotiation takes place between

pairs of agents, while the remaining agents appear in the definition of the threats.

In the present paper, we approach the assignment market from the point of view of pure

cooperative bargaining theory, as has been already done for some other cooperative situations

such as the bankruptcy problem (Dagan and Volij, 1993). This approach differs from those

used in the literature cited above in that we consider that the bargaining process takes place

in the whole set of agents. First we define a feasible set and a disagreement outcome. Once

this is done, we focus our attention on the Nash and the Kalai-Smorodinsky solutions, in

order to select some stable allocations supported by some of these bargaining solutions.

Our feasible set does not depend on a fixed optimal matching but takes into account

all the optimal matchings present in the market and, since side-payments are allowed, all

distributions which could be supported by any optimal matching are considered. The origin

is taken as a first disagreement point but, later on, other disagreement points are taken into

consideration. In Section 2 an example illustrates how this bargaining problem is built, while

Section 3 recalls the main facts about the cooperative model of assignment games.

The bargaining problem associated to an assignment market is defined in Section 4. For

those assignment markets with only one optimal matching, we prove that the Nash solution of

the defined bargaining problem coincides with the Kalai–Smorodinsky solution. A particular

choice of the disagreement point is introduced, which is based on the minimum expectations

of each agent under cooperation. For this bargaining problem to be well defined we require

that all agents in the market be active. In this case, the coincidence between Nash and

Kalai-Smorodinsky solutions is recovered regardless of the number of optimal matchings. An

expression is obtained for this solution which shows that it always selects a stable payoff

which coincides with the τ–value of the underlying assignment game. Thus, the τ–value

now appears as the result of a negotiation process between all traders.

Other core allocations may be reached as a Nash solution or a Kalai-Smorodinsky solution

of this bargaining problem. In Section 5 we characterize the subset of core allocations that
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can be reached as a Kalai-Smorodinsky solution, for a suitable choice of the disagreement

point. All allocations in this set, which we name the half–optimal core section, can also be

obtained by a negotiation procedure à la Nash. Once again, if we want the above selected

disagreement points to be admissible, we must restrict ourselves to assignment problems

where all agents are active. In Section 6 we show that similar results can be obtained for

markets with some nonactive agents.

2 An example

To illustrate how we will build this bargaining problem, let us consider the following example

from Shapley and Shubik (1972). Let M = {1, 2, 3} be the set of buyers (rows), M ′ =

{4, 5, 6} be the set of sellers (columns) and let

A =




5 ©8 2

7 9 ©6

©2 3 0




be the assignment matrix, where aij is the joint profit of the pair (i, j) ∈ M ×M ′. Notice

there is only one optimal matching, which is µ = {(1, 5), (2, 6), (3, 4)} , and the optimal profit

is 16. Instead of assuming that each optimally matched pair engages in a bargaining process

to divide their joint profit aij , let us assume that the whole set of agents enters a negotiation

process to allocate the optimal profit. Let us take the origin as a disagreement point, which

means that if the agents do not reach an agreement they receive nothing, and then consider

the bargaining problem (SA, 0) , where the feasible set is

SA =
{
x ∈ R6

+ |x1 + x5 ≤ 8, x2 + x6 ≤ 6, x3 + x4 ≤ 2
}

.

This means that the set of outcomes they can agree on is determined by the amount each

agent can afford by the optimal matching. The Nash solution to this problem is N(SA, 0) =

(4, 3, 1; 1, 4, 3) and, after computing the ideal point, a = (8, 6, 2; 2, 8, 6) , it follows that the

Kalai-Smorodinsky solution to this problem coincides with the Nash solution.
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Nevertheless, the allocation (4, 3, 1; 1, 4, 3) is not stable, since x2 + x4 = 4 < 7 = a24 .

This is an important drawback for a cooperative solution to an assignment market, where

the existence of stable allocations is well known.

From a cooperative point of view, the starting point for negotiation may be other than the

origin. Each agent k can compute his marginal contribution bA
k to the market. The marginal

contribution of a player k is the difference between the total profit of the market and the

maximum profit that could be attained if agent k withdrew from the market. For instance, if

buyer 1 were not present, the assignment matrix would be reduced to




7 9 6

2 3 0


 and the

optimal profit would be 11 . Thus the marginal contribution of agent 1 is bA
1 = 16− 11 = 5 .

Similarly, bA
2 = 6 , bA

3 = 1 , bA
4 = 2 , bA

5 = 5 and bA
6 = 1 . The marginal contribution of

an agent is known to be the maximum payoff he can obtain in any stable allocation of the

assignment market.

Now, a vector of threats à la Rochford, or a reference point for negotiation, can be

defined where each agent calculates how much he could obtain in another partnership after

his potential partner is paid his marginal contribution. This defines the minimal rights

vector dA , where dA
i = maxj∈M ′{aij − bA

j } , for all i ∈ M , and similarly for sellers. In

the example above, the minimal rights vector is dA = (3, 5, 0; 1, 3, 0) . In the bargaining

problem (SA, dA) , the Nash and Kalai-Smorodinsky solutions coincide again, N(SA, dA) =

KS(SA, dA) = (4, 5.5, 0.5; 1.5, 4, 0.5) , and now this allocation belongs to the core of the

assignment game.

A question that arises quite naturally at this point is this: which other core allocations

can be achieved as Kalai-Smorodinsky solutions or Nash solutions of the assignment problem,

for some choice of the disagreement point?

We will prove that, if we restrict ourselves to those disagreement points in between the

origin and the minimal rights vector, 0 ≤ d ≤ dA , the subset of core allocations that can

be achieved as a Kalai-Smorodinsky solution of the assignment problem is always nonempty
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and consists of those core allocations where each agent gets at least one half of his marginal

contribution.

In our example, this subset of core allocations coincides with the segment [A,B] , where

A = (3.5, 5.5, 0.5; 1.5, 4.5, 0.5) and B = (4.5, 5.5, 0.5; 1.5, 3.5, 0.5) . In Figure 1, we reproduce

the core of this assignment game as in Shapley and Shubik (1972), and represent the above

segment.

To see that the segment [A,B] is the subset of core allocations where each agent is paid

at least one half of his marginal contribution, recall first that the marginal contributions of

the agents are bA = (5, 6, 1; 2, 5, 1) . Then, if x belongs to the core and each agent is paid

at least one half of his marginal contribution, x1 ≥ 2.5, x2 ≥ 3, x3 ≥ 0.5, x4 ≥ 1, x5 ≥ 2.5

and x6 ≥ 0.5 must hold. Looking at the picture of the core, we see that all but two of these

constraints are satisfied by all core allocations. It is enough to check that the six extreme

core allocations satisfy x1 ≥ 2.5, x2 ≥ 3, x4 ≥ 1, and x5 ≥ 2.5 .

¢
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Figure 1:

We now need to establish which core allocations x satisfy the two additional constraints

x3 ≥ 0.5 and x6 ≥ 0.5 . Since the joint core payoff of all optimally matched pairs is fixed,

from x3 + x4 = a34 = 2 and x3 ≥ 0.5 we get x4 ≤ 1.5 , and from x2 + x6 = a26 = 6 and
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x6 ≥ 0.5 it follows that x2 ≤ 5.5 . Now, an allocation in the core (x2 +x4 ≥ 7 ) and with the

constraints x2 ≤ 5.5 and x4 ≤ 1.5 must satisfy x2 = 5.5 and x4 = 1.5 which, making use

again of the core constraints x3 + x4 = a34 = 2 and x2 + x6 = a26 = 6 , implies x3 = 0.5

and x6 = 0.5 .

Therefore, x = (x1, 5.5, 0.5; 1.5, x5, 0.5) , where, because of the core constraints, x1+x4 ≥

5 , x1+x6 ≥ 2 , x2+x5 ≥ 9 , x3+x5 ≥ 3 and x1+x5 = 8 . All these imply that 3.5 ≤ x1 ≤ 4.5

while x5 = 8− x1 , and thus x is any point in the segment [A,B] .

In this case, this segment is also the set of core allocations that can be achieved as a Nash

solution to the assignment problem.

The question now is to establish the extent to which what we have observed in this

example depends on the fact that it has only one optimal matching. When several optimal

matchings exist we could choose one of them and proceed as before. However, since there

seems to be no reason to discriminate between them, we have opted to include in the feasible

set the constraints imposed by all optimal matchings. In the example above, if we raise

a25 from 9 to 11, we get an assignment market with two optimal matchings, which are

µ1 = {(1, 5), (2, 6), (3, 4)} and µ2 = {(1, 4), (2, 5), (3, 6)} . Then, the feasible set would be

SA =





x ∈ R6
+

∣∣∣∣∣∣∣∣∣∣∣

x1 + x5 ≤ 8 , x1 + x4 ≤ 5

x2 + x6 ≤ 6 , x2 + x5 ≤ 11

x3 + x4 ≤ 2 , x3 + x6 ≤ 0





The aim of this paper is to analyze this bargaining problem and to determine which stable

allocations of the assignment market can be obtained as a bargained solution, be it a Nash

or a Kalai-Smorodinsky solution.

3 Preliminaries: the assignment game

If M and M ′ are, respectively, the sets of rows and columns of a non-negative matrix A ,

usually representing agents in a two–sided market, we will denote by n the cardinality of
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M ∪M ′ , n = m + m′ , where m and m′ are the cardinalities of M and M ′ respectively.

The assignment problem (M, M ′, A) involves looking for an optimal matching between the

two sides of the market. Then, a matching (or assignment) for A is a subset µ of M ×M ′

such that each k ∈ M ∪M ′ belongs at most to one pair in µ . We will denote by M(A) or

M(M,M ′) the set of matchings of A . The matrix entry aij represents the profit obtained

by the mixed–pair (i, j) when matched together. We say a matching µ is optimal if it is

maximal with respect to inclusion and for all µ′ ∈ M(M,M ′) ,
∑

(i,j)∈µ aij ≥
∑

(i,j)∈µ′ aij ,

and will denote by M∗(A) the set of optimal matchings. Cooperative game theory can be

used to analyze how to allocate the profit obtained by an optimal matching between the

agents.

Assignment games were introduced by Shapley and Shubik (1972) as a cooperative model

for a two–sided market with transferable utility. Given an assignment problem (M, M ′, A) ,

where M is the set of buyers and M ′ is the set of sellers, the player set is M ∪M ′ , and the

characteristic function will be denoted by wA . The profits of mixed–pair coalitions, {i, j}

where i ∈ M and j ∈ M ′ , are given by the non-negative matrix A : wA({i, j}) = aij ≥ 0 .

This matrix A also determines the worth of any other coalition S ∪ T , where S ⊆ M and

T ⊆ M ′ , in the following way: wA(S ∪ T ) = max{∑(i,j)∈µ aij | µ ∈ M(S, T )} , M(S, T )

being the set of matchings between S and T . It will be assumed as usual that a coalition

formed only by sellers or only by buyers has worth zero. For all i ∈ M optimally matched

by µ , we will denote by µ(i) the agent j ∈ M ′ such that (i, j) ∈ µ . Similarly, i could be

denoted by µ−1(j) . Moreover, we say a buyer i ∈ M is not assigned by µ if (i, j) 6∈ µ for

all j ∈ M ′ (and similarly for sellers).

Shapley and Shubik proved that the core of the assignment game (M ∪M ′, wA) is non-

empty and coincides with the set of stable outcomes. This means that the core can be
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represented in terms of any optimal matching µ of M ∪M ′ by

C(wA) =





ui ≥ 0, for all i ∈ M ; vj ≥ 0, for all j ∈ M ′ ,

ui + vj = aij if (i, j) ∈ µ ,

(u, v) ∈ RM × RM ′
ui + vj ≥ aij if (i, j) 6∈ µ ,

ui = 0 if i not assigned by µ ,

vj = 0 if j not assigned by µ





.(1)

Moreover, the core has a lattice structure with two special extreme core allocations: the

buyers-optimal core allocation, (uA, vA) , where each buyer attains his maximum core payoff,

and the sellers-optimal core allocation, (uA, vA) , where each seller does. Notice that when

agents on one side of the market obtain their maximum core payoff, the agents on the opposite

side obtain their minimum core payoff, as the joint payoff of an optimally matched pair is

fixed: ui + vj = aij for all (u, v) ∈ C(wA) if (i, j) ∈ µ .

From Demange (1982) and Leonard (1983) we know that the maximum core payoff of any

player coincides with his marginal contribution:

uA
i = wA(N)− wA(N \ {i}) and vA

j = wA(N)− wA(N \ {j}) .(2)

Let us denote by bA ∈ RM × RM ′
the vector of marginal contributions. From (2) and the

description of the core (1) the minimum core payoff of buyer i is

uA
i = aiµ(i) − bA

µ(i) for all µ ∈M∗(A) ,(3)

while the minimum core payoff of seller j is

vA
j = aµ−1(j)j − bA

µ−1(j) for all µ ∈M∗(A) .(4)

4 The assignment problem as a bargaining problem

The abstract formulation of a bargaining problem is as follows (see for instance Thomson,

1994). Let N = {1, 2, . . . , n} be a set of agents. A n–person bargaining problem is a pair

(S, d) where S is a convex, bounded and closed subset of Rn and d a point of S such that
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there exists x ∈ S with xi > di for all i ∈ N . Then, S is the set of all feasible utility

allocations the agents may reach after a bargaining process. If there is no agreement, each

agent i ∈ N obtains the level of utility di ; this is why d is usually called the disagreement

point. More generally (see for instance Chun and Thomson, 1992) point d can be understood

as a reference point from which the agents find it natural to measure their utility gains in

order to evaluate a proposed compromise. Often attention is focused on the sets S that are

d–comprehensive, that is to say, if x ∈ S and x ≥ y ≥ d , then y ∈ S .

A bargaining solution is a function that assigns to each bargaining problem (S, d) an

element of S . Two well-known examples are the Nash bargaining solution (Nash, 1950) and

the Kalai–Smorodinsky solution (Kalai and Smorodinsky, 1975). The Nash solution, N(S, d) ,

is the point where the function
∏n

i=1(xi − di) attains its maximum in {x ∈ S | xi ≥ di} .

The Kalai–Smorodinsky solution, KS(S, d) , allocates the utilities that exceed the dis-

agreement point in a way proportional to each agent’s expectations. For all i ∈ N , let

ai(S, d) be the maximum utility level agent i can attain subject to the constraint that

no agent should receive less than his coordinate in the disagreement point, that is to say

ai(S, d) = max{xi | x ∈ S , x ≥ d} . Then KS(S, d) is the maximal point of S on the

segment with extreme points d and the ideal point a(S, d) .

An element x ∈ S is Pareto optimal (PO) if there does not exist x′ ∈ S , x 6= x′ , such

that x′ ≥ x , which means x′k ≥ xk for all k ∈ N . An element x ∈ S is weak Pareto

optimal (WPO) if there does not exist x′ ∈ S such that x′ > x , which means x′k > xk

for all k ∈ N . The Nash solution to a bargaining problem is always PO, while the Kalai–

Smorodinsky solution is only WPO in general.

We now define a bargaining problem associated to each assignment problem (M, M ′, A) .

Let us then propose a feasible set SA and a disagreement point.

The set SA is defined taking into account only monetary transfers between pairs that are
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optimally matched by some µ ∈M∗(A) :

SA =





x ∈ RM
+ × RM ′

+

∣∣∣∣∣∣∣

xi + xj ≤ aij for all (i, j) ∈ M ×M ′ such that

∃µ ∈M∗(A) and (i, j) ∈ µ





.(5)

Recall that RM
+ denotes the set of nonnegative real vectors indexed by the set M (and

similarly for RM ′
+ ). This definition of the feasible set means that the agents are bargaining

over what they can afford by any optimal matching.

Notice that SA is convex, closed and 0–comprehensive, but not bounded in general. Then,

in order to have a well-defined bargaining problem, our feasible set must also be bounded,

and this is true if and only if every agent is matched at least by some optimal matching. If

only one optimal matching exists, SA is bounded if and only if A is a square matrix.

The set of Pareto optimal elements in SA is

PO(SA) =





x ∈ SA

∣∣∣∣∣∣∣

for all k ∈ M , ∃µ ∈M∗(A) and xk + xµ(k) = akµ(k) ,

for all k ∈ M ′ , ∃µ ∈M∗(A) and xµ−1(k) + xk = aµ−1(k)k





.(6)

It is straightforward to notice that the core of the assignment game (M ∪ M ′, wA) is

contained in the feasible set SA . Therefore, when computing a solution for a bargaining

problem with feasible set SA we may analyze if it belongs to the core. Notice that because

of the definition of the feasible set, there are WPO elements which are not PO.

In order to have a well-defined bargaining problem, we must take as a disagreement point

any vector d ∈ RM
+ × RM ′

+ such that

0 ≤ d ∈ SA and there exists x ∈ SA such that xk > dk for all k ∈ M ∪M ′ .(7)

This assumption on the disagreement point avoids degenerated cases where only some of the

agents can gain from the agreement. A vector d ∈ RM
+ × RM ′

+ for which condition (7) holds

will be called an admissible disagreement point.

In order to guarantee the existence of some admissible disagreement point, we need that

aij > 0 for all (i, j) ∈ µ and all µ ∈ M∗(A) . If this condition holds in our assignment

matrix, then at least the origin is admissible.

12



If d is an admissible disagreement point, then (SA, d) is a bargaining assignment problem

and we will denote by N(SA, d) and KS(SA, d) the Nash and Kalai–Smorodinsky solutions

to this problem.

To illustrate all these definitions, let us consider the following example.

Example 1 Let us consider M = {1, 2, 3} , M ′ = {4, 5, 6} and the assignment matrix

A =




8 9 5

1 4 2

7 0 6




.

Notice that A has two optimal matchings which are µ1 = {(1, 4), (2, 5), (3, 6)} and µ2 =

{(1, 5), (2, 6), (3, 4)} .

Let us take the origin as a disagreement point, which means that, if the agents do not

reach an agreement, they receive nothing, and then consider the bargaining problem (SA, 0) ,

where the feasible set is

SA =





x ∈ R6
+

∣∣∣∣∣∣∣∣∣∣∣

x1 + x4 ≤ 8 , x1 + x5 ≤ 9

x2 + x5 ≤ 4 , x2 + x6 ≤ 2

x3 + x6 ≤ 6 , x3 + x4 ≤ 7





.

When computing the Nash solution to this problem we obtain

N(SA, 0) = (5.5166, 0.8453, 4.5166; 2.4834, 3.155, 1.1547) ,

which does not belong to the core of the underlying assignment game, since x1 + x5 < 9 .

On the other hand, the maximum feasible payoff to player 1 is a1 = maxx∈SA
x1 =

min{a14, a15} = 8 and proceeding in the same way with the remaining agents we obtain

the ideal point of (SA, 0) which is a = (8, 2, 6; 7, 4, 2) . Then the Kalai-Smorodinsky solu-

tion is the maximal feasible point in the segment λ(8, 2, 6; 7, 4, 2) , with 0 ≤ λ ≤ 1 , and

this is KS(SA, 0) = (4, 1, 3; 3.5, 2, 1) . This shows that the Nash and Kalai-Smorodinsky

solutions need not coincide in the bargaining assignment problem and, moreover, the Kalai-
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Smorodinsky solution need not be PO, just WPO. To check this last remark notice that only

the constraint x2 + x6 ≤ 2 is tight at KS(SA, 0) .

Nevertheless, the next theorem shows that, when A has only one optimal matching, and

for any selection of the admissible disagreement point, it turns out that the two solutions

coincide. Notice that, generically, matrix A will have only one optimal matching. In other

words, by performing an infinitesimal variation of some matrix entry, any matrix A will

satisfy the assumptions of the following theorem.

Theorem 2 Let (M,M ′, A) be an assignment problem with the same number of buyers as

sellers and with only one optimal matching µ , and let d ∈ SA be an admissible disagreement

point. Then, for all (i, j) ∈ µ ,

Ni(SA, d) = KSi(SA, d) =
aij − dj + di

2
and

Nj(SA, d) = KSj(SA, d) =
aij − di + dj

2
.

Proof: Notice first that the maximum of
∏

i∈M (ui − di)
∏

j∈M ′(vj − dj) over {(u, v) ∈

SA | (u, v) ≥ d)} is attained in a point that strictly dominates the disagreement point,

as such points exist in our feasible set. Because the Nash solution is PO and taking into

account that there is only one optimal matching, from equation (6), ui + vj = aij for all

(i, j) ∈ µ and all (u, v) ∈ PO(SA) , we get N(SA, d) = (u∗, v∗) where u∗ is the maximum

of h(u) =
∏

i∈M (−u2
i + (aij − dj + di)ui − di(aij − dj)) on the domain di ≤ ui ≤ aij − dj ,

where (i, j) ∈ µ , and v∗j = aij − u∗i .

After some straightforward computations, for all (i, j) ∈ µ , u∗i = aij−dj+di

2 and then

v∗j = aij−di+dj

2 . Notice that, since di + dj ≤ aij for all (i, j) ∈ µ , then (u∗, v∗) ∈ SA .

To compute the Kalai–Smorodinsky solution, notice that, if (i, j) ∈ µ , then the ideal

point payoff for player i is ai(SA, d) = max{xi | x ∈ SA, x ≥ d} = aij − dj while for player

j it is aj(SA, d) = max{xj | x ∈ SA, x ≥ d} = aij − di . Then, the midpoint between the
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disagreement point and the ideal point is, for all (i, j) ∈ µ ,

(
1
2
d +

1
2
a

)

i

=
aij + di − dj

2
and

(
1
2
d +

1
2
a

)

j

=
aij + dj − di

2
.

This point belongs to the feasible set and is Pareto optimal which implies it is the maximal

point of SA in the segment [d, a] , and thus coincides with the Kalai–Smorodinsky solution

of the problem (SA, d) . 2

The formulae in Theorem 2 can be used to compute the Nash (and the Kalai-Smorodinsky)

solution of the introductory problem (SA, 0) in section 2.

We now propose a particular disagreement point for negotiation in an assignment market.

Since these markets are known to have a nonempty core, agents would expect to finish the

negotiation process in a stable allocation and no agent would accept a cooperative solution

which allocated him less than his minimum core payoff. Let us then introduce the payoff

vector of minimal rights, dA = (uA, vA) ∈ RM
+ × RM ′

+ . The minimal rights payoff vector can

be obtained as a threat point à la Rochford, since the minimal rights payoff of an agent is

the maximum he can obtain from the trade with any agent in the opposite side of the market

after conceding him his marginal contribution:

dA
i = max

j∈M ′
{aij − bA

j } , for all i ∈ M and dA
j = max

i∈M
{aij − bA

i } , for all j ∈ M ′ .

To see this, recall from (3) that, for all i ∈ M and all µ ∈M∗(A) , ui = aij−vj if (i, j) ∈ µ ,

while ui ≥ aij′ − vj′ for all j′ ∈ M ′ since (u, v) is a core allocation.

This reference point dA can also be endogenously generated from a particular set of claims

by a procedure inspired in Herrero (1998). Assume each buyer i ∈ M claims his marginal

contribution bA
i , since it is known to be achieved by a stable allocation of the assignment

market, and then concedes to his optimally matched seller µ(i) ∈ M ′ the difference aiµ(i) −

bA
i , since such a concession is compatible with his claim. If the sellers proceed in the same

way, by these concessions we obtain the minimal rights payoff vector, regardless of the optimal

matching taken into account to make the above concessions.
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In order to check that (SA, dA) is a well-defined bargaining problem, notice first that

dA belongs to the feasible set SA : for any µ ∈ M∗(A) and for all (i, j) ∈ µ , uA
i + vA

j ≤

uA
i + vA

j = aij , since (uA, vA) ∈ C(wA) . But dA may not be an admissible disagreement

point for SA . Notice that there may exist agents that cannot obtain a profit from negotiation,

since their marginal contribution equals their minimal rights payoff.

Definition 3 Let (M, M ′, A) be an assignment problem. An agent k ∈ M ∪M ′ is active if

and only if dA
k < bA

k (i.e. uA
k < uA

k if k ∈ M and vA
k < vA

k if k ∈ M ′ ).

All those agents k which are not optimally matched by some optimal matching µ ∈

M∗(A) are nonactive, since dA
k = bA

k = 0 . But there may also exist some nonactive agents

which are matched in all µ ∈ M∗(A) . To see this, let us consider M = {1, 2, 3} , M ′ =

{4, 5, 6} and matrix

A3 =




9 8 6

8 8 5

3 2 0




,(8)

and notice that there exist two optimal matchings, placed one in each diagonal. The vector

of marginal contributions, bA = (bA
1 , bA

2 , bA
3 ; bA

4 , bA
5 , bA

6 ) = (6, 6, 0; 3, 3, 0) , is easily obtained.

Then, by means of one of the optimal matchings, we get dA
1 = a14−bA

4 = 6 , dA
2 = a25−bA

5 =

5 , dA
3 = a36 − bA

6 = 0 , dA
4 = a14 − bA

1 = 3 , dA
5 = a25 − bA

2 = 2 and dA
6 = a36 − bA

3 = 0 .

By comparing the vector of marginal contributions and the payoff vector of minimal rights,

dA = (6, 5, 0; 3, 2, 0) we conclude that there exists only one active pair, formed by buyer 2

and seller 5. Notice also that agents 1, 3, 4 and 6 are nonactive although each of them is

optimally paired in all optimal matchings of the market.

It is easy to determine which agents are active even in those assignment markets with

many agents. Once we have an optimal matching, and thus the efficiency level wA(M ∪M ′) ,
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the buyers-optimal core allocation (uA, vA) , is the solution of the linear problem

max
∑

i∈M xi

subject to xi + xj ≥ aij , for all (i, j) ∈ M ×M ′

∑
k∈M∪M ′ xk = wA(M ∪M ′) ,

xi ≥ 0 for all i ∈ M , xj ≥ 0 for all j ∈ M ′ ,

since all buyers attain their maximum core payoff, which is their marginal contribution, in

the same core allocation. A similar linear program leads to the sellers-optimal core allocation

(uA, vA) .

Lemma 4 Let (M,M ′, A) be an assignment problem. The following statements are equiva-

lent:

1. The feasible set SA defined in (5) is bounded and the minimal rights payoff vector,

dA = (uA, vA) , is an admissible disagreement point for SA .

2. All agents in M ∪M ′ are active.

Proof: If dA is admissible, there exists x ∈ SA such that xk > dA
k for all k ∈ M ∪M ′ .

Since SA is bounded, all agents are optimally matched by some µ ∈M∗(A) . For all i ∈ M ,

take µ ∈ M∗(A) such that (i, j) ∈ µ for some j ∈ M ′ . From xi + xj ≤ aij , xi > dA
i and

xj > dA
j , we get dA

i < xi ≤ aij−xj < aij−dA
j = bA

i . The same argument applies to j ∈ M ′ .

If all agents are active, there cannot be unmatched players, since they receive zero payoff in

all stable allocations. Then, the feasible set is bounded. Moreover, x = 1
2(uA, vA)+ 1

2(uA, vA)

belongs to SA , since it is a core allocation, and xi > uA
i = dA

i for all i ∈ M , while

xj > vA
j = dA

j for all j ∈ M ′ . 2

For this proposed disagreement point, the related bargaining problem (SA, dA) will be

named dA–bargaining assignment problem. We will show that the Nash solution to this

problem coincides with the Kalai-Smorodinsky solution and is always a core allocation of the

underlying assignment game.
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Theorem 5 Let (M,M ′, A) be an assignment problem where all agents are active. The

Nash and Kalai-Smorodinsky solutions of (SA, dA) satisfy

Ni(SA, dA) = KSi(SA, dA) = uA
i +uA

i
2 , for all i ∈ M ,

Nj(SA, dA) = KSj(SA, dA) =
vA

j +vA
j

2 , for all j ∈ M ′ ,

and are core allocations.

Proof: Let us fix µ ∈ M∗(A) and consider the auxiliary bargaining problem (Sµ
A, dA)

where

Sµ
A = {x ∈ RM

+ × RM ′
+ | xi + xj ≤ aij for all (i, j) ∈ µ} .

Notice that since all agents are active both the problems (SA, dA) and (Sµ
A, dA) are well

defined, and whenever A has only one optimal matching, Sµ
A = SA .

Now the same proof of Theorem 2 applies to the problem (Sµ
A, dA) to see that

Ni(S
µ
A, dA) = KSi(S

µ
A, dA) =

aiµ(i)−dA
µ(i)+dA

i

2 = uA
i +uA

i
2 , for all i ∈ M ,

Nj(S
µ
A, dA) = KSj(S

µ
A, dA) =

aµ−1(j)j−dA
µ−1(j)

+dA
j

2 =
vA

j +vA
j

2 , for all j ∈ M ′ ,

where the last equalities in each row follow taking into account that (uA, vA) and (uA, vA)

are core allocations and thus uA
i + vA

j = uA
i + vA

j = aij for all (i, j) ∈ µ . Moreover, from the

convexity of the core it follows that N(Sµ
A, dA) ∈ C(wA) ⊆ SA .

Now, since Sµ
A ⊇ SA and N(Sµ

A, dA) ∈ SA , from the independence of irrelevant alterna-

tives of the Nash solution, we get N(SA, dA) = N(Sµ
A, dA) .

It only remains to prove that this is also the Kalai-Smorodinsky solution of (SA, dA) . This

follows easily since the ideal point for (SA, dA) is a = (uA, vA) and N(SA, dA) = 1
2a + 1

2dA

is Pareto optimal. 2

The above theorem can be used to obtain the Nash (and the Kalai-Smorodinsky) solution

to the introductory problem (SA, dA) in section 2.

The midpoint between the buyers-optimal and the sellers-optimal core allocations had

already been proposed by Thompson (1981) as a point solution for the assignment game,

with the name of fair solution. More recently, it has been proved in Núñez and Rafels
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(2002) that this point coincides with the τ–value of the assignment game. The τ–value is

a well-known point solution for cooperative TU games (Tijs, 1981). Now, as an immediate

consequence of Theorem 5, we obtain that the Nash solution of the dA-bargaining assignment

problem coincides not only with the Kalai–Smorodinsky solution, but also with the τ–value

of the underlying assignment game.

5 Bargained stable allocations

Which other stable allocations of an assignment market can be selected that are supported

by a bargaining procedure? This is a natural question once we have seen that there exists at

least one, the τ -value.

Let us assume that each agent in the market (M, M ′, A) claims at least one half of his

or her maximum core payoff, and let us look for stable allocations that concede these claims.

Definition 6 Let (M ∪ M ′, wA) be an assignment game where all agents are active. The

half–optimal core of wA is

HC(wA) =





(u, v) ∈ C(wA)

∣∣∣∣∣∣∣

ui ≥ uA
i
2 for all i ∈ M

vj ≥ vA
j

2 for all j ∈ M ′





.

See Section 6 for the definition of the half optimal core when there are nonactive agents in

the market.

Notice that HC(wA) is a convex and compact subset of the core. Moreover, since

τ(wA)i = 1
2uA

i + 1
2uA

i ≥ 1
2uA

i , for all i ∈ M , and τ(wA)j = 1
2vA

j + 1
2vA

j ≥ 1
2vA

j for all

j ∈ M ′ , the half-optimal core always contains the τ -value, and this implies that HC(wA) is

always nonempty. From Definition 6 it also follows that all assignment games with the same

core have the same half–optimal core.

In Example 7 below the half-optimal core reduces to the τ -value. This shows that if all

agents claimed more than one half of their maximum core payoffs, those claims could not

19



be satisfied inside the core. Then, one half of the maximum core payoff is the most we can

guarantee for all agents at the same time without losing stability.

Before looking at the following examples, let us recall that once we fix an optimal matching

µ ∈ M∗(A) , the core of the assignment game is determined by its projection on the space

of payoffs to one side of the market, let us say the buyers’ side. We name this projection the

u–core of the assignment game, and denote it by C(wA)u . Then, if we take into account that

uA
i = aiµ(i) − dA

µ(i) and vA
µ(i) = aiµ(i) − dA

i , and also the core constraint ui + vµ(i) = aiµ(i) ,

the projection of HC(wA) turns out to be the section of C(wA)u with a hypercube:

HC(wA)u =

{
u ∈ C(wA)u

∣∣∣∣∣
aiµ(i) − dA

µ(i)

2
≤ ui ≤

aiµ(i) + dA
i

2
for all i ∈ M

}
.(9)

It can be seen from the above expression that the projection of HC(wA) on the space of

the buyers’ payoffs is a 45o–degree lattice (see Quint, 1991) and thus it turns out to be the

u–core of another assignment game. Therefore, it is possible to find an assignment matrix B

such that HC(wA)u = C(wB)u . Since the extreme core allocations of an assignment game

have been characterized in Núñez and Rafels (2003), a description of the extreme points of

HC(wA) could be given.

Example 7 Let us consider the assignment market defined by A =




6 7

1 3


 . Notice that

A has only one optimal matching, which is µ = {(1, 3), (2, 4)} . The core of the underlying

assignment game is

C(wA) = convex{(4, 0; 2, 3), (5, 0; 1, 3), (6, 1; 0, 2), (6, 2; 0, 1)} .

Since (uA, vA) = (6, 2; 2, 3) , HC(wA) is the subset of core allocations such that 3 ≤ u1 ≤

5 and 1 ≤ u2 ≤ 1.5 . These constraints determine, in the space of the buyers’ payoffs, a

rectangle which only contains one core element, as shown in Figure 2.

In this example both the nucleolus and the kernel of the assignment game (the set of

SPB allocations in Rochford, 1984) are in the relative interior of the core; therefore neither

is included in the half-optimal core.
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Figure 2:

In the next example, an assignment market is given with a half-optimal core not reduced

to a point.

Example 8 Let us consider the assignment market defined by A =




6 4

1 3


 which has

only one optimal matching while the core is

C(wA) = convex{(1, 0; 5, 3), (4, 3; 2, 0), (5, 0; 1, 3), (6, 1; 0, 2), (6, 3; 0, 0)} ,

as shown in Figure 3.
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Figure 3:

The buyers-optimal core allocation is then (6, 3; 0, 0) while the sellers-optimal core al-

location is (1, 0; 5, 3) . Then, the set HC(wA) consists of those core allocations such that

3 ≤ u1 ≤ 3.5 and 1.5 ≤ u2 ≤ 1.5 , and this is the segment with extreme points (3, 1.5; 3,

1.5) and (3.5, 1.5; 2.5, 1.5)= τ(wA) .
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We ask now if there are allocations in the half-optimal core, other than the τ -value,

that can be supported by a bargaining procedure à la Nash or à la Kalai-Smorodinsky. Of

course by choosing disagreement points close enough to the Pareto boundary, almost all core

elements can be achieved; but most of these disagreement points do not seem a sensible

starting point for a negotiation.

As in the previous section, we restrict ourselves to those assignment problems where dA

is an admissible disagreement point, which is equivalent to saying that all agents are active.

We now consider the following set of disagreement points, which is the 0-comprehensive

closure of {dA} :

DA = {d ∈ RM × RM ′ | 0 ≤ dk ≤ dA
k for all k ∈ M ∪M ′} .

Notice that, since we assume dA is admissible, all points in DA are also admissible for

SA . Moreover, the points in DA seem to be an acceptable starting point for negotiating a

cooperative solution, since they are Pareto-dominated by all core allocations.

The set DA may reduce to the point dA . This happens when the matrix is dominant

diagonal (Solymosi and Raghavan, 2001), as this means that dA = 0 . Then DA = {0} and,

by Theorem 5, N(SA, 0) = KS(SA, 0) = τ(wA) ∈ C(wA) .

We look for core allocations that can be obtained as a Nash solution or a Kalai-Smorodinsky

solution of a bargaining problem with feasible set SA and disagreement point in DA . Let us

denote by N (SA,DA) and KS(SA,DA) these two sets. Our first result (Theorem 9) states

that all allocations in the half-optimal core can be reached as a Nash solution. To prove this

theorem, we will need an auxiliary bargaining problem, already used in the proof of Theorem

5.

Given an assignment problem (M,M ′, A) and an optimal matching µ ∈M∗(A) , we may

consider the auxiliary bargaining problem (Sµ
A, d) , and name it the µ–bargaining assignment

problem, where

Sµ
A = {x ∈ RM

+ × RM ′
+ | xi + xj ≤ aij for all (i, j) ∈ µ}

22



and d ∈ DA . Notice that, since all agents are active, this is a well-defined bargaining problem.

Let us also consider the Nash solution to this problem, for all disagreement point in DA :

NSµ
A

: DA −→ RM
+ × RM ′

+

d 7→ NSµ
A
(d) = N(Sµ

A, d) .

The proof used in Theorem 2 can be applied to the problem (Sµ
A, d) to show that, for

(i, j) ∈ µ ,

Ni(S
µ
A, d) = KSi(S

µ
A, d) = aij−dj+di

2 and

Nj(S
µ
A, d) = KSj(S

µ
A, d) = aij−di+dj

2 ,

(10)

and thus NSµ
A

preserves the convex combination of disagreement points:1

NSµ
A
(λd + (1− λ)d′) = λNSµ

A
(d) + (1− λ)NSµ

A
(d′) for all 0 ≤ λ ≤ 1.(11)

We will first determine the subset of core allocations which can be obtained as a Nash

solution to Sµ
A , that is to say, N (Sµ

A,DA) ∩ C(wA) .

Theorem 9 Let (M,M ′, A) be an assignment problem where all agents are active. Then,

1. HC(wA) = N (Sµ
A,DA) ∩ C(wA) ,

2. HC(wA) ⊆ N (SA,DA) ∩ C(wA) , for all µ ∈M∗(A) .

Proof: Notice that statement 2) follows quite straightforwardly from statement 1). If x ∈

HC(wA) , then, by 1), for all µ ∈M∗(A) there exists d ∈ DA such that x = N(Sµ
A, d) . Since

x ∈ SA ⊆ Sµ
A , by independence of irrelevant alternatives of the Nash solution, N(SA, d) =

N(Sµ
A, d) , which implies x ∈ N (SA,DA) ∩ C(wA) .

Let us then prove statement 1). Notice first that, since both the core and the Nash solution

are Pareto optimal, C(wA) and N (Sµ
A,DA) are determined by their projection to the space

of payoffs of one side of the market, C(wA)u = {u ∈ Rm | there exists v ∈ Rm′
and (u, v) ∈

1This will no longer be true when we consider the Nash solution to the problem SA .
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C(wA) } and N (Sµ
A,DA)u = {u ∈ Rm | there exists v ∈ Rm′

and (u, v) ∈ N (Sµ
A,DA) }. Let

us prove now that

N (Sµ
A,DA)u =

∏

i∈M

[
aiµ(i) − dA

µ(i)

2
,

aiµ(i) + dA
i

2

]
.

Since DA is a convex and bounded set of RM
+ × RM ′

+ , if d ∈ DA , then d =
∑r

k=1 λkx
k

with
∑r

k=1 λk = 1 and λk ≥ 0 for all k ∈ {1, 2, . . . , r} , where x1, x2, . . . , xr are the extreme

points of DA . Notice that, by the definition of DA , the l-coordinate of any extreme point is

either 0 or dA
l . When we compute the Nash solution taking each one of these extreme points

as disagreement points, from (10), we obtain NSµ
A
(xk)i =

aiµ(i)−xk
µ(i)

+xk
i

2 , for all i ∈ M . Since

xk
l ∈ {0, dA

l } for all k ∈ {1, 2, . . . , r} and all l ∈ M ∪M ′ , it follows trivially that

min
i=1,2,...,r

NSµ
A
(xk)i =

aiµ(i) − dA
µ(i)

2
and max

i=1,2,...,r
NSµ

A
(xk)i =

aiµ(i) + dA
i

2
.

Then, from (11), we obtain that for all i ∈ M ,

NSµ
A
(d)i =

r∑

k=1

λkNSµ
A
(xk)i ∈

[
aiµ(i) − dA

µ(i)

2
,
aiµ(i) + dA

i

2

]
.

Conversely, if x ∈ ∏
i∈M

[
aiµ(i)−dA

µ(i)

2 ,
aiµ(i)+dA

i

2

]
, then for all i ∈ M there exists 0 ≤

λi ≤ 1 such that xi = λi

(
aiµ(i)−dA

µ(i)

2

)
+ (1 − λi)

(
aiµ(i)+dA

i

2

)
. Define d̃ ∈ RM

+ × RM ′
+ by

d̃i = (1 − λi)dA
i for all i ∈ M and d̃µ(i) = λid

A
µ(i) for all µ(i) ∈ M ′ . Then, d̃ ∈ DA holds

and N(Sµ
A, d̃)i = xi , for all i ∈ M , which proves x ∈ N (Sµ

A,DA)u . 2

Notice that when the matrix A has only one optimal matching, then the two sets in

statement 2) of Theorem 9 coincide. In general, as shown in the following example, the

inclusion may be strict.

Example 10 Let us consider the assignment matrix A =




18 26

10 18


 . It is not difficult

to see that the core reduces to a segment, with extreme points (uA, vA) = (18, 10; 0, 8)

and (uA, vA) = (8, 0; 10, 18) . Notice also that HC(wA) reduces to only one point which is

(13, 5; 5, 13) ; it is therefore the τ -value. Since dA = (8, 0; 0, 8) , we have DA = {(d1, 0, 0, d4) |
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0 ≤ d1 ≤ 8 , 0 ≤ d4 ≤ 8 } . For the disagreement point d = (8, 0, 0, 0) ∈ DA we obtain

N(SA, d) = (14, 6; 4, 12) = B , while for d = (0, 0, 0, 8) we get N(SA, d) = (12, 4; 6, 14) = A ;

and both are core allocations. In fact, for this example it can be proved that N (SA,DA) ∩

C(wA) is the segment with extreme points A and B , as shown in Figure 4.
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¡
¡¡
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Figure 4:

The main result in this section will state that the half–optimal core of the assignment

game is the set of core allocations which can be obtained as a Kalai–Smorodinsky solution

of the problem (SA, d) with disagreement point in DA . Some preliminary work is needed

before reaching this result.

Lemma 11 Let (M, M ′, A) be an assignment problem.

1. If i, i′ ∈ M are such that there exist µ1, µ2 ∈ M∗(A) and µ1(i) = µ2(i′) = j ∈ M ′ ,

then aij − dA
i = ai′j − dA

i′ .

2. If j, j′ ∈ M ′ are such that there exist µ1, µ2 ∈M∗(A) and µ−1
1 (j) = µ−1

2 (j′) = i ∈ M ,

then aij − dA
j = aij′ − dA

j′ .

Proof: Just notice that, since both pairs (i, j) and (i′, j) are optimally matched and

(uA, vA) is a core element, aij − uA
i = vA

j = ai′j − uA
i′ . 2
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Let us now define a binary relation R on the set of buyers M : for all i, i′ ∈ M , iRi′ if

and only if there exist µ, µ′ ∈ M∗(A) such that µ(i) = µ′(i′) . Since we assume all agents

are active, the number of buyers equals the number of sellers and every agent is optimally

matched. Then, this relation is reflexive and symmetric, but not transitive. We thus consider

its transitive closure R̄ : for all i, i′ ∈ M , iR̄i′ if and only if there exist i1, i2, . . . , ik ∈ M

such that iRi1 , i1Ri2 , . . ., ikRi′ . The binary relation R̄ is an equivalence relation in M

and we will denote by I1, I2, . . . , Ir its equivalence classes.

Similarly, two binary relations R′ and R̄′ can be defined in M ′ . For all j, j′ ∈ M ′ ,

jR′j′ if and only if there exist µ, µ′ ∈M∗(A) such that µ−1(j) = µ′−1(j′) , and jR̄′j′ if and

only if there exist j1, j2, . . . , jk ∈ M ′ and jR′j1 , j1R
′j2 , . . ., jkR

′j′ . R̄ is an equivalence

relation in M ′ and we will denote its equivalence classes by J1, J2, . . . , Js .

Lemma 12 states that each equivalence class in M is mapped to the same equivalence

class in M ′ by all optimal matchings. The proof will be found in the appendix.

Lemma 12 Let (M,M ′, A) be an assignment problem where all agents are active, and let

{Ik}r
k=1 be the equivalence classes of R̄ , while {Jk}s

k=1 are the equivalence classes of R̄′ .

Then, for all p ∈ {1, 2, . . . , r} there exists q ∈ {1, 2, . . . , s} such that

µ(Ip) = Jq , for all µ ∈M∗(A) .

Recall that, from statement 1) in Theorem 9, all allocations in HC(wA) can be obtained as

the Nash solution of any auxiliary µ-bargaining assignment problem, for some disagreement

point in DA . The next proposition states that, given an allocation in the half-optimal core,

the same disagreement point can be chosen for all Sµ
A . Moreover, the proof of the proposition

gives a constructive method to obtain such a common disagreement point.

Proposition 13 Let (M,M ′, A) be an assignment problem where all agents are active. For

all x ∈ HC(wA) there exists d ∈ DA such that x = N(Sµ
A, d) for all µ ∈M∗(A) .

Proof: Let us take x ∈ HC(wA) . By Definition 6 and statement 1) in Theorem 9, for all

µ ∈M∗(A) there exists d ∈ DA such that x = N(Sµ
A, d) . Let us denote by Dµ

A,x the set of

26



disagreement points in DA which lead to x after a µ–bargaining procedure. That is to say,

Dµ
A,x = {d ∈ DA | N(Sµ

A, d) = x} . Notice that, for all x ∈ HC(wA) and all µ ∈ M∗(A) ,

Dµ
A,x 6= ∅ .

If x ∈ HC(wA) and d ∈ Dµ
A,x for some µ ∈ M∗(A) , then, from (10), we get di =

dµ(i)− 2xµ(i) +aiµ(i) , for all i ∈ M . Since 0 ≤ di ≤ dA
i and 0 ≤ dµ(i) ≤ dA

µ(i) , for all i ∈ M ,

we deduce

Dµ
A,x =





d ∈ RM
+ × RM ′

+

∣∣∣∣∣∣∣

max{0, aiµ(i) − 2xµ(i)} ≤ di ≤ min{dA
i , dA

µ(i) − 2xµ(i) + aiµ(i)},

dµ(i) = di + 2xµ(i) − aiµ(i), for all i ∈ M





.(12)

A necessary condition for the existence of a common disagreement point is that, for all

µ ∈ M∗(A) , the intersection of the intervals above, one for each i ∈ M , be nonempty. For

all i ∈ M , take µ1, µ2 ∈M∗(A) such that

max{0, aiµ1(i) − 2xµ1(i)} = max
µ∈M∗(A)

{max{0, aiµ(i) − 2xµ(i)}}

and

min{dA
i , dA

µ2(i) − 2xµ2(i) + aiµ2(i)} = min
µ∈M∗(A)

{min{dA
i , dA

µ(i) − 2xµ(i) + aiµ(i)}} .

Notice that dA
i ≥ 0 , and also dA

i ≥ aiµ1(i) − 2xµ1(i) , which follows from the fact that,

since x ∈ HC(wA) , 2xµ1(i) ≥ vA
µ1(i) .

Moreover, taking into account that xi + xµ2(i) = aiµ2(i) , we can write dA
µ2(i) − 2xµ2(i) +

aiµ2(i) = dA
µ2(i) − aiµ2(i) + 2xi = dA

µ2(i) − (uA
i + dA

µ2(i)) + 2xi = −uA
i + 2xi ≥ 0 , where the last

inequality follows from x ∈ HC(wA) .

Finally, from xi + xµ1(i) = aiµ1(i) and xi + xµ2(i) = aiµ2(i) , we obtain that the inequality

aiµ1(i) − 2xµ1(i) ≤ dA
µ2(i) − 2xµ2(i) + aiµ2(i) is equivalent to −aiµ1(i) ≤ dA

µ2(i) − aiµ2(i) = −uA
i ,

which holds trivially.

The above considerations prove that

max{0, aiµ1(i) − 2xµ1(i)} ≤ min{dA
i , dA

µ2(i) − 2xµ2(i) + aiµ2(i)} ,

for all i ∈ M .
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We are now ready for the choice of a disagreement point d ∈ RM×RM ′
, making use of the

partition {Ik}r
k=1 of M given by the equivalence classes of R̄ , and the partition {Jk}r

k=1

of M ′ given by the equivalence classes of R̄′ . Because of Lemma 12, let us assume, without

loss of generality, that the above classes have been ordered in such a way that µ(Ik) = Jk

for all µ ∈M∗(A) and all k ∈ {1, 2, . . . , r} .

For all k ∈ {1, 2, . . . , r} take ik ∈ Ik such that dA
ik

= mini∈Ik
dA

i and choose dik such

that

max
µ∈M∗(A)

{0, aikµ(ik) − 2xµ(ik)} ≤ dik ≤ min
µ∈M∗(A)

{dA
ik

, dA
µ(ik) − 2xµ(ik) + aikµ(ik)} .

Now, for all i ∈ Ik , define

di := dik + dA
i − dA

ik

and notice that this implies that

di − di′ = dA
i − dA

i′ for all i, i′ ∈ Ik .(13)

Choose also any µ∗ ∈M∗(A) and define dµ∗(i) := 2xµ∗(i) + di − aiµ∗(i) , for all i ∈ M .

Now it only remains to prove that (i) x = N(Sµ
A, d) for all µ ∈M∗(A) , and (ii) d ∈ DA .

(i) By (10), it is enough to prove that, for all i ∈ M , xµ(i) = aiµ(i)−di+dµ(i)

2 for all µ ∈M∗(A) ,

since then xi = aiµ(i)−dµ(i)+di

2 follows from x ∈ C(wA) .

For all i ∈ M and all µ ∈ M∗(A) , there exists i′ ∈ M such that µ(i) = µ∗(i′) , where

µ∗ is the optimal matching previously fixed. Then i, i′ ∈ Ik for some k ∈ {1, 2, . . . , r} and,

by (13) and Lemma 11 we have

dµ(i) = dµ∗(i′) = 2xµ∗(i′) + di′ − ai′µ∗(i′) =

= 2xµ(i) + (di − dA
i + dA

i′ )− (aiµ(i) + dA
i′ − dA

i ) = 2xµ(i) + di − aiµ(i) .

(14)

(ii) From the definition of ik and dik we know that, for all k ∈ {1, 2, . . . , r} , 0 ≤ dik ≤ dA
ik

and dA
ik
≤ dA

i for all i ∈ Ik . Then, for all k ∈ {1, 2, . . . , r} and all i ∈ Ik ,

0 ≤ dik ≤ di = dik + dA
i − dA

ik
≤ dA

i .
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It only remains to prove that similar inequalities hold for dµ(i) , for all i ∈ M .

Notice first that, for all j, j′ ∈ M ′ such that jR′j′ , we know there exists i ∈ M and

µ1, µ2 ∈ M∗(A) such that µ−1
1 (j) = µ−1

2 (j′) = i and, once proved that x = N(Sµ
A, d) for

all µ ∈M∗(A) , this means that

xi =
aiµ1(i) − dµ1(i) + di

2
=

aiµ2(i) − dµ2(i) + di

2

and, by Lemma 11, this implies

dµ2(i) = dµ1(i) + dA
µ2(i) − dA

µ1(i) .(15)

It is easy to prove, and it is left to the reader, that the same equality holds for all j, j′ ∈ Jk ,

for all k ∈ {1, 2, . . . , r} :

dj′ = dj + dA
j′ − dA

j .(16)

On the other hand, from the definition of dik , and also by (14), it follows that 0 ≤ dµ(ik) ≤

dA
µ(ik) for all µ ∈ M∗(A) . Then, for all i ∈ Ik , i 6= ik , we have µ(i), µ(ik) ∈ µ(Ik) = Jk

and, by equation (16), we can write dµ(i) = dµ(ik) + dA
µ(i) − dA

µ(ik) ≤ dA
µ(i) .

Now, for all k ∈ {1, 2, . . . , r} , if there exists i′ ∈ Ik such that dµ(i′) = dA
µ(i′) , then, from

(15), dµ(i) = dA
µ(i) ≥ 0 , for all i ∈ Ik . If there exists i′ ∈ Ik such that di′ = dA

i′ , then

di = dA
i also holds for all i ∈ Ik , and consequently

dµ(i) = 2xµ(i) + dA
i − aiµ(i) =

= 2xµ(i) + dA
i − (dA

i + vA
µ(i)) = 2xµ(i) − vA

µ(i) ≥ 0 ,

for all i ∈ Ik , where the last inequality follows from x ∈ HC(wA) .

If dl < dl for all l ∈ Ik ∪ Jk , take ε = minl∈Ik∪Jk
(dA

l − dl) > 0 and define a new

disagreement point d′ ∈ RM × RM ′
by

d′l =





dl + ε for all l ∈ Ik ∪ Jk ,

dl for all l ∈ (M ∪M ′) \ (Ik ∪ Jk) .

It is straightforward to check that x = N(Sµ
A, d′) for all µ ∈ M∗(A) . Moreover, d′l ≥

dl ≥ 0 for all l ∈ Ik , and ε has been taken in such a way that d′l ≤ dA
l for all l ∈ Ik ∪ Jk .

29



Finally, there now exists l0 ∈ Ik ∪ Jk such that d′l0 = d
′A
l0 and, by an argument already used

above, this means that d′l ≥ 0 for all l ∈ Jk . 2

We are now ready to prove that the half-optimal core can be characterized as those core

allocations that can be achieved as the Kalai-Smorodinsky solution of a bargaining problem

with feasible set SA and disagreement point in DA . Notice first that when A has only one

optimal matching µ , SA = Sµ
A and by (10) and statement 1) in Theorem 9 the following

statement is already known to be true.

Theorem 14 Let (M,M ′, A) be an assignment problem where all agents are active. Then,

HC(wA) = KS(SA,DA) ∩ C(wA) .

Proof: To prove HC(wA) ⊇ KS(SA,DA) ∩ C(wA) , recall that x ∈ KS(SA,DA) implies

x = d + λ(a − d) for some d ∈ DA , a being the ideal point of the problem (SA, d) , and

λ ∈ [0, 1] maximal such that x ∈ SA . For all i ∈ M ,

ai = min
µ∈M∗(A)

{aiµ(i) − dµ(i)} ≥ min
µ∈M∗(A)

{aiµ(i) − dA
µ(i)} = uA

i .(17)

Similarly, if j ∈ M ′ , aj ≥ vA
j .

From weak Pareto optimality of the Kalai-Smorodinsky solution, there exists µ ∈M∗(A)

and (i, j) ∈ µ such that xi + xj = aij . This means that λ = aij−di−dj

ai+aj−di−dj
. Notice that λ is

well defined since all agents are active and then di ≤ dA
i < ui ≤ ai and dj ≤ dA

j < vj ≤ aj .

Moreover, from (17) follows ai = minµ∈M∗(A){aiµ(i) − dµ(i)} ≤ aij − dj and similarly aj ≤

aij − di which implies λ = aij−di−dj

ai+aj−di−dj
≥ 1

2 . Then, for all i ∈ M and all j ∈ M ′ , taking

into account ai ≥ uA
i , aj ≥ vA

j , di ≥ 0 and dj ≥ 0 , we have

xi ≥ di +
1
2
(ai − di) =

ai + di

2
≥ uA

i

2
and xj ≥ dj +

1
2
(aj − dj) =

aj + dj

2
≥ vA

j

2

which means, from definition 6, that x ∈ HC(wA) .

The converse inclusion remains to be proved. Since Proposition 13 means that
⋂

µ∈M∗(A)Dµ
A,x 6=

∅ , for all x ∈ HC(wA) , let us see that for all x ∈ HC(wA) and all d ∈ ⋂
µ∈M∗(A)Dµ

A,x , we

have KS(SA, d) = x .
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Take then x ∈ HC(wA) and d ∈ ⋂
µ∈M∗(A)Dµ

A,x . For all i ∈ M and all µ ∈ M∗(A) ,

aiµ(i)−dµ(i)+di

2 = xi , while for all j ∈ M ′ ,
aµ−1(j)j−dµ−1(j)+dj

2 = xj holds. Then, when we

compute the ideal point, for all i ∈ M we obtain

ai = min
µ∈M∗(A)

{aiµ(i) − dµ(i)} = 2xi − di

while for all j ∈ M ′ ,

aj = min
µ∈M∗(A)

{aµ−1(j)j − dµ−1(j)} = 2xj − dj .

Now, a = 2x−d , which means that x = a+d
2 is the midpoint between the ideal point and

the disagreement point. Moreover, x is Pareto optimal in SA , since x ∈ HC(wA) ⊆ C(wA) ,

and thus x coincides with the Kalai-Smorodinsky solution of the problem (SA, d) . 2

In Section 2 we have computed the half-optimal core of an assignment game found in

Shapley and Shubik (1972). By the above theorem, this is also the set of core allocations

that can be obtained as a Kalai-Smorodinsky solution to the related bargaining problem.

Notice to conclude that the half-optimal core is a subset of stable allocations supported

by a bargaining procedure and always containing a single-valued cooperative game solution,

the τ -value, just as the kernel (Davis and Maschler, 1965) is the set of symmetrically pairwise

bargained allocations (Rochford, 1984) and always contains the nucleolus.

In both Example 7 and Example 8 it is not difficult to check that the kernel does not meet

the half-optimal core. Since the assignment market of each one of these examples has only one

optimal matching, we know that HC(wA) = N (SA,DA) ∩ C(wA) = KS(SA,DA) ∩ C(wA) .

Then, no allocation in the kernel of those markets can be obtained by a Nash or a Kalai-

Smorodinsky bargaining procedure, with a disagreement point dominated by the minimal

rights payoff vector. Thus, the half-optimal core is a different way in which classical bargain-

ing theory provides a nonempty selection of stable allocations in an assignment market.
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6 Assignment problems with nonactive agents

We will now show that the analysis in the previous sections can be easily extended to those

assignment problems that do not satisfy the assumption made in this paper. Let us describe

the procedure when there are some nonactive pairs. Recall from Definition 3 that an agent

k ∈ M ∪M ′ is nonactive if and only if dA
k = bA

k , and if such agents exist then, by Lemma 4,

the bargaining problem (SA, dA) is not well defined.

Now, given an assignment problem (M, M ′, A) , let us write M = M1 ∪M2 and M ′ =

M ′
1 ∪ M ′

2 where M1 is the subset of active buyers and M ′
1 is the subset of active sellers.

And let A1 be the submatrix of A with row and columns corresponding to active agents.

Notice that if agent i is optimally matched by µ to agent j then uA
i + vA

j = aij = uA
i + vA

j

which implies vA
j − vA

j = uA
i − uA

i and, as a consequence, i is active if and only if j is also

active. Then, the cardinality of M1 and M ′
1 is the same.

For all µ ∈ M∗(A) , the restriction of µ to M1 × M ′
1 is also an optimal matching for

M1×M ′
1 . And conversely, every optimal matching for M1×M ′

1 can be completed to obtain

an optimal matching of M ×M ′ .

Let us define in M the binary relation R̄ (see page 26), adding the condition that if

i ∈ M is never optimally matched then iR̄i , in order to make R̄ reflexive in M , and let

us similarly make R̄′ reflexive in M ′ . Then, each equivalence class of R̄ and R̄′ consists of

either only active agents or only nonactive agents.

Nonactive agents k ∈ M2 ∪ M ′
2 will be constrained to receive the payoff dA

k and the

negotiation will take place between the agents in M1 ∪ M ′
1 . So let us assume that there

exists at least one active pair. However, we should not restrict our attention to the matrix

entries aij where (i, j) ∈ M1 ×M ′
1 , since some active agents may have trading possibilities

with some nonactive agents that should be taken into account when defining the feasible set.

Let it be c ∈ RM1
+ × RM ′

1
+ where

ci = max
j∈M ′

2

{0, aij − dA
j } for all i ∈ M1
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and

cj = max
i∈M2

{0, aij − dA
i } for all j ∈ M ′

1 .

Then, we define the feasible set for the negotiation among the agents M1 ∪M ′
1 by

S̃A1 =





x ∈ RM1
+ × RM ′

1
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi + xj ≤ aij for all (i, j) ∈ M1 ×M ′
1 , such that

there exists µ ∈M∗(A) and (i, j) ∈ µ ,

xi ≥ ci for all i ∈ M1 ,

xj ≥ cj for all j ∈ M ′
1 ,





Notice that, for all i ∈ M1 , either ci = 0 ≤ dA
i or ci = aij − dA

j for some j ∈ M ′
2 . In

this case, since dA
j = vA

j and (uA, vA) ∈ C(wA) , we also have ci = aij − vA
j ≤ dA

i . A

similar argument applied to the case j ∈ M ′
1 gives that the restriction of the payoff vector of

minimal rights to the set of active agents, dA
|M1×M ′

1
, dominates vector c . As a consequence,

both c and dA
|M1×M ′

1
belong to the feasible set S̃A1 .

Moreover, S̃A1 is compact, convex and c–comprehensive (if x ∈ S̃A1 and x ≥ y ≥ c ,

then y ∈ S̃A1 ) and the restriction of dA to M1 ∪M ′
1 is an admissible disagreement point

for S̃A1 . Notice also that, if all agents are active, the set S̃A1 coincides with the feasible set

SA of the previous sections.

If we take d as an admissible disagreement point for this new feasible set, and under the

assumption that the restriction of A to M1 ×M ′
1 , A1 , has only one optimal matching, the

Nash and the Kalai–Smorodinsky solutions coincide and have the same expressions as those

found in Theorem 2.

Regardless of the number of optimal matchings in M1×M ′
1 , when we take the restriction

of dA to the subset of active agents as a disagreement point in S̃A1 , the Nash and the Kalai-

Smorodinsky solutions coincide and, when completed with the minimal rights payoff for the

nonactive agents, they coincide with τ(wA) . This result extends Theorem 5 and shows that

also when nonactive agents exist, the negotiation process may lead to a stable allocation.

Therefore, it makes sense to ask what other stable allocations can be obtained in this way.
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To answer this question, let us first select a set of admissible disagreement points. Notice

that in this new problem it may happen that 0 6∈ S̃A1 and thus the origin may not be

admissible as a disagreement point. If we consider disagreement points in the c-comprehensive

closure of dA we obtain the set DA1 = {d ∈ RM1
+ × RM ′

1
+ | ck ≤ dk ≤ dA

k } .

We also extend the definition of half-optimal core and take it to be

HC(wA) =





(u, v) ∈ C(wA)

∣∣∣∣∣∣∣

ui ≥ uA
i +ci

2 , for all i ∈ M1,

vj ≥ vA
j +cj

2 , for all j ∈ M ′
1





,

since nonactive agents are constrained to receive their minimal rights payoff in any stable

allocation. Notice that HC(wA) always contains the τ -value and, therefore, it is a nonempty

set.

On the other hand, we denote by K̂S(S̃A1 ,DA1) and N̂ (S̃A1 ,DA1) respectively the set

of Kalai-Smorodinsky or Nash solutions to the problem (S̃A1 , d) , with disagreement point in

DA1 , once they have been completed to a payoff vector to the whole set of agents M ∪M ′ ,

by giving each nonactive agent his minimal rights payoff.

Then, Theorems 9 and 14 are easily extended and we obtain that the half-optimal core

of the assignment game (M ∪ M ′, wA) coincides with the set of core allocations that can

be reached as a Kalai-Smorodinsky solution of (S̃A1 , d) with disagreement point in DA1 .

Moreover, all allocations in this set can also be reached as the Nash solution of S̃A1 with

disagreement point in DA1 :

HC(wA) = K̂S(S̃A1 ,DA1) ∩ C(wA) ⊆ N̂ (S̃A1 ,DA1) ∩ C(wA) .

A Appendix

Proof of Lemma 11: Let us take an equivalence class Ip of R̄ and choose any element

i0 ∈ Ip . Choose also an optimal matching µ∗ ∈M∗(A) and take q ∈ {1, 2, . . . , s} such that

µ∗(i0) ∈ Jq . Notice that for all other µ ∈ M∗(A) , µ(i0)R′µ∗(i0) and thus µ(i0) ∈ Jq for

all µ ∈M∗(A) .
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We will first prove that µ(Ip) ⊆ Jq for all µ ∈ M∗(A) . Take i ∈ Ip , i 6= i0 and let

us see that µ(i) ∈ Jq for all µ ∈ M∗(A) . Since i0Ri , there exist i1, i2, . . . , ik ∈ M such

that i0Ri1, , i1Ri2 , . . ., ikRi . From i0Ri1 follows that there exist µ0, µ1 ∈ M∗(A) with

µ0(i0) = µ1(i1) which implies µ1(i1) ∈ Jq and consequently, since µ1(i1)R′µ(i1) for all

µ ∈M∗(A) , we obtain µ(i1) ∈ Jq for all µ ∈M∗(A) . By repeating the same argument, we

iteratively obtain that µ(i2), µ(i3), . . . , µ(ik) and µ(i) belong to Jq for all µ ∈M∗(A) .

Let us check now that Jq ⊆ µ(Ip) for all µ ∈ M∗(A) . Take j ∈ Jq and any µ ∈

M∗(A) . From µ(i0) ∈ Jq it follows that there exist j1, j2, . . . , jk ∈ M ′ such that µ(i0)R′j1 ,

j1R
′j2 ,. . ., jkR

′j . Since µ(i0)R′j1 , there exist i1 ∈ M and µ0, µ1 ∈ M∗(A) such that

i1 = µ−1
0 (j1) = µ−1

1 (µ(i0)) . Then, µ1(i1) = µ(i0) which means that i1Ri0 and consequently

i1 ∈ Ip . Moreover, µ0(i1) = j1 = µ(µ−1(j1)) , and this implies that i1Rµ−1(j1) , that is to

say µ−1(j1) ∈ Ip or, equivalently, j1 ∈ µ(Ip) . By repeatedly applying the same argument

we obtain j2, . . . , jk and j also belong to µ(Ip) for all µ ∈M∗(A) . 2

The above lemma shows that the number of classes in both partitions of M and M ′ is

the same and all optimal matchings map each class in M onto the same class in M ′ . Then,

an ordering can be taken in the set of buyers such that buyers in I1 precede any other buyer

in I2 ∪ I3 ∪ · · · ∪ Ir , and, for all k ∈ {2, . . . , r − 1} , buyers in Ik precede any buyer in

Ik+1 ∪ · · · ∪ Ir . Similarly, an ordering can be taken in the set of sellers such that those sellers

in µ(I1) precede any other seller and, for all k ∈ {2, . . . , r − 1} , sellers in µ(Ik) precede

any seller in µ(Ik+1) ∪ · · · ∪ µ(Ir) . The assignment matrix corresponding to these orderings

on the player set will be a partitioned matrix presenting all the optimal matchings in the

diagonal blocks.
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