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Abstract. We consider the following allocation problem: A Þxed number

of public facilities must be located on a line. Society is composed of N agents,

who must be allocated to one and only one of these facilities. Agents have single

peaked preferences over the possible location of the facilities they are assigned

to, and do not care about the location of the rest of facilities. There is no

congestion. We show that there exist social choice correspondences that choose

locations and assign agents to them in such a way that: (1) these decisions are

Condorcet winners whenever one exists, (2) the majority of the users of each

facility supports the choice of its location, and (3) no agent wishes to become a

user of another facility, even if that could induce a change of its present location

by majority voting.

Key words: Social Choice Correspondences, Condorcet Rules, Stability,

Simpson Rule.
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1. Introduction.

Collective choices often consist of a constellation of smaller decisions, each of

which affects different groups of citizens in different degrees. For instance, when

the government chooses a budget, some of its items (like the salaries of public

servants, if I am one) may be very important to me, while I may be quite indiffer-

ent regarding others (like, say, how much of the agricultural subsidies go to olive

producers and how much goes to wheat farmers). But, of course, other citizens

may feel intensely about what I do not care, and little about my major concerns.

In this paper we examine the connections between �global� decisions, describ-

ing all components of a social policy and its effects upon all citizens, and �partial�

decisions, which are components of a global decision which only affect a part of

the population. SpeciÞcally, we are concerned about the consistency of decisions

of these two types. We�d like to identify procedures and situations when the de-

cisions, if taken globally with the participation of all citizens, would be perceived

by the members of each group of interest as providing the same partial choice

that they would have made in isolation. Conversely, we�d like to check how and

when it would be possible to let each group of interest make a partial decision on

its own, and have the aggregate decision be the same one that all citizens would

have taken if they had jointly participated in choosing the overall outcome.

This consistency issue is compounded by an additional and subtle fact, one

that we feel deserves attention on its own: it is the global decisions which of-

ten induce the formation of interest groups, as much as the interest groups can

contribute to form the global decisions. In the process of discussing the issue of

consistency between the large and the small, we shall also provide a theory of the

endogenous formation of interest groups.

Our referent as a decision-making procedure is simple majority voting. It is

3



well known that simple majority comparisons can lead to cyclical social prefer-

ences, and that majority (Condorcet) winners may not exist for some proÞles of

individual preferences. This is why, when required, we�ll consider extensions of

the simple majority rule, which still recommend deÞnite choices when there are

no Condorcet winners. The use of majority is so compelling, when it leads to

deÞnite results, and the practical use of extended majority rules is so widespread,

that we consider it completely natural to concentrate on this class of methods.

To get a better feeling for our approach, consider the following example of

a decision problem which does not admit consistent majoritarian choices. The

example is interesting in its own, and it also suggests that the questions we want

to address are only manageable in contexts that exhibit sufficient structure.

Twenty six agents must choose a delegation of three representatives out of

five candidates (x, y, z, r,w), over which they have preferences represented in the

following table,

agents 1, ..., 6 7, .., 13 14, .., 17 18, .., 21 22, .., 26

preferences

from

better

to

worse

x

y

z

r

w

r

x

y

w

z

w

r

x

z

y

z

w

r

y

x

y

z

w

r

x

If they use a consistent majoritarian rule, each one of the chosen delegates should

be a Condorcet winner for the set of voters that he represents. Who represents

whom can be specified in several ways. For example, we could assume that voters

only get the chance to communicate with one delegate, and that this is the one

we call his “representative”. But here we concentrate on the case where, once the

delegation is chosen, each voter identifies as his representative the one delegate
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that he likes most. There are ten possible delegations, xyz, xyw, xyr, xzw, xrw,

xzr, yzw, yzr, yrw, zrw. If xyz was chosen, the sets of agents that would feel

represented by x, y and z would be respectively, U(x) = {1, ...., 17}, U(y) =

{22, .., 26}, U(z) = {18, .., 21}. But then, the Condorcet winner for the voters

in U(x) is r. If yzr was chosen, U(y) = {1, .., 6, 22, .., 26}, U(z) = {18, .., 21},
U(r) = {7, .., 17}. But then, the Condorcet winner for voters in U(y) is x.

The reader may check that a similar inconsistency will appear with any of the

remaining possible delegations. This proves that, in the case we just described,

no social choice rule can meet our desiderata.

Since general results seem out of reach, we devote this paper to analyze con-

sistency in connection to a speciÞc class of economic problems related to the

location of facilities and the provision of local public services. This problem is

not only chosen for its tractability, though. It is of substantial interest of its own,

and in connection to the inherited theory of local public goods. SpeciÞcally, we

concentrate on problems involving the location of a Þxed number of facilities, k,

along a linear territory. Society is composed of N agents, who must be allocated

to one and only one of these facilities. Agents have single peaked preferences over

the possible location of the facilities they are assigned to, and do not care about

the location of the rest of facilities. There is no congestion: the location of their

facility is the only concern of agents, not the set of other agents with whom they

share it.

In the context we just described, the location of all facilities is the basic global

decision, which must be accompanied by a partition of the individuals into groups.

Since the distribution of agents across facilities may be voluntary or imposed, one

may think of a variety of assignments: for each possible one, the agent cares for

the facility she gets. Hence, all people who care for the same facility become
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an interest group, induced by the particular distribution of citizens to facilities.

The particular location of their common facility is the partial aspect of the global

decision about which they have an actual interest.

Suppose, then, that all agents together voted by majority to make a global

decision regarding the location of all facilities. In order to evaluate their options,

these voters would need to know the consequences of each location decision on

the particular facility that they would be able to enjoy. A particularly attractive

assumption is that agents were allowed to select their preferred location. What

can we say about the resulting allocations of agents to facilities, and about the

degree of satisfaction of the induced interest groups?

One Þrst difficulty on our way comes from the fact that there may not be a

majority winner among the different global decisions. This is because, in spite of

our assumption that preferences over individual locations are single-peaked, the

preferences of voters over global decisions are more complex and can still lead

to cycles for some preference proÞles. We shall cope with this difficulty later

on, but for the sake of the argument assume for now that a majoritarian global

decision exists. When this is the case, there would exist allocations of agents to

facilities having the property that no agent prefers any location to the one she is

assigned (no envy). Now, with agents located in this way, what would happen if

they were allowed to vote for the location that the majority of their group would

prefer? Would this location coincide with the one where their facility is actually

in? If so, we say that for simple majority the global decision and its partial

consequences are consistent. Moreover, having introduced the notion that agents

may vote on the preferred location of facilities, we can examine the consequences

of some additional strategic behavior on their part. Rather than taking locations

as data, they may want to join a group of users in the hope of inßuencing the
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location in their favor. This will not happen under global decisions whose envy-

free agents could Þnd no incentive to join another group and get the location

for this group become better for them. We say that global decisions with this

property are Nash-stable under simple majority. We also show that if a global

decision is the winner by simple majority, it induces a partition of agents which

is Nash-stable. Moreover, we prove that Nash stable decisions exist, even when

global majoritarian decisions do not.

If there always existed majority (Condorcet) winners in the contest between

global decisions, the consistency question would have a clear-cut and simple an-

swer. Choose that global location and let agents use the one they prefer. This

alone guarantees that all interest groups would be enjoying the location that they

alone would choose by majority, and that no agent would consider joining any

other group in the hope of altering the global decision by inßuencing any partic-

ular location. But the question is left what to choose when no Condorcet winner

exists among the global decisions. Can we extend the majoritarian rule while

preserving its nice consistency and stability properties? Our major result gives a

positive answer to this question. There exist social choice correspondences which

extend the majority rule and satisfy consistency and Nash stability.

This is in contrast with some of the conclusions of our preceding paper Self-

Selection Consistent Functions (2002). There we consider this consistency issue

for social choice functions, rather than correspondences, as we do here, and we

provide a general characterization of functions whose global choices induce envy

free allocations of agents to individual facilities. Unfortunately, we also con-

clude there that overall consistent majoritarian choices are not possible within

the framework of social choice functions. In the present paper we allow for multi

valued choices for some proÞles. Thanks to that, the negative result of our pre-
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ceding paper becomes a positive one.

Our assumption that agents only care about the facility they actually use,

approaches our model to a class of coalition formation games, called hedonic

games, which have received the attention of different authors (Banerjee, Konishi

and Sonmez (1998) and Bogomolnaia and Jackson (1998) among others). In

hedonic games, individuals have preferences over the coalitions that they can be

part of, presumably because they get some beneÞt from their association with

the rest of agents in the coalition. In our case, agents meet because they share

a facility, and in our interpretation they draw no direct advantage from being

together. But sharing the facility is tantamount to the wish of being together,

and in this respect the two types of models are quite similar.

We want to emphasize, however, that our model has more structure and a

more speciÞc interpretation than the general framework of hedonic games. This

allows us to have model-speciÞc deÞnitions and results. In particular our results

are quite positive, thanks to the characteristics of the situations we model.

A recent paper by Milchtaich and Winter (2002) is closely related to ours in

several ways. It will be useful to comment on the analogies and on the differences

between the two papers. M&W analyze the stability of coalitions in a model

of group formation where agents are driven by their attraction to people who

are similar to them. They prove the existence of stable partitions in a one-

dimensional model where the total number of groups to be formed is bounded

above, and agents strive to minimize either the average distance among group

members or their distance to the average member.

In our model, group formation is induced by the common use of a facility,

rather than by an inherent desire to become associated with similar people. Yet,

whenever agents are free to choose their preferred facility, this indirectly results
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in their association with individuals of similar tastes. Hence, our model is close

to that of M&W, and more in general, to the literature on hedonic games. In

fact, M&W take a step toward our formulation, when they suggest that a good

interpretation of their model comes from assuming that agents choose one loca-

tion. Indeed, this is what our agents do, once the facilities are located. We add

some more richness to the analysis by explicitly allowing agents to play a role

in determining the location of the facilities among which they may then choose

from.

The rest of the paper is organized as follows. In Section 2, we present our

model in detail. In Section 3 we discuss the properties that Condorcet winners

have whenever they exist. Section 4 studies the existence of Condorcet rules that

select internally consistent and Nash stable decisions. Finally, in Section 5 we

conclude.

2. The Model.

The model we present is essentially the one considered in Barberà and Beviá

(2002). The major difference is that here we model social decision rules as corre-

spondences, while in the previous paper we considered the case of functions.

We consider problems that involve any Þnite set of agents. Agents are identi-

Þed with elements in N, the set of natural numbers. Let S be the class of all Þnite

subsets of N. Elements of S, denoted as S,S0, ..., stand for particular societies,
whose cardinality is denoted by |S| , |S0| , etc.

We now describe the decisions that societies can face. These are determined

by the number and the position of relevant locations, and by the sets of agents

who are allocated to each location.

A natural number k ∈ N will stand for the number of locations. Then, given
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S ∈ S and k ∈ N, an S/k−decision is a k−tuple of pairs d = (xh, Sh)k
h=1, where

xh ∈ R, and (S1, .., Sk) is a partition of S. We interpret each xh as a location

and Sh as the set of agents who is assigned to the location xh. Notice that some

elements in the partition may be empty. This will be the case, necessarily, if

k > |S| . We call dL = (x1, .., xk) the vector of locations, and dA = (S1, .., Sk) the

vector of assignments.

Let D(S, k) be the set of S/k−decisions, D(k) =
S

S∈SD(S, k) the set of

k−decisions, and D =
S

k∈N
D(k) the set of decisions. For each agent j ∈ N, the

set of k−decisions which concern j is Dj(k) =
S
{S∈S|j∈S}D(S, k) and the set of

decisions that concern j is Dj =
S

k∈N
Dj(k).

Agents are assumed to have complete, reßexive, transitive preferences over

decisions which concern them. That is, agent i0s preferences are deÞned on Di,

and thus, rank any pair of S/k and S0/k0−decisions provided that i ∈ S ∩ S0.
Denote by <i the preferences of agent i on Di.

We shall assume all along that preferences are singleton-based. Informally,

this means that agents� rankings of decisions only depend on the location they

are assigned to, not on the rest of locations or on the assignment of other agents

to locations. This assumption is compatible with our interpretation that agents

can only use the good provided at one location, and that this is a public good

subject to no congestion. Formally, a preference <i on Di is singleton-based if

there is a preference <̄i on R such that for all d, d0 ∈ Di, d <i d
0 if and only if

x(i, d)<̄ix(i, d0), where x(i, d) denotes the location to which agent i is assigned

under the decision d.

In all that follows, we shall assume that for all i ∈ N, <i is singleton-based,

and in addition, that the order <̄i is single-peaked. That is: for each <̄i, there

is an alternative p(i) which is the unique best element for <̄i; moreover, for all
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x, y, if p(i) ≥ x > y, then x Â̄iy, and if y > x ≥ p(i), then x Â̄iy. Under

the assumption that <iis singleton-based, there is a one to one relation between

preferences on decisions, <i, and preferences on locations, <̄i. Thus, from now on

we will not make any distinction between the two.

Given S ∈ S, preference profiles for S are |S|-tuples of preferences, and we
denote them by PS , P

0
S , ...

We denote by P the set of all preferences described above, and by PS the set

of preference proÞles for S satisfying those requirements.

A collective choice correspondence will select a set of k−decisions, for each
given k, on the basis of the preferences of agents in coalition S, for any coalition

S ∈ S. Formally,

DeÞnition 1. A collective choice correspondence is a correspondence

ϕ :
S

S∈S PS ×N → D such that, for all S ∈ S, PS ∈ PS and k ∈ N, ϕ(PS, k) ⊂
D(S, k).

We have deÞned S/k−decisions to represent both the location of facilities and
the assignment of agents to locations. Given that, a collective choice correspon-

dence simultaneously determines both aspects of the decision. Although this

is a valid description of the Þnal result of the allocation process, it is not con-

tradictory with the more vivid two-stage interpretation that is suggested in the

introduction. Namely, one can think that the Þnal S/k−decision is arrived at
because agents Þrst determine locations and then allocate themselves voluntarily

to one of these locations. We shall return to this interpretation later on.
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3. Condorcet Winners and their Properties.

We now deÞne the classical notions of efficiency and of Condorcet winner as they

apply to our speciÞc model.

DeÞnition 2. An S/k−decision d is efficient if there is no S/k−decision d0 such
that d0 <i d for every agent i ∈ S and d0 Âj d for some j ∈ S.

Notice that efficiency in our model imposes two requirements. One is that

all locations should be in between the peaks of the agents who use them (other-

wise, there would be an obvious Pareto improvement, since preferences are single

peaked). The other requirement, once the locations are Þxed, is that all agents

should be assigned to the location they most prefer (otherwise, bringing them to

their preferred location would be a Pareto improvement). This last requirement

implies that efficient decisions are envy-free in the following sense:

DeÞnition 3. An S/k−decision d = ((xh, Sh))k
h=1 ∈ D(S, k) is envy-free if for

all i ∈ S, x(i, d) <i xh for all xh ∈ dL.

DeÞnition 4. An S/k−decision d ∈ D(S, k) is a Condorcet winner for PS and k if

|{i ∈ S | d Âi d
0}| ≥ |{i ∈ S | d0 Âi d}| for all d0 ∈ D(S, k). Given S ∈ S, PS ∈ PS

and k ∈ N, let CW (PS , k) be the set of S/k−decisions that are Condorcet winners
for PS and k.

When a Condorcet winner exists, it is the outcome that would result from a

majority vote among all possible S/k−decisions. Alternatively, we can justify our
interest in Condorcet winners as a test for the solidity of collective decisions. In-

deed, the choice of a Condorcet winner guarantees that no majority can challenge

the selected outcome.
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In our model, Condorcet winners have nice properties whenever they exist.

Let us illustrate the class of properties that decisions and rules can be expected

to satisfy by considering an example.

Example 1. A society with 16 agents must locate two facilities and assign each

of the agents to one of the two. Agents have Euclidean preferences on the line1,

with peaks as follows: For i ∈ {1, 2}, p(i) = i, p(3) = 4.5, p(4) = 5, p(5) = 6, for

all i ∈ {6, .., 10}, p(i) = 8, p(11) = 10.1, p(12) = 11, p(13) = p(14) = 13, p(15) =

p(16) = 14. In this society, decisions are expressed by two pairs ((x1, S1), (x2, S2)),

where x1 and x2 are the locations of the public facilities and S1, S2 are the set

of agents who are assigned to these facilities, respectively. Figure 1 provides a

sketchy graphical representation of the agents� preferences and it shows a par-

ticular decision d = ((8, {1, ..., 11}), (13, {12, .., 16})).With Euclidean preferences
it is enough to represent the peaks of the agents on the line. Each circle over a

point of the peaks contains a number, indicating what agent has a peak at that

point. A decision d = ((x1, S1), (x2, S2)) will be represented by the labels x1, x2

at the appropriate points of the line, and by squares containing the agents in S1

and S2 respectively.

If the members of this society were to choose one decision by majority voting,

which one (s) would they select? There may be several possible choices, but

they should all be Condorcet winners: that is, decisions which would not loose

by majority against any other one. In our example, the decision that we have

represented, d = ((x1, S1), (x2, S2)) is a Condorcet winner.

1Euclidean preferences have their best element at some point t, and can be represented by

the utility function u(x) = − |t− x| . They are a special case among the single-peaked.
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The fact that d is a Condorcet winner has consequences. SpeciÞcally, it guar-

antees that it satisÞes a number of nice properties, which we shall here describe

informally, and then deÞne precisely.

(1) The decision d is Pareto efficient. Indeed, there is no other way to locate

the decisions and to assign agents to them which all agents would unanimously

support over d (with some being possibly indifferent).

(2) The decision d satisÞes an attractive property of internal consistency. Notice

that d identiÞes the set Si as that of the users of the facility located at xi. Suppose

that agents in Si were in a position to reconsider, just by themselves, whether

xi is indeed the best location for the facility that they are the only users of. If

these agents were to vote by majority on that issue, xi would indeed be chosen,

since it is the median of the peaks of agents in Si, each of which has single peaked

preferences. Global decisions give rise to a partition of society, and internal con-
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sistency means that the members inside each partition agree, by majority, on the

locations of their own facility.

(3) The decision d satisÞes nice properties of no-envy and Nash stability, both

related to the question whether agents who are assigned to a certain facility will

have incentives to accept this assignment, or else would prefer to join a different

set of users. Condorcet winners in our model are envy-free. This means that no

agent who is assigned to one facility would prefer to use any of the other facilities

which are made available to other agents as part of the same decision. It is easy

to see that, if the initial allocation is efficient, and ours is, then it is envy-free.

Indeed, this is due to the absence of congestion in the consumption of the public

facilities. Therefore, no agent will have incentives to change facilities under an

efficient decision, unless the agent can foresee that joining another group may

induce a favorable change in the location of the relevant facilities. This leads us

to the notion of Nash stability, involving the comparison of any allocation with

others that may have resulted if agents had the right to be allocated as they

wished. In order to deÞne Nash stability we need to be speciÞc on how one agent

could modify an initial allocation by joining a group different than the one she

was originally assigned to. In our example, we may check that, under the sus-

tained hypothesis that the facility assigned to each group is a majority winner for

its members, no agent could beneÞt from joining a different group than the one

they are initially assigned to2. The fact that decision d satisÞes these interesting

properties is not an accident. Rather, we shall prove that it is a consequence of

the fact that this decision is a Condorcet winner among global decisions of the

2Group Nash Stability is a stronger requirement than Nash stability, that will not always be

possible to respect in our context, but would also hold for Condorcet winners. We discuss this

in the Appendix.
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form ((x1, S1), (x2, S2))3.

Let us now deÞne formally the properties discussed in Example 1, and prove

that whenever a global Condorcet winner exists, it satisÞes all of them.

DeÞnition 5. An S/k−decision d = ((xh, Sh))k
h=1 ∈ D(S, k) is internally con-

sistent if dh = (xh, Sh) ∈ CW (PSh
, 1) for all h such that Sh 6= ∅.

An interesting implication of choosing a global Condorcet winner is that this

guarantees the internal consistency and efficiency of our choices.

Proposition 1. Given S ∈ S, PS ∈ PS and k ∈ N, if an S/k−decision d =

((xh, Sh))k
h=1 ∈ CW (PS, k), then d is internally consistent and efficient.

Proof. Internal consistency is proven in Barberà and Beviá (2002). For efficiency,

notice Þrst that, since a global Condorcet winner is internally consistent, each of

the locations is a Condorcet winner among their users, therefore the locations are

in between the peaks of the agents who use them. It remains to prove that the

decision is envy free. Suppose that d is not envy free, that is, there is an agent

i in one of the groups that would prefer the location assigned to other group

than the one he is assigned to. Without loss of generality suppose that i ∈ Sj ,

and xh Âi xj. Let d0 be such that d0l = dl for all l /∈ {j, h}, d0h = (xh, Sh ∪ {i}),
d0j = (xj , Sj\{i}). All the agents, except i, are indifferent between d and d�. But

3 In this and all other examples, we shall assume that agents have euclidean preferences. One

consequence of this is that, all groups in partitions satisfying our requirements will be connected.

But this is just for these special preferences, and it should not be expected in the more general

case of single peaked preferences, which are the ones we assume in the paper. The reader may

check that our formal proofs never assume connectedness of groups, as it need not hold in the

general framework.
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agent i strictly prefers d0. Therefore, decision d0 beats d in majority comparisons,

which contradicts the fact that d ∈ CW (PS , k).

We now turn to Nash stability, which occurs when agents, after envisaging the

possibility of joining another group, and considering that the object assigned to

this new group may be reallocated accordingly, consider that they should remain

at their original location. Formally,

DeÞnition 6. An S/k−decision d = ((xh, Sh))k
h=1 ∈ D(S, k) is Nash stable if for

all h, j, with h 6= j and for all i ∈ Sh, there is x̄ ∈ CW (PSj∪{i}, 1) such that

x(i, d) <i x̄.

Our deÞnition of Nash stability requires agents to compare the sets of deci-

sions resulting from assigning themselves to their initially preferred location, with

those that would arise if they declared themselves members of another group of

users, and had an inßuence on the Þnal locations. Since we are working with

correspondences, agents may thus be led to compare sets of decisions, while at

present we have only deÞned their preferences over single decisions. Extending

preferences from single alternatives to sets is always a delicate exercise, that has

consequences (see Barberà, Bossert and Pattanaik (2004)). What we choose to

do here is to consider a weak extension of the preferences, whose consequences are

that agents will only engage in deviations from one group to another when the

gains from such moves are unequivocal. Because of this, Nash stability is easier

to reach under our extension to set comparisons than it would be under stronger

extensions. Notice, however, that even with our present deÞnition, group-Nash

stability may not be guaranteed (see Appendix). Indeed, we are imposing a

meaningful restriction.

Let us brießy comment on interpretations. No envy is a natural stability

requirement if we interpret that the locations of the different facilities are Þnal.
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Then, the only possible changes in allocations are changes in the sets of agents

who get service at each location. No envy guarantees that agents are at their best

location among these Þxed ones. Nash stability is a stronger requirement, which

makes sense when we think that the decisions are at an interim stage, and that

the location of facilities can still be changed by the vote of those who claim to

have an interest on them. Then, a Nash stable allocation is one where no agent

would want to express interest for joining any group other than the one he is

assigned to.

Our next proposition shows that global Condorcet winners are Nash stable.

Proposition 2. Given S ∈ S, PS ∈ PS and k ∈ N if an S/k−decision d =

((xh, Sh))k
h=1 ∈ CW (PS, k), then d is Nash stable.

Proof. Suppose that there is a global Condorcet winner which is not Nash

stable. That is, there is d ∈ CW (PS , k), h, q, with h 6= q and i ∈ Sh, such

that x̄ Âi x(i, d) for all x̄ ∈ CW (PSq∪{i}, 1). Without loss of generality suppose

that h = q + 1. Let [y1, y2] = CW (PSq∪{i}, 1). Let d0 be such that d0l = dl for

all l /∈ {q, h}, d0q = (y1, Sq ∪ {i}), d0h = (xh, Sh\{i}). We�ll prove that d0 wins
by majority over d, a contradiction to the initial assumption that d is a global

Condorcet winner. Let us check that |{j ∈ S | d0 Âj d}| > |{j ∈ S | d Âj d
0}| .

Notice that {j ∈ S | d0 Âj d} = {j ∈ Sq ∪ {i} | y1 Âj xq}, and since
y1 ∈ CW (PSq∪{i}, 1), |{j ∈ Sq ∪ {i} | y1 Âj xq}| ≥ |{j ∈ Sq ∪ {i} | xq Âj y1}| .
Hence, we only need to prove that this inequality is strict. Given that d ∈
CW (PS , k), d is envy-free, then x(i, d) <i xq , and since agent i prefers any

element in CW (PSq∪{i}, 1) to x(i, d), xq /∈ CW (PSq∪{i}, 1), which implies that

xq < y1. Then |{j ∈ Sq ∪ {i} | y1 Âj xq}| > |{j ∈ Sq ∪ {i} | xq Âj y1}| , and triv-
ially, |{j ∈ Sq ∪ {i} | xq Âj y1}| = |{j ∈ S | d Âj d

0}| , which contradicts the fact
that d ∈ CW (PS , k).

18



We have shown that global Condorcet winners are efficient, envy-free, inter-

nally consistent and Nash stable decisions4. Hence, if it were always possible to

choose Condorcet winners, this would deÞne a rule guaranteeing the simultaneous

satisfaction of all these desiderata. However, Condorcet winners do not always

exist in our setup, as shown in the following example. The inexistence occurs

despite our strong restrictions on preferences, which guarantee the existence of

Condorcet winners when k = 1. Because of that, the design of attractive rules

will require further attention.

Example 2. Condorcet winners may fail to exist. A society with 14 agents

must locate two facilities and assign each of the agents to one of the two. Agents

have Euclidean preferences on the line, with peaks as follows: p(i) = i, for all

i = 1, .., 4 and p(5) = 32, p(6) = 33, p(7) = 34, p(8) = 67, p(9) = 68, p(10) = 69,

p(11) = 97, p(12) = 98, p(13) = 99, p(14) = 100. Let us see that CW (PS , 2) = ∅.
We already know that if d = (d1, d2) ∈ CW (PS , 2), then dh ∈ CW (PSh

, 1) for

h ∈ {1, 2} and d should be an efficient S/2−decision. We represent in Þgure
2 the preferences of the agents and the unique decision, d = ((x1, S1), (x2, S2))

that satisÞes these properties, and thus, the unique potential candidate. However

d is not a Condorcet winner for PS and 2 since it is defeated by majority by

d0 = ((y1, S
0
1), (y2, S

0
2)) (this decision is represented in Þgure 2 with dotted lines).

Indeed, {i ∈ S | d0 Â d} = {5, 6, 7, 8, 9, 10, 12, 13, 14}, and {i ∈ S | d Â d0} =

{1, 2, 3, 4, 11}.

4Actually, these global Condorcet winners, when they exist, also satisfy the stronger condition

of group Nash stability (see the Appendix).
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Þgure 2

In view of this example, we can not expected any collective choice correspon-

dence to always select decisions which are Condorcet winners. We can demand,

however, that they always do if such winners exist at all. Our analysis will con-

centrate on rules that satisfy this requirement, to be called Condorcet rules.

DeÞnition 7. A collective choice correspondence ϕ is a Condorcet rule if for all

S ∈ S, PS ∈ PS and k ∈ N such that CW (PS , k) 6= ∅, ϕ(PS, k) = CW (PS , k).

4. Internally Consistent, Nash-stable and Efficient Condorcet Rules.

The possibility that collective choices may fail to be Condorcet winners at some

proÞles leads to the following question: are there Condorcet rules which are in-

ternally consistent, Nash-stable and efficient?

As a Þrst step toward an answer, we need to prove that there are always

internally consistent, Nash stable and efficient decisions. This is the objective of

the following proposition.
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Let us Þrst Þx some notation. The lower median of a Þnite collection K of real

numbers is denoted by lmed(K). It stands for the median when the cardinality

of K is odd, and for the lowest value of the median if the cardinality is even5.

Proposition 3. For each S ∈ S, PS ∈ PS and k ∈ N, there exist decisions

d ∈ D(PS, k) that are internally consistent, Nash stable and efficient6.

Proof. Let S ∈ S, PS ∈ PS and k ∈ N. If there are at most k different peaks, we

are done. Hence, suppose that there are at least k different peaks. Let us order

the agents by increasing order of their peaks. Let S1
h = {i ∈ S | p(i) = p(h)}

for all h ∈ {1, .., k − 1}, and S1
k = {i ∈ S | p(i) > p(k − 1)}. Let x1 = (x1

h)k
h=1

be such that x1
h = lmed(p(i))i∈S1

h
, for h ∈ {1, .., k}, and let d1 = (x1

h, S
1
h)k

h=1. By

construction, this decision is internally consistent. Notice that, x1
h = p(h) for all

h ∈ {1, .., k−1}. If for all i ∈ S1
k, there is x̄ ∈ CW (PS1

k−1∪{i}, 1) such that x1
k ºi x̄,

this decision is Nash stable. Notice also that the decision is envy free because

x1
k−1 ≤ x̄ ≤ x1

k and since preferences are single peaked, for all i ∈ S1
k , x

1
k ºi x

1
k−1.

In this case we are done. Otherwise, let I = {i ∈ S1
k |for all x̄ ∈ CW (PS1

k−1∪{i}, 1),

x̄ Âi x
1
k}, and let Sk−1 = S1

k−1 ∪ I. Let yk−1 = lmed(p(l))l∈Sk−1
. First of all, no-

tice that for all i, j ∈ I, lmed(p(l))l∈S1
k−1∪{i} = lmed(p(l))l∈S1

k−1∪{j} ≤ yk−1 <

x1
k. Notice that we can have agents in S1

k which prefer x1
k to any point in

CW (PS1
k−1∪{i}, 1), but they have their peaks between x1

k−1 and yk−1, which im-

plies that they prefer yk−1 to x1
k. Let S

0
k ⊂ S1

k be the set of those agents. For each

i ∈ S0k, let zi be such that agent i is indifferent between x1
k and zi. Let us order

the agents in S0k by increasing order of zi. Then [zi+1, x
1
k] ⊆ [zi, x

1
k]. Take the

5We cannot simplify our analysis by assuming an odd number of voters because the nature

of our questions require the size of the electorate to be variable and endogenously given.
6There are cases where requiring group Nash stability would be too strong. As we show in

the Appendix, we can not strengthen Propositioin 3 to incluide group Nash stability.
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Þrst agent in this set. Then, lmed(p(l))l∈Sk−1∪{1} <1 yk−1, and since yk−1 <1 x
1
k,

lmed(p(l))l∈Sk−1∪{1} ∈ [z1, x
1
k]. If lmed(p(l))l∈Sk−1∪{1} ∈ [z2, x

1
k], add agent 2 to

Sk−1∪{1}, and we get that lmed(p(l))l∈Sk−1∪{1,2} <2 lmed(p(l))l∈Sk−1∪{1}), which

will imply that lmed(p(l))l∈Sk−1∪{1,2} ∈ [z2, x
1
k].We keep adding agents from S0k in

the above deÞned order whenever lmed(p(l))l∈Sk−1∪{1,2,..,i}) ∈ [zi+1, x
1
2]. Let S01k

be this subset of agents. Then, for all i ∈ S0k\S01k , lmed(p(l))l∈Sk−1∪S01k
/∈ [zi, x

1
k].

Notice that all agents in S0k\S01k have their peaks between lmed(p(l))l∈Sk−1∪S01k

and x1
k. Once this process is completed, consider the following sets of agents:

S2
k−1 = Sk−1 ∪ S01k , S2

k = S1
k\{I ∪ S01k }, and S2

h = S1
h for all h ∈ {1, .., k − 2}.

Let x2
h = lmed((p(l))l∈S2

h
for all h ∈ {1, .., k}. Notice Þrst that for all i ∈ I,

lmed(p(l))l∈S1
k−1∪{i} ≤ x

2
k−1 < x

1
k and therefore, x

2
k−1 <i x

1
k. Also, by construc-

tion, for all l ∈ S01k , x2
k−1 <l x

1
k. And since x

2
k ≥ x1

k, for all l ∈ S2
k−1, x

2
k−1 <l x

2
k.

Therefore, once the process has Þnished, no agent that has been moved in order

to join a different group, wants to go back to his initial group. If the decision

(x2
h, S

2
h)k

h=1 is Nash stable we are done. If not, we repeat the process. Notice

that, if in step j we do not get a decision Nash stable decision, it is because for

some h, some i ∈ Sj
h and all x̄ ∈ CW (P

Sj
h−1∪{i}, 1), x̄ Âi x

j
h. Thus, if this is the

case, in each step we add agents from Sj
h to S

j
h−1 in the way described above.

The process will end in a Þnite number of steps because there are a Þnite number

of agents, at each step xj
h ≥ xj−1

h for all h ∈ {1, ..k}, and furthermore, Sj−1
1 ⊆ Sj

1

and Sj
k ⊆ Sj−1

k .

For each S ∈ S, PS ∈ PS and k ∈ N, let DNC(PS , k) be the set of all

internally consistent, Nash stable and efficient decisions. The above proposition

tells us that this set is not empty. However, not all the decisions in this set are

global Condorcet winners whenever they exist, as the following example shows.

Example 3. The society is the same as in Example 1. Consider the decision
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d = ((y1, S1), (y2, S2)) represented in Þgure 3.
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                                                                     10

                                                                      9

                                                                      8

                                                                      7                                              14        16

  1       2           3             4          5                 6                  11          12          13         15

Þgure 3

The decision d is internally consistent, Nash stable and efficient. However, it is

not a global Condorcet winner. Notice that the decision d0 = ((7, {1, ..., 10}), (11, {11, ..., 16})
beats the decision d in majority comparisons.

Therefore, a Condorcet rule satisfying all the preceding properties should map

into elements from de set DNC(S, k), but cannot simply select all of them for

all proÞles. Our next proposition will show that this delicate selection process is

possible. We propose one speciÞc selection procedure, and then comment on other

similar methods that may lead to alternative rules also satisfying our properties.

DeÞnition 8. Given S ∈ S, PS ∈ PS and k ∈ N, for any d, d0 ∈ D(S, k), let

N(d, d0) = |{i ∈ S | d <i d
0}| . Given d ∈ D(S, k), the Simpson score of d, denoted

SC(d), is the minimum of N(d, d0) over all d0 ∈ D(S, k), d0 6= d.
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An S/ k-decision d ∈ DNC(S, k) is a restricted Simpson winner for PS and k if

SC(d) ≥ SC(d0) for all d0 ∈ DNC(S, k). The restricted Simpson correspondence,

SW, is deÞned so that for each S ∈ S, PS ∈ PS and k ∈ N,

SW (PS , k) = {d ∈ DNC(S, k) | SC(d) ≥ SC(d0) for all d0 ∈ DNC(S, k)}

In its usual version, the Simpson rule is an example of a Condorcet consistent

rule. This is because the value of N(d, d0) for a Condorcet winner is always greater

or equal than a majority, whereas alternatives which are not Condorcet loose by

majority at least once, and cannot have a score reaching the majority size. Notice

that the Simpson correspondence is usually deÞned as choosing from the same

set of elements that are used to deÞne the Simpson score. Our variation consists

in forming the Simpson scores on the basis of pairwise comparisons on the whole

set D(S, k), but then choosing only among the elements of DNC(S, k). This will

prove useful in our case.

Proposition 4. The restricted Simpson correspondence is a Condorcet rule that

selects internally consistent, efficient and Nash stable decisions.

Proof. Internal consistency, efficiency and Nash stability are satisÞed because we

always select elements inDNC(S, k). It suffices to show that, whenever Condorcet

winners exist, they are the chosen decisions. This follows from the fact that

Condorcet winners, when there are, always belong to DNC(S, k), as shown in

Propositions 1 and 2. Therefore, restricting our maximization process to the

smaller set DNC(S, k) does not preclude us from still choosing them.

Remark 1. The Simpson rule is one of the many procedures that have been

suggested to extend the majoritarian principle, producing deÞnite choices for all
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preference proÞles, and choosing Condorcet alternatives whenever they exist. An-

other famous Condorcet extension rule is Copeland�s, that is usually deÞned when

the number of alternatives is Þnite. Then, each alternative is assigned one point

for every win in a pairwise contest, minus one for every pairwise loss, and zero for

any tie. Copeland�s score for each alternative is the sum of the scores obtained

from all pairwise contests, and Copeland�s rule is the one that chooses the alterna-

tives with highest Copeland scores. Notice that the deÞnition of Simpson�s score

is not affected by the cardinality of the set of alternatives. The values of N(d, d0)

will be Þnite as long as the number of voters is Þnite, and the only difference is

that , when the number of alternatives is inÞnite, we take the max of N(d, d0)

over an inÞnite set of contenders. Moreover, since the possible values of the total

scores are Þnite, existence of an alternative with the maximum Simpson score is

not an issue.

By contrast, extending Copeland�s rule involves new technicalities. A bit of mea-

sure theory is needed to extend the rule, and the existence of maximal elements

needs discussion.

In principle, our arguments in the proof of Proposition 4 will stand for any Con-

dorcet consistent rule that can be obtained by maximizing transitive relations

taking maximal values at Condorcet alternatives, when these exist. However,

and somewhat surprisingly, tournament theory is lacking suggestions of other

rules that may naturally extend majority by assigning alternatives an ordering

with the above characteristics. This, and the also surprising lack of characteriza-

tions for most of the tournament solution concepts, explain why we fall short of

a full characterization of the rules under study, and must remain content with a

constructive existence proof.
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5. APPENDIX

We prove in this appendix that whenever a global Condorcet winner exists it sat-

isÞes group Nash stability. But, in the statement of Proposition 3 Nash stability

cannot be strengthened to group Nash stability.

Group Nash stability has the same ßavor than Nash stability with the added

possibility that agents might coordinate with others in the same group when

deciding whether or not to change groups. Formally,

DeÞnition 9. An S/k−decision d = ((xh, Sh))k
h=1 ∈ D(S, k) is group Nash stable

if for all h, j, with h 6= j and for all I ⊂ Sh, there is x̄ ∈ CW (PSj∪I , 1) such that

x(i, d) <i x̄ for all i ∈ I.

Our next proposition shows that global Condorcet winners are group Nash

stable.

Proposition 5. Given S ∈ S, PS ∈ PS and k ∈ N if an S/k−decision d =

((xh, Sh))k
h=1 ∈ CW (PS, k), then d is group Nash stable.

Proof. Suppose that there is a global Condorcet winner which is not group Nash

stable. That is, there is d ∈ CW (PS , k), h, j, with h 6= j and I ⊂ Sh, such that

x̄ Âi x(i, d) for all x̄ ∈ CW (PSj∪I , 1), for all i ∈ I. Without loss of generality
suppose that h = j + 1. Let [y1, y2] = CW (PSj∪I , 1). Let d0 be such that d0l = dl

for all l /∈ {j, h}, d0j = (y1, Sj ∪ I), d0h = (xh, Sh\I). We�ll prove that d0 wins by
majority over d, a contradiction to the initial assumption that d is a Condorcet

winner. Let us check that |{i ∈ S | d0 Âi d}| > |{i ∈ S | d Âi d
0}| . Notice that

{i ∈ S | d0 Âi d} = {i ∈ Sj ∪ I | y1 Âi xj}, and since y1 ∈ CW (PSj∪I , 1),

|{i ∈ Sj ∪ I | y1 Âi xj}| ≥ |{i ∈ Sj ∪ I | xj Âi y1}| . Hence, we only need to prove
that this inequality is strict. Given that d ∈ CW (PS , k), d is envy-free, then
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x(i, d) <i xj for all i ∈ I, and since all the agents in I prefer any element in
CW (PSj∪I , 1) to x(i, d), xj /∈ CW (PSj∪I , 1), which implies that xj < y1 ≤ y for
all y ∈ CW (PSj∪I , 1). Then |{i ∈ Sj ∪ I | y1 Âi xj}| > |{i ∈ Sj ∪ I | xj Âi y1}| ,
and trivially, |{i ∈ Sj ∪ I | xj Âi y1}| = |{i ∈ S | d Âi d

0}| , which contradicts the
fact that d ∈ CW (PS , k).

When a global Condorcet winner does not exist, it may not always be possible

to have internally consistent and group Nash stable decisions.

Example 4. Non existence of efficient, internally consistent and group

Nash stable decisions. Consider a society with 25 agents with euclidean pref-

erences with the following peaks: p(1) = 1, p(2) = 2, p(3) = 3, p(i) = 12 for all

i ∈ {4, 5}, p(i) = 14 for all j ∈ {6, 7, 8, 9} and p(i) = 15 for all i ∈ {10, ..., 25}. In
Þgure 4, we represent this society and the decision d = ((x1, S1), (x2, S2)) which

is the unique decision that is internally stable and efficient.

No rule satisfying efficiency and internal stability can be group Nash stable. To

check that, notice that these rules will always select the median of groups, and

thus, S = {6, 7, 8, 9} will prefer to join S1 and then get x̄1 = 14. Moreover,

notice that a cycle arises, which also makes this new coalition (and the next) un-

stable. Indeed, under the assignment ((14, {1, 2, 3, 6, 7, 8, 9}), (15, {4, 5, 10, .., 25})
the group {4, 5} would like to join {1, 2, 3, 6, 7, 8, 9} and get the facility located
in 12. And the resulting allocation, ((12, {1, 2, .., 9}), (15, {10, .., 25}) will then in-
duce {6, .., 9} to join {10, .., 25} in order to get allocated to 15, which they prefer
to 12, then leaving {1, 2, 3, 4, 5} with a facility in 3, for which now {4, 5} will want
to depart, thus closing the cycle.
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The notion of group Nash stability that we are using deals with special devi-

ations involving a group that is contained in a set Sh of the partition that joins

another group Sj of the partition. It would be possible to consider more general

deviations, for example, the group who deviates could come from different ele-

ments in the partition. But this will be a stronger requirement than the one we

present, and it would not help, since we already obtain an impossibility result

under the weaker requirement.
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