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1 Introduction

Auction design has been in vogue lately because of the ongoing licensing process for the

third generation mobile telephony services (UMTS) throughout Europe. In those auctions

several countries established rules to counter potentially deleterious effects created by

the presence of asymmetries among bidders. In the valuation of a 3G license there are

common and private components. The common value arises because profit prospects

depend on the development of the UMTS market as a whole, whereas the private value

arises because of the economies of scope between the new services and the existing GSM

business. Operators already active in GSM services (the incumbents) have an existing

infrastructure, a pool of GSM subscribers and a database of potential customers which

give them a distinct advantage. Also, an incumbent’s failure to win a license would

adversely impact its existing business. Since incumbents face better initial conditions

than newcomers, the private component is asymmetric.1

Asymmetries are prevalent in most auctions in practice. They can be due to the

presence of a bidder to be known to have a special interest beyond that of others in winning

the auction.2 They can also be generated by the presence of liquidity constraints. Firms

that operate within imperfect capital markets face different costs of raising the amount

of cash needed for their bids. Notice that differences in retained earnings, in values of

assets appropriate for collateral, or, more generally, in access to external finance may

easily cause asymmetries among bidders.3

It is known that small asymmetries can crucially affect who wins, and at what price,

in standard ascending auctions for common-value objects. When the auction is conducted

1Goeree and Offerman (2003) analiyze competitive bidding in auctions with private and common

components. In their set-up, bidders are ex-ante symmetric whereas here we are interested in auctions

for which bidders are ex-ante asymmetric.
2For example in the FCC auctions it was well known that PacTel had a special interest in acquiring

licenses in Los Angeles and San Francisco (see Cramton, 1997).
3In the privatization of ENTel (an argentinean telecommunications company) the winner of the ENTel

North (Bell Atlantic and Manufacturers Hanover Corporation) failed to arrange the financing necessary

to meet their bid. ENTel North was awarded to the next bidder, a consortium of buyers including France

Telecom and J. P. Morgan.
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as second-price, the bidder who has a disadvantage compared to her opponent (almost

surely) never wins.4 In equilibrium, the advantageous bidder plays a very aggressive strat-

egy, whereas the disadvantageous plays very conservatively.5 The rationale behind this

equilibrium behavior is clear. Consider such an auction with two bidders in which they

both know that one of them will have for sure a small additional private value whatever

common value is realized, i.e. consider an almost common value auction. Because of the

payoff advantage, in an ascending auction the stronger bidder can bid more aggressively,

which forces the weaker bidder to bid even more cautiously in order to avoid a loss. The

more cautious the behavior of the weaker bidder, the more aggressively the advantageous

bidder can bid in this constellation. In equilibrium, the disadvantaged bidder never out-

bids the advantageous bidder, because she would make a loss in that case. But then a

potential competitor with a slightly smaller valuation will see no point in entering the

auction.6 Moreover, this result holds even if the difference between types becomes negli-

gible, so that the symmetric equilibrium à la Milgrom lies out of the equilibria limit set

as one takes a sequence of auctions converging to the symmetric one.7

The immediate moral is that a standard ascending auction may not be a good choice

in an almost common value setting as the lack of competition will lower the prices very

substantially. An obvious reaction is to recommend using a first-price auction as “the

outcome of a sealed-bid auction, in stark contrast to that of an ascending auction, is,

it is believed, almost unaffected by small asymmetries among bidders”.8 But, how does

it performs? We show here that the first-price auction gives a disadvantaged bidder a

shot at winning. Certainly, an advantageous bidder is more likely to win a first-price

auction as well, but the outcome there is much less certain as she cannot follow the

4See Bikhandani (1988), Klemperer (1998), and Bulow and Klemperer (2000) where second price

common value auctions with asymmetric bidders are analyzed.
5Nevertheless, the explosive effect reported in the two bidder case does not generalize to the addition

of more disadvantageous bidders, as shown in Kagel and Levin (2005).
6In the U.S. radiospectrum auctions, MCI, the third largest telecommunication company did not

participate at all. A similar problem may be behind the low revenue raised by the 2000 Netherlands

spectrum auctions.
7See Bikhchandani (1988) where this result is shown and De Frutos and Pechlivanos (2005) for a

discussion about the robustness of the result when one allows for multidimensional uncertainty.
8See Bulow and Klemperer (2002) (p. 12), where this quotation is taken from.
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strategy of bidding very high. Furthermore, the less aggressive bidding by the strong

firms reduces the severity of the winner’s curse faced by the weak ones, which encourages

them to bid more strongly. Contrary to the results for second-price auctions, the first-

price almost common-value auction has a unique equilibrium (no matter the degree of

comparative advantage) which converges uniformly to the symmetric equilibrium of the

symmetric auction as the asymmetry vanishes. Hence, the symmetric equilibrium is the

equilibrium limit as one takes a sequence of auctions converging to the symmetric one. In

this equilibrium a disadvantaged player wins with strictly positive probability unless the

asymmetry is so large that gives the advantaged bidder a larger ex-ante valuation than

the most optimistic disadvantaged bidder. Consequently, potential competitors with a

disadvantage may participate in the auction.9

In view of recent debates over the format of government auctions, studying the effects

of asymmetries on bidding outcomes is of practical as well as theoretical importance as

asymmetries are the norm and not the exception in many auctions.10 We conclude that

a first price auction is a good allocation mechanism in the presence of asymmetries.

The paper is organized as follows. In Section 2 we introduce the model. Section 3

provides the analysis of the first price auction for the basic model. Section 4 focus on the

seller’s expected revenue. Section 5 generalizes the results in Section 3 as it is devoted

to show the robustness of our results. Finally, the Appendix provides the proofs of two

rather technical lemmas.

9This is consistent with the evidence from the 2001 Danish 3G Auction which was conducted as a

firts-price sealed-bid auction. It attracted a serious bid from a new entrant and shocked analysts with

revenues of 95 Euros per capita, which almost double most expectations. See Klemperer (2002), and

Binmore and Klemperer (2002) for more details.
10In a recent empirical work, Kahn and Caputo (2001) investigate heterogeneity across different cat-

egories of bidders and find evidence that suggests the importance of private components in bidders

valuations in Brazilian auctions. The authors conclude that caution should be exercised in studies that

assume that treasury auctions are in line with a pure common values setting.
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2 The Model

Two risk neutral bidders, player A (advantage) and player D (disadvantage), take part in a

first-price auction: one object is auctioned off and given to the player with the highest bid

who pays his bid. The value of the object to player A is αV, whereas player D’s valuation

is δV with α > δ (thus, player A has a higher ex-post valuation of the object). We will

denote an auction in which the values are αV and δV by (α, δ)-auction. Throughout the

paper we focus on a (k, 1)-auction, k > 1; however, as we go along, we will explain how

the results extend easily to any (α, δ)-auction.

For each player V is unknown, but each of them gets a signal (xA and xD, respec-

tively) about V before they submit their bids. The players’ signals are independent and

identically distributed. Without loss of generality, we can normalize so that both signals

are uniformly distributed on [0, 1]. Finally, following Klemperer (1998), players know that

the true value of the object is the sum of the signals; i.e., V = xA + xD.11

This canonical model encompasses different sources of asymmetries:

• It can be used to analyze situations in which the market value of the object is

common to all bidders (i.e., they compete for common-value objects), but at the

same time, each of them may have an additional private source of gains due to

synergies. This could be the case if the object being auctioned off is a target firm in

a takeover contest, a state-owned enterprise about to be privatized, or a bankrupted

firm under liquidation. The literature refers to these auctions as almost common-

value auctions.

• It can also be used for a pure common-value auctions in which bidders differ in their

marginal utility of income due to the different financial constraints they may face.12

One simple way to model these differences is to consider that bidder A’s utility is

ÛA = V −rAp and bidder D’s utility is ÛD = V −rDp with rA < rD.13 Since bidders’

11By modelling the common value in this way, second derivatives with respect to signals vanish, which

may be seen as a limitation. In Section ?? we undertake a robustness analysis. It shows that our results

also hold if other, more general, functional forms were considered.
12For more on auctions with financially constrained bidders, see Che and Gale (1998).
13In the US spectrum auctions designated firms were given bidding credits. These credits which were
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utility can be rewritten as

UA =
V

rA
− p = αV − p and UD =

V

rD
− p = δV − p,

our set-up allows for this source of asymmetry, too.

3 Regions

Consider a (k, 1)-auction. This almost common-value auction is equivalent to a common-

value auction in which bidders face interest rates given by rA = 1/k and rD = 1. Using

this framework, it is easy to see that players’ strategic behavior reflect two effects:

• Information effect : players will behave more aggressively the more optimistic is

their information, i.e., the larger is their signal.

• Wealth effect: players will behave more aggressively the smaller is the interest rate

they face.

The interplay between these two effects will determine the qualitative properties of

the equilibrium. In particular, we can distinguish three potential cases by focusing on the

impact of these two effects on the bidding behavior of an A player with signal 0, (A-0, for

shortness):

Small asymmetries ( 1 ≤ k < 2), the information effect dominates and hence player

A-0 loses in equilibrium against any type of player D. For these values of k, the

advantage in terms of wealth is not enough as to compensate the disadvantage

coming from the very pessimistic information. Notice that the valuation of player

A-0, conditional upon winning over types of player D below y, is smaller than the

smallest possible valuation of player D-y, i.e., k
2
y < y for all y ∈ (0, 1].

Intermediate asymmetries ( 2 ≤ k < 3), the wealth effect partially dominates the in-

formation effect. The valuation of player A-0 conditional upon winning is larger

intended to offset any disadvantage these firms faced in raising capital, see Cramton (2001), constitute a

good real life example of the existence of different financial constraints.
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than the valuation of a type of player D with sufficiently pessimistic information.

In particular, there will exist a signal s(k), 0 < s(k) < 1, such that, in equilibrium,

player A-0 wins over any player D with signal below s(k).

Large asymmetries ( k ≥ 3), the wealth effect dominates the information effect and hence

player D will never win the auction.14 The valuation of player A-0 conditional upon

winning is larger than the one of player D-1, i.e., k
2
≥ (1 + 1

2
).

In what follows we analyze the equilibrium bidding strategies in the three possible

scenarios. But first, we here state a lemma which guarantees the smoothness of the

bidding functions when asymmetries are either small or intermediate.

Lemma 1 If 1 ≤ k < 3 holds, then over the common bidding range, bidders’ equilibrium

strategies are given by continuous and strictly increasing functions, bA
k (xA) and bD

k (xD),

such that bA
k (1) = bD

k (1) = m(k) ≤ 2. Moreover, if 1 ≤ k < 2 then bA
k (0) = bD

k (0) = 0.

Proof. See Appendix.

3.1 Small asymmetries: 1 ≤ k < 2

When differences in values are small, so that the information effect dominates, we will show

that there is a unique equilibrium in which bidding strategies, bA
k (xA) and bD

k (xD), are the

solutions to a system of differential equations with boundary conditions bA
k (0) = bD

k (0) = 0

and bA
k (1) = bD

k (1) = m(k) ≤ 2, for any k ∈ [1, 2).15

Lemma 1 implies that the bidding functions are two homeomorphisms with continuous

and well-defined inverses. Consequently, there exist “equilibrium correspondences”, i.e.,

there exist functions φA
k and φD

k such that

bA
k (φA

k (xD)) = bD
k (xD),

bD
k (φD

k (xA)) = bA
k (xA).

14In the Netherlands UMTS auction, the expected value of a license for the incumbents was estimated

in 5 billions of euros whereas for entrants was estimated in 0.5 billions of euros. Asymmetries were hence

large.
15Throughout the paper, the subscript in the bidding function denotes the value of k, and the super-

script denotes the identity of the player, i.e., A or D.
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Notice that φi
k(xj) = (bi

k)
−1(bj

k(xj)) is a continuous and strictly increasing function, with

φi
k(φ

j
k(xi)) = xi, for any i, j = A, D with i 6= j. Further, φA

k (0) = φD
k (0) = 0 and

φA
k (1) = φD

k (1) = 1. The interpretation of this functions is clear. In equilibrium, player A

with signal xA bids the same price than player D with signal φD
k (xA). Similarly, player D

with signal xD bids the same price than player A with signal φA
k (xD).

We can hence think of the problem faced by player D as choosing against whom to

lose or, equivalently, choosing the opponent signals to beat.16 Formally, a player D with

signal xD chooses xA to maximize her expected utility:

max
xA

∫ xA

0

(xD + t − bA
k (xA)) dt.

Notice that player D’s expected utility can be written as

UxD
(xA) = xDxA + x2

A/2 − xAbA
k (xA).

A sufficient condition for this function to be differentiable is that xAbA
k (xA) be differen-

tiable.17

Setting the derivatives of the expected utilities equal to zero, and using the definition

of the equilibrium correspondences, we next characterize the equilibrium bid functions.

Lemma 2 For any k ∈ [1, 2), the necessary and sufficient conditions for the bidding

functions (bA
k , bD

k ) to form a Nash equilibrium are that they are increasing functions solving

the differential system

bA
k (xA) + (bA

k )′(xA)xA = φD
k (xA) + xA (1)

bD
k (xD) + (bD

k )′(xD)xD = k
(
φA

k (xD) + xD

)
(2)

with boundary conditions: bA
k (0) = bD

k (0) = 0 and bA
k (1) = bD

k (1) = m(k), where m(k) ≤ 2.

Since φi
k(φ

j
k(xi)) = xi must hold for i, j = A, D with i 6= j, system above which has

two differential equations is, in fact, a system of four differential equations. Notice that by

16A similar approach is taken in Bulow, Huang and Klemperer (1999).
17In the Appendix we show the differentiability of the expected utility.
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changing variables (xA by φA
k (xD) in the first equation, and xD by φD

k (xA) in the second

equation), two “new” equations are obtained. These equations are:

(
bD
k (xD)φA

k (xD)
)′

= (φA
k )′(xD)

(
xD + φA

k (xD)
)
, (3)

(
bA
k (xA)φD

k (xA)
)′

= k(φD
k )′(xA)

(
xA + φD

k (xA)
)
. (4)

Integrating (3) , we get
∫

φA
k (xD)dxD = −bD

k (xD)φA
k (xD) + φA

k (xD)xD +
1

2

(
φA

k (xD)
)2

+ C1. (5)

Similarly, integrating (4) , we get
∫

φD
k (xA)dxA = −1

k
bA
k (xA)φD

k (xA) + φD
k (xA)xA +

1

2

(
φD

k (xA)
)2

+ C2. (6)

Using (5), (6) and the boundary condition bA
k (0) = bD

k (0) = 0, we can get explicit expres-

sions for the bidding functions after integrating the equations (3) and (4). The resulting

bidding functions are:

bA
k (xA) =

k

2

(
φD

k (xA) + xA

)2

φD
k (xA) + kxA

, and (7)

bD
k (xD) =

k

2

(
xD + φA

k (xD)
)2

kφA
k (xD) + xD

· (8)

The upper boundary condition bA
k (1) = bD

k (1) = m(k) yields m(k) = 2k
k+1

· Hence, the

maximum bid is a strictly increasing function in the degree of asymmetry as measured by

k. Finally, L’Hôpital rule and φ′

i(0) =
b′j(0)

b′i(0)
> 0 imply

lim
xA→0

bA
k (xA) = lim

xD→0
bD
k (xD) = 0.

Using these bidding functions we next characterize the equilibrium correspondences.

Proposition 3 The following statements hold:

(i) If k = 1, then φA
1 (xA) = xA and φD

1 (xD) = xD.

(ii) If k ∈ (1, 2), then φA
k (xD) and φD

k (xD) are uniquely implicitly defined by the equa-

tions

(k + 1)k−1x2k−1
D = (φA

k )2−k(kφA
k + xD)k−1, (9)

and

(k + 1)k−1(φD
k )2k−1 = x2−k

A (kxA + φD
k )k−1. (10)
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Proof. We here only show the result for φA
k . The proof for φD

k is completely analogous,

and is hence omitted.

By substituting the expression of the bidding function bD
k (xD) given in equation (8)

into (2), we get the differential equation

(φA
k )′(xD) =

(φA
k (xD))2k(2k − 1) + kxDφA

k (xD)

(2 − k)x2
D + kxDφA

k (xD)
, (11)

which is a homogeneous equation with boundary condition φA
k (1) = 1. The change of

variables uk(xD) =
φA

k (xD)

xD
, yields

(uk)
′(xD)xD = uk(xD) (2k − 2)

kuk(xD) + 1

2 − k + kuk(xD)
,

with boundary condition uk(1) = 1.

If k = 1 then (u1)
′(xD) = 0 and, consequently, φA

1 (xD) = xD. If k > 1 then the solution

of the differential equation gives

(k + 1)k−1x2k−1
D = (φA

k )2−k(kφA
k + xD)k−1,

as claimed.

To end the proof we now show that implicit equation above has a unique positive

solution φA
k ∈ [0, 1] for every xD ∈ [0, 1]. To see this, consider by way of contradiction,

that there is xD = y, y ∈ (0, 1), such that both φA
k and ϕA

k are solutions to the implicit

equation. Let, w.l.o.g., 0 < φA
k < ϕA

k . Since both of them satisfy the implicit equation,

straightforward computations give

(
φA

k

ϕA
k

)2−k = (
y + kϕA

k

y + kφA
k

)k−1 > 1,

a contradiction.

We now proceed to analyze the properties of the equilibrium correspondences. We

first present the results and then discuss their implications.

Proposition 4 An advantageous bidder is more likely to win the auction as, φA
k (x) <

x < φD
k (x) holds for all x ∈ (0, 1) and for any k ∈ (1, 2).
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Proof. Let k > 1 be fixed. Assume, by way of contradiction, that there exists x ∈ (0, 1)

such that φD
k (x) = x. For this x, implicit equation (10) becomes

(k + 1)k−1x2k−1 = x2−k(kx + x)k−1,

which easily simplifies to x2k−1 = x. Since k > 1 this equality only holds if x = 0 or

x = 1, a contradiction. The continuity of φD
k (x) and φD

k (x) 6= x for all x ∈ (0, 1) imply

that φD
k is either below or above the diagonal. Moreover, as φA

k is the inverse function of

φD
k , if one is above the other one is below, and vice-versa.

Evaluating equation (10) at x = 1/2, straightforward computations give:

(
φD

k (
1

2
)

)2k−1

=
1

2

(
k + 2φD

k (1
2
)

k + 1

)k−1

>
1

2

(
k

k + 1

)k−1

>
1

2k
·

Inequality above implies

φD
k (

1

2
) >

1

2k/(2k−1)
>

1

2
.

Since φD
k (1/2) > 1/2, and since there is no x ∈ (0, 1) such that φD

k (x) = x, we conclude

that φA
k (x) < x < φD

k (x) for all x ∈ (0, 1) and for all k ∈ (1, 2), as claimed

Proposition 5 For any given x ∈ (0, 1), the equilibrium correspondence functions satisfy

(i) φA
k (x) is decreasing in k,

(ii) φD
k (x) is increasing in k,

(iii) lim
k→1+

φA
k (x) = lim

k→1+
φD

k (x) = x.

Proof. For any pair k1, k2 such that 1 < k1 < k2 < 2, incentive compatibility implies

that the following inequalities must hold in equilibrium:

[
k1

(
x +

φD
k1

(x)

2

)
− bA

k1
(x)

]
φD

k1
(x) ≥

[
k1

(
x +

φD
k2

(x)

2

)
− bA

k2
(x)

]
φD

k2
(x),

[
k2

(
x +

φD
k2

(x)

2

)
− bA

k2
(x)

]
φD

k2
(x) ≥

[
k2

(
x +

φD
k1

(x)

2

)
− bA

k1
(x)

]
φD

k1
(x).
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Adding up inequalities above gives

(k2 − k1)

(
x +

φD
k1

(x)

2

)
φD

k1
(x) ≤ (k2 − k1)

(
x +

φD
k2

(x)

2

)
φD

k2
(x).

Since k2 > k1, we have φD
k1

(x) ≤ φD
k2

(x). This result and the inverse relationship between

the equilibrium correspondences imply (i) and (ii).

Regarding (iii), if x = 0 or x = 1, it hods trivially. We can hence concentrate in the

case x ∈ (0, 1). Consider the sequence {φD
kn

(x)} as {kn} → 1 (with all kn ∈ (1, 2)). For

any n, equation (10) yields

(
φD

kn

)2kn−1
=

(
knx + φD

kn

kn + 1

)kn−1

x2−kn .

Moreover, for any x there exists ǫx > 0 such that (knx+φD
kn

)/(kn +1) > ǫx holds for large

enough n. Consequently,
(

knx + φD
kn

kn + 1

)kn−1

→ 1 as n → ∞

and statement (iii) follows. Similar arguments apply for φA
kn

(x) which completes the proof.

The implications of discussions above and Proposition 5 are several:

• The probabilities of winning the auction are sensitive to the degree of comparative

advantage. In particular, the larger is k, the more likely is for the advantageous

player to win the auction.

• Increasing the comparative advantage (as measured by k) makes the advantageous

player to bid more aggressively. That is
∂bA

k
(x)

∂k
> 0 for all x > 0. This is what

we expect as a higher k makes the A bidder more eager to win. As for the D

player, we know that when she has sufficiently optimistic information (in particular

when xD = 1), she bids more aggressively if k is increased. Our conjecture is

that the opposite should hold for types of the D bidder with sufficiently pessimistic

information. The intuition is that they face a larger winner’s curse of winning against

a more aggressive A bidder, and this should make them reluctant to increase their

bid.
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• The profits of the advantageous (disadvantageous) bidder are strictly increasing

(decreasing) in k. Notice that from the Envelope Theorem we have

dΠi
k

dxi
=





kφD

k (xA) if i = A

φA
k (xD) if i = D.

Hence, ΠA
k (xA) = ΠA

k (0)+k
∫ xA

0
φD

k (z)dz which is strictly increasing in k. Similarly,

ΠD
k (xD) = ΠD

k (0) +
∫ xD

0
φA

k (z)dz which is strictly decreasing in k.

• Finally, Proposition 5-(iii) suggests that as the auction converges to a symmetric

one in which both bidders are known to be D-type, the strategies converge to the

unique symmetric equilibrium strategies of the symmetric auction. Next theorem

shows that this is indeed the case.

Theorem 6 The unique equilibrium bidding functions (bA
k , bD

k ) of the (k, 1)-auction game

converge uniformly to the unique equilibrium bidding functions of the (1, 1)-auction game

as k converges to 1.

Proof.

Pointwise convergence follows trivially from Proposition 5. Because of the functional

form of the bidding functions, their uniform convergence to the unique equilibrium bidding

functions of the (1, 1)-auction follow from the uniform convergence of the equilibrium

correspondences to the identity map. In what follows we show uniform convergence for

φA
k (xD). The case of φD

k (xA) follows similarly.

From previous results we know that φA
k (xD) is a strictly increasing differentiable func-

tion such that φA
k (0) = 0, φA

k (1) = 1 and φA
k (xD) > xD for all xD ∈ (0, 1). Moreover the

derivative is given by

(φA
k )′(xD) =

(φA
k (xD))2k(2k − 1) + kxDφA

k (xD)

(2 − k)x2
D + kxDφA

k (xD)
.

We want to show that, given ε > 0, there exist k0 such that xD < φA
k (xD) < xD + ε

for all k ≥ k0 and all x ∈ [0, 1]. To do so we notice that, for a fixed k > 1, the equation

(φA
k )′(xD) = 1 has a unique solution (in (0, 1)) lying in the straight line

φA
k (xD) =

√
2 − k

k(2k − 1)
xD.
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The slope of this straight line tends to 1 as k → 1. Let k0 > 1 be the value of k such that

the above straight line is totally contained between y = xD and y = xD + ǫ. The Mean

Value Theorem, and the fact that φA
k (·) is a decreasing function of k, implies that for all

k ≥ k0 we have xD < φA
k (xD) < xD + ε, as desired.

3.2 Intermediate asymmetries: 2 ≤ k < 3.

As the difference in values increase, the information effect no longer dominates and hence

players A-0 and D-0 behave differently in the auction. In particular, player A-0 must win

the auction with positive probability. In this scenario, there will exist a signal s(k) > 0

for the disadvantageous bidder such that bA
k (0) = bD

k (s(k)) = α(k) > 0. Further, the

only possible atoms in the bidding functions occur at the bottom of the common bidding

prices, as shown in Lemma 1. Consequently, let us define r(k) as the highest xA that

satisfies bA
k (r(k)) = bD

k (s(k)). Notice that r(k) = 0 is not ruled out a priory. Finally,

bA
k (1) = bD

k (1) = m(k) < 2 must also hold in any equilibrium candidate.

Lemma 7 For any k ∈ [2, 3), in equilibrium bidders A-0 and D-s(k) must break even.

Proof. Clearly, D-s(k) cannot make negative profits or she would be better off by

reducing her bid so as to lose with probability one. But she cannot make positive profits

either. Otherwise, a D player with signal s(k)− ε would have incentives to raise her bid,

a contradiction with equilibrium behavior.

The result for the A-0 bidder follows from the definition of s(k). Since conditional

upon winning bidder A − 0 and bidder D − s(k) assign the same value to the object,

it follows that ks(k)/2 = s(k) + r(k)/2. Consequently, ΠA
k (xA) = s(k)

(
ks(k)/2 − bA

k (0)
)

equals zero as bA
k (0) = bD

k (s(k))

Corollary 8 For k ∈ [2, 3) we have

(i) α(k) =
ks(k)

2

(ii) r(k) = (k − 2)s(k)

14



The equilibrium bidding strategies of players with signals xA > r(k) and xD > s(k), are

increasing differentiable functions, which are solutions of the system given by equations

(3) and (4) with boundary conditions bA
k ((k − 2)s(k)) = bD

k (s(k)) = ks(k)/2 and bA
k (1) =

bD
k (1) = m(k). Integrating, and using the boundary conditions, we get explicit expressions

for the truncated bidding functions (bA
k , bD

k ) in terms of the equilibrium correspondences.

Moreover, Lemma 7 and Corollary 8 allow us to fully characterize the equilibrium bidding

functions. Let

bA
k (xA) =





ks(k)
2

if 0 ≤ xA < r(k)

k
2

(xA+φD
k (xA))2

φD
k (xA)+kxA

if r(k) ≤ xA ≤ 1,
(12)

and

bD
k (xD) =





xD + r(k)

2
if 0 ≤ xD < s(k)

k
2

(xD+φA
k (xD))2

kφA
k (xD)+xD

if s(k) ≤ xD ≤ 1.
(13)

In what follows, we show that bA
k (xA) given by (12) and bD

k (xD) given by (13) are equi-

librium bidding strategies.

Proposition 9 The bidding functions
(
bA
k (xA), bD

k (xD)
)
, given by (12) and (13), consti-

tute an equilibrium of the (k, 1)-auction for any k ∈ [2, 3). Furthermore,

s(k) = (k − 2)
k−2

2(k−1)
k − 1

(k + 1)1/2

Proof. Clearly a D player with signal below s(k) does not want to deviate up so as to

win over some types of player A. Just notice that the minimum bid is larger than her

value conditional upon winning. Similarly, a D player with signal larger than s(k) plays a

best response against the strategy of the A player. There is hence no profitable deviation

for the D player. Consider now the A player. If her signal is y and it is below r(k), her

expected profit when playing the equilibrium strategy is

ΠA-y(bA
k (y), bD

k (xD)) = kys(k) ≥ 0 for all y ∈ [0, r(k)].

Since the A player with signal r(k) does not want to deviate up (recall that the truncated

bidding functions are best reply to each other), then no other type with worse information

will want to deviate either. Thus the only deviation we have to consider is a deviation to

15



a bid below ks(k)/2. Let β be such that β < ks(k)
2

. For any y, y ∈ [0, r(k)], the expected

profit when bidding β is

ΠA-y(β, bD
k (xD)) =

[
k

(
y +

2β − r(k)

4

)
− β

](
2β − r(k)

2

)
.

The probability of winning is now smaller but, further, the profit when winning is also

smaller. Notice that

k

(
2β − r(k)

4

)
− β ≤ 0 as 2β(k − 2) ≤ k(k − 2)s(k).

We hence conclude that no deviation down is profitable as

ΠA-y(bA
k (y), bD

k (xD)) ≥ ΠA-y(β, bD
k (xD)) for all β <

ks(k)

2
and all y ≤ r(k).

Finally, the A player with signal larger than r(k) plays a best response against the strat-

egy of the D player. So the purported strategies constitute an equilibrium. Since over the

common bidding range, the functional forms of the equilibrium bidding functions coincide

with the ones obtained for small asymmetries, the equilibrium correspondences φA
k (xD)

and φD
k (xA) are (uniquely) defined by the equations (9) and (10) . Using those equations

we can fully characterize the minimum winning bid. In particular, straightforward com-

putations yield:

s(k) = (k − 2)−
(k−2)
2(k−1)

(k − 1)

(k + 1)1/2
·

Notice that limk→2 s(k) = 1
3

√
3 and s(3) = 1. Consequently, limk→2 α(k) = 1

3

√
3 and

α(3) = 3/2. These results suggest that as k converges to 3 the probability of winning the

auction for the D player converges to zero. Next subsection shows that this is indeed the

case.

3.3 Large asymmetries: k ≥ 3

When the asymmetry in values is such that the A-0 player can assign to the object a

larger ex-ante expected value than the most optimistic D player (i.e. when k/2 ≥ 3/2)

then, in any equilibrium, the A player must win the auction.
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Proposition 10 The following strategies constitute an equilibrium of the (k, 1)-auction

game for any k ≥ 3,

bA
k (xA) =

3

2
and

bD
k (xD) = xD +

1

2
.

Proof. We first show that no type of player D wants to deviate. At the purported

equilibrium strategies player D gets zero profits. By deviating and bidding more than

3/2, she gets negative profits as she would pay more than the true value conditional on

her winning. Notice that, conditional on winning, the value is bounded above by 3/2 for

any D player.

Consider now the A player. We now show that type 0 prefers to outbid all types of player

D rather than a set of them. At the purported equilibrium the profits of type 0 are:

ΠA-0(
3

2
, bD

k (xD)) =
k

2
− 3

2

Consider now a bid equal to m such that 1/2 ≤ m < 3/2. She wins over all types of D

smaller than y where y is such that y + 1/2 = m. Her expected profits from bidding m

are

ΠA-0(m, bD
k (xD)) =

(
k
(2m − 1)

4
− m

)
2m − 1

2

Since her probability of winning with a bid equal to m is below one, we have

ΠA-0(m, bD
k (xD)) < k

(2m − 1)

4
− m ≤ k − 3

2
for all k ≥ 3.

Hence ΠA-0(m, bD
k (xD)) < ΠA-0(3/2, bD

k (xD)). If type 0 does not find profitable to deviate,

then no other type will have incentives to deviate either, which completes the proof.

Equilibrium above is qualitatively unique as in any equilibrium for k ≥ 3, the advan-

tageous bidder always bids 3/2 and the disadvantageous (almost) never wins.18

Figure 1 illustrates the behavior of the equilibrium bidding functions in the three

possible scenarios.

[Insert Figure 1]

18Nevertheless, there is a family of equilibrium bids for the D player. In particular, bD

k
(xD) = ρ +

(3/2 − ρ)xD is an equilibrium bid for any ρ ∈ [0, 1/2].
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3.4 (α, δ)−Auctions

To end this section we now show how our results generalize to any (α, δ)-auction, α >

δ > 0. In particular, we now show that a (α, δ)-auction is strategically equivalent to a

(α/δ, 1)-auction, which ensures that there is no loss of generality by focusing on (k, 1)-

auctions.

Throughout this subsection, bi
α,δ stands for player i’s equilibrium bidding function in

a (α, δ)-auction. In particular, for the sake of consistency, we will here write bi
k,1 to refer

to player i’s equilibrium bidding function in a (k, 1)-auction

Lemma 11 The equilibrium bidding functions of a (α, δ)-auction are given by bA
α,δ(xA) =

δbA
k,1(xA) and bD

α,δ(xD) = δbD
k,1(xD) for k = α/δ.

Proof. Two cases have to be considered depending on whether α/δ ≥ 3 or α/δ < 3.

If α/δ ≥ 3, similar arguments to the ones used in the proof of Proposition 10 ensure

that

bA
α,δ(xA) = δ

3

2
, and

bD
α,δ(xD) = δ(xD +

1

2
).

constitute an equilibrium of the (α, δ)-auction game.

If α/δ < 3, the equilibrium bidding functions over the common range of bidding prices

have to be increasing functions solving the system of differential equations

(
xAbA

α,δ(xA)
)
′

= δ
(
φD

α,δ(xA) + xA

)

(
xDbD

α,δ(xD)
)′

= α
(
φA

α,δ(xD) + xD

) (14)

where φA
α,δ(xD) and φD

α,δ(xA) are the equilibrium correspondences of the (α, δ)-auction

game. Since bA
α/δ,1(xA) and bD

α/δ,1(xD) solve the system given by equations (3) and (4),

then it is easily verified that bA
α,δ(xA) = δbA

α/δ,1(xA) and bD
α,δ(xD) = δbD

α/δ,1(xD) solve system

(14), as claimed.
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4 Expected Revenue

Expected revenue to the seller is the sum of the ex-ante expected payments by the players.

For player i with signal xi, her interim expected payment will be bi
k(xi)φ

j

k(xi), i, j = A, D.

For the advantaged player it increases with k as both her bid and her probability of

winning are increasing functions of k. For the disadvantaged player her expected payment

will be (most likely) decreasing in k for sufficiently pessimistic information. Nevertheless,

for the most optimistic D player the opposite holds as her bid increases with k whereas

her probability of winning is always one. The impact of k on the expected revenue is

hence unclear a priory.

To compute the expected revenue we first note that integrating by parts equation (3)

results in

bA
k (xA)φD

k (xA) = k

∫ xA

0

(φD
k (t))

′
(
φD

k (t) + t
)
dt

= k

(
1/2(φD

k (xA))2 + xAφD
k (xA) −

∫ xA

0

φD
k (t)dt

)
,

which implies
∫ 1

0

bA
k (x)φD

k (x)dx = k

∫ 1

0

[
1

2
(φD

k (x))2 + 2xφD
k (x)

]
dx − k(3k − 1)

2(k + 1)
,

where,
∫ 1

0
φD

k (x)dx = (3k−1)
2(k+1)

is derived from equation (6). Similarly,

∫ 1

0

bD
k (x)φA

k (x)dx =

∫ 1

0

[
1

2
(φA

k (x))2 + 2xφA
k (x)

]
dx − (3 − k)

2(k + 1)
· (15)

Changing variables in (15), take x = φA
k (t), revenue to the seller becomes

RS
k =

5k − 3

2(k + 1)
−
∫ 1

0

(
(2k − 1)

((
φA

k (xD)
)2

2

)
− (2 − k)xDφA

k (xD)

)
dxD (16)

Bikhchandani (1988) and Klemperer (1998) have shown that second-price auctions are

considerably less desirable for the seller in asymmetric environments than in symmetric

ones. They showed that a small asymmetry in values has a large impact on the seller’s

expected revenues. We have shown here that a small asymmetry in values has only a

small impact on outcomes when the auction is conducted as a first-price auction. But,

further, we now show that it is beneficial for the seller.
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Proposition 12 A small asymmetry in values is beneficial for the seller.

Proof. Differentiating equation (16) with respect to k gives

∂Rk

∂k
= 4 (k + 1)−2 −

∫ 1

0

(φA
k (t))2dt −

∫ 1

0

tφA
k (t)dt +

−(2k − 1)

∫ 1

0

φA
k (t)

∂φA
k (t)

∂k
dt + (2 − k)

∫ 1

0

t
∂φA

k (t)

∂k
dt

Using the fact that φA
k (x) = x for k = 1 and for all x ∈ [0, 1], it is easily verified that

∂RS
k

∂k

∣∣∣
k=1

= 1
3

> 0.19 Hence a small asymmetry (k close enough to one) is beneficial for the

seller.

From the proof of proposition above it is easy to see that the expected revenue is

also increasing at k = 2. If this were always the case when there are asymmetries, it

would imply that in the first price auction the seller benefits from the asymmetry among

bidders. To examine this issue and to illustrate how the degree of comparative advantage

translates into payments, we now provide the seller’s revenue for some values of k. The

choice of these values is not arbitrary. We have taken those for which φA
k (xD) can be

explicitly determined. In particular, straightforward integration gives

φA
1 (xD) = xD φA

1.5(xD) =
xD

(√
1+15x2

D
−1
)

3
φA

2 (xD) =
xD(3x2

D
−1)

2
φA

3 (xD) = 0

R1 = 2
3

= 0.666 R1.5 = 0.837 R2 = 0.967 R3 = 1.5

Table above suggests that the seller’s revenue increases with the degree of compara-

tive advantage, and that significant asymmetries (k ≥ 2) translate into large rents. The

economic intuition behind this fact follows from two effects. On one hand, an increase in

k makes the object more valuable for the advantageous bidder who is then more willing

to bid higher in order to ensure her winning. On the other hand, an increase in k ag-

gravates the situation of the disadvantageous player who must now make an extra effort

to win the auction. In particular, if she has sufficiently optimistic information about the

common value (her signal is sufficiently high), she is force to bid higher the greater is her

disadvantage. Since both effect are aligned, the impact of a larger asymmetry is a larger

payment and hence a larger seller’s revenue.

19Formally, we here provide the right derivative.
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To better asses the performance of the first-price format, in what follows we character-

ize the optimal auction to compare the seller’s expected revenue in the first-price auction

with the optimal auction and with the second price auction.

4.1 The optimal auction

From the revelation principle we can restrict attention to direct mechanisms. Denote

by mi
k(xi, xj) the payment from i to the auctioneer when reported signals are xi and

xj , and by pi
k(xi, xj) the probability that i gets the asset. Conditional on signal xi and

announcement x̂i, bidder i’s expected payoff is

U i
k(x̂i/xi) =





∫ 1

0
(kv (xi, xj) pi

k(x̂i, xj) − mi
k(x̂i, xj)) f(xj)dxj if i = A

∫ 1

0
(v (xi, xj) pi

k(x̂i, xj) − mi
k(x̂i, xj)) f(xj)dxj if i = D,

and his truthtelling payoff is Πi
k(xi) ≡ U i

k(xi/xi).

The optimal auction solves the following problem

max
mA

k
,mD

k
∈R,pA

k
,pD

k
∈[0,1]

∫ 1

0

∫ 1

0

(
mA

k (xA, xD) + mD
k (xA, xD)

)
f(xA)dxAf(xD)dxD

s.t. Πi
k(xi) ≥ 0 for all xi, i = 1, 2

Πi
k(xi) ≥ U i

k(x̂i/xi) for all xi, x̂i i = 1, 2,

and such that the probabilities satisfy standard feasibility conditions, pi
k ∈ [0, 1] and

pi
k + pj

k ≤ 1. The optimal auction maximizes the seller’s expected revenue subject to the

constraints of individual rationality, incentive compatibility and feasibility.

Using the Envelope Theorem and applying standard techniques adapted from Myerson

(1981), we have

dΠi
k

dxi
=





kQA
k (xA) if i = A

QD
k (xD) if i = D.

and

Πi
k(xi) =





ΠA

k (0) + k
∫ xA

0
QA

k (z)dz if i = A

ΠD
k (0) +

∫ xD

0
QD

k (z)dz if i = D,
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where Qi
k(xi) stands for bidder i′s probability of winning when his signal is xi. Since

Qi
k(xi) =

∫ 1

0
pi

k(xi, xj)dxj , we can rewrite ex-ante profits as

Πi
k =





ΠA
k (0) + k

∫ 1

0

∫ 1

0
(1 − xA)pA

k (xA, xD)dxAdxD if i = A

ΠD
k (0) +

∫ 1

0

∫ 1

0
(1 − xD)pD

k (xA, xD)dxDdxA if i = D.

As expected profits are expected values minus expected payments, the optimal auction

solves the problem

max
Πi

k
(0),pi

k

−ΠA
k (0) − ΠD

k (0) +

∫ 1

0

∫ 1

0

k(v(xA, xD) − (1 − xA))pA
k (xA, xD)dxAdxD

+

∫ 1

0

∫ 1

0

(v(xA, xD) − (1 − xD))pD
k (xA, xD)dxDdxA,

where k(v(xA, xD) − (1 − xA)) = k(2xA + xD − 1) is the marginal revenue of bidder A,

and v(xA, xD) − (1 − xD) = xA + 2xD − 1 is the marginal revenue of bidder D.

Lemma 13 The optimal auction sets

1. (i) ΠA
k (0) = ΠD

k (0) = 0,

2. ii) pA
k (xA, xD) =





1, if xA ≥ 1−xD

2
and xA ≥ (2−k)xD+k−1

(2k−1)
;

0, otherwise.

3. iii) pD
k (xA, xD) =





1, if xD ≥ 1−xA

2
and xA ≤ (2−k)xD+k−1

(2k−1)
;

0, otherwise.

Proof. Setting Πi
k(0) > 0 is suboptimal and Πi

k(0) < 0 violates the individual rationality

or participation constraint. Since 2xi + xj − 1 may be negative it is optimal to have

pA
k (xA, xD) + pA

k (xA, xD) < 1, a reserve price. Finally, the optimal allocation rule sets

pi
k(xA, xD) = 1 only if the marginal revenue of bidder i is larger than the one of bidder j.

The optimal auction is biased against the disadvantage bidder. He wins the good only

if his signal is sufficiently higher than the one of her opponent. To see this consider the

case in which both bidders receive the same signal x ≥ 1/3. Bidder A wins with certainty

as k(3x− 1) > 3x− 1 for any k > 1. Thus the disadvantageous bidder must have a signal

22



strictly higher than the one of the advantageous bidder to win. Nevertheless the optimal

auction does not exclude the disadvantageous bidder from bidding. For a given signal xD,

the signal by the advantageous bidder must be higher than (2−k)xD+k−1
(2k−1)

to win.

At the optimal auction revenue to the seller becomes

ROP
k = k

∫ 1/3

0

∫ 1

1−xD
2

(2xA + xD − 1)dxAdxD + k

∫ 1

1/3

∫ 1

(2−k)xD+(k−1)

2k−1

(2xA + xD − 1)dxAdxD +

∫ 1

1/2

∫ (2−k)xD+(k−1)

2k−1

0

(2xD + xA − 1)dxAdxD +

∫ 1/2

1/3

∫ (2−k)xD+(k−1)

2k−1

1−2xD

(2xD + xA − 1)dxAdxD

=
1

36
(2k − 1)−1 (42k2 − 19k + 3

)

4.2 Revenue at the SPA

When the auction is conducted as second price, in equilibrium, the advantageous bidder

plays a very aggressive strategy, whereas the disadvantageous plays very conservatively. In

particular, the following strategies constitute an equilibrium for any k > 1, bA
k (xA) = xA+1

and bD
k (xD) = xD (see Bikhchandani (1988)).

The second price auction generates an expected revenue equal to 1/2.20

4.3 Revenue comparison

We have shown that the optimal auction does not exclude the disadvantageous bidder

from bidding. This is also the case at the first price auction, whereas it does not hold at

the second price auction. Further, in both first-price and optimal, revenue increases with

k, whereas it is independent of k at the second price auction. It is hence clear that the

first price is closer to the optimal than the second price. To see the difference in expected

revenues between the three mechanisms, table below provides the expected seller revenue

at the optimal auction (ROP ), at a second price auction
(
RSP

)
and at the first price

auction
(
RFP

)
for different values of k.21

20There is a continuum of expected prices ranging from 0 to 1

2
. Nonetheless, the lower bound can be

reached only if the disadvantageous bidder bids less than her individual rational bid.
21As explained before, the choice of these values is not arbitrary. We have taken those for which the

seller’s expected revenue can be explicitly determined, without needing to rely on numerical calculations.
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k = 1 k = 1.5 k = 2 k = 3

RSP = 0.5 RSP = 0.5 RSP = 0.5 RSP = 0.5

RFP = 0.666 RFP = 0.837 RFP = 0.967 RFP = 1.5

ROP = 0.722 ROP = 0.958 ROP = 1.231 ROP = 1.8

The comparison for all values of k is the content of figure below. To obtain this

figure, for the first price auction, we have numerically approximated the equilibrium

correspondences, the bidding functions and the expected revenue.22

[Insert Figure 2]

5 Robustness

The model was based on a number of simplifying assumptions, and at this point we are

interested in assessing the impact of relaxing them in our conclusions. In this section

some alternative formulations are examined.

We have assumed here that V = xA + xD which does not allow to see how different

assumptions on partial derivatives (including cross partial derivatives) affect the results.23

To undertake this analysis we here take V = g(xA + xD) for any continuous function g.

22When 1 ≤ k < 2 we use the system of differential equations given by

(Γk)′(x) = −bA

k (x)φD

k (x) − bD

k (x)φA

k (x)

(φA

k )′(x) =
(φA

k (x))2k(2k − 1) + kxφA

k (x)

(2 − k)x2 + kxφA

k (x)

(φD

k )′(x) =
(φD

k (x))2(2 − k) + kxφD

k (x)

(2k − 1)x2 + kxφD

k (x)

with the initial conditions φD

k (1) = φA

k (1) = 1 and Γk(1) = 0. The first (auxiliary) equation is obtained

by deriving

Γk(x) =

∫
1

x

bA

k (s)φD

k (s)ds +

∫
1

x

bD

k (s)φA

k (s)ds

with respect to x. Notice that Γk(0) = Rk, as it equals the sum of the bidders’ expected payments. We

numerically integrate (backwards) system above by using a Runge-Kutta method. Finally, to measure

how the solutions change with k, we take a fine discrete grid of values of k. For k ∈ [2, 3) a similar method

can be followed but taking for each k the values of s(k) and r(k) that determine the initial conditions.
23We are very grateful to an anonymous referee who pointed this out.
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Under this more general formulation the equilibrium bidding functions are the solutions

to the system of differential equations

bA
k (xA) + (bA

k )′(xA)xA = g(φD
k (xA) + xA),

bD
k (xD) + (bD

k )′(xD)xD = kg
(
φA

k (xD) + xD

)

with boundary conditions: bA
k (0) = bD

k (0) = 0 and bA
k (1) = bD

k (1) = m(k).

Using similar techniques to the ones employed in Section 3 it is easy to derive explicit

expressions for the bidding functions in terms of the function g. They are given by:

bA
k (xA) =

k
∫

g(u)du

φD
k (xA) + kxA

, and

bD
k (xD) =

k
∫

g(z)dz

kφA
k (xD) + xD

,

where u = xA +φD
k (xA), and z = φA

k (xD)+xD. For instance, when g(y) = ys, the bidding

functions become

bA
k (xA) =

k

s + 1

(
φD

k (xA) + xA

)s+1

φD
k (xA) + kxA

, and (17)

bD
k (xD) =

k

s + 1

(
xD + φA

k (xD)
)s+1

kφA
k (xD) + xD

· (18)

From the particular analytic structure of the above biding functions, it seems reason-

able to claim that the results derived when V = xA +xD will also hold if V = (xA +xD)s,

s > 0. To asses this claim we have numerically computed the equilibrium for two partic-

ular functional forms V = (xA + xD)2 for which ∂2V
∂xA∂xD

> 0, and V = (xA + xD)1/2 for

which ∂2V
∂xA∂xD

< 0.

To do so, we have concentrated on the region of small asymmetries. Note that the

range of k in this region, k ∈
[
1, k̃
]
, depends on the common value functional form.

If V = (xA + xD)2 then k̃ is such that the valuation of player A-0, conditional upon

winning over any type of player D, is equal to the smallest possible valuation of player

D-1, i.e., k̃
(

1
2

)2
= 1, which implies k̃ = 4. Similarly, if V = (xA + xD)1/2 then k̃ =

√
2 as
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k̃
(

1
2

)1/2
= 1. Once the range of k values is determined, we derive and then numerically

solve, the implicit equations that define the equilibrium correspondences. Finally, we

substitute these expressions into (17) and (18) and we numerically compute the bidding

functions in the three cases , i.e., s = 1/2, 1, 2.

In Figure 3(a) we show the equilibrium bidding functions for an advantageous bid-

ders for k = 1.1 in the three scenarios, while Figure 3(b) shows the equilibrium bidding

functions of the disadvantageous bidder.24 It stems from these figures that the explo-

sive impact on auction outcomes, resulting from the tiniest asymmetry, in second-price

auctions do not extend to the first-price auction format. Furthermore, the numerically

computed bidding functions are close to the symmetric equilibrium bidding function in

the three cases, confirming the robustness of Theorem 6 to changes in the common value

functional form.

[Insert Figure 3]

Finally, to further illustrate the behavior of the first price auction format we here also

provide a graphical representation of the seller’s expected revenue in the three scenarios.

Note that revenue is a monotone function of the degree of asymmetry, as illustrated in

Figure 4.

[Insert Figure 4]

6 Appendix

Proof of Lemma 1.

First note that in a first price auction the highest possible bid by each side must be

the same. Otherwise, the player with the highest bid would be better off reducing his

bid; he can still win with probability one while paying a lesser price. This fact provides

the boundary condition: bA
k (1) = bD

k (1) = m(k). We can hence define the bidding range

as bids (or prices) below m(k). In what follows we only consider the range of prices which

are common to both players.

24Note that k = 1.1 lies in the range of small asymmetries in the three scenarios.
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We first show that there cannot be simultaneous atoms at the same price. Assume

that p is an atom for player i, i = A, D, i.e., there is an interval of signals of player i who

are bidding the same price p. If this is the case, then all types of player j who get strictly

positive expected utility when bidding p, must prefer to bid slightly above the atom. Just

note that this ǫ−small deviation generates a positive surplus coming from the positive

mass (atom) of i-players all bidding p. Hence, the only types of player j that could prefer

to bid p rather than p + ǫ are those who get zero expected profits at p. But this can only

happen for one type of player j as, for each player, the value is strictly increasing in her

signal.

We now use the result above to show, by contradiction, that there cannot be gaps.

Assume that player i has a gap at some interval within the common range, say (p1, p2].

Clearly, any player j is better off bidding outside the gap. Further, unless player i has

an atom at the top of the gap, player j would do better to lower the price at p1 than to

pay p = p2 + ǫ. The reason is that by doing so she lowers the price she has to pay by a

positive (away from 0) amount, while she only reduces her probability of winning by ǫ.

Consequently, j must have a gap from p1 or less to p > p2, contradicting that i bids in

equilibrium p2. Consider then that i has an atom at the top of her gap. Then, either j

also has an atom at p2 which cannot happen in equilibrium as shown before, or j bids p2

with zero probability. But then i should not bid p2 with a positive probability. We can

hence conclude that the bidding functions must be single-valued and continuous on the

common range of prices.

We now show that if k ∈ [1, 2) then the common bidding range is the full range of

prices. To do so we only need to show that the lowest bid is the same for both players, that

is bA
k (0) = bD

k (0). If bA
k (0) < bD

k (0) then either bidder D-0 is losing money and she would

hence do better decreasing her bid or bidder A-0 can do strictly better by increasing her

bid. Consider now that bA
k (0) > bD

k (0). By continuity of the equilibrium bidding functions

there must exist x̃ > 0 such that bA
k (0) = bD

k (x̃), so that types y, y ≤ x̃, of player D make

zero profit. These types must find unprofitable to increase their bid or, otherwise, they

would deviate. It must hence be the case that bA
k (0) ≥ x̃. Further, since bidder A-0 cannot

make negative profits, it must also be true that bA
k (0) ≤ k x̃

2
. Notice that k x̃

2
≥ bA

k (0) ≥ x̃
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holds if and only if k ≥ 2. Consequently, if k < 2 then bD
k (0) = bA

k (0) = 0, where the last

equality follows straightforwardly.

To complete the proof we have to show that strategies are strictly increasing in the

types so that there are no (individual) atoms. Observe that if i has an atom in the

common range then there is no xj that is willing to bid just after the atom ends; xj

would prefer to bid just below (if the value conditional on winning the types within the

atom is smaller that the price) or, just above (if the bid gets increased by an arbitrarily

small amount whereas the probability of winning increases by the range of the atom).

Consequently, since we have shown that there are no gaps, any atom must be at the

bottom of the common bidding range. But this cannot be the case either. Note that if

k < 2 it would imply that a player with signal larger than 0 follows a weakly dominated

strategy (bids zero rather than close to her positive signal). Since there can be no interval

within the common bidding range at which a bidder bids with probability zero, players

cannot choose mixed strategies. This completes the proof.

Lemma 14 The functions bA
k (xA) and bD

k (xD) are differentiable.

Proof. We prove the statement only for bA
k (xA), the proof for bD

k (xD) is similar and it

is omitted. First we show that the function xAbA
k (xA) is differentiable (so the expected

utility is).

Since type xD = φD
k (xA) must prefer to bid bA(xA) rather than bA(xA +∆xA), it must

follow that

[
φD

k (xA) +
xA

2
− bA

k (xA)
]
xA ≥
[
φD

k (xA) +
xA + ∆xA

2
− bA

k (xA + ∆xA)

]
(xA + ∆xA).

Rearranging we get

bA
k (xA + ∆xA)(xA + ∆xA) − bA

k (xA)xA

∆xA
≥ φD

k (xA) + xA +
∆xA

2
,

or, equivalently,

lim inf
∆xA→0

bA
k (xA + ∆xA)(xA + ∆xA) − bA

k (xA)xA

∆xA
≥ φD

k (xA) + xA.
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Since type φD
k (xA +∆xA) must also prefer to bid bA

k (xA +∆xA) than bA
k (xA), similar com-

putations to those used above yield the same equation but with the inequality reversed,

and with lim sup instead of lim inf. From these two inequalities we conclude that the

right derivative exists and is given by φD
k (xA) + xA. Using xA − ∆xA instead xA + ∆xA

it is easily verified that the left derivative exists and is also given by φD
k (xA) + xA. Since

the left and right derivative exist and coincide, the function bA
k (xA)xA is differentiable, as

desired.

Once we know the differentiability of xAbA
k (xA) we want to show the differentiability

of bA
k (xA) for all xA ∈ (0, 1). If there were a point z ∈ (0, 1) for which the right and left

hand side limits of the incremental quotients for bA
k were not the same, this would imply,

by taken the suitable limits, that z ∈ (0, 1) is a non differentiable point for xAbA
k as well,

a contradiction.
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(a) k ∈ (1, 2) (b) k ∈ [2, 3) (c) k ≥ 3

Figure 1: Equilibrium bidding functions in the three possible scenarios: (a) k ∈ (1, 2),

(b) k ∈ [2, 3), and (c) k > 3.
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Figure 2: The expected revenue as a function of k for the three auctions: first RF
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and optimal ROp
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Figure 3: The equilibrium biding functions for s = 1
2 , s = 1 and s = 2. Figure (a) corresponds

to bidder A while Figure (b) corresponds to bidder D.
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Figure 4: The expected revenue as a function of k, for s = 1
2 , s = 1 and s = 2.
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