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Abstract

We study the assignment of indivisible objects with quotas (uni-
versities, jobs, or offices) to a set of agents (students, job applicants,
or professors). Each agent receives at most one object and monetary
compensations are not possible. We characterize efficient priority rules
by efficiency, strategy-proofness, and reallocation-consistency. Such a
rule respects an acyclic priority structure and the allocations are de-
termined using the deferred acceptance algorithm.
JEL Classification: D63, D70
Keywords: acyclic priority structures, indivisible objects.

1 Introduction

We study a basic indivisible-objects model with a finite number of object
types and a finite quota of available objects of each type. Examples are the
determination of access to education, allocation of graduate housing, offices,
or tasks. Agents have strict preferences over object types and remaining
unassigned. An assignment is an allocation of the objects to the agents such

∗First version: October 2002. We thank William Thomson for helpful comments and
suggestions on an earlier draft of this article.
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that every agent receives at most one object and quotas are binding. A rule
associates an assignment to each preference profile. When the quota of each
object type is one, this problem is known as house allocation. A number of
recent papers studied the house allocation problem (for example, Abdulka-
diroğlu and Sönmez (1999), Svensson (1999), Pápai (2000), Ergin (2000),
Bogomolnaia and Moulin (2001), Ehlers (2002), Ehlers and Klaus (2002),
Ehlers, Klaus, and Pápai (2002) and Kesten (2003a,b)).1

Typically, in house allocation it is assumed that agents’ preferences over
objects are strict. Therefore, any two available objects are non-identical.
However, there are many real life assignment problems where the quota of
some object types is greater than one. For instance, in university choice
each university has a number of slots and students report rankings over uni-
versities only (i.e., every student is indifferent among any two slots at the
same university). Usually a ranking of the students is obtained through an
objective test such as an entry exam at a university. Then students who
achieved higher test scores than others have higher priority in that univer-
sity. This situation can be recorded as a strict priority ranking of individuals
for each object type where i Âa j means “i has higher priority for object
type a than j.” A priority structure is a collection specifying for each object
type a strict priority ranking. A rule violates the priority of agent i for ob-
ject a if there is a preference profile under which agent i envies agent j who
obtains a even though i has a higher priority for a than j. A rule respects
a priority structure if it never violates the specified priorities. Gale and
Shapley’s (1962) students-proposing deferred acceptance algorithm is the
so-called “best” (efficient) rule respecting a given priority structure. This
means that any assignment, which does not violate any priority of any agent,
is Pareto-dominated by the assignment calculated by the deferred acceptance
algorithm. Balinski and Sönmez (1999), Ergin (2002), and Abdulkadiroğlu
and Sönmez (2003) recently studied the students-proposing deferred accep-
tance algorithm in university choice and school choice. They convincingly
argued that a priority structure is obtained through an objective test at each
university (however, these tests may contain different questions and thus,
may yield different priority rankings) and is not subject to manipulation. In
other words, in university choice the priority structure is fixed. Furthermore,
Ergin’s (2002, Theorem 1) main result demonstrates that for the best rule
respecting a fixed priority structure, efficiency, group strategy-proofness2,

1This list is not exhaustive.
2Group strategy-proofness means that no group of agents can profit by joint misrep-

resentation of their preferences such that all members of the group weakly gain and one
member of the group strictly gains.
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consistency3, and the acyclicity4 of the priority structure are all equivalent.
In Balinski and Sönmez (1999), Ergin (2002), and Abdulkadiroğlu and

Sönmez (2003) a priority structure is exogenously fixed. We ignore this
assumption and allow for all rules. We say that a rule is a priority rule
if there exists an endogenously given priority structure such that this rule
chooses the same allocations that the deferred acceptance algorithm finds
using that priority structure. Our main result is that a rule satisfies ef-
ficiency, strategy-proofness, and reallocation-consistency5 if and only if it
is an efficient priority rule. In other words, any rule satisfying our combi-
nation of axioms is a best rule for an endogenously given acyclic priority
structure. Our paper complements the above mentioned papers in the sense
that even if we ignore the priority structure and allow for any rule in uni-
versity choice problems, then our three axioms bring us back to a best rule
respecting an endogenously fixed acyclic priority structure. Furthermore,
since Ergin’s (2002, Theorem 1) result remains unchanged when consistency
is replaced by reallocation-consistency (i.e., for the best rule respecting a
fixed priority structure, efficiency, group strategy-proofness, reallocation-
consistency and acyclicity of the priority structure are all equivalent), our
characterization can be considered to be the “converse” of his main result.

The paper is organized as follows. In Section 2 we introduce the model
and our axioms. In Section 3 we define priority rules and present the char-
acterization of efficient priority rules. Section 4 contains some concluding
remarks.

2 Object Allocation with Quotas

Let N denote the finite set of agents. Let A denote the finite set of indivisible
object types. Given object type a ∈ A, let qa ≥ 1 denote the number of
available objects, or quota, of type a. Let q ≡ (qa)a∈A. Let 0 represent the
null object. Not receiving any object is called “receiving the null object.”
The null object does not belong to A and is available in any economy.

Each agent i ∈ N is equipped with a strict preference relation Ri over
A ∪ {0}. In other words, Ri is a linear order6 over A ∪ {0}. Given x, y ∈

3We discuss consistency in Section 2. To be precise, in his characterization Ergin (2002,
Theorem 1) requires consistency to hold for the so-called extended best rule.

4A formal definition of acyclicity is given in Section 3.
5Reallocation-consistency requires that when a set of agents leaves with their allot-

ments, their assignments should remain unchanged when applying the same rule to the
reallocation problem that consists of these agents and their allotments.

6A linear order is a complete, reflexive, transitive, and antisymmetric binary relation.
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A ∪ {0}, x Pi y means that agent i strictly prefers x to y under Ri. Let R
denote the set of all linear orders over A ∪ {0}. Let RN denote the set of
all (preference) profiles R = (Ri)i∈N such that for all i ∈ N , Ri ∈ R. Given
R ∈ RN and M ⊆ N , let RM denote the restriction of R to M . We also
use the notation R−i = RN\{i}. For example, (R̄i, R−i) denotes the profile
obtained from R by replacing Ri by R̄i.

An economy consists of a set of agents N ′ ⊆ N , their preferences R′ ∈
RN ′

, and a vector of quotas q′ = (q′a)a∈A such that for all a ∈ A, qa ≥ q′a ≥ 0.
We suppress the set of agents and denote this economy by (R′, q′).

When allocating objects each agent either receives an object of type
a ∈ A or the null object. The null object can be assigned to several agents
without any restriction, but for all other objects the associated quota is
binding. Formally, given an economy (R′, q′), an allocation for (R′, q′) is
a list α = (αi)i∈N ′ such that for all i ∈ N ′, αi ∈ A ∪ {0}, and for all
a ∈ A, |{i ∈ N ′ : αi = a}| ≤ q′a. Note that not all available objects need
to be assigned. Given i ∈ N ′, we call αi the allotment of agent i at α. An
unrestricted (allocation) rule is a function ϕ that assigns to each economy
(R′, q′) an allocation ϕ(R′, q′).

We are only interested in economies where all agents are present and all
objects are available with quotas q and all economies that result as realloca-
tion problems from those economies. Therefore, we restrict any unrestricted
rule to these economies. The set of admissible economies with agent set N
is EN = {(R, q) : R ∈ RN}.

Given an unrestricted rule ϕ, we consider situations where, departing
from an economy in EN , some agents may want to reallocate the objects
assigned to them under ϕ. Given R ∈ RN and N ′ ( N , let rϕ

N ′(R, q)
denote the reallocation problem that the agents N ′ face after having left
the economy (R, q) with their allotments at ϕ(R, q). Formally, rϕ

N ′(R, q)
denotes the economy (RN ′ , q′) where q′a = |{i ∈ N ′ : ϕi(R, q) = a}| for
all a ∈ A. Note that in a reallocation problem there are at most as many
objects available as agents are present. Given an unrestricted rule ϕ, the set
of admissible economies (or reallocation problems) with agent set N ′ ( N
is EN ′

ϕ = {rϕ
N ′(R, q) : R ∈ RN}. Slightly abusing notation, we write EN

ϕ

instead of EN .
Starting from an unrestricted rule ϕ, we consider the restriction of ϕ to

all its admissible economies. Again slightly abusing notation, we use the
same symbols for the restricted and the unrestricted rule. An (allocation)
rule is a function ϕ that assigns to all N ′ ⊆ N and all admissible economies
(R′, q′) ∈ EN ′

ϕ an allocation ϕ(R′, q′). Note that different unrestricted rules
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may induce the same rule.
Next, we introduce our main properties for rules. First, a rule chooses

only (Pareto) efficient allocations.

Efficiency: For all R ∈ RN , there is no allocation α = (αi)i∈N for (R, q)
such that for all i ∈ N , αi Ri ϕi(R, q), and for some j ∈ N , αj Pj ϕj(R, q).

Second, no agent ever benefits from misrepresenting his preference rela-
tion.

Strategy-Proofness: For all R ∈ RN , all i ∈ N , and all R′
i ∈ R, ϕi(R, q)Ri

ϕi((R′
i, R−i), q).

Note that as in Ergin (2002) we only require efficiency and strategy-
proofness when all agents belonging to N are present and all objects are
available with their maximal quotas in the economy.

Our last property is a stability condition for the allocations chosen by
the rule when all agents are present. Suppose after the objects have been
allocated, some agents decide to reallocate their allotments among them-
selves. What if the same rule is applied to the “reallocation problem”? The
rule is “unstable” if its assignment to the agents in the reallocation problem
differs from its original allotments to them. Here we are only interested in
reallocation problems that are derived from economies in which all agents
are present and all objects are available with quotas q.

Reallocation-Consistency: For all R ∈ RN , all N ′ ( N , and all i ∈ N ′,
ϕi(R, q) = ϕi(r

ϕ
N ′(R, q)).

At first glance one may think that reallocation-consistency is equiva-
lent to the “generic” consistency property for this model defined as follows:
Suppose a group of agents leave with their allotments. Then the reduced
economy consists of the remaining agents and the remaining resources (the
allotments of the remaining agents and all unassigned objects). A rule is
consistent if the allotments to the remaining agents do not change when the
rule is applied to the reduced economy.7 In a reduced economy there may
be some unassigned objects in addition to the remaining agents’ allotment –
an incidence that cannot occur in a reallocation problem where agents can
only reallocate their allotments among themselves.8 In models where always
all resources are assigned, both properties are indeed equivalent.

7Consistency: For all R ∈ RN , all N ′ ( N , and all i ∈ N ′, ϕi(R, q) = ϕi(RN′ , q̄)
where q̄a = qa − |{j ∈ N\N ′ : ϕj(R, q) = a}| for all a ∈ A.

8Ergin (2000) studies consistency for the house allocation problem in various combi-
nations with efficiency, converse consistency, neutrality, and anonymity.
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When considering efficiency, strategy-proofness, and reallocation-
consistency in their present form, we can only derive conclusions for
economies with agent set N and full quotas q and for all reallocation prob-
lems that are induced from these economies by the unrestricted rule. We
do not require strategy-proofness for reallocation problems since agents re-
vealed their preferences before reallocation and it is not possible for them
to change them. For instance, our axioms do not impose any requirements
on any economy in which not all agents are present and more objects are
available than agents. This is why we restricted the domain of a rule to
all its admissible economies. In the same vein as Ergin (2002) we require
that when all agents are present, then all objects are available with quotas
q. For example, for a serial dictatorship where agent 1 is the first dictator,
it is not meaningful to consider (sub)economies as reallocation problems in
which agent 1 is present but the quota of his favorite object type is 0. Such
economies simply do not arise as reallocation problems for this rule (and
our axioms do not impose any requirements on them).

3 Priority Rules

Given a ∈ A, let Âa denote a linear order over N . We call Âa a priority
ordering for object type a. A priority structure is a profile Â = (Âa)a∈A

specifying for each object type a priority ordering. Given N ′ ⊆ N , an
economy (R′, q′), i ∈ N ′, a ∈ A, and a priority structure Â, an allocation
α for (R′, q′) violates the priority of i for a if there exists j ∈ N ′ such that
αj = a, i Âa j, and a Pi αi (i.e., i has higher priority for object type a than
j but j receives a and i envies j). A rule ϕ respects a priority structure Â if
for all N ′ ⊆ N and all (R′, q′) ∈ EN ′

ϕ , ϕ(R′, q′) does not violate the priority
of any agent for any object type.9

Given a priority structure Â and R ∈ RN , Balinski and Sönmez (1999,
Theorem 2) show that the students-proposing deferred acceptance (DA)
algorithm applied to Â and (R, q) yields the best allocation among all allo-
cations which do not violate the priority of any agent for any object type.
In other words, if an allocation respects Â at te economy (R, q), then it is
Pareto-dominated by the allocation calculated by the DA-algorithm. Let
fÂ denote the deferred acceptance rule with priority structure Â. We also
call fÂ the best rule respecting the priority structure Â. Note that under
fÂ the agents propose to object types and, using Âa, object type a rejects

9Ergin (2002) uses the expression “a rule adapts to a priority structure” instead of “a
rule respects a priority structure”.
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agents once the quota is filled. Formally, given N ′ ⊆ N and an economy
(R′, q′) with agent set N ′, the allocation fÂ(R′, q′) is determined as follows:

• At the first step every agent in N ′ “proposes” to his favorite object
type in A ∪ {0}. For each object type a, the q′a applicants who have
the highest priority under Âa (all if there are fewer than q′a) are placed
on the waiting list of a, and the others are rejected.

• At the lth step every newly rejected agent proposes to his next best
object type in A ∪ {0}. For each object type a, the q′a applicants
who have the highest priority under Âa (all if there are fewer than q′a)
among the new applicants and those on the waiting list are placed on
the new waiting list and the others are rejected.

• The algorithm terminates when every agent belongs to a waiting list.
Then object a ∈ A is assigned to the agents on the waiting list of a.

Note that any agent who proposes to the null object is immediately accepted.
Although the DA-algorithm calculates for each economy the best allocation
among the allocations that respect the priority structure, the deferred ac-
ceptance rule may not be efficient.10 Ergin (2002) identifies a necessary and
sufficient condition on a priority structure such that the deferred acceptance
rule yields an efficient allocation for all economies with agent set N .

Given a priority structure Â, a cycle is constituted of distinct a, b ∈ A
and i, j, k ∈ N such that the following are satisfied

(C) Cycle condition: i Âa j Âa k and k Âb i and

(S) Scarcity condition: there exist (possibly empty) disjoint sets
Na, Nb ⊆ N\{i, j, k} such that Na ⊆ {l ∈ N : l Âa j}, Nb ⊆ {l ∈
N : l Âb i}, |Na| = qa − 1, and |Nb| = qb − 1.

A priority structure is acyclic if no cycles exist.

If quotas are all equal to 1, then the scarcity condition is automatically
satisfied. For other quotas, the scarcity condition limits the definition of a
cycle to cases where there indeed exist economies in EN such that agents i,
j, and k actually compete for objects a and b (in the absence of this compe-
tition, e.g., because the quotas in fact do not limit the access of the agents
to objects a and b, a cycle will not lead to the violation of either efficiency
or the given priorities – see Ergin (2002) for further discussion).

10See Roth and Sotomayor (1990, Example 2.31).
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Proposition 1 (Ergin, 2002, Theorem 1). Let Â be a priority structure.
Then fÂ is efficient if and only if Â is acyclic.

We say that a rule ϕ is a priority rule if there exists a priority structure
Â such that ϕ = fÂ. We call a rule ϕ an efficient priority rule if there exists
an acyclic priority structure Â such that ϕ = fÂ.

While Ergin (2002) focuses on the best rule respecting an exogenously
given priority structure, we consider all rules. Our main result shows that
if a rule satisfies efficiency, strategy-proofness, and reallocation-consistency,
then it is a best rule for an endogenously given acyclic priority structure.

Theorem 1. Efficient priority rules are the only rules satisfying efficiency,
strategy-proofness, and reallocation-consistency.

Remark 1. As the careful reader may check, Ergin’s result (2002, The-
orem 1) remains unchanged when consistency is replaced by reallocation-
consistency, i.e., for the best rule respecting a fixed priority structure, effi-
ciency, group strategy-proofness, reallocation-consistency and acyclicity of
the priority structure are all equivalent.11 Hence, our characterization es-
tablishes a converse of Ergin’s Theorem 1.

Remark 2. Theorem 1 is the first characterization in the indivisible-objects
model with quotas when objective indifferences and all rules are allowed.
All other papers rule out objective indifferences (i.e., qa = 1 for all a ∈
A) or consider the (students-proposing) DA-algorithm for a fixed priority
structure.

Before proving Theorem 1 we establish the independence of the axioms.
The rule that assigns the null object to all agents for all admissible economies
satisfies strategy-proofness and reallocation-consistency, but not efficiency.

Let Â denote the priority structure such that for all a ∈ A, 1 Âa 2 Âa

· · · Âa |N |. Let Â′ denote the priority structure such that for all a ∈
A, 2 Â′a 3 Â′a · · · Â′a |N | Â′a 1. Given b ∈ A, let ϕb be the rule such
that for all N ′ ⊆ N and all (R′, q′) ∈ EN ′

ϕb , (i) if 1 ∈ N ′ and b P ′
1 0, then

ϕb(R′, q′) ≡ fÂ(R′, q′) and (ii) otherwise ϕb(R′, q′) ≡ fÂ′(R′, q′). Then ϕb

satisfies efficiency and reallocation-consistency, but not strategy-proofness.
11The proof is identical to Ergin’s (2002) proof. It is easy to see that his proof

“(i) Efficiency ⇒ (iii) Consistency” shows “(i) Efficiency ⇒ (iii) Reallocation-consistency”
and “(iii) Consistency ⇒ (iii) Acyclicity of Â” shows “(iii) Reallocation-consistency ⇒
(iii) Acyclicity of Â”. Thus, by Ergin (2002, Theorem 1), efficiency, group strategy-
proofness, consistency, reallocation-consistency and acyclicity of the priority structure
are all equivalent for the best rule respecting a fixed priority structure.
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Given Â and Â′ as above, define ϕ as follows: (i) for all R ∈ RN ,
ϕ(R, q) ≡ fÂ(R, q) and (ii) for all N ′ ( N and all (R′, q′) ∈ EN ′

ϕ ,
ϕ(R′, q′) ≡ fÂ′(R′, q′). Then ϕ satisfies efficiency and strategy-proofness,
but not reallocation-consistency.

Proof of Theorem 1

Let ϕ be an efficient priority rule. Then there exists an acyclic priority struc-
ture Â such that ϕ = fÂ. Since any deferred acceptance rule is strategy-
proof it follows that ϕ is strategy-proof. To show reallocation-consistency,
let R ∈ RN . Because Â is acyclic, fÂ is efficient. Thus, for all a ∈ A, if
|{i ∈ N : fÂi (R, q) = a}| < qa, then for all i ∈ N , ϕi(R, q) Ri a. For all
a ∈ A, let q′a ≡ |{i ∈ N : ϕi(R, q) = a}|. When calculating fÂ(R, q) the
waiting list of any object type contains at any step at most q′a applicants.
Thus, applying the DA-algorithm to (R, q′) yields fÂ(R, q). Hence,

fÂ(R, q′) = fÂ(R, q). (1)

By definition of q′, at fÂ(R, q′) all objects are assigned. Because Â is acyclic,
fÂ is consistent (Ergin, 2002, Theorem 1). Now for all N ′ ( N and all
i ∈ N ′,

ϕi(R, q) = fÂi (R, q) = fÂi (R, q′) = fÂi (rϕ
N ′(R, q)) = ϕi(r

ϕ
N ′(R, q)),

where the first and the last equality follow from ϕ = fÂ, the second from
(1), and the third from the facts that at fÂ(R, q′) all objects are assigned
and fÂ is consistent.12 Hence, ϕ satisfies reallocation-consistency.

Conversely, let ϕ be a rule satisfying efficiency, strategy-proofness, and
reallocation-consistency. First we construct for each object type a priority
ordering. Second we show that the constructed priority structure is acyclic.
Third we prove that ϕ and the best rule respecting the constructed priority
structure coincide.

Given x ∈ A ∪ {0}, fix Rx ∈ RN such that for all i ∈ N and all y ∈
(A∪{0})\{x}, xRx

i 0Rx
i y. Given a ∈ A, we define Âa inductively as follows:

Step 1: For all i, j ∈ N , (a) if ϕi(Ra, q) = a 6= ϕj(Ra, q), then i Âa j, and
(b) if ϕi(Ra, q) = a = ϕj(Ra, q) and i < j, then i Âa j.

12By consistency, for all i ∈ N ′, fÂi (R, q′) = fÂi (RN′ , q̄) where q̄a = q′a − |{j ∈ N\N ′ :
fÂj (R, q′) = a}| for all a ∈ A. Note that rϕ

N′(R, q) = (RN′ , q̂) where q̂a = |{i ∈ N ′ :
fÂi (R, q) = a}| for all a ∈ A. So, by construction, for all a ∈ A, q̄a = q̂a. Thus,
(RN′ , q̄) = rϕ

N′(R, q) and fÂi (R, q′) = fÂi (rϕ
N′(R, q)).

9



If qa ≥ |N | − 1, then for all distinct i, j ∈ N we have i Âa j or j Âa i
and Âa is completely defined. If qa < |N | − 1, then it is possible that for
distinct i, j ∈ N , ϕi(Ra, q) = 0 = ϕj(Ra, q). To define Âa in these cases, we
extend the definition inductively.
Step 2: Suppose qa < |N |−1. Because qa ≥ 1, there exists l1 ∈ N such that
for all i ∈ N\{l1}, l1 Âa i. Then for all i, j ∈ N\{l1}, if ϕi((R0

l1
, Ra

−l1
), q) =

a 6= ϕj((R0
l1
, Ra

−l1
), q), then i Âa j. If qa ≥ |N | − 2, then for all distinct

i, j ∈ N we have i Âa j or j Âa i.
Step 3: Suppose qa < |N | − 2. Because qa ≥ 1, there exists l2 ∈ N\{l1}
such that for all i ∈ N\{l1, l2}, l2 Âa i. Then for all i, j ∈ N\{l1, l2}, if
ϕi((R0

{l1,l2}, R
a
N\{l1,l2}), q) = a 6= ϕj((R0

{l1,l2}, R
a
N\{l1,l2}), q), then i Âa j; etc.

After at most n− 1 inductive steps (if qa = 1), Âa is completely defined,
i.e., for any distinct i, j ∈ N we have i Âa j or j Âa i.

Lemma 1. Âa is a well-defined linear order.

Proof. First we show that Âa is well-defined. Suppose that for some
i, j ∈ N we have both i Âa j and j Âa i. Obviously, i Âa j and j Âa i cannot
be defined in the same inductive step. Thus, in particular, qa < |N | − 1.
Without loss of generality, let i Âa j be defined first.

Because j Âa i there is some t ∈ {1, . . . , |N | − 1} such that for
Lt = {l1, . . . , lt} we have i, j ∈ N\Lt and ϕj((R0

Lt
, Ra

N\Lt
), q) = a 6=

ϕi((R0
Lt

, Ra
N\Lt

), q). By efficiency, ϕi((R0
Lt

, Ra
N\Lt

), q) = 0. Let qa denote
the profile of quotas such that qa

a = 1 and for all b ∈ A\{a}, qa
b = 0. Then

rϕ
{i,j}((R

0
Lt

, Ra
N\Lt

), q) = (Ra
{i,j}, q

a). By reallocation-consistency,

ϕj(Ra
{i,j}, q

a) = a. (2)

Because i Âa j is defined before j Âa i, either
(a) there exists L ( Lt such that i, j ∈ N\L and ϕi((R0

L, Ra
N\L), q) = a 6=

ϕj((R0
L, Ra

N\L), q) or

(b) ϕi(Ra, q) = a = ϕj(Ra, q) and i < j ((b) in Step 1).
If (a), then by efficiency, ϕj((R0

L, Ra
N\L), q) = 0. Then

rϕ
{i,j}((R

0
L, Ra

N\L), q) = (Ra
{i,j}, q

a). By reallocation-consistency,

ϕi(Ra
{i,j}, q

a) = a. (3)

By (2) and (3),

|{k ∈ {i, j} : ϕk(Ra
{i,j}, q

a) = a}| = |{i, j}| = 2 > 1 = qa
a,
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which contradicts the fact that ϕ(Ra
{i,j}, q

a) is an allocation for (Ra
{i,j}, q

a).

If (b), then by efficiency, there exists k ∈ N such that ϕk(Ra, q) = 0 and
ϕk((R0

Lt
, Ra

N\Lt
), q) = a. Hence, by reallocation-consistency and by similar

arguments as for (a), ϕi(Ra
{i,k}, q

a) = a and ϕk(Ra
{i,k}, q

a) = a. Similarly as
in (a) this yields a contradiction.

Completeness and transitivity of Âa follow straightforwardly from the
inductive definition. ¤

Lemma 2. The priority structure Â ≡ (Âa)a∈A is acyclic.

Proof. Suppose that Â contains a cycle. Then there are a, b ∈ A and
i, j, k ∈ N such that (C) i Âa j Âa k and k Âb i and (S) there exist (possibly
empty) disjoint sets Na, Nb ⊆ N\{i, j, k} such that Na ⊆ {l ∈ N : l Âa j},
Nb ⊆ {l ∈ N : l Âb i}, |Na| = qa − 1, and |Nb| = qb − 1.

Let R ∈ RN be such that

• for all l ∈ Na, Rl = Ra
l ,

• for all l ∈ Nb, Rl = Rb
l ,

• for all l ∈ N\(Na ∪Nb ∪ {i, j, k}), Rl = R0
l ,

• Rj = Ra
j and for all c ∈ A\{a, b}, b Pi a Pi 0 Pi c and a Pk b Pk 0 Pk c.

We now calculate ϕ(R, q). By efficiency, |{l ∈ N : ϕl(R, q) = a}| = qa and
|{l ∈ N : ϕl(R, q) = b}| = qb. Because |Na ∪ Nb ∪ {i, j, k}| = qa + qb + 1,
there exists l̂ ∈ Na ∪Nb ∪ {i, j, k} such that ϕl̂(R, q) = 0.

If l̂ ∈ Na ∪ {j}, then by efficiency, ϕk(R, q) = a. Thus, by
strategy-proofness, ϕk((Ra

k, R−k), q) = a and for some l̃ ∈ Na ∪ {j},
ϕl̃((R

a
k, R−k), q) = 0. By reallocation-consistency and rϕ

{k,l̃}((R
a
k, R−k), q) =

((Ra
k, R

a
l̃
), qa),

ϕk((Ra
k, R

a
l̃
), qa) = a and ϕl̃((R

a
k, R

a
l̃
), qa) = 0. (4)

On the other hand, since by (C) j Âa k, Na ∪{j} ⊆ {l ∈ N : l Âa k}. Thus,
l̃ Âa k and by definition of Âa either
(a) there exists L ⊆ N such that l̃, k ∈ N\L, ϕl̃((R

0
L, Ra

N\L), q) = a 6=
ϕk((R0

L, Ra
N\L), q) or

(b) ϕl̃(R
a, q) = a = ϕk(Ra, q) and l̃ < k ((b) in Step 1).
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If (a), then by reallocation-consistency and rϕ

{k,l̃}((R
0
L, Ra

N\L), q) =
((Ra

k, R
a
l̃
), qa),

ϕk((Ra
k, R

a
l̃
), qa) = 0 and ϕl̃((R

a
k, R

a
l̃
), qa) = a. (5)

Now (4) and (5) contradict the fact that qa
a = 1.

If (b), then, because |Na∪{j, k}| = qa+1, there exists l′ ∈ (Na∪{j})\{l̃}
such that ϕl′(Ra, q) = 0. Thus, by the definition of Âa, k Âa l′. This
contradicts l′ ∈ Na ∪ {j} ⊆ {l ∈ N : l Âa k}.

Recall that so far we have assumed that ϕl̂(R, q) = 0 for l̂ ∈ Na ∪
{j}. If l̂ ∈ Nb ∪ {k}, then by l̂ /∈ Na ∪ {j} we have for all l ∈ Na ∪ {j},
ϕl(R, q) = a. Thus, by efficiency, ϕi(R, q) = b. Then, by strategy-proofness,
ϕi((Rb

i , R−i), q) = b and for some l̃ ∈ N\{i}, ϕl̃((R
b
i , R−i), q) = 0. We have

already shown that l̃ ∈ Na∪{j} yields a contradiction. Hence, l̃ ∈ Nb∪{k}.
By reallocation-consistency and rϕ

{i,l̃}((R
b
i , R−i), q) = ((Rb

i , R
b
l̃
), qb),

ϕi((Rb
i , R

b
l̃
), qb) = b and ϕl̃((R

b
i , R

b
l̃
), qb) = 0. (6)

On the other hand, since by (C) k Âb i, Nb ∪ {k} ⊆ {l ∈ N : l Âb i}. Thus,
l̃ Âb i. Now, similarly as before, we derive a contradiction using (6) and the
definition of Âb.

Finally, if l̂ = i, then for all l ∈ Na ∪ {j}, ϕl(R, q) = a. In particular,
ϕj(R, q) = a. By strategy-proofness and efficiency, ϕi((Ra

i , R−i), q) = 0 and
ϕj((Ra

i , R−i), q) = a. By reallocation-consistency and rϕ
{i,j}((R

a
i , R−i), q) =

((Ra
i , R

a
j ), q

a),

ϕj((Ra
i , R

a
j ), q

a) = a and ϕi((Ra
i , R

a
j ), q

a) = 0. (7)

On the other hand (C) i Âa j. Now, similarly as before, we derive a
contradiction using (7) and the definition of Âa. ¤

Lemma 3. ϕ = fÂ.

Proof. By Lemma 2, Â is acyclic. Thus, fÂ is reallocation-consistent.
Because ϕ is reallocation-consistent, in showing ϕ = fÂ it suffices to show
that for all R ∈ RN , ϕ(R, q) = fÂ(R, q). First we show the following claim.

Claim: If ϕ 6= fÂ, then there exists R ∈ RN such that ϕ(R, q) 6= fÂ(R, q)
and for all i ∈ N , ϕi(R, q) 6= fÂi (R, q) implies Ri ∈ {Rx

i : x ∈ A}.
Proof of Claim: Suppose ϕ 6= fÂ. Let R ∈ RN be such that ϕ(R, q) 6=
fÂ(R, q). Let i ∈ N be such that ϕi(R, q) 6= fÂi (R, q) and Ri /∈ {Rx

i :

12



x ∈ A}. Without loss of generality, suppose ϕi(R, q) Pi fÂi (R, q). By ef-
ficiency, ϕi(R, q) ∈ A. Let ϕi(R, q) = a. Because both ϕ and fÂ are
strategy-proof, we have ϕi((Ra

i , R−i), q) = a and fÂi ((Ra
i , R−i), q) = 0.

Thus, ϕ((Ra
i , R−i), q) 6= fÂ((Ra

i , R−i), q) and i’s preference relation belongs
to {Rx

i : x ∈ A}. Continuing this procedure yields the desired profile speci-
fied in the Claim.

Suppose ϕ 6= fÂ. Then by the Claim there exists R ∈ RN such
that ϕ(R, q) 6= fÂ(R, q) and for all i ∈ N , ϕi(R, q) 6= fÂi (R, q) implies
Ri ∈ {Rx

i : x ∈ A}. Because Â is acyclic, fÂ is efficient. Thus, by
ϕ(R, q) 6= fÂ(R, q) and efficiency of ϕ, there exists j ∈ N such that
fÂj (R, q)Pj ϕj(R, q). By efficiency, fÂj (R, q) ∈ A. Let fÂj (R, q) = a. By our
choice of R and ϕj(R, q) 6= fÂj (R, q), we have Rj = Ra

j . Hence, ϕj(R, q) = 0
and by efficiency, |{i ∈ N : ϕi(R, q) = a}| = qa. Thus, there exists k ∈ N
such that ϕk(R, q) = a 6= fÂk (R, q). But then again by our choice of R we
have Rk = Ra

k and fÂk (R, q) = 0. Thus, rϕ
{j,k}(R, q) = ((Ra

j , R
a
k), q

a). By
ϕk(R, q) = a and reallocation-consistency,

ϕk((Ra
j , R

a
k), q

a) = a. (8)

On the other hand fÂ respects Â. Thus, by fÂj (R, q) = a, fÂk (R, q) = 0,
and a Pk 0, we have j Âa k. Hence, by definition of Âa either
(a) there exists L ⊆ N such that j, k ∈ N\L, ϕj((R0

L, Ra
N\L), q) = a 6=

ϕk((R0
L, Ra

N\L), q) or

(b) ϕj(Ra, q) = a = ϕk(Ra, q) and j < k ((b) in Step 1).

If (a), then by reallocation-consistency and rϕ
{j,k}((R

0
L, Ra

N\L), q) =
((Ra

j , R
a
k), q

a),
ϕj((Ra

j , R
a
k), q

a) = a. (9)

Now (8) and (9) contradict the fact that qa
a = 1.

If (b), then by efficiency, there must exist l ∈ N such that ϕl(Ra, q) = 0
and ϕl(R, q) = a. Thus, j Âa k Âa l. If fÂl (R, q) = a, then by
fÂk (R, q) = 0, k Âa l, and Rk = Ra

k, fÂ(R, q) does not respect Â, a
contradiction. Hence, fÂl (R, q) 6= ϕl(R, q) and by construction, Rl = Ra

l

and fÂl (R, q) = 0. Thus, by reallocation-consistency and rϕ
{j,l}(R, q) =

((Ra
j , R

a
l ), q

a), ϕl((Ra
j , R

a
l ), q

a) = a. Since ϕl(Ra, q) = 0 and ϕj(Ra, q) =
a, rϕ

{j,l}(R
a, q) = ((Ra

j , R
a
l ), q

a). Thus, by reallocation-consistency for
rϕ
{j,l}(R

a, q), ϕj((Ra
j , R

a
l ), q

a) = a. This and ϕl((Ra
i , R

a
l ), q

a) = a contra-
dict the fact that qa

a = 1. This finishes the proof. ¤
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4 Concluding Remarks

We have shown that any rule satisfying efficiency, strategy-proofness, and
reallocation-consistency is an efficient priority rule. For a mechanism de-
signer, who wishes to implement a rule satisfying these properties, this
means that he must choose an acyclic priority structure and determine the
allocations using the deferred acceptance algorithm and the chosen priority
structure.

Our formulation of the axioms is identical with the one by Ergin (2002)
– efficiency and strategy-proofness are only required for all economies with
agent set N and quotas q and reallocation-consistency only needs to hold
for all reallocation problems arising from such economies. If we defined
our axioms for all economies, then the characterized (unrestricted) rules are
priority rules such that the associated priority structure does not satisfy
the cycle condition (C). In other words the scarcity condition (S) becomes
redundant. This is because when considering the full domain, economies
are admissible in which each object type is available with quota one or zero.
The same is true for Ergin’s (2002, Theorem 1) main result. If all economies
are considered, then for the best rule respecting a fixed priority structure,
efficiency, group strategy-proofness, reallocation-consistency, consistency,
and the priority structure not satisfying (C) are all equivalent.
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