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Abstract

A new parametric minimum distance time-domain estimator for ARFIMA processes is

introduced in this paper. The proposed estimator minimizes the sum of squared correlations of

residuals obtained after …ltering a series through ARFIMA parameters. The estimator is easy

to compute and is consistent, asymptotically normally distributed and e¢cient for fractionally

integrated (FI) processes with an integration order d strictly greater than -0.75. Therefore,

it can be applied to both stationary and non-stationary processes. Deterministic components

are also allowed in the DGP. Furthermore, as a by-product, the estimation procedure provides

an immediate check on the adequacy of the speci…ed model. This is so because the criterion

function, when evaluated at the estimated values, coincides with the Box-Pierce goodness of …t

statistic. Empirical applications and Monte-Carlo simulations supporting the analytical results

and showing the good performance of the estimator in …nite samples are also provided.

Keywords : fractional integration; nonstationary long-memory time series; minimum dis-

tance estimation;

JEL Classi…cation: C13, C22.

1. INTRODUCTION

A new estimation procedure for Autoregressive Fractionally Integrated Moving Average
(ARFIMA) processes is proposed in this paper. First introduced by Granger and Joyeux

(1980) and Hosking (1981), these processes have become very popular due to their ability in
¤I am grateful for considerable help and suggestions from Juan J. Dolado and Jesús Gonzalo and also

very useful comments from Javier Hidalgo, Francesc Mármol, Carlos Velasco, three anonimous referees, the

editor and participants at ESEM 2001 (Lausanne). I would also like to thank the support of the Barcelona

Economics Program of CREA. All remaining errors are, of course, her own.
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providing a good characterization of the long-run properties of many economic and …nancial

time series. They are also very useful for modeling multivariate time series, since they can
capture a larger number of long term equilibrium relations among economic variables than

the traditional multivariate ARIMA models. See Baillie (1996) and Henry and Za¤aroni
(2002) for a survey on this topic.

The estimator introduced in this paper belongs to the Minimum Distance (MD) class. The
idea of the estimation procedure is quite simple: the parameters of the ARFIMA model are

estimated by minimizing the sum of the squared autocorrelations of the residuals, obtained
after …ltering the original series through ARFIMA parameters. The proposed estimator is

closely related to the MD estimator considered in Tieslau, Schmidt and Baillie (1996), and
to the Adjusted MD estimator proposed in Chung and Schmidt (1995). Nevertheless, as it
will be seen shortly, it presents important advantages over those estimators. It is denoted

“Generalized Minimum Distance” (GMD) estimator since it extends previous approaches in
this area to more general setups. In particular, the proposed estimator is easy to compute,

has very good asymptotic and …nite sample properties and is able to circumvent most
of the problems present in the above-mentioned techniques. It can be applied to FI (d)

series for values of d > ¡0:75; thus covering stationary as well as non-stationary ranges
of d. Furthermore, it turns out to be asymptotically equivalent to ML estimation, (i.e.,
p

T -consistent, asymptotically normally distributed and e¢cient), for all d > ¡0:75.
This technique has been developed in the time domain, usually preferred in applied work.

Relative to other time domain approaches, such as Maximum Likelihood estimation (MLE),
it presents the additional advantage that it is not necessary to specify a particular distri-

bution for the innovation process. Also, it is computationally faster than exact MLE for
more complex ARFIMA(p;d; q) processes, since the evaluation of the likelihood requires

…nding the inverse of a T £ T matrix of population autocovariances, whose elements are
complicated (hypergeometric) functions of the unknown parameters. For large sample sizes,

accurate computation of such matrices could be a non-trivial task, even with today’s com-
puting technology. As it will be seen, the computation of this estimator does not present

these di¢culties.
Frequency domain estimators are also very popular in this literature, mainly due to

their computational simplicity and their good asymptotic properties, as it is the case of
the Whittle estimator (see Fox and Taqqu, (1986) and Dahlhaus, (1989)). Nevertheless,

the latter technique has also an important drawback with respect to the GMD estimator
presented in this paper. The former estimator is consistent, asymptotically normal and

e¢cient when the memory parameter d is known to lie in the stationary and invertible
range and this restriction is correctly imposed. For the general case where d is completely

unknown and possibly non-stationary, Velasco and Robinson (2000) showed that it is needed

2



to resort to tapered data to achieve consistency. Tapering increases the variance of the

estimators and therefore induces an e¢ciency loss. This problem does not apply to the
GMD estimator, since it is e¢cient for all d > ¡0:75: This implies that, in the general case

where no information about d is available before estimation, GMD is more e¢cient than
Whittle estimation.

Another interesting feature is that the estimation procedure proposed in this paper pro-
vides, as a by-product, an immediate check on adequacy of the speci…ed parametric model.

This is so because the criterion function, evaluated at the estimated values, yields the
Box-Pierce goodness-of-…t statistic which has been largely used for these purposes in the

literature.
It is also remarkable that the proposed framework can be easily extended to more general

settings. For instance, the estimator can be easily robusti…ed against conditional hetero-

cedasticity, just by introducing a modi…cation in the de…nition of the residuals used to
compute the autocorrelations. Also in this case it remains asymptotically equivalent to

MLE. Finally, it can be extended, along the lines of Wright (1999), to the estimation of the
fractionally integrated stochastic volatility model.

The rest of the paper is structured as follows. The ARFIMA model and the de…nition of
the residuals are introduced in Section 2. The GMD estimation procedure and the asymp-

totic properties of the estimator are discussed in Section 3. The results of some simulation
experiments, designed to evaluate the performance in …nite samples of the proposed esti-

mator, are described in Section 4. Section 5 derives the asymptotic distribution of residual
autocorrelations and applies the result to the Box-Pierce (1970) and Box-Ljung (1978)

goodness-of-…t statistics. Section 6 investigates their …nite sample performance. An appli-
cation of the described methods to empirical data is provided in Section 7. The conclusions

of the paper are presented in Section 8. All proofs are gathered in Appendix 1. Appendix
2 incorporates the results of other Monte Carlo experiments.

The following conventional notation is adopted throughout the paper. L is the lag op-
erator; ¢ = (1 ¡ L) ; ¡ (:) denotes the gamma function; “ w! " and “ p! " denote weak

convergence and convergence in probability, respectively; k:k is the euclidean norm for

m £ n matrices de…ned as kAk =
³Pm

i=1
Pn
j=1 a2ij

´1=2
;f¼i (d)g1i=0 represents the sequence

of coe¢cients associated with the expansion of ¢d in powers of L, such that ¢d = ¼0 (d) +
¼1 (d)L + ¼2 (d)L2 + :::; and

¼i (d) =
¡ (i ¡d)

¡ (¡d)¡(i + 1): (1)
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2. THE MODEL

The de…nition of ARFIMA process adopted in this article is similar to that used in Beran

(1995) or Sowell (1990). Consider the ARFIMA(p;d0; q) process yt, t = 1; 2; :::;T; that can
be written as

©0 (L)¢'0 (¢m0yt ¡ ¹0) = £0 (L) "t: (2)

In the previous de…nition {"tg1t=¡1 is a sequence of i.i.d zero-mean random variables
with unknown variance ¾2 and …nite fourth moment, E

¡
"4t

¢
= ¹4 < 1. ©0 (L) and £0 (L)

are autoregressive and moving average polynomials of order p and q; respectively, with
all roots outside the unit circle. Throughout, it will be assumed that p and q are known

natural numbers. The memory parameter, d0, belongs to the closed interval [r1;r2]; with
¡0:75 < r1 < r2 < 1. It is composed as the sum of an integer and a fractional part such

that d0 = m0 + '0. The integer m0 = bd0 + 1=2c ; where b:c denotes integer part, is the
number of times that yt must be di¤erenced to achieve stationarity (therefore m0 ¸ 0). The

parameter '0, the fractional part, lies in the interval (¡0:75; 0:5), in such a way that, for a
given d0; '0 = d0 ¡bd0 +1=2c. Consequently, once the process yt is di¤erenced m0 times,

the di¤erenced process is a stationary fractionally integrated process with integration order
'0. More explicitly, if xt (m0) = (¢m0yt ¡ ¹0), then xt (m0) is a (stationary) FI ('0). For

m0 = 0; ¹0 is the expected value of the stationary process yt and for m0 ¸ 1, ¹0 6= 0 implies
a deterministic polynomial trend. This de…nition is also similar, for instance, to that used in

Velasco and Robinson (2000). For the asymptotic implications of using di¤erent de…nitions
of ARFIMA processes see Marinucci and Robinson (1999).

To derive the new estimator we need to de…ne the residuals of the process. For that pur-
pose, we adopt Beran’s (1995) de…nition of residuals and provide two alternative expressions

according to whether the mean, ¹0; is known or unknown.

2.1. Residuals when ¹0 is known and equal to zero.

Let Ã =
¡
Á1; :::; Áp; µ1; :::µq

¢0 2 <p+q be the vector containing the autoregressive and
moving average parameters and ¸ =

¡
d; Ã0

¢0 2 <p+q+1. Also let ¸0 =
¡
d0; Ã00

¢0 represent

the vector containing the true parameter values. Analogously, de…ne ¸¤ =
¡
'; Ã0

¢0 and
¸¤0 =

¡
'0;Ã

0
0
¢0. The (in…nite)1 autoregressive representation of yt is given by

1Notice that this expansion is valid for all d0 > ¡1: For values of d0 > ¡0:5; this is a well known result

due to Hosking (1981). When d0 2 (¡1;¡0:5), Odaki (1993, Theorem 2) shows that although the coe¢cients

¼j (d0) are not square summable and, consequently, the same applies to the coe¢cients ®j (̧ 0), the process

is still invertible and therefore the autoregressive inversion is well de…ned.
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1X

j=0
®j (¸0)yt¡j = "t; (3)

where f®j (¸0)g1j=0 are the coe¢cients associated to the expansion of ©0 (L)£0 (L)¡1 ¢d0

in powers of L: Given the observations y1; :::; yT , the innovations "t cannot be computed
directly, since an in…nite sample would be needed. Nevertheless, they may be estimated by

et (¸) =
t¡m¡1X

j=0

®j (¸)yt¡j ; t = 1; :::; T: (4)

2.2. Residuals when ¹0 is unknown.

When ¹0 is unknown the residuals de…ned above need to be adjusted. Again, following

Beran (1995), we consider:
xt (m) = ¢myt

and

¹x (m) = 1
T ¡m

TX

t=m+1

xt: (5)

Since xt (m0) is stationary and ergodic, the sample mean ¹x (m0) is a consistent estimator

of ¹0: Therefore, adjusted residuals can be de…ned as:

et (¸) =
t¡m¡1X

j=0

®j (¸¤) (xt¡j (m) ¡ ¹x (m)) ; t = m + 1; :::;T: (6)

where f®j (¸¤)g1j=0 are the coe¢cients associated to the expansion of ©(L)£ (L)¡1¢' in

powers of L:

3. GENERALIZED MINIMUM DISTANCE ESTIMATION OF ARFIMA
PROCESSES.

Minimum Distance (MD) is a classical estimation approach in the econometric literature.

This technique encompasses other very popular procedures such as Generalized Method of
Moments (GMM), Non-Linear Least Squares (NLS) or Maximum Likelihood (ML) among

others. In a general framework, this technique would work as follows: If ¸0 2 ¤ is the
vector of parameters of interest, where ¤ is the set of possible parameter values, and yt is

the available data, MD estimation provides a class of estimators that minimize the following
criterion function,

VT (¸) = ĝT (¸)0 Ŵ ĝT (¸) ; (7)

where ĝT (¸) is a function of the data, yt, and the parameters of interest, ¸; that has to
verify ĝT (¸0)

p! 0; Ŵ is a positive de…nite weighting matrix that de…nes the distance.
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Under the standard regularity conditions, it can be proved that the resulting estimators

are
p

T -consistent and asymptotically normally distributed (see, for instance, Newey and
McFaden, 1994). Di¤erent choices of the function ĝT (¸) will generate di¤erent estimators.

For instance, if ĝT (¸) = T¡1
PT
t=1 g(yt;¸); where E (g(yt;¸0)) = 0; the minimization of the

criterion function in (7) would provide a GMM estimator. The function ĝT (¸) considered

in this paper can be interpreted as the di¤erence between the sample and the population
autocorrelations of the residuals de…ned in (4) or in (6). As it will be proved below, the

function ĝT (¸) de…ned in this way ful…ls the above mentioned requirements. With respect
to the choice of Ŵ, it is a well-known result that if var

³p
TĝT (¸0)

´
p! ; then the e¢cient

weighting matrix, We, is given by We = ¡1; since in this case the asymptotic variance-
covariance matrix of ^̧ simpli…es to

¡
J 0

0̧
¡1J¸0

¢¡1, where J¸0 is the limit of the Jacobian
matrix of ĝT (see Newey and McFaden, 1994). Therefore, this would be in general a good

choice. Some examples of Ŵ corresponding to particular situations will be provided below.
As it becomes clear from the discussion above, one of the main advantages of MD relative

to ML estimation is that the former do not require to assume a particular distribution of
the innovation sequence at any stage.

Several parametric and semiparametric MD techniques can be found in the literature of
fractionally integrated (FI) processes. Robinson (1994a) proposed a semiparametric time

domain procedure that exploits the fact that autocovariances in FI models are proportional
to k2d¡1 for large k: Robinson¶s estimator minimizes the expression:

Pp+n
k=n

¡
°̂k ¡ ck2d¡1

¢2.
Hall et al. (1997) have analyzed the rates of convergence of this estimator but its distri-
butional properties remain to be determined. Of particular relevance to this paper is the

MD estimator proposed by Tieslau, Schmidt and Baillie (1996), henceforth TSB. They in-
troduced a parametric time domain MD estimator that minimizes a distance between the

estimated and the theoretical autocorrelations of an ARFIMA (p;d; q) process:

^̧ = arg min
¸2¤

¡
½̂
ky ¡ ½

ky (¸)
¢0 Ŵ

¡
½̂
ky ¡ ½

ky (¸)
¢
; (8)

where ½̂
ky is the sample autocorrelation function of the (stationary) process yt up to lag

k (for a …xed value of k), ½
ky (¸) is the theoretical autocorrelation of the corresponding

ARFIMA(p;d; q) process up to the same lag and Ŵ is a positive de…nite weighting matrix.
The asymptotic optimal weighting matrix is We = C¡1, where C is the asymptotic variance-

covariance matrix of
p

T ½̂
ky. Then, a suitable choice for Ŵ in this context would be a

consistent estimator of C¡1. Although theoretically very appealing, there remain signi…cant

problems with this procedure. First, it is restricted to stationary series since it requires the
existence of autocorrelations. Second, it is

p
T¡consistent and asymptotically normal only

for d0 < 0:25; due to the non-standard behavior of sample autocorrelations of ARFIMA
processes outside this range. Moreover, the procedure is not e¢cient over its entire domain.
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Chung and Schmidt (1995) have introduced a modi…cation (Adjusted Minimum Distance

Estimator) to the previous estimator. They have demonstrated, by applying the results
on autocorrelations of Hosking (1996), that it is possible to obtain a

p
T -consistent and

asymptotically normally distributed estimator of d in the whole invertible and stationary
range, ¡0:5 < d < 0:5, if some functions of the autocorrelations are employed in the criterion

function. Yet, it still remains not e¢cient and it is computationally almost as demanding
as exact ML (see Sowell, 1992) since it requires the computation of the autocorrelations as

functions of the unknown parameters. Along the same lines, Wright (1999) has proposed
an estimator for the fractionally integrated stochastic volatility model and has proved that

it is
p

T-consistent and asymptotically normally distributed only when d < 0:25: Galbraith
and Zinde-Walsh (1997) have presented a parametric time-domain estimator based on an
autoregressive approximation. This estimator can be applied to nonstationary series, since

the existence of autocorrelations is not required, but its consistency has not been proved
yet in this general framework. Other interesting references on the parametric estimation

of possibly non stationary ARFIMA processes are Beran (1995), Tanaka (1999), Velasco
and Robinson (2000), and Ling and Li (1997). See also Hauser (1999) for a …nite sample

comparison among ML estimation techniques.
Let us now describe the GMD estimator proposed in this paper. Consider the sample

ith-autocorrelation associated with the residuals de…ned in (4) or in (6) given by:

½̂e( )̧ (i) =
PT¡i
t=1 et(¸)et+i(¸)
PT
t=1 et(¸)2

: (9)

Also de…ne the vector ½̂
ke(¸) that contains the …rst k autocorrelations of the residuals :

½̂
ke( )̧ =

³
½̂e(¸) (1) ; ::: ; ½̂e( )̧ (k)

0́
: (10)

The following theorem will be very useful in the derivation of the subsequent theory:

Theorem 1 Consider the vector de…ned in (10) evaluated at ¸ = ¸0. Under the assump-
tions of Section 2, then:

³
½̂
ke( 0̧) ¡ ½̂

k"

´
= op (1) , for d0 > ¡1;

and p
T

³
½̂
k e(¸0) ¡ ½̂

k"

´
= op (1) , for d0 > ¡0:75: (11)

where ½̂
k" =

³
½̂" (1) ; ::: ; ½̂" (k)

´0
is the vector that contains the sample …rst k autocor-

relations (for …xed k) associated to "t:

The previous theorem implies that the asymptotic distribution of the sample correlations
of the residuals et (¸0) associated to the ARFIMA process, yt; coincides with that of the
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sample correlations associated to the true innovations of yt, "t; for d0 > ¡0:75: This means

that the e¤ect of the truncation is asymptotically negligible and therefore

p
T ½̂
ke(¸0)

w! N (0; Ik) ; for d > ¡0:75;

where Ik is the identity matrix of order k, with …xed k. Appendix 2 includes the results of
some Monte Carlo experiments that investigate the small sample behavior of this approxi-

mation.
Following the argument in TSB (1996), we consider the minimization of a distance be-

tween the estimated and theoretical autocorrelations but, in place of the original series, the
correlations of the above de…ned residuals are considered. Since the asymptotic variance ofp

T ½̂
ke( 0̧) is given by Ik; the identity matrix of order k; (Theorem 1), it follows (see (7))

that the e¢cient weighting matrix is Ik. Moreover, since ½̂
ke( 0̧)

p! 0; the MD criterion

function, Vke, becomes

Vke (¸;y) = ½̂0
ke(¸)

½̂
ke( )̧ =

kX

i=1

½̂e(¸) (i)2 ; (12)

and the GMD estimator ^̧k is de…ned as:

^̧
k = arg min

¸2¤
Vke (¸;y) : (13)

Notice that, since all the sample autocorrelations converge to zero and the e¢cient weight-

ing matrix is the identity matrix, the criterion function simpli…es notably with respect to
that de…ned in (8) ; corresponding to the TSB approach. Also, it just requires the existence

of the autocorrelations of the residuals but not those of the original series and therefore it
can also be applied to non-stationary series, in contrast to the TSB estimator.

So far we have considered that the number of autocorrelations included in the criterion
function, k; is a …xed number, as the above mentioned MD approaches have done. A

further novelty of this paper consists of allowing k to grow to in…nity with the sample
size T. As it will be seen in Theorems 3 and 4, estimators computed with a …xed k are

consistent and asymptotically normal, as long as k is greater that the p + q + 12. But,
considering that k grows with T (Theorem 5) allows to obtain an asymptotically e¢cient

estimator. The following theorem extends the results of Theorem 1 by showing that the
sum of (weighted) correlations also converges to a Normal distribution, when the number

of included correlations is allowed to go to in…nity.

Theorem 2 Let ½̂
ke(¸0) be the vector in (10) ; evaluated at ¸ = ¸0. Consider the series of

h £ k stochastic matrices {Âkg for k = 1; :::K; and let {AkgKk=1 be the probability limit of
2This restriction should be imposed to achieve identi…ability of the parameters.
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the former series. Now let k = k (T ) be a function of T such that limT!1k (T ) = 1 and

limT!1k (T )=T = 0. If
°°°Âk ¡ Ak

°°° = op
¡
k¡1=2

¢
and  = limk!1 AkA0

k is a bounded,
positive de…nite matrix then,

p
TÂk½̂ke(¸0)

w! N (0; ) :

The matrix Âk contains the (stochastic) weights of the autocorrelation function. Later
in the paper, this theorem will be used to show the asymptotic normality of the estimator

when k tends to 1. For that purpose, Âk and Ak will be replaced by the Jacobian matrix
of ½̂

ke( )̧ and its corresponding probability limit, respectively.

As mentioned above, Beran (1995), Tanaka (1999) and Velasco and Robinson (2000) also
present parametric estimators of both stationary and nonstationary fractionally integrated

processes. The …rst two consider time-domain approximate Gaussian ML estimates, irre-
spective of the degree of nonstationarity. However, Beran’s proof of consistency encounters

some problems as Velasco and Robinson (2000) point out. The di¢culties arise in the Tay-
lor formula employed in the proof, since the op (1) term in the expansion of

p
T

³
µ̂T ¡ µ0

´

is only justi…ed when µ̂T lies in a su¢ciently small neighborhood of µ0, which in turn pre-
sumes the consistency to be proved (see for instance, Brockwell and Davis, 1993, proposition

6.1.6). Nevertheless, the reported simulations support Beran’s conclusions that this esti-
mator is

p
T -consistent, asymptotic normally distributed and e¢cient for all d > ¡0:5.

Tanaka (1999) extends Beran’s approach to cover also non-invertible series. The estimates
are found by minimizing the variance of the residuals but, since this variance is not a con-

sistent estimator of the innovation variance for non-invertible FI series with d < ¡1, (see
Odaki, 1993), Tanaka’s estimator is not consistent either for d < ¡1: In the frequency do-

main, Velasco and Robinson (2000) show that the Whittle estimate is still appropriate for
non-stationary processes as long as enough tapering is applied to the data. This induces an
e¢ciency loss, since the introduction of tapering increases the variance of the estimators.

There are other approaches in the frequency-domain literature that do not need to resort
to tapering to achieve consistency in the non-stationary range of values of d; as is the case

of the semiparametric modi…ed log periodogram regression estimator (see Phillips, 1999).
The following theorems state the asymptotic properties of the GMD estimator proposed

here. Theorems 3 and 4 state that it is consistent and asymptotically normally distributed,
respectively, when T ! 1 and k, the number of correlations included in the criterion

function, is a …xed number greater than p+ q + 1. Theorem 5 extends the previous results
to the case where k is a function of the sample size that also goes to in…nity with T . It

is shown that the estimator is not only consistent and asymptotically normally distributed
in this case, but also that it is e¢cient since its asymptotic variance-covariance matrix is

the inverse of the Fisher information matrix as it is of ML estimators, as established by Li
and McLeod (1986) and Dahlhaus (1989). As in Beran (1995), Tanaka (1999) and Phillips
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(2000), and in contrast to Velasco and Robinson (2000), no tapering is required to achieve

these results.

Theorem 3 Let yt be an ARFIMA(p; d0; q) process under the hypotheses of Section 2. Also

let ¸0 be an interior point of the compact set ¤: Then, as T tends to in…nity, it holds that

^̧k
p! ¸0;

where ^̧k is the GMD estimator de…ned in (13) and k is a …xed number such that k ¸
p + q + 1.

Theorem 4 Under the hypotheses of the previous theorem, it holds that:

p
T(^̧k ¡¸0)

w! N
¡
0;¥¡1k

¢
; (14)

(for de…nition of ¥¡1k , see Appendix 1).

The following theorem presents analogous results when the number of correlations to be

included in the criterion function is not a …xed number but it grows with the sample size.
By allowing for an increasing k, e¢ciency is achieved.

Theorem 5 Let yt be an ARFIMA(p;d0; q) process under the hypotheses of Section 2 and
¸0 an interior point of the compact set ¤: Let ^̧ be the GMD estimator de…ned in (13)

where the number of correlations included in the criterion function, k; is a function of T
such that limT!1k(T ) = 1 and limT!1 k(T )=T = 0. Then, as T tends to in…nity, it

holds that
^̧ p! ¸0;

and p
T (^̧ ¡ ¸0)

w! N
¡
0; ¥¡1

¢
; (15)

where ¥ = limk!1¥k is the Fisher information matrix (for de…nition, see Appendix 1).

The matrix ¥ is identical to the Fisher information matrix for ARMA processes except for

the …rst row and column. Then, estimation of the remaining columns and rows is identical
to that of ARMA processes (see, for instance, Brockell and Davis, 1993). See also Tanaka

(1999) for a description of the estimation of the whole variance-covariance matrix.
The estimation approaches that just consider the invertible and stationary range of values

of d (d 2 (¡0:5;0:5)) should …rst determine m0 in an exploratory way. In the case where
the value of m0 is correctly guessed, an e¢cient estimator of this type and the estima-

tor proposed in this paper will share the same asymptotic variance-covariance matrix and
therefore they will be (asymptotically) equivalent (notice that the asymptotic covariance

10



matrix of ^̧ and ^̧
k is independent on the value of d0). But when the assumption about the

value of m0 is wrong, the former family of estimators will become inconsistent while this
problem will not a¤ect the GMD estimator. For this reason it is safer to use a method that

covers the whole range of values of d and there is no loss of e¢ciency by doing so if the
GMD estimator is employed. Nevertheless, when other methods are employed, such as the

Whittle estimator with tapered data, some e¢ciency loss can occur.
On the other hand, the Box-Jenkins methodology shares the same exploratory approach

for choosing m0 and, once this value has been chosen, inference on the rest of the ARMA
parameters is carried out as if the di¤erencing order was known a priori. This posses

an additional problem since this procedure clearly underestimates the uncertainty of the
problem and may lead to unrealistic con…dence intervals for the remaining parameters.

4. BEHAVIOR OF THE GMD ESTIMATOR IN FINITE SAMPLES.

In this section, a Monte Carlo study is conducted to investigate the small-sample perfor-

mance of the MD estimator de…ned in (13). Processes of the form ¢'0 (¢m0yt ¡ ¹0) = ut
were generated, with four di¤erent speci…cations for ut; namely ut = "t, ut = Á1ut¡1 + "t;

ut = (1 + µ1L) "t; and ut = Á1ut¡1 + Á2ut¡2 + "t; "t » NID(0; 1) in all cases. Further, ¹0

is set equal to zero but the estimation procedure is carried out both considering that its

value is known (and equal to zero) and also that it is unknown.
Before estimating the above-mentioned models, it is necessary to select the number of

correlations (k) to be included in the criterion function Vke: Although increasing k always
improves e¢ciency asymptotically, the suitable choice of k in …nite-sample applications

depends on the sample size T and both on the number (p + q + 1) and the values of the
parameters. Asymptotic theory does not help very much with respect to the right choice of

k and, therefore, this is a question that should be addressed via Monte Carlo simulation.
Table 1 presents the bias and the square root of the mean square error (SRMSE) of the
GMD estimator in the case where ut = "t; for two di¤erent sample sizes, T = 100 and

T = 400: The number of replications was 1000. Di¤erent values of k were used, namely, the
closest integer to the quantities: T 1=4, T 1=3; T1=2 (more precisely k = 3; 5;10 and k = 4; 7;20

for T = 100;400 respectively). Table 2 presents analogous results for the case where ¹0 is
unknown and has to be estimated. Tables 3, 4 and 5 display the …gures obtained from

similar experiments for the case where ut is an AR(1), MA(1) or an AR (2) process with
parameters Á1 = 0:6, µ1 = 0:5 or Á1 = 0:65 and Á2 = ¡0:6 respectively, and k = T1=4: The

value of the parameters have been chosen in order to facilitate comparison with the ones
used in previous studies. Other values of k were also tried and they are not reported for

economy of space but they are available upon request.
Figures in Tables 1 to 5 show the good performance of the proposed method. From Tables
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1 and 2 it can be seen that the GMD estimator is surprisingly robust across di¤erent values

of k: Moderate values of k provide the best results. For T = 100; the SRMSE is in general
smaller for those estimates computed with k = T1=4; although for T = 400 the SRMSE is

very similar and even smaller for those computed with T 1=3: With respect to e¢ciency, the
asymptotic standard deviations for the ARFIMA(0; d; 0) case given in (14) are ¼¡1

p
(6=T);

which equals 0.078 and 0.039 for T = 100 and 400; respectively. The reported SRMSE in
Table 1 are a reasonable approximation to these values. It is also remarkable the small

bias of the estimates, even for very large values of d: These values are usually negative
which suggests that the GMD method slightly underestimates the memory parameter. Also

note that the …gures for the case where ¹0 is unknown do not di¤er signi…cantly from the
case where it is known. For the AR and MA cases di¤erent values of k were used and
similar results were obtained. Again, the estimator performs better in terms of MSE when

moderate values of k are used in the criterion function. The estimates in Table 3 to 5 have
been calculated with k = T1=4: The asymptotic variance-covariance matrix (Asymp: V ar)

for the ARFIMA(1; d;0) process is given by

Asymp: V ar

Ã
d̂
Á̂1

!
=

1
T

0
@

¼2
6 ¡ 1

Á1
log (1 ¡ Á1)

¡ 1
Á1

log (1 ¡ Á1)
1

1¡Á21

1
A
¡1

; (16)

which delivers, for a value of Á1 = 0:6; asymptotic standard deviations equal to 0.256 and
0.262 for T = 100; and 0.128 and 0.131 for T=400, corresponding to d̂ and Á̂1 respectively.

As for the ARFIMA(0; d; 1) case, asymptotic standard deviations can be computed from an
analogous expression and, for µ1 = 0:5; they are equal to 0.222 and 0.246 for T = 100 and

0.1108, and 0.1231 for T = 400 corresponding also to d̂ and µ̂1 respectively. Again it is seen
that the reported SRMSEs are a reasonable approximation to these values.

Table 6 compares the SRMSE of di¤erent estimators of d for the ARFIMA(0; d; 0) case.
More speci…cally we consider the Whittle estimator (with Zhurbenko taper of order 2)

proposed by Velasco and Robinson (VR), the ML estimators proposed by Sowell (SOW)
and Beran (BER) and the minimum distance estimators by Tieslau et al. (TSB) and by

Galbraith and Zinde-Walsh (GZW). The DGP used in this experiment was a fractional
white noise with known mean equal to zero. The missing values in Table 6 stem from

methods that are not de…ned for the whole range of values of d: It can be observed that
the GMD estimator behaves similarly to the ML estimators and better than the remaining

ones. It is also remarkable the good performance of the GMD estimator in the range of
values of d in which other estimators are not de…ned.
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Table 1. Estimation of d for the ARFIMA(0; d;0) case

¹0 known (¹0 = 0)

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100
k = T1=4 -0.018 -0.032 -0.021 -0.017 -0.031 -0.019 -0.019 -0.026 -0.021

bias d̂ k = T1=3 -0.020 -0.031 -0.022 -0.029 -0.035 -0.021 -0.21 -0.028 -0.023

k = T1=2 -0.022 -0.032 -0.024 -0.032 -0.036 -0.023 -0.032 -0.030 -0.025

k = T1=4 0.101 0.105 0.094 0. 101 0.0970 0.093 0.093 0.104 0.098

SRMSE d̂ k = T1=3 0.111 0.110 0.111 0.109 0.114 0.103 0.103 0.118 0.102

k = T1=2 0. 116 0.117 0.114 0.113 0. 122 0.116 0. 118 0.122 0.121

T = 400
k = T1=4 -0.003 -0.007 -0.008 -0.010 -0.008 0.008 0.005 0.006 0.008

bias d̂ k = T1=3 -0.003 -0.008 -0.010 -0.012 0.008 0.010 0.006 0.006 0.002

k = T1=2 -0.003 -0.008 -0.010 -0.013 0.010 0.010 0.007 0.008 0.009

k = T1=4 0.045 0.042 0.045 0.041 0.042 0.046 0.044 0.044 0.046

SRMSE d̂ k = T1=3 0.044 0.041 0.043 0.041 0.042 0.046 0.043 0.044 0.044

k = T1=2 0.047 0.042 0.045 0.042 0.044 0.048 0.044 0.045 0.046

Table 2. Estimation of d for the ARFIMA(0; d; 0) case

¹0 unknown (¹0 = 0)

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100

k = T1=4 -0.005 -0.030 0.002 -0.003 -0.026 -0.022 -0.024 -0.027 -0.020

bias d̂ k = T1=3 -0.007 -0.036 -0.002 -0.031 -0.027 -0.025 -0.026 -0.030 -0.022

k = T1=2 -0.009 -0.034 -0.027 -0.031 -0.030 -0.027 -0.029 -0.029 -0.025

k = T1=4 0.101 0.107 0.097 0.103 0.104 0.100 0.102 0.104 0.099

SRMSE d̂ k = T1=3 0.113 0.107 0.106 0.109 0.110 0.114 0.104 0.107 0.105

k = T1=2 0.117 0.109 0.111 0.112 0.123 0.117 0.117 0.117 0.109

T = 400
k = T1=4 0.008 -0.007 0.001 -0.05 -0.008 -0.010 -0.004 -0.009 -0.008

bias d̂ k = T1=3 0.009 -0.009 0.003 -0.007 -0.007 -0.010 -0.009 -0.010 -0.010

k = T1=2 0.022 -0.009 -0.001 -0.007 -0.008 -0.011 -0.009 -0.012 -0.016

k = T1=4 0.046 0.042 0.046 0.044 0.044 0.046 0.044 0.042 0.043

SRMSE d̂ k = T1=3 0.047 0.042 0.049 0.043 0.444 0.049 0.048 0.040 0.043

k = T1=2 0.052 0.043 0.049 0.044 0.049 0.050 0.049 0.045 0.045
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Table 3. Estimation of ¸ = (d; Á1)
0 :

DGP: ARFIMA(1; d;0), Á1 = 0:6, k = T 1=4

¹0 known (¹0 = 0)

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100
bias d̂ -0.030 -0.018 -0.044 0.025 -0.046 -0.053 -0.053 -0.034 -0.055

SRMSE d̂ 0 212 0.225 0.240 0.230 0.253 0.234 0.237 0.245 0.255

bias Á̂1 -0.013 -0.023 -0.062 0.000 0.006 0.007 0.011 0.021 0.008

SRMSE Á̂1 0.219 0.249 0.253 0.203 0.203 0.202 0.193 0.215 0.209

T = 400
bias d̂ -0.028 0.028 0.012 0.023 0.024 0.053 0.027 0.022 0.054

SRMSE d̂ 0.150 0.140 0.136 0.158 0.142 0.164 0.150 0.155 0.162

bias Á̂1 0.001 0.002 -0.010 0.000 0.003 0.029 0.010 0.007 0.018

SRMSE Á̂1 0.142 0.135 0.135 0.148 131 03 0.145 0.146 0.141 0.143

¹0 unknown (¹0 = 0).

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100
bias d̂ -0.022 -0.021 0.000 -0.011 -0.045 -0.021 -0.032 -0.023 -0.022

SRMSE d̂ 0.219 0.221 0.181 0.219 0.221 0.221 0.210 0.233 0.222

bias Á̂1 -0.024 -0.043 -0.041 -0.025 0.003 0.000 -0.010 0.010 0.006

SRMSE Á̂1 0.211 0.197 0.182 0.182 0.216 0.190 0.210 0.215 0.227

T = 400
bias d̂ -0.004 -0.031 -0.018 -0.024 -0.023 -0.013 -0.015 -0.010 -0.017

SRMSE d̂ 0.146 0.141 0.131 0.143 0.140 0.143 0.143 0.144 0.147

bias Á̂1 0.018 0.004 0.013 0.001 0.003 0.026 0.013 -0.016 0.009

SRMSE Á̂1 0.143 0.136 0.127 0.147 0.132 0.139 0.138 0.140 0.141
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Table 4. Estimation of ¸ = (d; µ1)0 :

DGP: ARFIMA(0;d; 1), µ1= 0:5. k = T1=4

¹0 known (¹0 = 0)

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100
bias d̂ -0.012 -0.016 -0.010 -0.013 -0.018 -0.012 0.0206 0.004 0.025

SRMSE d̂ 0.148 0.131 0.148 0.147 0.138 0.164 0.244 0.213 0.260

bias µ̂1 -0.000 0.002 -0.003 -0.003 0.008 -0.003 -0.084 -0.146 -0.339

SRMSE µ̂1 0.146 0.127 0.138 0.141 0.131 0.141 0.2158 0.255 0.435

T = 400
bias d̂ -0.000 -0.007 -0.007 -0.005 -0.0082 -0.012 -0.0037 -0.009 -0.012

SRMSE d̂ 0.056 0.058 0.057 0.0574 0.056 0.0552 0.0567 .0591 0.077

bias µ̂1 0.00 0.005 0.0029 -0.003 0.0045 .0036 -0.025 -0.04700 -0.1834

SRMSE µ̂1 0.056 0.0542 0.0590 0.0582 00.0567 0.0541 0.0699 0.0974 0.2453

¹0 unknown (¹0 = 0).

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100

bias d̂ -0.019 -0.021 -0.008 -0.016 -0.021 -0.018 -0.023 -0.022 -0.0126

SRMSE d̂ 0.135 0.129 0.147 0.145 0.140 0.148 0.139 0 .146 0.146

bias µ̂1 0.002 0.007 -0.005 -0.000 0.012 0.002 0.008 0.007 -0.006

SRMSE µ̂1 0.129 0.125 0.135 0.136 0.134 0.135 0.122 0.139 0.142

T = 400

bias d̂ -0.004 -0.031 -0.018 -0.024 -0.023 -0.013 -0.015 -0.010 -0.017

SRMSE d̂ 0.146 0.141 0.131 0.143 0.140 0.143 0.143 0.144 0.147

bias µ̂1 0.018 0.004 0.013 0.001 0.003 0.026 0.013 -0.016 0.009

SRMSE µ̂1 0.143 0.136 0.127 0.147 0.132 0.139 0.138 0.140 0.141
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Table 5. Estimation of ¸ = (d;Á1; Á2)
0 :

DGP: ARFIMA(2; d;0), Á1= 0:6, Á2= ¡0:65;. k = T1=4

¹0 known (¹0 = 0)

d0 -0.7 -0.3 0.4 0.8 1.0 1.4 1.8 2.0 2.4

T = 100

bias d̂ -0.003 -0.031 -0.030 -0.021 -0.022 -0.064 -0.113 -0.168 -0.112

SRMSE d̂ 0.224 0.228 0.230 0.229 0.223 0.225 0.244 0.281 0.282

bias Á̂1 0.027 0.074 0.052 0.031 0.041 0.058 0.043 0.049 0.051

SRMSE Á̂1 0.206 0.219 0.232 0.216 0.226 0.230 0.261 0.302 0.306

bias Á̂2 -0.059 -0.050 -0.083 -0.069 -0.072 -0.067 -0.053 -0.031 -0.038

SRMSE Á̂2 0.150 0.171 0.174 0.159 0.165 0.165 0.202 0.371 0.382

T = 400

bias (d̂) 0.004 -0.011 -0.010 -0.006 -0.012 -0.015 -0.032 -0.051 -0.112

SRMSE d̂ 0.067 0.063 0.061 0.063 0.064 0.064 0.074 0.087 0.149

bias Á̂1 -0.003 0.003 0.001 0.001 0.003 0.002 -0.005 -0.019 -0.063

SRMSE Á̂1 0.054 0.054 0.049 0.051 0.053 0.053 0.059 0.067 0.110

bias Á̂2 0.003 0.003 -0.003 -0.003 -0.003 0.001 0.012 0.024 0.089

SRMSE Á̂2 0.047 0.049 0.048 0.049 0.047 0.048 0.052 0.061 0.126

Table 6. SRMSE for various estimation techniques

T = 100; DGP: ¢d0yt = "t; ¹0 known

d0 -0.3 0.2 0.4 0.8 1.0 1.4 1.8

V R 0.211 0.208 0.193 0.172 0.155 0.154 0.160

BER 0.084 0.083 0.089 0.091 0.086 0.092 0.095

TSB 0.189 0.094 0.109 - - - -

GZW 0.082 0.089 0.096 - - - -

SOW 0.089 0.092 0.069 - - - -

5. RESIDUAL-BASED STATISTICS FOR DIAGNOSING CHECKING.

Although parametric estimates present in general better properties than semiparamet-

ric ones, these good properties rely heavily on the correct speci…cation of the parametric
model. For this reason, a formal test to check the adequacy of the proposed model is very

often carried out. A common way of testing it is by checking the assumption of white noise
residuals (see Milhoj (1981) and Chen and Deo (2000) for other approaches that do not

require the computation of residuals from the …tted model). Box and Pierce (1970) intro-
duced a goodness-of-…t procedure that tests for signi…cant residual autocorrelations. The
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Box-Pierce (BP) statistic is de…ned as

Q (k) = T
kX

i=1
½̂2e(^̧) (i) : (17)

They proved that, in the context of ARIMA processes, this statistic is asymptotically

Â2-distributed with k ¡ p ¡ q degrees of freedom, for large k: Ljung and Box (1978) intro-
duced a modi…cation to the Q (k)¡statistic that improves the approximation to the Â2

k¡p¡q
distribution. This is de…ned as

~Q (k) = T (T + 2)
kX

i=1
(T ¡k)¡1½̂2e(^̧) (i) :

Hong (1996) proposed a generalization of the BP test given by

HT =

0
@T

k(T)X

i=1
h2 (i=k) ½̂2e(^̧) (i) ¡CT (h)

1
A=2DT (h)1=2 ;

where h(:) is a suitable chosen kernel and k (T) veri…es that limT!1 k (T) = 1 and
limT!1k (T )=T ! 0 (for the de…nition of CT and DT see Hong, 1996). When h (:) is

the truncated kernel, i.e., h (z) = 1 for jzj · 1 and 0 for jzj > 1; it is obtained

H¤
T =

0
@T

k(T)X

i=1

½̂2
e(^̧) (i) ¡ k (T)

1
A= (2k (T))1=2 ; (18)

a generalization of BP’s test when k (T) ! 1: Hong (1996) establishes the asymptotic
normality of HT for AR models when k (T ) ! 1 and k (T) =T ! 0:

The estimation procedure described in Section 3 provides an immediate check on the
adequacy of the speci…ed model, since the criterion function de…ned in (12), evaluated at

the estimated values and multiplied by the sample size, coincides with the BP goodness-of-…t
statistic in (17). Due to its simplicity, it is worth analyzing the behavior of this statistic. In

the context of stationary ARFIMA processes with known mean, the asymptotic distribution
of residual autocorrelations have been examined by Li and McLeod (1986). The following

theorem is an extension of Li and McLeod’s result to the case where the process is allowed
to be nonstationary and to have an unknown mean.

Theorem 6 Let ½̂
ke(^̧) be the vector containing the autocorrelations up to lag k of the

residuals, de…ned in (4) or (6) ; such that:

½̂
ke(^̧) =

³
½̂e(^̧) (1) ; ::: ; ½̂e(^̧) (k)

0́
(19)

where ½̂e(^̧) (i) is de…ned as in (9) : Then, for any …xed k,
p

T ½̂
ke( ^̧) is asymptotically nor-

mally distributed, with zero mean and variance-covariance matrix given by:

§ = Ik ¡ Jk (¸0)
¡
J 0k (¸0)Jk (¸0)

¢¡1 J0k (¸0)
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where Jk (¸0) is the limit as T tends to in…nity of the Jacobian matrix of ½̂e(¸0):

Applying standard results, it is easily seen that § is approximately idempotent with
rank k ¡ p ¡ q ¡ 1; for k large enough. Hence, both Q (k) and ~Q (k) are approximately

Â2-distributed with k ¡ p¡ q ¡ 1 degrees of freedom for large T:
The previous results imply that the minimum value of the criterion function (12), Vke

³
^̧
´
,

can be used to test the adequacy of the speci…ed model. Under the null hypothesis of
correct speci…cation, the above-mentioned value multiplied by the sample size is distributed
approximately Â2

k¡p¡q¡1; for large T; where k is the number of autocorrelations considered in

the criterion function. It is also straightforward to compute the Hong’s statistic in (18) from
this value, just by multiplying it by the sample size, substracting the number of included

autocorrelations and dividing by the squared root of 2k (T ). Although the asymptotic
properties of this statistic remain unknown where long memory processes are considered

and their derivation goes beyond the scope of this paper, the following section explores by
simulation its …nite sample behavior. It also discusses the …nite sample properties of both

Q (k) and ~Q (k) statistics.

6. BEHAVIOR OF THE GOODNESS-OF-FIT TESTS IN FINITE SAMPLES

To evaluate the performance in terms of size and power of the goodness-of-…t tests exam-

ined in Section 5, the following experiments have been carried out. First, processes of the
form ¢d0yt = "t; "t » NID (0;1) were generated for di¤erent values of d0: This parameter

was estimated in accordance with the method presented in Section 3 and the Q (k) statistic
was computed using the corresponding residuals. The value k was set equal to 3;4 and 5
for sample sizes T = 150; 400 and 500, respectively (that is, k » T1=4). Empirical size

at the 5% signi…cation level is calculated using the Â2
k¡1;0:95 value. Since the Ljung-Box

statistic improves the approximation to the Â2 distribution, it is usually preferred to the

Box-Pierce statistic in applications. Therefore, the values of the ~Q (k) are also computed
in order to compare the behavior of both tests. Table 7 reports the empirical size of both

the Box-Pierce (BP) and Ljung-Box (LB) tests. In agreement with the …ndings of Li and
McLeod (1986), the empirical size is close to the nominal size in both tests. Although

the approximation to the Â2
k¡1 distribution is slightly better for the LB test, the di¤erence

between both tests decreases as T increases.

With respect to the power of the test, it will obviously depend on how close is the DGP to
the null hypothesis. An ARFIMA(1; d0; 0) is been chosen as the true DGP with a value of

the autoregressive parameter Á1 equal to 0:5, for di¤erent values of d0. An ARFIMA(0; d;0)
was estimated instead. Table 8 reports the power of both the Box-Pierce (BP) and Ljung-

Box (LB) tests at the 5% nominal signi…cation level. Therefore power has been calculated
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with the asymptotic critical values and it has not been size-adjusted. Since both tests are in

general undersized, better results would have been achieved after size adjustment. It is seen
both tests perform quite similarly. For small sample sizes (T = 150) the power is similar

to that obtained by other methods proposed in the literature (see, for instance, Delgado
and Hidalgo, (1999)). It improves considerably when larger samples sizes are considered,

providing good results for sample sizes around 400 or 500.

Table 7. Empirical Size of BP and LB. (S:L: : 5%)

d0 -0.7 -0.3 0 0.4 0.8 1.4

T = 150

BP 3.5% 3.2% 3.8% 4.0% 3.6% 3.8%

LB 4.5% 4.0% 4.5% 4.1% 4.0% 4.5%

T = 400
BP 6.0% 4.2% 4.8% 4.8% 5.8% 4.5%

LB 6.0% 5.8% 3.5% 5.5% 6.0% 5.0%

T = 500

BP 5.5% 5.0% 5.0% 5.0% 4.5% 4.5%

LB 6.0% 5.0% 5.0% 5.5% 5.0% 4.2%

Table 8. Power of BP and LB. (S.L.: 5%)

DGP: ARFIMA(1; d; 0)

d0 -0.7 -0.3 0 0.4 0.8 1.4

T = 150
BP 24.8% 24.2% 24.4% 23.0% 23.8% 21.8%

LB 25.3% 24.4% 27.0% 25.2% 25.4% 21.8%

T = 400
BP 66.6% 68.6% 66.9% 64.4% 68.9% 64.5%

LB 67.3% 69.2% 67.9% 65.6% 70.8% 65.3%

T = 500

BP 81.8% 81.2% 79.8% 82.2% 82.4% 82.8%

LB 81.6% 81.6% 80.0% 83.0% 82.2% 83.4%

Tables 9 and 10 report the results of analogous simulations based on Hong’s statistic

de…ned in (18). To compute the size, critical values from a N (0; 1) distribution have been
employed. Since in this case k is allowed to go to in…nity, di¤erent values of k have been

employed, namely k (T ) = T1=4; T1=3 and T 1=2. It is seen that the empirical size is lower that
the nominal one but the approximation improves for faster k(T) and larger sample sizes.

Size-corrected power is been reported in order to facilitate comparison among di¤erent
values of k. Large sample sizes, (T = 400; 500), are needed to obtain a reasonable power.
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Also, it can be observed that a slower k (T ) provides better power, result which agrees with

Hong’s (1996) …ndings.

Table 9. Empirical Size of H¤
T: (S.L.: 5%)

d0 -0.7 -0.3 0 0.4 0.8 1.4

T = 150
k=T1=4 1.2% 1.5% 1.4% 1.1% 1.2% 1.2%

k=T1=3 2.2% 2.2% 2.3% 1.8% 1.6% 1.5%

k=T1=2 2.5% 2.5% 3.4% 2.8% 2.8% 2.6%

T = 400
k=T1=4 1.8% 1.9% 1.5% 2.2% 2.4% 2.1%

k=T1=3 2.9% 3.2% 2.1% 2.6% 2.9% 1.5%

k=T1=2 5.4% 3.9% 3.1% 3.6% 3.9% 3.2%

T = 500
k=T1=4 2.7% 2.1% 2.0% 3.1% 2.9% 2.6%

k=T1=3 2.4% 2.3% 2.6% 2.5% 2.6% 3.2%

k=T1=2 3.9% 4.2% 3.5% 4.0% 4.5% 5.2%

Table 10. Power of H¤
T (size corrected).

DGP: ARFIMA(1,d0; 0)

d0 -0.7 -0.3 0 0.4 0.8 1.4

T = 150

k=T1=4 22.3% 16.2% 19.8% 21.2% 20.6% 19.3%

k=T1=3 20.7% 14.7% 14.2% 14.2% 16.1% 16.1%

k=T1=2 12.1% 10.4% 9.2% 10.1% 13.8% 13.5%

T = 400

k=T 1=4 54.2% 28.7% 65.4% 54.3% 54.9% 56.5%

k=T 1=3 55.9% 56.4% 65.3% 56.4% 56.5% 59.8%

k=T 1=2 30.4% 32.6% 39.3% 35.0% 35.5% 30.6%

T = 500

k=T1=4 70.9% 82.1% 76.7% 75.0% 74.1% 76.8%

k=T1=3 75.9% 77.7% 68.6% 76.6% 77.1% 69.9%

k=T1=2 45.2% 52.8% 45.8% 46.1% 43.2% 39.7%

7. EMPIRICAL APPLICATIONS.

In order to illustrate the application of the techniques proposed in this paper, two empir-

ical studies have been carried out. Firstly, to provide a further comparison with previous
estimation techniques, the empirical series analyzed by Beran (1995), Velasco and Robinson
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(2000) and Robinson (1994b) have been considered, namely the chemical process temper-

ature readings (Series C) and the chemical process concentration readings (Series A) from
Box and Jenkins (1976). Secondly, the orders of fractional integration of the GDP per

capita series of several countries have been estimated.
With respect to the …rst application, our conclusions are in fair agreement with those of

the above-mentioned studies. For series C, Box and Jenkins (BJ), …tted an ARIMA(1;1;0)
model, with an estimated value of the AR parameter Á1 = 0:8: The corresponding estimates

for an ARFIMA(1; d;0) process according with the GMD method are: d̂ = 1:005 with a 95%
con…dence interval (C.I.) of [0:7497; 1:2617] and Á̂1 is 0.798 with a 95% C.I. of [0: 563; 0:972];

in close agreement with BJ’s conclusions. Nevertheless, the recognition of the uncertainty on
d, increases substantially the standard deviation of the AR parameter. Similar conclusions
are reached both in Beran (1995) and Velasco and Robinson (2000):

For series A, BJ …tted an ARIMA(0;1; 1) ; which yields a signi…cative value for the MA
parameter equal to -0.7. This large negative value suggests that the model could be overdif-

ferenced. If an ARFIMA(0; d;1) is …tted instead, the GMD estimates are 0.43 and -0.038
with 95% C.I.s of [0.241,0.612] and [-0.27,0.196] for d̂ and µ̂1; respectively. Therefore, d = 1

is not included in the C.I., which reinforces the believe that the series in the BJ model is
overdi¤erenced. Since the MA parameter is not signi…cant in this second case, we have also

…tted an ARFIMA(0; d;0) to the data. In this case, the estimated value of d drops to 0:401
with a 95% C.I. of [0.292,0.51]. Also in this case, our results follow closely the ones obtained

in Velasco and Robinson (2000) and Beran (1995).
In the second application, some of the series of Maddison’s (1995) data set have been

analyzed. This data set contains the annual GDP per capita series for OECD countries
during the period 1870-1994 (125 observations). This data set has also been analyzed by

Micchelaci and Za¤aroni (2000) and Dolado et al. (2002) among others. In particular, three
countries have been considered, namely Canada, Japan and Germany. Since these series are

clearly trended, the estimation has been carried out as if the mean was di¤erent from zero
and unknown. They have been estimated according to the following parametric methods:

the GMD method presented in this paper, the Sowell’s exact ML procedure (with the series
in …rst di¤erences when they are nonstationary), the NLS method by Beran (1995) and

the Velasco and Robinson (2000) Whittle estimator (with Zhurbenko taper of order 2).
Also, several ARFIMA(p;d; q) processes have estimated for values of p; q in the range 0 to

2, and the results reported correspond to the preferred model according to the AIC lag-
length criterion. Table 11 reports the value of the estimates and their standard errors (in

brackets). As it can be seen from this table, all methods deliver very similar estimates of
the parameters. With the exception of Japan, it seems to be the case that Canada and

Germany are clear cases where the GDP per capita series are fractionally integrated, with
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a value of d around 0.5 for the former and in the range d 2 (0:5;1) for the latter. It is also

noticeable that there is a negative relation between the values of d and the values of the
remaining parameters across the di¤erent methods. Standard deviations are also similar

across methods with the exception of the Velasco and Robinson technique which shows
slightly higher values due to the tapering employed.

Table 11. Estimation results from various estimation techniques

Canada Japan Germany

Model (AIC) ARFIMA(1; d;0) ARFIMA(0; d;0) ARFIMA(0; d; 1)

GMD d̂ = 0:40; Á̂1 = 0:78
(0:217; 0:174)

d̂ = 1:083
(0:006)

d̂ = 0:87; µ̂1 = 0:49
(0:195; 0:218)

SOW d̂ = 0:48; Á̂1 = 0:72
(0:239; 0:213)

d̂ = 1:064
(0:006)

d̂ = 0:80; µ̂1 = 0:51
(0:201; 0:222)

BER d̂ = 0:50; Á̂1 = 0:67
(0:242; 0:230)

d̂ = 1:067
(0:006)

d̂ = 0:78; µ̂1 = 0:55
(0:214; 0:229)

V-R d̂ = 0:41; Á̂1 = 0:64
(0:345; 0:340)

1:030
(0:101)

d̂ = 0:62; µ̂1 = 0:62
(0:330; 0:341)

8. CONCLUSIONS

In this paper we have proposed a new method for estimating the parameters of an
ARFIMA(p;d0; q) process with d0 > ¡0:75: It covers a very wide range of values of d0,

providing therefore a uni…ed framework for the construction of con…dence intervals and
tests for the memory parameter. The proposed estimator belongs to the MD class and

it is based on the minimization of the residuals obtained after …ltering a process through
ARFIMA parameters. Its asymptotic properties as well as its …nite sample performance

are discussed and it is shown that it is
p

T-consistent, asymptotically normally distributed,
and e¢cient without making strong assumptions on the distribution of the process under
study. Monte Carlo experiments show that it is also well-behaved in …nite samples and that

it compares well to other existing estimators in the literature. Another interesting feature
of the estimator is that the criterion function evaluated in the estimate coincides with the

Box-Pierce (1970) goodness-of-…t statistic, providing therefore, and immediate tool to eval-
uate the adequacy of the model speci…cation. The asymptotic properties of this statistic,

as well as the ones of the Ljung-Box (1978) statistic, are discussed and some simulations
are provided in order to evaluate their accuracy in …nite samples.

Finally, another nice attribute of the proposed estimator is its ‡exibility to be extended
to more general settings. For instance, the estimator can be easily robusti…ed against condi-

tional heterocedasticity, simply by considering the sample autocorrelations of the standard-
ized residuals and, with this modi…cation, the resulting statistic remains asymptotically

equivalent to MLE. Also, following the lines of Wright (1999), it can be adapted to deal
with the fractionally integrated stochastic volatility model. Further research should also be
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undertaken to extend the previous framework to the multivariate case.
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APPENDIX 1

Proof of Theorem 1.
The residuals de…ned in (6), et (¸), evaluated at ¸ = ¸0 can be written as

et (¸0) =
t¡m0¡1X

j=0
®j (¸¤0) (¢m0yt ¡¹0) +

¡
¢m0y ¡¹0

¢ t¡m0¡1X

j=0
®j (¸¤0) ; t = m0 + 1; :::;T:

This allows us to write
et (¸0) = "t + ´t;

where ´t is given by

´t = ¡
1X

i=t¡m0

®i (¸¤0) (¢m0yt¡i¡ ¹0) +
¡
¢m0y ¡ ¹0

¢ t¡m0¡1X

j=0
®j (¸¤0) ;

and ¢m0y denotes the sample mean of ¢m0yt: To simplify notation, assume without loss of

generality that m0 = 0 (when this is not the case, de…ne the process y¤t = ¢m0yt and the
following arguments will remain valid just by substituting yt by y¤t ): Then, d0 = '0.

Let
p

T¨T be the vector that contains the di¤erences in expression (11), that is

p
T¨T =

p
T

³
½̂
ke(¸0)¡½̂

k"

´
:

Consider the i ¡th element of the vector ¨T: The sample variance of et (¸0) converges to

the innovation variance as long as d0 > ¡1 (see Odaki, 1993). The di¤erence between the
i-th sample autocovariance of the residuals and of the i-th autocovariance of the innovations,

scaled by
p

T , is given by

T 1=2

ÃPT¡i
t=1 et (¸0) et+i (¸0) ¡PT¡i

t=1 "t"t+i
T

!
= (20)

= T¡1=2
Ã
T¡iX

t=1
"t+i´t +

T¡iX

t=1
"t´t+i +

T¡iX

t=1
´t´t+i

!
: (21)

Let us …rst consider the case where ¹0 is known and equal to zero. In this case ´t
collapses to ´t = ¡P1

i=t®i (¸
¤
0)yt¡i: By repeated substitution, Odaki (1993) shows that

this expression can be rewritten as

´t =
1X

j=0
Ãj;t¡1"¡j ; (22)

(for the precise form of the sequence of coe¢cients fÃj;t¡1g1j=0, see Odaki, 1993, p. 704).

Notice that only terms of "t with t · 0 enter the above de…nition. From the former article
it is also known that the orders of magnitude of the sum of squares of these coe¢cients are
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0
@

1X

j=0

Ã2
j;t¡1

1
A =

8
>><
>>:

O
¡
t¡1

¢
if '0 2 (¡0:5; 0:5) ;

O
¡
(log t) t¡1

¢
if '0 = ¡0:5;

O
¡
t¡2(1+'0)

¢
if '0 < ¡0:5:

(23)

To check that expression (21) converges to zero, consider

T¡1=2
T¡iX

t=1
E ("t+i´t) = T¡1=2

T¡iX

t=1
E ("t+i)E (´t) = 0; (24)

by independence of the processes ´t and {"tg1t=1 (see (22)). Taking into account (24) and

(23) 3 ;

T¡1E

Ã
T¡iX

t=1

"2t+i´
2
t

!
= ¾4T¡1

T¡iX

t=1

0
@

1X

j=0

Ã2
j;t¡1

1
A ! 0: (25)

A similar argument holds for the second term in (21), since in this case ´t+i =
P1
j=0Ãj;t+i¡1"¡j

and again no contemporaneous terms of " are found in the product "t´t+i. Hence, all cross

products vanish. With respect to the third term in (21) ;

T¡1=2
T¡iX

t=1
E

¯̄
´t´t+i

¯̄
· T¡1=2

T¡iX

t=1
E

¡
´2t

¢

= T¡1=2¾2
T¡iX

t=1

0
@

1X

j=0

Ã2
j;t¡1

1
A : (26)

The orders of magnitude in (23) imply that

T¡iX

t=1

0
@

1X

j=0
Ã2
j;t¡1

1
A =

8
>><
>>:

O (log T ) for '0 2 (¡0:5; 0:5)

O
¡
log2T

¢
for '0 = ¡0:5

O
¡
T¡2(1+'0)+1

¢
for '0 < ¡0:5:

(27)

Therefore, for ¡0:75 < '0 < 0:5; expression (26) tends to zero. Note that if we consider

the covariances (without being multiplied by
p

T); expression (26) still tends to zero even
in the interval ¡1 < '0 < ¡0:75: To check that the variance also converges to zero, notice
that

T¡1E

Ã
T¡iX

t=1
´t´t+i

!2

= T¡1
T¡iX

r=1

T¡iX

s=1
E

¡
´r´r+i´s´s+i

¢
; (28)

and that

E
¡
´r´r+i´s´s+i

¢
· E

¡
"4t

¢ 1X

j=0

¯̄
Ãj;r¡1Ãj;r+i¡1Ãj;s¡1Ãj;s+i¡1

¯̄
+

3Since
P1
j=0 E

¡
Ã2j;t¡1"

2
¡j

¢
<1; it is possible to interchange the expectation and the summation in order

to obtain (25) : See Rao, (1973) ; p.111.
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+¾4
1X

j=0

¯̄
Ãj;r¡1Ãj;s¡1

¯̄ 1X

j=0

¯̄
Ãj;r+i¡1Ãj;s+i¡1

¯̄

+¾4
1X

j=0

¯̄
Ãj;r¡1Ãj;s+i¡1

¯̄ 1X

j=0

¯̄
Ãj;r+i¡1Ãj;s¡1

¯̄

+¾4
1X

j=0

¯̄
Ãj;r¡1Ãj;r+i¡1

¯̄ 1X

j=0

¯̄
Ãj;s¡1Ãj;s+i¡1

¯̄
:

It is easy to check that the coe¢cients fÃj;tg are strictly smaller than one in absolute value

and that are strictly decreasing in both subindexes (j; t) : Applying the last two results and
Cauchy’s inequality, we obtain:

E
¡
´r´r+i´s´s+i

¢ · E
¡
"4t

¢ f
0
@

1X

j=0

¯̄
Ã2
j;r¡1Ã

2
j;r+i¡1

¯̄ 1X

j=0

¯̄
Ã2
j;s¡1Ã

2
j;s+i¡1

¯̄
1
A

1=2

+2

0
@

1X

j=0

¯̄
Ãj;r¡1Ãj;s¡1

¯̄
1
A

2

+
1X

j=0

¯̄
Ã2
j;r¡1

¯̄ 1X

j=0

¯̄
Ã2
j;s¡1

¯̄
g

· 4E
¡
"4t

¢ 1X

j=0

¯̄
Ã2
j;r¡1

¯̄ 1X

j=0

¯̄
Ã2
j;s¡1

¯̄
:

Therefore

T¡1
T¡iX

r=1

T¡iX

s=1
E

¡
´r´r+i´s´s+i

¢
· 4T¡1E

¡
"4t

¢ T¡iX

r=1

T¡iX

s=1

0
@

1X

j=0
Ã2
j;r¡1

1
A

0
@

1X

j=0
Ã2
j;s¡1

1
A ; (29)

and again taking into account (27) ; this expression tends to zero for '0 > ¡0:75.
Since the i-th element of

p
T¨T tends to zero for all i = 1; :::; k; then

p
T¨T

p! 0;

implying the desired result.
The case where ¹0 is unknown can be proved similarly using standard arguments since

¢m0y is a consistent estimator of ¹0 (see for instance, Robinson 1994b).¥

Proof of Theorem 2
Let us …rst consider the convergence of

p
TAk(T)½̂k(T)e(¸0)

w! Z; where Z » Nh (0; ).
Recall that ½̂

k(T)e( 0̧) = ¾̂¡1°̂
k(T)e(¸0); where °̂

k(T )e( 0̧) is the autocovariance function, and ¾̂

is a consistent estimator of the variance of "t. We would …rst show that
p

TAk(T)°̂k(T)e(¸0)
w!

Z¤ = ¾Z; from where the corresponding result for ½̂
k(T)e(¸0) follows trivially.

Following Proposition 6.3.9 in Brockwell and Davis (1993), in order to prove the for-
mer statement, it is needed to show that: i) for …nite r;

p
TAr°̂re( 0̧)

w! Z¤
r ; where Z¤

r »
Nh

¡
0; ¾2ArA0

r
¢
; ii) Z¤

r
w! Z¤; where Z¤ » Nh

¡
0; ¾2

¢
and  = limr!1ArA0

r , and iii)

lim
r!1

lim sup
T!1

P
³¯̄
¯
p

TAk(T)°̂k(T)e(¸0) ¡
p

TAr°̂re(¸0)
¯̄
¯ > ²

´
= 0 (30)
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for all ² > 0. The proof of i) follows from the same arguments as Theorem 1, since for

…nite r, the vector °̂
r e(¸0) is jointly normal. As regards ii), it is a standard result that if

Z¤
r » Nh

¡
0; ¾2ArA0

r
¢

and limr!1ArA0
r = , then Z¤

r
w! Z¤ (see for instance Brockwell

and Davis, 1993, p.225). To prove iii), notice that expression (30) can be rewritten as

lim
r!1

lim sup
T!1

P

0
@

¯̄
¯̄
¯̄
p

T
k(T )X

j=r+1
aij °̂e(¸0) (j)

¯̄
¯̄
¯̄ > ²

1
A = 0; for i = 1; :::; h: (31)

By Chebyshev’s inequality, the probability in (31) is bounded by

²¡2TE

0
@

0
@
k(T)X

j=r+1
aij°̂e(¸0) (j)

1
A

21
A

= ²¡2
0
@
k(T)X

j=r+1

a2ijTE
³
°̂e( 0̧) (j)

´2
+2

k(T)X

s=r+1

k(T)X

l>s

ailaisTE
³
°̂e(¸0) (s) °̂e(¸0) (l)

´
1
A

It is easy to check that TE
³
°̂e(¸0) (j)

´2
= (T¡j)

T ¾4 and that TE
³
°̂e(¸0) (s) °̂e(¸0) (l)

´
= 0.

Then,

lim
r!1 lim

T!1
²¡2

0
@
k(T)X

j=r+1
a2ijTE

³
°̂e( 0̧) (j)

´2
+2

k(T)X

s=r+1

k(T)X

l>s
ailaisTE

³
°̂e( 0̧) (s) °̂e(¸0) (l)

´
1
A

(32)

= lim
r!1

lim
T!1

²¡2
k(T)X

j=r+1

a2ij
(T ¡ j)

T
= lim
r!1

²¡2
1X

j=r+1

a2ij = 0 (33)

This last equality follows from noticing that the sum
P1
j=1 a2ij ; i = 1; :::; h; is bounded since

it corresponds to the diagonal elements of the matrix ; which is bounded. Expression (33)
implies that (30) tends to zero. Therefore,

p
TAk(T)°̂k(T)e(¸0)

w! ¾Z: Now, we check that°°°
p

T
³
Âk(T) ¡Ak(T)

´
°̂
k(T)e( 0̧)

°°° = op (1) :

p
T

°°°
³
Âk(T) ¡Ak(T)

´
°̂
k(T)e( 0̧)

°°° ·
p

T
°°°
³
Âk(T) ¡Ak(T)

´°°°
°°°°̂
k(T)e(¸0)

°°°

=

0
@
pX

i=1

kX

j=1

(aij ¡ âij)2
1
A

1=2 0
@T

kX

j=1

³
°̂
je(¸0)

2́
1
A

1=2

(34)

By applying Jensen’s inequality and noticing that k=T ! 0; it is obtained that

(T=k)1=2 E
µPk

j=1

³
°̂
je(¸0)

2́
¶1=2

= Op (1) ; and that (T=k)var
µPk

j=1

³
°̂
je( 0̧)

2́
¶1=2

! 0.

Then, the second term in (34) is Op
¡
k1=2

¢
. The …rst term is op

¡
k¡1=2

¢
, since

°°°Âk(T ) ¡Ak(T)
°°° =

op
¡
k¡1=2

¢
by hypothesis. This implies that

p
TÂk(T)°̂k(T)e( 0̧)

w! ¾Z: Given the consistency

of ¾̂; it follows that
p

T Âk(T)½̂k(T)e(¸0)
w! Z as desired:¥
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In order to prove the consistency of the estimator stated in Theorem 3, we consider

separately the cases where the inferior limit of the parameter space of d, r1, is such that
r1 · d0 ¡ 1=2 from those where r1 > d0 ¡ 1=2. The reason for making this distinction is

the non-uniform behavior of FI (d0) processes which, in turn, determines the properties of
the criterion function: whenever d0 is ¸ 1=2, the process is not stationary and correlations

do not exist. When de…ning the residuals, the process yt will be …ltered by ¢d; and the
resulting process will be a FI (d0 ¡ d) process. If r1 > d0¡ 1=2, then d0 ¡d < 1=2 always,

and then the autocorrelations of the above mentioned residuals will exist. A similar problem
and solution appeared in Robinson (1995) and Velasco and Robinson (2000) : A two-step

proof similar to that proposed in both articles is also followed in this paper. Before stating
the proof, we need the following de…nition.

De…nition 1 Denote ¸(1) = d and ¤1 = fd : r1 · d · r2g £ ¤(¡1) if r1 > d0 ¡ 1=2 or

otherwise ¤1 = fd : d0 ¡1=2 +´ · d · r2g £¤(¡1) for some ´ 2 (0; 1=2) ; if r1 · d0¡ 1=2,
where ¤(¡1) is the parameter space of the remaining ARMA parameters.

The following auxiliary result is needed.

Lemma 1 Let Vke (¸) be the criterion function in (12) ; where et (¸) is de…ned as in (4)

or (6) ; according to the case where the DGP has a known or unknown mean respectively.
Let ~̧ 2 ¤1 and de…ne Vk"

³
~̧
´

=
Pk
i=1

³
½"(~̧) (i)

´2
; where ½"( ~̧) (:) are the (population)

autocorrelations associated to the non truncated residuals "
³
~̧
´

; and k is a …xed number.
Then:

1. Vke (¸) is continuous in ,̧ Vke
³
~̧
´

converges in probability to Vk"
³
~̧
´

and the con-
vergence is uniform:

2. Vk"
³

~̧
´

is a continuous function and has a unique minimum at ¸0; such that Vk" (¸0) =
0:

Proof of Lemma 1.

1. The continuity of Vke (¸) is trivial, since it is a continuous composition of continuous
functions. The asymptotic negligibility of the truncation is proved in Proposition 7.3.3.

in Brockwell and Davis (1993). Since the sample correlations associated to stationary
processes are consistent (Hosking, 1996), it follows that Vke

³
~̧
´
p! Vk"

³
~̧
´
. The

uniform convergence follows from the pointwise convergence and an equicontinuity
argument using the compactness of ¤1 and the di¤erentiability of ½ (:) with respect

to ¸ (cf. Davidson, (1994), p. 340, and Velasco and Robinson, 2000).
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2. It is straightforward to check that it has a unique minimum at ¸0; since "t (¸)j¸= 0̧
=

"t; which is an i:i:d: process and therefore all its correlations are zero, (which implies
that Vk" (¸0) = 0); but presents non-null autocorrelations for any other value of ~̧ 6= ¸0

(and therefore V"
³

~̧
´

> 0): The continuity of Vk"
³

~̧
´

follows from the assumptions
above (see Amemiya, Theorem 4.1.1)¥

Proof of Theorem 3
We proceed with the two-step proof of consistency proposed in Robinson (1995) and

Velasco and Robinson (2000).

First step. De…ne ^̧1 = arg min¸2¤1 Vke (¸) : It follows from standard results that if we
can write Vke (¸) ¡ Vke (¸0) = S (¸) ¡ U (¸) ; where S (¸) is nonstochastic and constant

over t such that for all ² > 0 there exists ± > 0 such that infk¸¡ 0̧k ²̧ S (¸) ¸ ±, and
sup¸2¤1 jU (¸)j p! 0; then ^̧1

p! ¸0: Hence, let us denote S (¸) = Vk" (¸) and, since Vk" (¸)

is continuous and has a unique minimum at ¸ = ¸0, the condition on S (¸) holds; U (¸) is
given by U (¸) = Vk" (¸) ¡ Vke (¸) +Vke (¸0) : Notice that:

sup
¸2¤1

jU (¸)j · sup
¸2¤1

jVke (¸) ¡ Vk" (¸)j + jVke (¸0)j ;

and both terms in the right hand side tend to zero, the …rst due to uniform convergence
and the second due to pointwise convergence (Lemma 1).

Second step. Now consider the case where d0 ¸ 1=2 +r1 and de…ne ¤2 = fd : r1 · d <
d0 ¡ 1=2 + ´g £ ¤(¡1); ^̧

k = arg min¸2¤ Vke (¸) : Now we prove that the probability of the

limit of ^̧k is di¤erent from the limit of ^̧1; converges to zero. For this, it is needed to show
that, for any ± > 0; P

³°°°^̧k ¡ ^̧1
°°° ¸ ±

´
! 0: Notice that,

P
³°°°^̧k ¡ ^̧1

°°° ¸ ±
´

· P
µ

inf
¸2¤2

Vke (¸) · min
¸2¤1

Vke (¸)
¶

(35)

= P
µ

inf
¸2¤2

Vke (¸) · Vke
³
^̧1

´¶
(36)

= P
µ

inf
¸2¤2

Vke (¸)¡ Vke
³
^̧1

´
· 0

¶
(37)

Since ^̧1 is consistent (step 1) and uniform convergence holds, P
³
Vke

³
^̧1

´
> 0

´
! 0. On

the other hand, P(Vke (¸) · 0) ! 0 for all ¸ 2 ¹¤2, where ¹¤2 is the closure of ¤2. To check
that, notice that the function Vke (¸), ¸ 2 ¹¤2, contains the squared estimated correlations

of a FI
³
d0 ¡ (̧1)

´
process, where (̧1) 2 [r1; d0 ¡ 1=2 + ´], therefore it is always a non-

negative quantity. Whenever ¸(1) 2 (d0¡ 1=2; d0¡ 1=2+ ´]; then 1=2 ¡´ < d0 ¡¸(1) < 1=2;

and the corresponding …ltered process is long-memory stationary. Thus, the squared sam-
ple autocorrelations converge to the squared population autocorrelations which, clearly, are
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bounded away from zero. If ¸(1) 2 [r1; d0 ¡ 1=2], then d0 ¡ (̧1) ¸ 1=2; so that Vke (¸) con-

tains the sample autocorrelations of a non-stationary process. Since Vke (¸) should contain,
at least, the …rst autocorrelation, it is clear that Vke (¸) =

Pk
i=1 ½̂2e(¸) (i) ¸ ½̂2e(¸) (1)

p! 1

(see Sowel, (1990), Theorem 3). This implies that P(Vke (¸) · 0) ! 0 for all ¸ 2 ¹¤2 and.
The continuity of Vke (¸) implies that in…mum is contained in ¹¤2;which in turn implies

that P (inf¸2¤2 Vke (¸) · 0) ! 0: The latter result, together with P
³
Vke

³
^̧1

´
> 0

´
! 0,

involves that the probability in (35) tends to zero. ¥

Proof of Theorem 4
The mean value theorem applied to the …rst-order condition gives

0 =
@Vke (¸0)

@¸
+

@2Vke
¡¹̧¢

@¸@¸0
³

^̧k ¡¸0

´
;

where ¹̧ is a mean value on the line joining ^̧k and ¸0. Multiplying through by
p

T and

solving for
p

T
³

^̧k ¡¸0

´
yields

p
T

³
^̧k ¡ ¸0

´
= ¡

0
@

@½̂0
ke(¹̧)
@¸

@½̂
ke(¹̧)
@¸0

1
A
¡1

@½̂0
ke(¸0)

@¸
p

T ½̂
ke( 0̧): (38)

Given that ^̧k is consistent, so is ¹̧: To compute the limit of the …rst product in the right
hand side of (38) de…ne Ĵk (¸0) = @½̂

ke(¹̧)=@¸0
¯̄
¯̧
= 0̧

and notice that et (¸) can be written as

et (¸) = ¢d¡d0©(L)¡1£(L)©0 (L)£0 (L)¡1 "t; (39)

or as,

et (¸) = £¡1 (L) ©(L)£0 (L)©¡10 (L)¢d¡d0"t +£¡1 (L)© (L)
³
¢d¡m0¹ ¡ ¢'

³
¢d¡'y

´´
;

(40)
according to the cases where ¹ is known or unknown respectively. Let us analyze the former

case.
Consider …rst the (i; 1) element of Ĵk (¸0). Noticing that @¢d¡d0=@d

¯̄
d=d0

= log (1 ¡L)

and using the similar arguments as in proof of Theorem 1, it is obtained that,

@½̂e (i)=@dj¸=¸0 = 1
T

PT
t=i+1 log(1 ¡L) "t"t¡i

¾2
+ op (1) ; for i = 1; :::; k, (41)

(see Tanaka (1999) for details). Now, since log (1 ¡ L) "t = ¡("t¡1 + 1=2"t¡2 +1=3"t¡3 + :::) ;
it follows that T¡1

P
log (1 ¡ L) "t"t¡i = ¡T¡1 P

"2t¡i=i¡T¡1
PT
t=i+1 "t¡i

³P1
j=1;j 6=i

1
j "t¡j

´
:

It can easily be checked that the later term tends in mean square to zero whereas the LLN

for i:i:d processes guarantees that the former one converges in probability to ¡¾2=i: In turn,
this implies that @½̂e (i)=@dj¸= 0̧

p! ¡1=i; for i = 1; :::; k.
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The derivatives with respect to the remaining ARMA parameters are given by:

@½̂e (i)=@Áj
¯̄
¸=¸0

=
1

T¾2

X ¡"t¡j
©(L)

"t¡i + op (1)
p!

(
¡!i¡1 if j · i:

0 if j > i:
; (42)

and:

@½̂e (i)=@µj
p! 1

T¾2

X ¡"t¡j
£(L)

"t¡i+ op (1) p!
(

¡Ãi¡1 if j · i

0 if j > i:
(43)

where 1
©(L) =

P
!iLi and 1

£(L) =
P

ÃiLi: Therefore, for …nite k; the Jacobian matrix

Ĵk (¸0) tends to

Jk (¸0) =

0
BBBBB@

¡1 1 0 ::: 1 ::: 0
¡1=2 !1 1 ::: Ã1 ::: 0

::: ::: ::: ::: ::: ::: :::
¡1=k !k¡1 !k¡2 ::: Ãk¡1 ::: Ãk¡q

1
CCCCCA

: (44)

Also, since
p

T½̂
ke(¸0) =

p
T ½̂
k"+op (1)

w! N (0; Ik) for …xed k (Theorem 1), it is straight-
forward to check that

p
T

³
^̧
k ¡ ¸0

´
is also asymptotically normally distributed with mean

equal to zero and variance-covariance matrix given by ¥¡1k = (J 0k (¸0)Jk (¸0))¡1. The case
where ¹ is unknown can be proven along the same lines.¥

In order to prove Theorem 5, where the consistency of the estimator when k also tends

to in…nity is established, the sets ¤1 and ¤2 need to be rede…ned.

De…nition 2 Denote ¸(1) = d and ¤¤1 = fd : r1 · d · r2g £ ¤(¡1) if r1 > d0 ¡ 1=4 or

otherwise ¤¤1 = fd : d0 ¡1=4 +´ · d · r2g £¤(¡1) for some ´ 2 (0; 1=4) ; if r1 · d0¡ 1=4,
where ¤(¡1) is the parameter space of the remaining ARMA parameters.

The reason for introducing this modi…cation is that, since k ! 1; the criterion function

contains an increasing number of correlations and the summability of squared correlations
of FI (d0) processes depends on the value of d0: More speci…cally, whenever d0 is ¸ 1=4,

correlations of FI (d0) processes are not square-summable. Following the same reasoning
as in the proof of Theorem 3, the integration order of the residuals (obtained after …ltering

yt by ¢d and another ARMA parameters) will be (d0 ¡d). Then, if r1 > d0 ¡ 1=4, it
implies that d0 ¡d < 1=4 always, and therefore the associated squared autocorrelations will

be summable. With this de…nition of ¤¤1; it is ensured that processes whose parameters lie
in this set posses squared-summable correlations. The following auxiliary result is needed

to prove the theorem.

Lemma 2 Let Vke (¸) be the criterion function in (12) ; where et (¸) is de…ned as in (4) or
(6) according to the case where the DGP has a known or unknown mean respectively and
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let ~̧ 2 ¤¤1: Also de…ne V"
³
~̧
´

=
P1
i=1

³
½"( ~̧) (i)

2́
; where ½"(~̧) (:) are the (population)

autocorrelations associated to the non truncated residuals "
³

~̧
´
. Let k be a function of T;

such that limT!1 k (T) = 1 and limT!1 k (T)=T = 0. Then:

1. V"
³
~̧
´

is a continuous funtion and has a unique minimum at ¸0;such that V" (¸0) = 0:

2. Vke (¸) is continuous in ¸; Vke
³
~̧
´

; ~̧ 2 ¤¤1, converges in probability to V"
³
~̧
´

and
the convergence is uniform:

Proof of Lemma 2

1. To check the continuity of V"
³

~̧
´

it su¢ces to show that the partial sum of squared

autocorrelations, sn =
Pn
i=1

³
½"(~̧) (i)

2́
, converges uniformly to V"

³
~̧
´

(see Rudin,

1990, Theorem 7.12 ). Applying the Cauchy criterion, this would be true if and only
if for all » > 0, there exists an integer N such that m ¸ N, n ¸ N and ~̧ 2 ¤1; for

which

¯̄
¯̄
¯
mX

i=1

³
½"(~̧) (i)

´2
¡
nX

i=1

³
½"(~̧) (i)

´2
¯̄
¯̄
¯ · »: (45)

Assume, without loss of generality, that m > n. Then, the left-hand side of (45)
is simply

Pm
n+1

³
½"(~̧) (i)

´2
. Since V"

³
~̧
´

< 1 for all "
³
~̧
´

(recall that V"
³
~̧
´

contains the squared autocorrelations of FI processes with an order of integration
given by

³
d0 ¡ ~d

´
strictly smaller of 1=4), there exists an integer N such that for

n > N,
P1
n+1

³
½"(~̧) (i)

´2
! 0; which clearly implies that

Pm
i=n+1

³
½"(~̧) (i)

´2
also

tends to zero for all ~̧ 2 ¤¤
1.

It is straightforward to check that it has a unique minimum at ¸0; since "t (¸)j¸= 0̧
=

"t; which is an i:i:d: process and therefore all its correlations are zero, (which implies
that V" (¸0) = 0); but presents non-zero autocorrelations for any other value of ~̧ 6= ¸0

(and therefore V"
³
~̧
´

> 0):

2. The continuity property follows along the same lines as in Lemma 1. Let Vke
³

~̧
´

=
Pk(T)
i=1

³
½̂e(~̧) (i)

2́
. The convergence in probability is …rst proven for the autocovari-

ance function and it trivially extends to the autocorrelation one. Following again
Proposition 6.3.9 in Brockwell and Davis (1993), it is just needed to show that i)
Pj
i=1

³
°̂e(~̧) (i)

2́ p! Pj
i=1

³
°"(~̧) (i)

´2
for …xed j, ii) limj!1

Pj
i=1

³
°"(~̧) (i)

2́
=
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P1
i=1

³
°"(~̧) (i)

2́
; and iii)

lim
j!1

lim sup
T!1

P

0
@

¯̄
¯̄
¯̄
k(T)X

i=1

³
°̂e(~̧) (i)

´2
¡
jX

i=1

³
°e(~̧) (i)

´2

¯̄
¯̄
¯̄ > ²

1
A = 0: (46)

i) follows from Lemma 1; ii) follows from noticing that the limit is well de…ned since

autocovariances (and also autocorrelations) of FI (d) processes are square-summable
if d < 1=4; which is veri…ed by the processes considered here. Therefore V"

³
~̧
´

<

1. Finally, the probability in (46) is bounded by ²¡1
µPk(T )

i=j+1 E
³
°̂e( ~̧) (i)

2́
¶

by

Markov’s inequality. By Proposition 7.3.3. in Brockwell and Davis (1993),

lim
T!1

k(T)X

i=j+1
E

³
°̂e(~̧) (i)

´2
=

1X

i=j+1

³
°"(~̧) (i)

´2
;

which is …nite, since autocovariances are square-summable as stated above. Then, it
clearly follows that

lim
j!1

lim
T!1

²¡1
k(T)X

i=j+1
E

³
°̂e(~̧) (i)

´2
= 0: (47)

which in turn implies that the limit in (46) is also equal zero.

The uniform convergence follows from the pointwise convergence and the same argu-
ments as in Lemma 1.

Proof of Theorem 5.
The proof of the …rst part of the theorem is analogous to that of Theorem 3, with

De…nition 1 and the results of Lemma 1 replaced by De…nition 2 and the results of Lemma

2.
First step. De…ne ^̧1 = arg min¸2¤¤1 Vke (¸) : Using the same arguments as in Theorem 3,

it follows that ^̧1
p! ¸0:

Second step. Consider the case where d0 > 1=4 + r1 and de…ne ¤¤2 = fd : r1 · d <

d0¡1=4+´g£¤(¡1) and ^̧ = argmin¸2¤ Vke (¸) : As in the proof of Theorem 3, it is needed
to show that for any ± > 0 the probability,

P
³°°°^̧ ¡ ^̧1

°°° ¸ ±
´

· P
µ

inf
¸2¤2

Vke
³
^̧
´

¡Vke
³

^̧1
´

· 0
¶

(48)

converges to zero. Using the same arguments as in Theorem 3, it can be checked that
P

³
Vke

³
^̧
1

´
> 0

´
! 0 and P (Vke (¸) > 0) ! 1 for all ¸ 2 ¹¤2;where ¹¤2 is the closure of ¹¤2

and, since the in…mum is contained in this set, it holds that P
³
inf¸2¤2 Vke

³
^̧
´

· 0
´

! 0:
The latter arguments imply that the probability in (48) tends to zero.
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With respect to the asymptotic distribution of ^̧, application of the mean value theorem

to the …rst-order conditions yields an expression similar to that in (38). In order to apply
Theorem 2, it is needed to to show that,

°°°Ĵk ¡ Jk
°°° =

0
@
p+q+1X

j=1

kX

i=1

³
@½̂e (i)=@¸j j¸=¸0 ¡Jij

´2
1
A

1=2

= op
³
k¡1=2

´
; (49)

where Jij is the ¡ij element of the matrix Jk de…ned in (44) : Since the …rst summation is
a sum of a …nite number of terms, a su¢cient condition for (49) is simply,

lim
T!1

¶k1=2
Ã kX

i=1

³
@½̂e (i)=@ j̧ j¸=¸0 ¡ Jij

2́
!1=2

= 0; for j = 1; :::; p+ q +1: (50)

To check that this condition is veri…ed, we use again proposition 6.3.9. in Brock-

well and Davis (1993) : The …rst two conditions are trivially veri…ed: condition i) follows
from results in Theorem 3 while ii) is simply limk!10; which is obviously equal to zero.

The last condition can be shown along the same lines as Lemma 2, (2), noticing that

TE
µ³

@½̂e (i)=@¸j j¸=¸0 ¡ Jij
´2

¶
= Op (1) ; and that the corresponding expectations are

summable in i (for instance, the limit of the expectation for the derivative with respect
to d is equal to ¹4=i2; where ¹4 = E

¡
"4

¢
, and therefore, summable over i): Finally, the

result follows just by noticing that k=T ! 0. By Theorem 2 and taking into account the
consistency of ^̧, it follows that

p
T

³
^̧ ¡¸0

´
w! N

¡
0;¥¡1

¢

where ¥ = limk!1 ¥k. It just remains to be shown that the matrix ¥ is in fact the Fisher

information matrix. Recall from the proof of Theorem 4 that the limit of the Jacobian
matrix was given by

Jk (¸0) =

0
BBBBB@

¡1 1 0 ::: 1 ::: 0
¡1=2 !1 1 ::: Ã1 ::: 0

::: ::: ::: ::: ::: ::: :::
¡1=k !k¡1 !k¡2 ::: Ãk¡1 ::: Ãk¡q

1
CCCCCA

: (51)

Given the previous result, it is easy to obtain that

¥ =

Ã
¼2=6 ¦0

¦ ¥pq

!

where ¦ = (¼! (0) ; :::; ¼! (p¡ 1) ; ¼Ã (0) ; :::; ¼Ã (q ¡ 1)) and

¼! (j) =
1X

i=0

!i
j + i + 1

; ¼Ã (j) =
1X

i=0

Ãi
j + i + 1

:
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¥pq is the Fisher information matrix corresponding to pure ARMA processes: Then, ¥

coincides with the Fisher information matrix for ARFIMA processes (see for instance Li
and McLeod, 1986 or Fox and Taqqu 1996):¥
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Proof of Theorem 6
Let ½̂

ke(^̧) be the vector de…ned in (19). A …rst-order Taylor’s series expansion of ½̂
ke( ^̧)

around ¸0 yields:

½̂
k e(^̧) = ½̂

ke(¸0) +
@½̂
ke(¸¤)

@¸0
³
^̧ ¡ ¸0

´
(52)

By Theorem 1,
p

T ½̂
ke(¸0) =

p
T½̂
k" + op (1)

w! N (0; Ik) for d > ¡0:75. The joint

distribution of
³
Ĵk (¸0)

³
^̧ ¡¸0

´
; ½̂
k"

´0
is given by:

p
T

0
@ Ĵk (¸0)

³
^̧ ¡¸0

´

½̂
k"

1
A =

0
@ ¡Ĵk (¸0)

³
Ĵ0k (¸0) Ĵk (¸0)

´¡1
Ĵ 0k (¸0)

Ik

1
A p

T½̂
k" + op (1)

w! N (0;¨) ;

where:

¨ =

Ã
¡Jk (¸0) (J0k (¸0)Jk (¸0))¡1J 0¸0k Jk (¸0) (J 0k (¸0)Jk (¸0))¡1 J0k (¸0)

Jk (¸0) (J0k (¸0)Jk (¸0))¡1 J 0k (¸0) Ik

!
:

Since joint normality holds, any linear combination of
³
Ĵk (¸0)

³
^̧ ¡¸0

´
; ½̂
k"

´
will also

be normal. Taking into account expression (52) it follows that:

p
T ½̂
ke(^̧)

w! N
³
0; Ik ¡ Jk (¸0)

¡
J 0k (¸0)Jk (¸0)

¢¡1 J0k (¸0)
´

:¥
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APPENDIX 2

This appendix reports the results of some Monte-Carlo experiments not included in the

main text. Table 12 presents the mean and standard deviation of correlations at di¤erent
lags associated to the (truncated) residual process et (d0) for di¤erent values of d0: To

obtain these residuals, the following procedure has been implemented: processes of the form
¢'0yt = "t were generated for a large sample size equal to n+T and then the …rst n = 1000

observations were rejected. The last T observations were integrated an integer number of
times, m0: Truncated residuals were computed by applying the …nite …lter

Pt¡1
i=0 ¼iLi to

the process yt; where the coe¢cients f¼ig come from the expansion in powers of L of the
polynomial (1 ¡L)d0 : Again the results in …nite samples con…rm the asymptotic results. It

can be seen that for invertible processes (d0 > ¡1), estimated correlations behave correctly
in the sense that, as expected, zero mean and unit variance is found. Nevertheless, for

non-invertible processes, residuals correlations do not provide consistent estimates of the
innovation correlations.

Table 12. Residual Autocorrelations

d0 -1.2 -1.0 -0.7 0.4 0.8 1.4

T = 100

mean(
p

T ½̂e (1)) 0.801 -0.136 -0.063 -0.061 -0.128 -0.068

std(
p

T ½̂e (1)) 1.435 0.993 0.964 0.966 0.955 0.979

mean(
p

T ½̂e (2)) 0.804 -0.085 -0.022 -0.037 -0.080 -0.027

std(
p

T ½̂e (2)) 1.386 0.971 0.977 0.979 0.995 0.990

mean(
p

T ½̂e (5)) 0.793 -0.046 0.009 -0.006 -0.042 -0.002

std(
p

T ½̂e (5)) 1.361 0.956 0.966 0.964 0.971 0.974

T = 400

mean(
p

T½̂e (1) 3.020 -0.006 0.010 0.047 -0.001 0.042

std(
p

T½̂e (1) 3.248 0.979 1.001 0.982 0.979 0.983

mean(
p

T ½̂e (2)) 2.926 -0.045 -0.031 -0.005 -0.039 -0.005

std(
p

T ½̂e (2)) 3.170 1.013 1.027 1.016 1.013 1.019

mean(
p

T ½̂e (5)) 2.915 -0.006 0.002 0.026 -0.002 0.029

std(
p

T ½̂e (5)) 3.149 0.968 1.031 0.958 0.969 0.964
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