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Abstract

We study a situation in which an auctioneer wishes to sell an object to one of N risk-neutral
bidders with heterogeneous preferences. The auctioneer does not know bidders' preferences but
has private information about the characteristics of the object, and must decide how much infor-
mation to reveal prior to the auction. We show that the auctioneer has incentives to release less
information than would be e±cient and that the amount of information released increases with
the level of competition (as measured by the number of bidders). Furthermore, in a perfectly
competitive market the auctioneer would provide the e±cient level of information.
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\Lady Brandon treats her guests exactly as an auctioneer treats his objects. She either explains

them entirely away, or tells one everything about them except what one wants to know" Oscar

Wilde (1891) The Picture of Dorian Gray, reprint in Penguin Books, London, 1994, p. 14.

1 Introduction

One of the best known models in auction theory is the private value model. In this model,

an auctioneer wants to sell an object to one of N bidders with possibly di®erent valuations.

Bidders know their valuation of the object but do not know the value of the object to other

bidders. Typically, bidders' valuations are made up of two elements: bidders' preferences over

characteristics, which are exogenous and privately known, and bidders' prior information on object

characteristics. Most of the papers that analyze this model take bidders' information about the

object as given and therefore assume that bidders' valuations are independently drawn from an

exogenous distribution. In practice, there are many situations in which the auctioneer might

control the amount of information about the object that is held by the market. In this case,

the auctioneer does not regard the distribution of valuations as exogenous and must decide how

much information about object characteristics he provides to the market taking into account the

strategic e®ect that this information has on bidders' valuations. In this paper we study a situation

in which bidders' tastes over characteristics are private information to the bidders but the object

characteristics are private information of the auctioneer. We ¯rst show how bidders' valuations

are endogenously determined by the information available on the characteristics of the object.

Then, we focus on the auctioneer's decision about how much information he reveals to the bidders

and solve for the e±cient and optimal level of information provided.

The way we model this is as follows: consider an auctioneer who wishes to sell a single object

to one of N risk-neutral bidders using a second-price sealed-bid auction. The auctioneer wants

to maximize revenue and has private knowledge about the characteristics of the object to be

sold. The object characteristics can be summarized as a point in an abstract product space. The

bidders are horizontally di®erentiated. Each bidder has an ideal point in this product space and

1



his object valuation is decreasing in the distance between the location of his ideal point and the

location of the object. Bidders' preferences about the characteristics of the object (the location of

their ideal points) are private information. Prior to the bidding process the auctioneer decides the

amount of information he releases to the market, anticipating how this information a®ects bidders'

valuations of the object. The information provided by the auctioneer relates to the location of the

object in the product space. When the auctioneer provides more information, bidders estimate

the location of the object in the product space more precisely. Once the information has been

disclosed and the bidders learn their expected valuation of the object, the model proceeds as a

standard private valuations auction. The reason for this is that: (i) the auctioneer can control the

accuracy of the bidders' inference process but he cannot observe bidders' valuations (since he does

not know their preferences); (ii) bidders know their own expected valuations but do not know the

expected value of the object to other bidders, since they do not observe their preferences.

This setup applies to situations in which there is asymmetric information on both sides of the

market with respect to the value of the object being traded: the seller knows more about the

characteristics of the object being sold and buyers have private information about their prefer-

ences. Two such situations spring to mind: the sale of a company, and certain kinds of internet

auctions. The owner of a company, for example, is likely to have more information about the

characteristics of the company than potential buyers, but idiosyncratic factors of potential buyers

(such as distribution channels, corporate culture, technological or productive complementarities,

...) determine the synergies that arise from the purchase and hence the value of the company to

the buyer.1 As a result, the owner of the company must decide how much information to reveal

to the bidders without having directly observed these idiosyncratic factors nor, consequently, bid-

ders' preferences over characteristics. Bidders, for their part, are likely to react asymmetrically to

the information provided by the auctioneer. For example, if the owner reveals information about
1When analyzing company takeovers, it seems natural to incorporate a common value component as well as a

private value one. Although in this paper we focus exclusively on private valuation auctions, ignoring the common
value component, our model can be extended to deal with auctions that also include a common valuation component,
as long as that component is publicly known and additively separable. For a model where takeovers are analyzed
using private value auctions and where these issues are discussed in more detail see Burkart (1995).
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the ¯rm's corporate culture, some bidders will increase their valuations (the ones that have sim-

ilar corporate cultures) whereas others will have their valuations decreased. Although the seller

provides the information publicly, bidders' valuations after updating remain private information

because valuations depend on idiosyncratic factors. As for internet auctions, their growing im-

portance is evidenced by the great attention they are receiving from the public and the press as

well as in the amount of value that is being traded in this way. Every day hundreds of thousands

of objects change hands via internet auctions and many of these transactions match well with

the model we are proposing,2 in the sense that the seller often controls all the information that is

going to be made public to potential buyers (by posting electronic images, providing text descrip-

tions, etc.) but he knows very little about the speci¯c preferences of the bidders who are going

to participate in the auction.3

The main result of the paper is that in situations such as those described above the seller

has incentives to release less information to bidders than would be e±cient. The intuition behind

this result is that, the auctioneer, by reducing the information held by the market, makes bidders

more homogeneous and thus promotes ¯ercer competition. In a nutshell, ignorance promotes

competition. We also show that when the market is more competitive (in the sense that the

number of bidders is higher), the auctioneer releases more information. In particular, in a perfectly

competitive market in which bidders get no rents, the auctioneer would provide the e±cient level

of information.

This paper sheds light on one trade-o® in providing information in private value auctions. First,

increasing information on the object to be sold improves the match between bidders' preferences

and the characteristics of the object, and by doing so increases the willingness to pay of the winning

bidder and the revenues of the auctioneer. Second, more information about the object increases

the informational rents of the winning bidder, and this lowers the auctioneer's revenues. When the
2An empirical study of auctions on internet, Lucking-Reiley (2000), reports that online auctions currently trade

billions of dollars' worth of goods per year and are growing a rate of more than 10% per month.
3According to Lucking-Reiley (2000), collectibles (antiques, stamps, coins, toys, trading cards, etc...) are the

most traded goods. The collectibles ¯t well with the assumption of private valuations. Bidders preferences over
object characteristics are di®erent (depending on their particular taste and the collectibles they already own) and
private information to bidders. As in the previous example, therefore, the information provided by the auctioneer
is likely to a®ect asymetrically to bidders' valuations.
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auctioneer decides how much information he provides to the market, he has to optimally balance

these two opposing e®ects. Finally, the relative weight of these two opposing e®ects depends on

the number of bidders. When the number of bidders is higher, bidders get lower informational

rents, and the auctioneer will ¯nd it optimal to reveal more information to the market.

To illustrate our story, consider a very simple example. An auctioneer wants to sell an object

using a second-price sealed-bid auction. There are two risk neutral bidders. Each bidder either

likes the object and has a high valuation VH or he does not like the object and has a low valuation

VL. The prior probability of the two events is 1
2, so without additional information the expected

valuation of each bidder is 1
2VH + 1

2VL. If the auctioneer discloses new information about the

object, each bidder learns his true valuation, so that his posterior private valuation may be VH

or VL. Hence the auctioneer gets a low expected price (PD = 1
4VH + 3

4VL); the allocation of the

object is e±cient (the bidder with the highest valuation gets the object), and the bidders earn

positive rents. If the auctioneer does not disclose any information about the object we have that,

the expected price is higher (PND = 1
2VH+ 1

2VL), the bidder with the lowest valuation can get the

object and bidders earn zero rents. Therefore, the lack of information about the object promotes

competition between bidders but can also lead to an ine±cient allocation. If the number of bidders

is 3, the auctioneer is indi®erent between releasing the information or not, and if it is larger than

3, the auctioneer strictly prefers disclosing the information.

The remainder of the paper is organized as follows. In Section 2 we brie°y review the related

literature. The model is introduced in Section 3. In Section 4 we show how the bidders' valua-

tions depend on the information the auctioneer releases concerning the object. Section 5 studies

the auctioneer's information release and characterizes the e±cient solution and the auctioneer's

optimal strategy. We conclude by discussing the scope and implications of the model. All proofs

are relegated to a technical appendix.
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2 Related Literature

This paper is related to the literature that studies endogenous information structures in auc-

tions. Milgrom and Weber (1982) study a similar problem in which a seller wishes to sell a single

object and has private information about its value. He must decide whether or not to reveal this

information. They assume that the traders' valuations are a±liated (roughly, the valuation of the

bidders and the seller are positively correlated) and provide the so-called linkage principle, which

states that the seller's optimal strategy is to provide bidders with as much information as possible

about the value of the object.4 The intuition behind this result is that by releasing all available

information the seller increases on average the losing bids (reducing the winner's curse), and as a

result increases the expected price of the object.5

The main di®erence between our model and the one analyzed by Milgrom and Weber (1982)

is the way in which information a®ects bidders' valuations. In their model, the valuations of the

seller and the bidders are positively correlated. This implies that all bidders react symmetrically

to the information revealed by the seller. In contrast, we study a situation in which bidders'

preferences about the characteristics of the object are heterogeneous, with the implication that

increased information about the characteristics of the object will raise the valuation of some

bidders and reduce the valuations of others.

In a recent paper, Bergemann and Pesendorfer (2001) study the optimal auction design prob-

lem when the auctioneer can set the accuracy with which bidders learn their valuation of the

object in an independent valuations framework. In contrast to Milgrom and Weber (1982) and

this paper, they allow the auctioneer to control the information structure of each individual bidder.

In other words, the auctioneer is in the position of letting one bidder learn his valuation perfectly,

while having a di®erent bidder only get a rough estimate of his valuation. They show that the
4Ottaviani and Prat (2001) extend the logic of the linkage principle to the standard non-linear pricing monopoly

problem. They show that the expected pro¯ts of a monopolist who sells to a single buyer cannot decrease by
committing to publicly reveal information a±liated to the valuation of the buyer.

5Perry and Reny (1999) and de-Frutos and Rosenthal (1997) show that the linkage principle might fail in multi-
unit auctions.
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optimal information structures are partitions and that partitions must be asymmetric across bid-

ders. They also ¯nd that the optimal selling strategy of the auctioneer can be implemented by a

sequence of take-it-or-leave-it o®ers.

The focus of our analysis di®ers from Bergemann and Pesendorfer (2001) in that we consider it

important to study situations in which the auctioneer's release of information is constrained to be

public. In internet auctions, for instance, it is usually impossible to identify active bidders until the

moment in which they are bidding, and this makes the provision of asymmetric information very

di±cult. In regulatory environments, legal restrictions often require the auctioneer to publicly

release information in order to avoid favoritism or corruption.6 Even in situations in which the

auctioneer is able to provide information asymmetrically, the bidders can trade and exchange

information before bidding, undermining the desirable e®ects of information discrimination.

Given the di®erent angle they take, Bergemann and Pesendorfer's methodology is very di®erent

from ours. They assume that the auctioneer can partition the support of the valuation distribution

of each bidder and that bidders can privately learn the element of the partition in which his

valuation lies. The auctioneer chooses the accuracy with which bidders learn their valuations by

determining the ¯neness of the partitions. In contrast, we assume that bidders observe a public

noisy signal of the real location of the object in the product space. The auctioneer determines

the accuracy of the bidders' learning process by controlling the distribution of the noise. Our

approach allows additional insights to be provided on the way in which the optimal release of

information by the auctioneer changes with the number of bidders.

A number of other papers analyze endogenous information structures in auctions but they

focus on the incentives of bidders to acquire information rather than on the optimal information

provision by the auctioneer. Tan (1992) and Stegeman (1996) analyze the problem for private

value auctions and Matthews (1984) and Persico (2001) study the pure common value auction

and the case of a±liated valuations respectively.
6In practice, most public procurement processes make it mandatory for the sponsor to provide the same in-

formation to all potential contractors (see for example, the Green Book of Public Contracting in the European
Union).
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In a similar vein the literature on principal agent problems has also dealt with endogenous

information structures. Sobel (1983), Cremer and Khalil (1992) and Cremer, Khalil and Rochet

(1998) study incentive problems in which the agent decides whether or not to acquire private

information. Our approach di®ers from these single agent models in that in the present paper the

information acquisition process of the agents is controlled by the principal.

In terms of modeling choices our paper is closely related to Lewis and Sappington (1994)

who focus on information acquisition by consumers in a monopoly market. The authors examine

whether the monopolist should allow the consumers to acquire information about their tastes for

his product. Improved private information enables the monopolist to charge higher prices to high-

value buyers, but can also provide rents to the buyers. Most of their results are extreme, in the

sense that the monopolist decides to provide either all the information or none. Aside from the

di®erences in the information structures analyzed, our paper di®ers from Lewis and Sappington

(1994) in that the price is set by an auction mechanism. Moscarini and Ottaviani (2001) obtain

similar results to Lewis and Sappington (1994) in an oligopolistic environment. They study a

situation in which two sellers compete for a single buyer who observes a private signal on the

relative quality of their goods. As in Lewis and Sappington (1994) and in the present paper, they

¯nd that sellers may lose from the release of public information. Our paper di®ers from Moscarini

and Ottaviani (2001) in that we focus on the imperfect competition on the demand side in an

auction framework and we allow the seller to control the extent of buyers' private information.

In the same line of research, Bergemann and VÄalimaki (1997) study information acquisition by

consumers in a duopolistic market in which one ¯rm introduces a new product whose value is

learned by consumers through experimentation. The authors show that in equilibrium the sales

path of the new product induces levels of experimentation that di®er from the e±cient ones. The

intuition is that both ¯rms want to speed up the learning process in the early stages in order to

obtain rents due to product di®erentiation. In this paper, the auctioneer induces a suboptimal

learning process to reduce bidders' di®erentiation and consequently bidders' rents.
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3 The model

Consider an auctioneer who plans to sell an object. The object can have di®erent character-

istics that can be summarized by a location in a product space, x¤ 2 ©; where the product space

© is a circle of perimeter one. There are N risk-neutral bidders, i = f1; :::; Ng. The location

of each bidder, xi, which is private information, is uniformly distributed on the circle ©. Each

bidder has a preferred speci¯cation for the characteristics of the object, its location xi 2 ©, and

his object valuation for an arbitrary location x is vi(x) = V ¡¯(x¡xi)2 where ¯ is a measure of

the transportation cost of the bidders with respect to the product space. The market is initially

uncertain about the exact location of the object in the product space so that, ex ante, x¤ is

distributed according to the uniform distribution on the circle.

Before bidders make their o®ers, the auctioneer can provide information about the object's

attributes to the bidders and alter their expected valuations. We model bidders' acquisition of

information through the realization of a public noisy signal of the location of the object in the

product space, denoted by bx 2 ©. The auctioneer controls the accuracy of this signal by deciding

how much information to provide to bidders. Obtaining and transmitting information is costly.7

Let ± 2 [0; 1) denote the cost incurred by the auctioneer in providing information, where a higher

± implies a more accurate signal bx:

The relationship between the location of the object x¤, the public signal bx and the cost of

information ± is the following: the public signal is bx = x¤ + ", where the noise " is distributed

over
h
¡1

2;
1
2

i
according to the distribution function G ("j±). We make the following assumptions

about this distribution:

Assumption 1 The density function associated with G("j±) is symmetric and centered at 0:

Assumption 2 When ± = 0, G("j±) is equal to the uniform distribution on [¡1
2 ; 12]. When ± ! 1,

7This cost might include advertisement, research about product characteristics, providing testing opportunities
or samples to potential bidders, etc.
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the G("j±) converges to8:

G("j1) =
(

0 if " < 0
1 otherwise

Assumption 3 G("j±) is di®erentiable and decreasing (increasing) in ± for all " lower (greater)

than 0; that is, @G("j±)@± < 0 for all " 2 (¡1
2; 0), and @G("j±)@± > 0 for all " 2 (0; 12).

9

[Figure 1 around here]

Given these assumptions the public signal bx is also distributed uniformly around the circle,

and by Assumption 1 it is an unbiased estimator of the location of the object in the product space.

Assumption 2 implies that when ± = 0 the signal provides no information, whereas when ± = 1

the signal is fully informative. Assumption 3 implies that the variance of the noise decreases with

±.10 Thus, when the cost of the information provided by the auctioneer, ±, is high, the signal bx is

more informative about the location of the object; this means that a more costly signal is more

informative, so that we will occasionally refer to ± as the amount of information of a public signal

with cost ±.

Once bidders observe the information released by the auctioneer (the public signal bx), the

distribution of x¤ is no longer uniform. Instead it is distributed on the circle according to a
8That is, as ± goes to in¯nity, the probability that " will be equal to zero converges to 1.
9The truncated normal distribution de¯ned on the interval [¡1

2 ;
1
2 ] when the underlying normal distribution has

mean ¹ = 0 and variance ¾ = 1
± , is an example of a distribution that is consistent with these three assumptions.

G("j±) =

R "
¡ 1

2
expf¡s2±gds

R 1
2
¡ 1

2
expf¡s2±gds

:

10An assumption alternative to Assumption 3 is:
Assumption 3' If ± > ±0 , we can order the distribution functions G("j±) and G("j±0) in the sense of ¯rst order
stochastic dominance: G("j±) · G("j±0) 8" 2 [¡ 1

2 ;0], G("j±) ¸ G("j±0) 8" 2 [0; 12 ]:

An example of a distribution that is consistent with this assumption is the uniform distribution on an interval
decreasing in ±, [¡ 1

2(1+±) ;
1

2(1+±) ]:

G("j±) =

8
<
:

0 if " < ¡ 1
2(1+±)

(1 + ±)"+ 1
2 if " 2 [¡ 1

2(1+±) ;
1

2(1+±) ]
1 if " > 1

2(1+±)

Under Assumption 3', using the techniques of Milgrom and Shannon (1994) we would obtain weakly monotonic
comparative results. Assumption 3 on the other hand lead us to strictly monotonic results.
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posterior distribution F (xj±) that depends on the realization of the signal bx and the amount ± of

information provided.11

After the auctioneer has released the information, the awarding process takes place. Bidders,

using the posterior distribution of x¤, update their expected valuations of the object and submit

their o®ers to the auctioneer. The auctioneer sells the object using a second-price sealed-bid

auction. For simplicity we abstract from reserve prices and assume that the object is always sold.

Summarizing, the time sequence of the model is as follows:

1. The auctioneer, knowing the number of bidders, N, but not their preferences (locations)

decides how much information to provide to the market by choosing ±.

2. Given ±; bidders receive a public signal bx which is used as an initial estimate of the location

of the object in the product space.

3. According to ± and bx, bidders update their valuations of the object.

4. The second-price sealed-bid auction takes place.

We have chosen the second-price sealed-bid auction for our model on the basis of computational

simplicity and ease of presentation. As will be clear in the following, our setting satis¯es the

conditions of the revenue equivalence theorem which states that any auction mechanism in which

the object is always awarded to the buyer with the highest valuation and where any bidder with the

lowest valuation obtains zero surplus, yields the same expected revenue to the auctioneer. Thus,

all \standard" auctions (second-price sealed-bid, ¯rst-price sealed-bid, oral ascending (English) or

oral descending (Dutch)) and many non-standard auctions such as an \all-pay" auction would yield

the same expected revenue to the auctioneer, bidders would make the same expected payments

as a function of their valuations and, as a consequence, the same results would be obtained.
11For notational convenience, we take the location of the public signal as the origin of the circle, and we de¯ne
F (xj±) on the interval [bx ¡ 1

2 ; bx + 1
2 ]. Given the above assumptions on the noise distribution, F(xj±) presents

the following characteristics: (i) The density function associated to F (xj±) is symmetric and centered at bx: (ii)
When ± = 0, F (xj±) is equal to the uniform distribution on [bx ¡ 1

2 ; bx + 1
2 ]. When ± ! 1, F(xj±) converges to:

F (xj1) =
½

0 if x < bx
1 otherwise .(iii) F (xj±) is decreasing in ± for all x lower than bx and increasing in ± for all x greater

than bx .
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We characterize the Perfect Bayesian equilibrium starting from the auction and moving back-

wards. In the next section we study how bidders update their valuation given ± and bx; and the

outcome of the auction. Section 5 focuses on the auctioneer's decision about how much infor-

mation to provide to the bidders. First, we characterize the e±cient solution of this problem

and then we characterize the auctioneer's optimal information release. Finally, we compare both

solutions.

4 Endogenous Bidders Valuations

The goal of this section is to study how the expected valuation of the bidders depends on the

distance between their locations and the public signal bx and how the distribution of expected

valuations changes when bidders update their valuations after observing bx:

Given the information provided by the auctioneer, bidders make an initial estimation of the

location of the object in the product space (they receive a public signal bx) and update their

valuations. Let V (xi; ±) be the expected valuation of the object for a bidder located at xi, when

the amount of information is ±:

V (xi; ±) = Ex¤fvi(x)g:

The following lemma shows us how the expected valuation of the object depends on the distance

between the bidder's location, xi; and the public signal, bx.

Lemma 1 If ± > 0; then the expected valuation of the object is decreasing in the distance between

the bidder's location, xi; and the public signal, bx. If ± = 0; the expected valuation is independent

of bidder's location and the public signal.

The intuition behind this result is the following. The valuation of the object is decreasing in

the distance between the most preferred location of the bidder and the location of the object x¤.

Since signal bx is an unbiased estimator of x¤, the expected valuation of the object is decreasing

in the distance between the bidder's location and bx. On the other hand, if the auctioneer does

not invest in providing information to the bidders, i.e. ± = 0, the object can be located with the
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same probability on any arbitrary place in the circle, implying that the expected valuation of any

bidder is the same.

Let x1 be the location of the bidder closest to bx . An immediate corollary of the previous

Lemma characterizes the bidder with the highest valuation.

Corollary 1 The highest expected valuation is the valuation of the closest bidder to bx; V (x1; ±):

Notice that the bidder closest to bx may turn out not to be the bidder with the highest ex-post

valuation of the object. It can be shown that the probability of this event is decreasing in the

amount of information provided by the auctioneer.

4.1 Bidders' valuations distribution

Once the auctioneer's information is revealed and bidders update their valuations, we can

regard our model as a standard private value auction model. Each bidder is characterized by his

expected valuation vi, which is private information to him, and it is common knowledge that each

bidder's valuation vi is an independent realization of a continuous random variable distributed

over [v; v] according to H(v; ±) where v = V ( bx + 1
2; ±) and v = V ( bx; ±).12 Given Lemma 1 the

expected valuation of the object is a continuous and strictly decreasing function of the distance

between a bidder's location, xi; and bx, so that the distribution of valuations H(v; ±) can be

obtained by computing the distribution of the distances between bidders' locations and bx using a

simple change of variable.13

To ¯nish this section, we present the outcome of the awarding process.

Lemma 2 The bidder closest to bx wins the second-price sealed-bid auction at a price equal to the

expected valuation of the second closest bidder, V (x2; ±).
12Notice that the bidders' valuations are independently distributed and privately known, since their locations

were independently distributed and privately known.
13Notice that given that the bidder's location are distributed according to a uniform distribution over the circle,

the distance between the location of the bidders and bx is also distributed according with to a uniform distribution
over the interval [0; 12 ]. Further details and additional characterization of H(v; ±) are provided in the appendix.
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5 Information Release

In this section, we study the amount of information about product characteristics that the

auctioneer will provide to the bidders. We start by characterizing the e±cient information release.

5.1 E±cient Information Release

The objective of this section is to characterize the e±cient information release, which is that

which maximizes the total surplus, namely the sum of the auctioneer's revenue and the utility of

the winning bidder (the bidder with the highest expected valuation).

The expected valuation of the winning bidder at the initial stage, V (±), is a function which

only depends on the amount of information:

V (±) = Ex1 ;x¤fV (x1; ±)g:

The next result characterizes the relationship between this expected winning valuation and the

amount of information provided by the auctioneer.

Lemma 3 The expected valuation of the winning bidder, V (±), is increasing in the amount of

information, ±.

Lemma 3 rests on the fact that the greater the information provided to bidders, the better

the matching between the object and the preferences of the winning bidder.

Given the above, the e±cient information release, ±E, arises from the optimal trade o® between

increasing the expected valuation of the winning bidder and the cost of providing information to

the market:

±E 2 argmax
±

Ex1;x¤fV (x1; ±) ¡ ±g: (1)

First observe that given that V (x1; ±) is bounded from above, ±E has to be ¯nite. In the following

we will assume that ±E > 0; an assumption which is justi¯ed if the cost of providing very basic

information about the object is su±ciently small. Then we have the following:
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Proposition 2 The e±cient amount of information, ±E , is increasing both in the number of

bidders, N , and in the transportation cost parameter, ¯.

The valuation of the winning bidder depends on the distance between his location and the

actual location of the object in the product space. When the number of bidders increases, the

expected distance between the initial estimate of the object's location bx and the location of the

winning bidder decreases. As a result, the incentives to make bx closer to the actual location of

the object x¤ also increase. Using a similar argument, if the parameter ¯ increases, the incentive

to reduce the distance between the location of the winning bidder and the actual location of the

object increases (the match between the object and the winning bidder's preferences becomes

more important). The only way to ensure an appropriate match is to reduce the distance between

the actual location of the object and the initial bidders' estimate and this, in turn, can only be

accomplished by increasing the information provided to bidders.14

5.2 The Auctioneer's Optimal Information Release

The objective of this subsection is to characterize the information release that maximizes the

auctioneer's revenue. First, we study how the expected rents of the winning bidder depend on the

amount of information provided by the auctioneer. The informational rents of the winning bidder

are the di®erence between his valuation and the valuation of the second closest bidder (which is

the price of the object)

¦w(±) = V (x1; ±) ¡V (x2; ±):

Proposition 3 The expected informational rents of the winning bidder are increasing in ±.

This is an important result: when the amount of information provided to the bidders about

object characteristics is higher, the value of private information on preferences over object char-
14Notice that we have not imposed assumptions on the convexity of the problem and therefore cannot guarantee

that the problem is concave. We use the techniques of Edlin and Shannon (1998), which allow us to get comparative
statics results in non-convex problems, as long as the cross derivative conditions are globally satis¯ed by the problem,
a condition that is satis¯ed in our case.
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acteristics is higher. The implication of this result is that it can be optimal for the auctioneer to

restrict the information provided to the market in order to control bidders' rents.

The auctioneer's optimal information release, ±A; maximizes the di®erence between the ex-

pected price and the cost of providing more information to the bidders.

±A 2 argmax
±

Ex2 ;x¤fV (x2; ±)¡ ±g (2)

By comparing (1) and (2) it is easy to see that the expected revenue of the auctioneer does not

depend on the location of the winning bidder (as is the case in the total surplus), rather on the

location of the bidder which is the second closest to the estimate of the object location, bx. Apart

from this fact, the auctioneer's problem is identical to the total surplus maximization problem,

and the intuition behind the results presented in the following Proposition is the same as in

Proposition 2.

Proposition 4 The optimal amount of information ±A provided by the auctioneer is increasing

both in the number of the bidders, N; and in the transportation cost parameter, ¯:

We assume that ±A > 0; as in Proposition 2. The following theorem presents the main result

of the paper.

Theorem 5 The auctioneer provides less information to bidders than would be e±cient, ±A < ±E .

The di®erence between the e±cient information release and the equilibrium information release

converges to 0 as the number of bidders goes to in¯nity.

As was remarked above, the auctioneer's problem would be equivalent to the total surplus

maximization problem if in the latter we considered the second closest bidder instead of the

closest bidder. Using this, it is then easy to see the intuition of Theorem 5. From Proposition

2 we know that the larger the number of bidders, the closer the location of the winning bidder

to bx, and the greater the incentives to provide more information to the market. Using the same

argument, if we take the second closest bidder instead of the closest bidder, there should be less

15



incentives to provide information to the market.15

To better understand the result one can rewrite the problem of the auctioneer as

±A 2 argmax
±

Ex1 ;x2fV (x1; ±) ¡ ± ¡ ¦w(±)g (3)

This formulation clari¯es an important trade-o® when providing information to the market.

On the one hand, when the auctioneer provides more information, the e±ciency of the auction

process goes up (Ex1 fV (x1; ±)g is increasing in ± from Lemma 3). This follows because the

winning bidder is more likely to be the bidder with the highest ex-post valuation of the object.

On the other hand, the increase in information also raises the informational rents of the winning

bidder (¦w(±) is increasing in ± from Proposition 3). The optimal balance of these two opposing

e®ects leads the auctioneer to provide less information than would be e±cient.16 In other words,

the auctioneer will restrict the information released to the market in order to make the potential

bidders more homogeneous, with the underlying goal of intensifying competition and increasing

his expected revenue.

Finally, when the number of bidders goes to in¯nity, the rents of the closest bidder converges

to 0 because the expected distance to the second closest bidder also converges to 0. In such a

case, the auctioneer's trade o® between reducing the bidders' rents and increasing the auction

e±ciency is eliminated as can be seen from the fact that Ex1 ;x2fV (x1; ±) ¡V (x2; ±)g goes to 0.
15In the paper it is assumed that the provision of some information is socially e±cient. We could also consider

the case in which it is e±cient not to provide information at all. In this case, it can be shown that it would still
to be optimal for the auctioneer not to release any information. I thank a referee for pointing out this extension of
the result.

16The results of Theorem 5 are obtained under the assumption that the object is always sold. The seller could
improve his outcome by introducing a reserve price in the auction. Clearly, this case would require a more detailed
analysis, but we believe that the same type of result would also hold. The idea goes as follows. We have shown
that providing information to buyers has the drawback of increasing their informational rents; however, a reserve
price could be used by the seller to reduce these rents. On the one hand, this implies that a seller using an optimal
reserve price would have incentives to provide more information than otherwise. On the other hand, since optimal
reserve prices reduce but do not eliminate informational rents, it seems reasonable to conjecture that the seller
would not have incentives to provide the e±cient amount of information.

16



6 Conclusions

Most of the research in auction theory presumes that the information held by bidders is

exogenous. In contrast, we have analyzed a model in which the auctioneer has private information

about the characteristics of the object to be sold and can control how much information to reveal

to bidders. We have shown how the auctioneer provides less information than would be e±cient

since by doing so he reduces the informational rents of the winning bidder. Moreover, we have

identi¯ed some factors that may in°uence the amount of information that the auctioneer will

provide to the bidders. In particular, we have shown that a more competitive market will induce

the auctioneer to provide more information. In the limit, when the number of bidders goes to

in¯nity, the auctioneer optimally releases the e±cient amount of information.

One important di®erence between our model and the standard auction models is that we

endogenize the distribution of bidder valuations. Rather than taking the distribution of valuations

as exogenous, we have allowed bidders to have exogenous privately known preferences but have

speci¯ed how the information provided by the auctioneer on object characteristics interacts with

preferences to generate ex-post distributions of private valuations. We do not treat the problem

in full generality. In particular, ¯rst we assume that the information provided by the auctioneer

is related only to the location of the good in the product space, and second that the auctioneer

provides information to all agents symmetrically.

The symmetry imposed on the product space and on the distribution of the bidders' preferences

implies that the auctioneer has no ex-ante motives to distort information, as all locations give

him the same expected revenue. This allows us to ignore all problems related to the strategic

revelation of information without assuming that the auctioneer can commit to not censoring

the information (only providing favorable information), as in Milgrom and Weber (1982) and

Bergemann and Pesendorfer (2001). By isolating the decision of how much information to reveal

we have found that there are two factors that determine the optimal provision of information:

(i) improved information increases the e±ciency of the auction; (ii) improved information also
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increases the informational rents of the winning bidder. These two e®ects represent opposing

forces for the auctioneer: improved e±ciency raises revenues while increased informational rents

reduce revenues. As the number of bidders rises, the ¯rst e®ect is increased and the second

e®ect is reduced. Hence, the auctioneer provides more information, so competition increases

the information provided. Further research is needed to extend these results to more realistic

environments with non-homogeneous product spaces and more general preference distributions,

where the strategic revelation of information will have to be incorporated into the analysis.

Finally, let me point out that the idea behind this paper can be used to explain the presence

of cost overruns in public works. A companion paper, Ganuza (2000), studies cost overruns in a

procurement model in which a sponsor wants to undertake a public work that can have di®erent

designs.17 The design space is a circle and N potential contractors compete to be awarded the

contract. Like bidders in the present paper, the contractors are horizontally di®erentiated, in this

case according to their specialization in a speci¯c design (their location), and they face a cost

of realizing an arbitrary design that is increasing with its distance from its location. Unlike the

present paper, however, the sponsor does not know his preferred design. Prior to the awarding

process the sponsor decides how much to invest in specifying an initial design (or blueprint) for

the public work and this decision becomes public information. Similar to the present paper,

on the other hand, the initial design can be considered as a noisy signal of the optimal design.

The sponsor auctions the realization of this initial design and the winning ¯rm signs a contract to

undertake this initial design. During the construction of the project, the sponsor and the ¯rm learn

the optimal design, and renegotiate the initial contract. Cost overruns, i.e. the di®erence between

the ¯nal price of the project and the procurement price are a consequence of this renegotiation.

In such a framework, when the sponsor invests more in the speci¯cation of the initial design,

the initial design is more likely to be closer to the optimal one, substantial reforms are less likely to

be necessary, and cost overruns are less likely to be sizable. As is often claimed, a low investment
17The companion working paper is entitled \Competition and Cost Overruns. Optimal Misspeci¯cation of Pro-

curement Contracts". This working paper is available from the author upon request and can be downloaded at
http://www.econ.upf.es/cgi-bin/onepaper?471.

18



in the initial design speci¯cation is likely to lead to negotiating signi¯cant changes and therefore

to high cost overruns. However, investing in design speci¯cation is shown to have a drawback, as

it increases the rents of the winning ¯rm. This implies that the optimal strategy of the sponsor

is to underinvest in design speci¯cation so as to make signi¯cant cost overruns likely. The key

idea is the same as the one in this paper: by reducing design speci¯cation (information about the

optimal design) the sponsor promotes ¯ercer competition among contractors. As in this paper,

an increase in the number of potential contractors increases the level of optimal speci¯cation and,

in a perfectly competitive market, no such misspeci¯cation occurs.18

7 Appendix

As a convention and without loss of generality we are going to consider in the appendix that

bx = 0 and that xi;x1;x2 2 [0; 1
2]. Notice that with this convention the location of the bidders

xi;x1;x2 are also their distance to bx . We need to state some preliminary facts before we start

with the proofs of the results.

Let Gx1(x; N) and Gxi(x; N) be the distributions of the expected distance between the public

signal bx and (i) the closest bidder and (ii) the bidder i closest to bx. These distributions do not

depend on bx and it can be shown that @Gx1(x;N)@N < 0 8x 2 (0; 12). These distributions are ordered

in a strict ¯rst order stochastic dominance sense: Gx1(x; N) > Gxi(x;N), for all x 2 (0; 12 ):

Proof of Lemma 1: The expected valuation of an arbitrary bidder xi, given that bx = 0 and the

amount of information is ±; is

V (xi; ±) = Ex¤fV ¡ ¯(xi ¡x¤)2j±g:

Since x¤ is distributed on [¡1
2;

1
2] according to F (xj±); this expectation is

V (xi; ±) = V ¡
Z 1

2

¡ 1
2

¯ minf(xi ¡ s)2; (1 ¡jxi¡ sj)2gf(sj±)ds:

Notice that, due to the fact that the product space is a circle, there are two distances between xi
18These results do not depend on speci¯c design renegotiation procedures, since the incumbent rents of the

renegotiation are discounted by the potential contractors in the auction. See Ganuza (2000) for details.
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and x¤ and we have to consider only the shortest length arc.

V (xi; ±) = V ¡
Z 1

2¡xi

0
¯(xi ¡ s)2f(sj±)ds ¡

Z 1
2

1
2¡xi

¯(xi ¡ s)2f(sj±)ds ¡

¡
Z 0

¡1
2+xi

¯(xi ¡ s)2f(sj±)ds ¡
Z ¡1

2+xi

¡1
2

¯(1 ¡ xi + s)2f(sj±)ds:

By using the symmetry of F(xj±) we get

V (xi; ±) = V ¡
Z 1

2¡xi

0
¯((xi ¡ s)2 +(xi + s)2)f(sj±)ds

¡
Z 1

2

1
2¡xi

¯((xi ¡ s)2 + (1 ¡xi¡ s)2)f(sj±)ds

V (xi; ±) = V ¡
Z 1

2

0
2¯(xi2 + s2)f(sj±)ds ¡

Z 1
2

1
2¡xi

¯(1 ¡ 2(xi + s))f(sj±)ds:

Integrating by parts the second term we get

V (xi; ±) = V ¡¯
Ã

xi2 +
Z 1

2

0
2s2f(sj±)ds ¡ 2xi+

Z 1
2

1
2¡xi

2F(sj±)ds
!

:

It is interesting to see the special cases ± = 0 and ± = 1. We have that

V (xi; 0) = V ¡¯
Z 1

2

0
2s2ds:

If the public signal bx = 0 is not informative, the bidder's expected valuation does not depend on

his location. On the other hand

V (xi;1) = V ¡¯xi2;

when there is perfect information about the object's location, so ± = 1. Here, the expected

valuation only depends on the location of the bidder. For interior cases, we di®erentiate V (xi; ±)

with respect to xi
@V (xi; ±)

@xi
= ¡¯

µ
2xi ¡ 2 +2F(1

2
¡ xij±)

¶
:

We have @V (xi ;0)@xi
= 0: Furthermore, F (12 ¡ xij±) is increasing in ±; and therefore @V (xi;±)@xi

< 0 for

all ± > 0: The valuation of the object is therefore decreasing in the distance between the public

signal bx and the bidder's location. Q:E:D:

Proof of Corollary 1: Immediate from Lemma 1. Q:E:D:
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Characterization of the distribution of valuations H(v;±): Let s(v;±) be the inverse func-

tion of V (xi; ±) when xi 2 [0; 12]. Thus, the density function h(v; ±) is

h(v;±) = 2
¯̄
¯̄ds(v;±)

dv

¯̄
¯̄

where, we are using the fact that the distance between an arbitrary bidder and bx is dis-

tributed according to a uniform distribution on the interval [0; 12]. As the distance varies over

the interval [0; 1
2]; and V (xi; ±) is decreasing when xi 2 [0; 12], it is found that the valuations

vary over [v;v] where v = V (12; ±) and v = V (0; ±): As F (xij±) is increasing in ± we can show

that v = V (12; ±) = V ¡ ¯
µR 1

2
0 (2 ¡ 4s)F(sj±)ds ¡ 1

4

¶
is decreasing in ± and v = V (0; ±) =

V ¡ ¯
µ

¡R 1
2
0 4sF (sj±)ds + 1

2

¶
is increasing in ±: When ± = 0; F(xij0) is uniform, and v and v

coincide: Thus, the larger is ±, the more spread the distribution, and the larger the interval [v;v]:

Then, the distribution function H(v; ±) is

H(v;±) =
Z v

v
2

¯̄
¯̄ds(v;±)

dv

¯̄
¯̄dv = 1 ¡ U(s(v; ±)) = 1 ¡ 2s(v;±)

where U(:) is the uniform distribution on the interval [0; 12].

Proof of Lemma 2: Immediate from Lemma 1. Q:E:D:

Proof of Lemma 3: The expected highest valuation, given that the winning bidder is the closest

bidder to the public signal bx, is

V (±) = Ex1fV (x1; ±)g = Ex¤;x1fV ¡¯(x1 ¡x¤)2j±g

Therefore, to prove the lemma we have to show that Ex¤;x1f( x¤¡x1)2j±g is decreasing in ±: First,

we analyze the sum of the expected quadratic distance between the real location of the object

and all the bidders. Let Ai be the expected quadratic distance between the real location of the

object and the bidder which is the bidder i closest to the public signal bx.

NX

i=1
Ai = Ex¤;x1f(x¤¡ x1)2j±g

+Ex¤;x2f(x¤ ¡x2)2j±g + ¢ ¢ ¢ + Ex¤;xN f(x¤ ¡xN)2j±g:

21



Rearranging terms we get
NX

i=1
Ai = NA1 +

NX

i=2
Ai ¡ A1:

It is clear that this sum does not depend on ± since the relative position of the bidders is not

important when we are adding all the distances. Therefore, the derivative of this sum respect to

± has to be 0, so

N
@A1

@±
+
NX

i=2

@(Ai ¡A1)
@±

= 0:

The next step is to show that @(Ai¡A1)@± > 0 for every i 6= 1 . Using similar computations to

those in the proof of Lemma 1 we get19

Ai¡ A1 =
Z 1

2

0

Ã
z2 ¡ 2z +

Z 1
2

1
2¡z

2F(sj±)ds
!

(gxi(z; N) ¡ gx1(z; N))dz:

Integrating by parts

Ai¡ A1 =
"Ã

z2 ¡ 2z +
Z 1

2

1
2¡z

2F(sj±)ds
!

(Gxi(z;N )¡ Gx1(z;N ))
#1
2

0
+

¡
Z 1

2

0

µ
2z ¡ 2 +2F(

1
2

¡ zj±)
¶

(Gxi(z;N) ¡ Gx1(z;N ))dz:

Finally, taking the derivatives with respect to ±

@(Ai ¡A1)
@±

= ¡
Z 1

2

0
2
@F( 12 ¡ zj±)

@±
(Gxi(z;N) ¡ Gx1(z;N ))dz > 0

since @F (sj±)@± > 0 and Gx1(z; N) > Gxi(z;N ) 8z 2 (0; 12). But given that the derivative of the sum

is 0, and given that @(Ai¡A1)@± > 0 for every i 6= 1; this implies that @A1@± < 0, which concludes the

proof. Q:E:D:

Proof of Proposition 2: We are going to use a result of Edlin and Shannon (1998), which

allows us to obtain strictly monotonic static comparative results without making assumptions on

the concavity of the distribution functions.

Theorem 6 (Edlin and Shannon (1998)) Let S ½ <; f : <£< ! <; y¤ 2 argmaxy2S f(y; t¤)

and y0 2 argmaxy2S f(y; t0): Suppose that f is C1 and has increasing marginal returns, and that

y¤ 2 int S . Then y0 > y¤ if t0 > t¤, and y0 < y¤ if t0 < t¤:
19Notice that xx and x¤ are independent variables, and we do not need to specify the joint distribution.
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We have to check that we can apply this theorem to our decision problem. Our problem is:

max
±

Ex1fV (x1; ±) ¡ ±g

=
Z 1

2

0

Ã
V ¡ ¯

Ã
z2 +

Z 1
2

0
2s2f(sj±)ds ¡ 2z +

Z 1
2

1
2¡z

2F(sj±)ds
!!

£ gx1(z; N)dz ¡ ±:

We de¯ne the objective function f(y; t) as

f(±;N ) =
Z 1

2

0

Ã
V ¡¯

Ã
z2 +

Z 1
2

0
2s2f(sj±)ds ¡ 2z +

Z 1
2

1
2¡z

2F(sj±)ds
!!

£ gx1(z; N)dz ¡ ±:

where y = ±; t = N;and S = <+ [ 0: Therefore, the only condition that we have to check is that

f(y; t) has increasing marginal returns, so that @f@y is increasing in t:

To verify this condition, we compute the cross derivative @2f
@N@± . First, from di®erentiating

with respect to ±, we get

@f
@±

= ¡¯
Z 1

2

0

ÃZ 1
2

0
2s2

@f(sj±)
@±

ds +
Z 1

2

1
2¡z

2(
@F(sj±)

@±
)ds

!
gx1 (z;N)dz ¡ 1:

Integrating by parts and di®erentiating @f@± with respect to N we get

@2f
@N@±

= ¯
Z 1

2

0
2(

@F (12 ¡ zj±)
@±

)(
@Gx1(z;N )

@N
)dz:

Since @F(
1
2¡zj±)
@± > 0 and @Gx1(z;N)@N > 0 we have that the whole expression is positive, and hence

f(±;N) has increasing marginal returns. Therefore, applying Theorem 6 we conclude that the

e±cient amount of information ±E is increasing in the number of bidders N:

We use the same argument for ¯: Thus, we compute the cross derivative

@2f
@¯@±

= ¡
Z 1

2

0

ÃZ 1
2

0
2s2@f(sj±)

@±
ds +

Z 1
2

1
2¡z

2(@F(sj±)
@±

)ds
!

gx1 (z;N)dz

This expression is positive, since by lemma 3 we know that Ex1fV (x1; ±)g is increasing in ±, and

this implies that

Z 1
2

0

ÃZ 1
2

0
2s2

@f(sj±)
@±

ds +
Z 1

2

1
2¡z

2(
@F (sj±)

@±
)ds

!
gx1(z;N )dz
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is negative. Then, applying Theorem 6, we conclude that e±cient amount of information ±E is

increasing in ¯. Q:E:D:

Proof of Proposition 3: The informational rents of the winning bidder are the di®erence

between his valuation and the expected valuation of the second closest bidder to the public signal

bx:

¦w(±) = Ex1fV (x1; ±)g ¡Ex2fV (x2; ±)g

=
Z 1

2

0
¡¯

Ã
z2 ¡ 2z +

Z 1
2

1
2¡z

2F(sj±)ds
!

(gx1 (z;N) ¡ gx2(z; N))dz

We integrate this expression by parts to get
"
¡¯

Ã
z2 ¡ 2z +

Z 1
2

1
2¡z

2F(sj±)ds
!

(Gx1 (z;N) ¡ Gx2(z;N ))
#1
2

0

+
Z 1

2

0

µ
¯(2z ¡ 2 + 2F (

1
2

¡ zj±)
¶

(Gx1(z; N) ¡ Gx2 (z;N))dz

Di®erentiating with respect to ± we get

@¦w(±)
@±

=
Z 1

2

0

Ã
2¯

@F (12 ¡ zj±)
@±

!
(Gx1(z; N) ¡Gx2(z; N))dz

This expression is positive, since @F (
1
2¡zj±)
@± > 0, and Gx1(z;N ) > Gx2(z;N ) for all z 2 (0; 12).

Q:E:D:

Proof of Proposition 4: We follow the same argument that we have used in the proof of

Proposition 2. Q:E:D:

Proof of Theorem 5: The auctioneer's problem is

±A 2 argmax
±A

Ex2fV (x2; ±) ¡ ±g

This problem is equivalent to

±A 2 argmax
±A

Ex1 ;x2fV (x1; ±) ¡ ± ¡¦w(±)g

where ¦w(±) = Ex1fV (x1; ±)g¡Ex2fV (x2; ±)g are the expected informational rents of the winning

bidder. From comparing this formulation of the auctioneer's problem to the formulation of the

social welfare maximization problem (equation 1 ), it is clear that we cannot have ±A = ±E ; as
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the ¯rst order conditions cannot be satis¯ed for the same ± for the two problems. Furthermore,

if ±A > ±E, we would have

Ex2;x1fV (x1; ±A) ¡ ±A ¡¦w(±A)g ¸ Ex2 ;x1fV (x1; ±E) ¡ ±E ¡¦w(±E)g

As, by Proposition 3, ¦w(±) is increasing this would imply

Ex2 ;x1fV (x1; ±A) ¡ ±Ag > Ex2 ;x1fV (x1; ±E) ¡ ±Eg

a contradiction. Q:E:D:
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Figure 1: Two arbitrary density functions of " where ± > ±0:
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