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Abstract

In this paper, we suggest a simple sequential mechanism whose
subgame perfect equilibria give rise to efficient networks. Moreover,
the payoffs received by the agents coincide with their Shapley value in
an appropriately defined cooperative game.

JEL Classification numbers: C71, C72.

Keywords: Networks, Implementation, Shapley Value.

* Acknowledgments: The authors are grateful to Suresh Mutuswami for extensive dis-
cussions regarding network economies. Pérez-Castrillo and Wettstein acknowledge finan-
cial support from BEC2003-01133. Pérez-Castrillo also acknowledges the financial support
of the Generalitat of Catalunya (2001SGR-00162 and Barcelona Economics, CREA).

"Dep. Economia e Historia Economica and CODE, Universitat Autdnoma de
Barcelona, Edifici B, 08193 Bellaterra (Barcelona), Spain. e-mail: David.Perez@uab.es

tDepartment of Economics, Monaster Center for Economic Research, Ben-Gurion Uni-
versity of the Negev, Beersheva 84105, Israel. e-mail:wettstn@bgumail.bgu.ac.il



1 Introduction

Recently there has been a surge of interest in economic environments that
can be described via graphs, where the activity takes the form of creat-
ing links among agents. This type of structure can be applied to different
contexts such as the analysis of the internal organization of firms or cost
allocation schemes. A major concern for such environments is the attain-
ment of efficient networks, that is, networks for which the output produced
exceeds or equals the amount of output achieved by any other network.

In this paper, we suggest a simple sequential mechanism with the prop-
erty that its equilibrium outcomes generate an efficient network. The mech-
anism adapts to the network environment the proposal made in Pérez-
Castrillo and Wettstein [11].!. The mechanism has the agents first choose
a proposer among themselves via a bidding game. The proposer then pro-
poses a network structure and a vector of transfers. If the other agents
accept his proposal, it is carried out. In case the offer is rejected the pro-
poser is removed and is left on his own. The remaining agents again use the
mechanism starting from the bidding stage.

We show that the subgame perfect equilibria of the mechanism generate
efficient networks. Moreover, the payoffs received by the agents coincide
with their Shapley values in an appropriately defined cooperative game.

Jackson and Wolinsky [6] were the first authors to analyze the problem of
generating efficient networks. They focused, to a large degree, on the tension
between efficiency and stability. Dutta and Mutuswami [4] and Mutuswami
and Winter [9] resolve this tension through the use of mechanisms, assuming
that the planner has information regarding the value function. Navarro and
Perea [10] suggest a non-cooperative bargaining procedure among pairs of
agents whose subgame perfect equilibrium outcomes coincide with the value
appearing in Jackson and Wolinsky [6].

An approach similar to ours can be found in Currarini and Morelli [2],
who propose two sequential-move mechanisms whose subgame perfect equi-
libria outcomes generate efficient networks. The payoff configuration in their
mechanisms is endogenously generated but is highly asymmetric, being sen-
sitive to the order in which agents move. Also, Matsubayashi and Yamakawa
[7] propose a mechanism to share the cost of constructing the network and
show that some equilibria involve both efficient networks and equitable allo-
cation rules. Finally, Samejima [12] implements the nucleoulus in subgame
perfect equilibria and applies the mechanism to a network environment.

The main advantages of our proposal are the following: The payoff
division is equitable, corresponding to the Shapley value of a cooperative
game; the efficiency and equity properties of the mechanism hold for a large
class of environments; the mechanism is simple and does not require out-of-

!See also Mutuswami, Pérez-Castrillo, and Wettstein [8].



equilibrium free disposal.

2 Forming networks

Let N = {1,...,n} be the set of agents. For any S C N, let ¢° denote the
set of all subsets of S of size 2. A graph or network, denoted generically by
g is some subset of gV. If g C g% where S C N, we say that g is a graph
restricted to S. A graph, therefore, is a structure of bilateral relations
among agents. Clearly, agents ¢ and j have a bilateral relation if and only if
{i,7} € g. We shall refer to the subset {3, j} of g as the link between ¢ and j
and denote it by (ij).2 We let G's denote the set of all graphs involving links
just between members of S: g € G and (ij) € g implies that {i,5} C S.

Given a graph g, agents ¢ and j are said to be connected in g if there
exists a sequence of agents i = ig, i1,...,ix = j such that (ixigs1) € g for all
k=0,...,K —1. Let N(g) = {i] there exists j such that (ij) € g} denote
the set of agents who have at least one bilateral relation. The graph h C g
is said to be a connected component of g if all agents in N (h) are connected
to each other in h, and for all i € N(h),j € N\N(h), (ij) € g. The set of
all connected components of g is denoted C(g).

A walue function is a mapping v : Gy — R. We can think of the
value of a graph ¢ as representing the total surplus produced by agents
when they form a set of bilateral relationships represented by g. We will
restrict attention to value functions satisfying component additivity, that is,
v(9) = X pec(g) v(h). Component additivity can be interpreted as absence
of externalities between different components. We let V' denote the set of
component additive value functions. Given v € V, a graph g is strongly
efficient if v(g) > v(g’) for all ¢ € Gn. An allocation rule is a mapping
Y :V x G — R satisfying Y .y Yi(v, 9) = v(g). An allocation rule simply
specifies the division of total surplus for each possible graph. An allocation
rule Y is component balanced if 3, np) Yi(v, g) = v(h) for every h € C(g).

An example of an allocation rule is the one proposed by Jackson and
Wolinsky [6] which associates to each graph, the Shapley value of a transfer-
able utility game associated with the graph. Formally, fix v. For any graph
gand S C N, let g|S = {(i7)|(ij) € g and {i,j} C S} denote the restriction
of g to S. The Jackson-Wolinsky allocation rule for any graph g, which we
denote by ¢, is:?

St — |S] = 1)!
|

n.

¢?(N7U) = Z

SCN\{i}

[v(gl(S U {i})) = v(g]S)]-

20ur emphasis on bilateral relationships means that the links in our framework are
non-directed. We say more on the applicability of this mechanism to situations involving
directed links later.

3This value is also referred to in the literature as the Myerson value.



Jackson and Wolinsky [6] show that ¢ is the unique allocation rule satisfying
component balance and equal bargaining power.* They also note that this
allocation rule may arise naturally if the allocations result from bargaining
between agents. However, this bargaining is not modeled explicitly.

The previous value equates the worth of a coalition S to the surplus
generated by looking at the restriction of g to S. This procedure, however,
does not take into account the fact that the agents in S can form many other
graphs besides g|S and ideally one would like to take this into consideration.®
However, the way to do this is not clear for an arbitrary graph g. Suppose
however that we restrict attention to graphs which are strongly efficient.
In this case, a natural possibility is to associate to each coalition S the
mazximum surplus that can be derived by the members of S acting on their
own. One can now consider the transferable utility game (N, W) defined by
W(S) = max{v(g)|g € Gg} for all S C N and the corresponding Shapley
value. The game (N, W) can be easily seen to be super-additive; we denote
by ¢ the Shapley value of the game (N, W) :

[SHn — \'S‘ “ D (s 0 i) - wis).

¢2(N>W) = Z

SCN\{i}

n:

This Shapley value is the same as the value considered in Jackson [5] for the
player-based flexible allocation network case.

It is easy to see that the restricted graph g|S is not necessarily the graph
that maximizes the surplus for S even if g itself is strongly efficient. The
two approaches outlined above are thus bound to give different results. The
following example illustrates this possibility.

Example 1 Consider the following value function taken from Jackson and
Wolinsky [6]. Let N = {1,2,3}, and the component-additive value function
given by v((i5)) = v(g™) =1 and, fori # j,i # k,j # k, v((ij), (jk)) = 1+
where 0 < € < 1/6. The strongly efficient networks are of the form ¢/ =
{(ij), (jk)}. The Jackson-Wolinsky procedure applied to any g’ gives the
allocation (x;,xj, xr) = ((1 + 2€)/6, (2 +€)/3, (1 + 2€)/6) while the Shapley
value of (N, W) gives the uniform payoff vector ((1+¢€)/3, (1+¢€)/3, (1+€)/3).
This example also illustrates that, in contrast to the Jackson-Wolinsky rule,
the proposed allocation here need not be component balanced. We view this
as a consequence of having to take into account the strategic possibilities
open to an agent outside the component to which he belongs.

“The allocation rule Y satisfies equal bargaining power if Y;(v,g) — Yi(v,g — (ij)) =
Y;i(v,g9) — Y;(v,g9 — (¢j)) where g — (ij) is the graph obtained by removing the link (ij)
from g.

STypically, the literature on social and economic networks assumes that agents have
the right to decide which links they want to form. See for instance, the papers of Jackson
and Wolinsky [6], Currarini and Morelli [2] or Dutta and Mutuswami [4]. In this context,
it is thus necessary that the complete strategic possibilities open to an agent be considered.



The bidding mechanism that we propose for the network environment can
be considered as a model of network formation in which a bargaining process
is modeled explicitly. By playing this mechanism, connected components
are formed sequentially. In stage 1 of the mechanism, the agents bid to
choose the proposer. Each agent bids one number for each agent (including
himself), the bids submitted by an agent must sum up to zero. The agent
for whom the aggregate bid is the highest is chosen as the proposer. In
stage 2 the proposer offers a vector of payments to all other agents and
chooses a connected component he wants to form. The offer is accepted if
all the other agents agree. In case of acceptance the connected component
is formed and the agents outside it proceed to play the same game again
among themselves. In the case of rejection all the agents other than the
proposer play the same game again. Formally, the bidding mechanism for
network formation operates as follows:

If there is only one agent i (say), he can only form the empty graph,
g = 0 and therefore, he obtains v(f)) = 0.6

Given the rules for at most n — 1 agents, the mechanism for N =
{1,...,n} works as follows:

t = 1: Each agent ¢ € N makes bids b;- € R, one for every j € N, with
D jeN ; = 0. Agents bid simultaneously.

For each ¢ € N, define the aggregate bid to agent ¢ by B; = Z]EN bz Let
a = argmax;(B;) where an arbitrary tie-breaking rule is used in the case of
a non-unique maximizer. Once the winner « has been chosen, every agent
i € N pays b, and receives By /n.

t = 2: agent « chooses a subset of agents S, (such that a € S,), a graph
gy € (g, (such that g7 is connected on S,) and offers z{ € R to every
i€ N\{a}.

t = 3: The agents in N\{a}, sequentially, either accept or reject the
offer. If an agent rejects it, then the offer is rejected. Otherwise, the offer is
accepted.

If the offer is accepted, then the final payoff to agent i € S,\{a} is
x¢ — b, + Ba/n, agent a receives v(gk) — > iza T — by + Ba/n and agents
in N\S, receive ¢ — b, + Ba/n plus what they obtain in the game played
by N\Sq. If the offer is rejected, the final payoff to o is —b% + By /n and
final payoff to any i # a is the sum of —b}, + B, /n and the payoff obtained
in the game played by N\{a}.

Theorem 1 At any subgame perfect equilibrium of the bidding mechanism,
a strongly efficient graph is always formed. Moreover, the payoffs to the
agents are uniquely given by the Shapley value ¢.

SComponent additivity implies that the value of an isolated player (and therefore, the
empty graph) is zero.



Proof:. The proof proceeds via induction on the number of agents. The
theorem trivially holds for the case of n = 1. We assume it holds for all
m < n — 1 and show it also holds for m = n.

Consider a game (N,v) with n agents. We claim (under the induc-
tion hypothesis) that the following strategies are the unique SPFE of the
mechanism and furthermore generate the Shapley value ¢:

At t =1, each agent i, ¢ € N, announces b; = ¢;(N\{j}, W) —¢;(N,W)
for every j # i and b = W(N) — W(N\{i}) — ¢;(N, W).

At t = 2, agent ¢, if he is the proposer, chooses a subset of agents S;
and a graph (a connected component) g such that v(g) + W(N\S;) =
W(N). Moreover, he offers z = ¢;(N\{i},W) to every j € S;\{i}, and
2y = ¢;(N\{i}, W) — ¢;(N\S;, W) to every j & 5.

At t = 3, agent i, if agent j # i is the proposer and ¢ € S;, accepts
any offer greater than or equal to ¢;(N\{j}, W) and rejects it otherwise. If
agent j # i is the proposer and i ¢ S;, agent ¢ accepts any offer greater than
or equal to ¢;(N\{j}, W) — ¢;(N\S;, W) and rejects it otherwise.

By the induction argument all SPE must have all agents different from
the proposer behave according to the strategy described in t = 3. The
proposer at t = 2 will not make any offer larger than those prescribed by
the strategies at ¢ = 2. Moreover given the payoff structure he would be
best off if he forms a component that is part of an efficient graph. It can
also be shown that in any SPFE the aggregate bid to each agent should be
zero and as a result an agent’s payoff is the same regardless of who is chosen
as the proposer. The proposed bids at t = 1 are the only feasible bids that
satisfy all of these requirements.” W

Remark 1 In principle, one can apply the bidding mechanism to situa-
tions involving directed links. However, we need an additional assumption:
namely, that establishing links needs the permission of both concerned par-
ties. This assumption may be valid in some circumstances. For instance,
a telephone connection (directed link) may be initiated by one party, but it
requires the cooperation of both to carry forth a conversation. A similar con-
stderation, we think, is valid with e-mail. Equally, there may be situations
where links can be established unilaterally — in such cases, our mechanism
18 not valid because an agent whose proposal is rejected may reenter by uni-
laterally establishing links. Bala and Goyal [1] and Dutta and Jackson [3]
both consider network models involving directed links.

Finally, we would like to emphasize the fact, proved in Mutuswami,
Pérez-Castrillo and Wettstein [8], that the equilibrium bidding strategies in
the mechanism satisfy very strong properties. In particular, (a) they are

"For a more detailed proof see the analysis of the equilibrium strategies in Pérez-
Castrillo and Wettstein [11] and Mutuswami, Pérez-Castrillo and Wettstein [8].



unique, (b) they are robust to deviations by coalitions of agents, and (c)
they are maxmin strategies at the bidding stage.®
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