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Abstract

We develop a geometric procedure to get all correlated equilibria in a 2 x 2 game. With this
procedure we can actually ‘see’ all the correlated strategy profiles of a given game and compare
it to the convex hull of the Nash equilibrium profiles. Games without dominant strategies fall
into two different equivalence classes: (i) competitive games, that have a unique correlated
equilibrium strategy, and (i7) coordination and anticoordination games, whose set of correlated
equilibria is a polytope with five vertices for which we provide general closed-form expressions.
In this latter case, there are either three or four vertices for the payoffs. In contrast, the convex

hull of the Nash equilibrium strategies and payoffs always have three vertices.

1 Introduction

In his 1974’s seminal paper, Aumann introduces the concept of correlated equilibrium that gen-
eralizes the non-cooperative equilibrium notion due to Nash by allowing players to communicate
before their play. More precisely, a correlated equilibrium of a given game is a Nash equilibrium of
the associated enlarged game where players receive private signals not affecting payoffs before the
play, and make their choices based on the signals they have received. For finite games in normal
form, a correlated equilibrium can be described by means of a distribution over strategy profiles, a
correlated strategy.

1

Correlated equilibria have many appealing properties.” In particular, the set of correlated
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!See, e.g., Aumann (1987) for rationality foundations, Chwe (2000) for issues of identification, Hart and Mas-Colell

(2000) for the link between correlated equilibrium and adaptive dynamics, Mailath et al. (1997) for an interpretation
of correlated equilibria as Nash equilibria of local-interaction games and Myerson (1986) for a refinement of this

equilibrium concept, etc.



equilibrium strategies is a non-empty (compact and convex) polytope which contains the convex
hull of the Nash equilibria as a subset.? However, determining exactly how both sets, and the
resulting sets of payoffs, differ is still an open question.?

Here, we focus on the particular case of 2 x 2 games. For such games, we provide a complete
characterization of the set of correlated equilibrium strategies and payoffs, and relate those sets
to the convex hull of the set of Nash equilibrium strategies and payoffs. More precisely, games
without dominant strategies fall into three different equivalence classes for the set of correlated
equilibrium strategies: competitive games, coordination games, and anticoordination games.? For
competitive games, the correlated equilibria and Nash equilibria sets coincide and are reduced to
one single point. For coordination and anticoordination games, the set of correlated equilibria is a
polytope with five vertices for which we provide general closed-form expressions.’ In contrast, the
convex hull of the Nash equilibria has only three vertices. For such games, the set of correlated
equilibrium payoffs is a polytope with either three or four vertices while, again, the convex hull of
Nash equilibrium payoffs has always three vertices.

Our approach is geometric. First, we propose a planar geometric representation of correlated
strategies of 2 x 2 games. Then, we develop a geometric procedure to get all correlated equilibria of
any 2 x 2 game. With this procedure we can actually ‘see’ all the correlated equilibrium strategies
of a given game and compare it to the convex hull of the Nash equilibrium strategies.

Section 2 presents all the results and all the proofs are gathered in Section 3.

2 The set of correlated equilibria of 2 x 2 games

Correlated equilibrium strategies of finite games Let v = (N, (Si)ieNv(Ui)ieN) be a
finite n—person game in strategic form. Let S = x;cnS; denote the set of n—tuples strategies of
and A (S) denote the set of probability distributions on S.

The original definition of a correlated equilibrium is in Aumann (1974). Here, we focus on

the equivalent definition in terms of correlated strategies provided in Aumann (1987), where a

2 A polytope is the convex hull of finitely many elements of R*. It is thus compact and convex.. Alternatively, a
polytope is a bounded polyhedron, where a polyhedron is the non-empty intersection of finitely many halfspaces. A

polyhedron is closed and convex.
#To quote Fudenberg and Tirole (1995): “One might also like to know when the set of correlated equilibria differs

‘greatly’ from the convex hull of the Nash equilibria, but his question has not yet been answered” (p. 58). Partial
results relating both sets have been achieved so far. See, e.g., Evangelista and Raghavan (1996) for results relating
the extreme points of both equilibrium sets, and Moulin and Vial (1978) for results regarding payoffs.

YGames that are dominant solvable have only one Nash equilibrium in pure strategies which coincides with the
unique (degenerated) correlated equilibrium strategy of the game. We deal with games with weakly dominant
strategies at the end of Section 2.

°In fact, the set of correlated equilibrium strategies for coordination and anticoordination games are isomorphic
to each other, and both types of games may well be gathered into one single equivalence class. Yet, the distinction

is useful for computational purposes.



correlated strategy is a point in A (.5).

Definition 1 A correlated strategy po € A (S) is a correlated equilibrium of v if and only if, for all
i €N and s = (s;,8 ;) €S,

Z o (SiyS—i) wi (8iy8—) > Z 1 (Siy S—i) u; (sg,s_i) , for all S; € 5.

s_;€S8_; s_;E€S_;

The set CE () of correlated equilibrium strategies of «y is defined by a finite number of linear
inequalities (incentive constraints) on the set A (S) of correlated strategies. For finite games,
CFE (v) is a non-empty polytope which contains the convex hull of all the Nash equilibria NE (v).°
Correlated strategies that belong to the intersection CE () N NE (v) are product measures.

From now on, we focus on 2 x 2 games. Let N = {a, b} be the set of players and S, = S, = {0,1}
the set of strategies. Given two matrices A = (aij)(i,j)esaxsb and B = (bij)(i,j)esaxsb’ we denote

by 7 (A, B) the 2 x 2 game with the following payoffs matrix:

0 1

0 | apo,boo | ao1,bo1

a0, b10 | ai1,b11

Let Az = {(xl, ey, Tq) € Ri | 21+ ...+ x4 = 1} denote the 3—dimensional simplex of R*. A corre-
lated strategy 1= (fgg, 4115 H10s Ho1) € A3z can be represented the following way:

Hoo | Ho1
Hio | H11

where pi59 and 1, are the probabilities assigned to the symmetric (diagonal) strategy profiles (0, 0)
and (1, 1), respectively, while 1, and g, are the probabilities corresponding to the asymmetric
(out-of-diagonal) profiles (1,0) and (0, 1), respectively.
With a straightforward application of Definition 1, p € Ag is a correlated equilibrium strategy
of v (A, B) if and only if:
fo0 (@00 — a10) = pio1 (@11 — ao1)
fi11 (@11 — ao1) = puyg (@00 — a1o0) (1)
f1o0 (boo — bo1) = p1g (b11 — bio)
f11 (D11 — b1o) > ko (boo — bon)

®Non-emptiness of CF (v), thus, results from non-emptiness of NE (). Hart and Schmeidler (1989) provide a
direct existence proof for correlated equilibria, both for finite and infinite games, that relies on linear duality rather

than on standard fixed-point arguments.



Equivalence classes for 2 x 2 games Denote by G the set of 2 x 2 games, and by G° the
set of 2 X 2 games without neither weakly nor strictly dominated strategies. We first focus on G°
and leave for the end of this section the case of games in G\G°.

For all v(A,B) € G°, let a = |agg — a1o|/|a11 — ao1| and B = |boo — bo1| / |b11 — b10]- The
requirement that v (A, B) does not possess any dominated strategy implies that agy # a9, a11 #
ao1, bog # bp1 and b1y # big. Therefore, both a and 3 are well-defined and «, G > 0.

Define the three following games:

0 1 0 1 0 1
0|a,B]0,0 0|—a,—p| 0,0 0|—a,B| 0,0
10,0 1,1 1 0,0 |-1,-1 1] 00 |-1,1

v, (@, 3): coordination Vo (e, B): anticoordination Yo (@, 3): competitive

Lemma 1 (equivalence classes) Let v (A,B) € G°. Then, CE (v(A,B)) = CE (v, («,3)), for
some £ € {I,1I, IIT}.

The set of correlated equilibria of 2 x 2 games without dominated strategies can thus be parti-
tioned into three equivalence classes for the set of correlated equilibrium strategies, corresponding
to vy, Y, and 7, —type games.” The criteria to assign some given game v (A, B) € G° to its

corresponding equivalence class are the following:

CE (71 (a,ﬁ))
CE (’}/ (A,B)) = CFE (’}/H (a,ﬁ)) if and on]y if apo < a1p,a11 < aopi, boo < b01, and b11 < b10;
CE (v, (o, B)) otherwise.

if and only if agg > aqg,a11 > ap1,bog > bo1, and b11 > byg;

We now characterize CE (v, (o, 3)), for all a, 3 > 0 and ¢ € {I,11, I11}.
It is readily checked that CE (v,,) = NE (v,,), that is, the set of correlated equilibria and Nash
equilibria of 7y, coincide and are reduced to one single point in Az.® We thus focus on CE (v,)

and CE (7).

"Germano (2003) proposes a general procedure to obtain equivalence classes for general normal-form finite games
that applies to different equilibrium concepts and based on the geometry of the correspondences of the equilibrium
concept being considered. Germano’s classification applied to the correlated equilibria of 2 x 2 games yields three
different classes: (i) games that are dominance solvable (that we leave for the end of this section), () vy ;—type
games, and (i) ~; and ~;;—type games. For our purpose, although ~; and ~;;—type games are equivalent up to a
relabelling of the actions available to the players, the distinction we make is still useful as it allows to distinguish
between diagonal and out-of-diagonal probability values for correlated strategies, which has some implications for the

geometry of the equilibrium set and payoffs. Lemma 2 makes this point more precise.
8The set of Nash equilibria of vy (cv, §) is restricted to the mixed strategy: play 0 with probability 1/ (1 4 «) for

the column player and 1/ (14 ) for the row player. The corresponding correlated equilibrium distribution is the
product measure of the mixed strategy play. Moulin and Vial (1978) refer to such games as strategically zero-sum

games.



For all z = (21, 29,23,21) € RY, let 7(2) = (23, 21, 21, 22), so that T is a permutation swapping
the first two coordinates with the last two coordinates while preserving the inner order for the pairs

of coordinates being swapped.
Lemma 2 (duality) Leta,3 > 0. Then, u € CE (v, (o, 3)) if and only if T (1) € CE (v, (a, 1/13)).

In words, given a correlated equilibrium strategy for some coordination game with parameters
a and (3, the strategy obtained by swapping the diagonal probabilities with the out-of-diagonal
terms is a correlated equilibrium strategy for the anticoordination game with parameters « and
1/3. And vice-versa. The class of coordination games and the class of anticoordination game are

thus isomorphic to each other. We restrict our analysis to the former.

The set of correlated equilibrium strategies of 2 x 2 coordination games Let a,3 > 0
and consider v, (o, ). This game has three Nash equilibria corresponding to the following correlated

strategy profiles:

1
0 0]0 (a1 | 07 ()
8 af
019 011 (Fa)(0%8) | (Fa)(1%8)
NE in pure strategies (0,0) NE in pure strategies (1,1) NE in mixed strategies

The set of Nash equilibrium strategies of ,, denoted by NFE (v,), and the convex hull of this set,
denoted by cov (NE (v,)), are all correlated equilibrium strategies of ;, that is, cov (NE (v;)) C
CE (7;). But the inclusion may be strict. We first provide a complete characterization of CE (v;)
and then compare both sets.

For all a, 3 > 0, define the following sets:

D(a,B) = {(z,y) €RL |z +y + min {Bz;y/a} + min {az;y/B} > 1}
O(a,f) = {(z,y) €R? |z +y + max {z/B;y/a} + max {az; By} < 1}

We have the following result.
Proposition 1 Let a, 3 > 0. Then, CE (v, (o, 3)) = (D (e, ) x O (a, 3)) N As.

Consider the following table.

% Koo H11 K10 Ho1
pe (o, ) 1 0 0 0
1 (o, B) 0 1 0 0 @)
* (a ,6) 1 af 8 «a
Hp (1+a)1(1+ﬂ) (I+a)(1+8) (1+a)(1+8) (1+a)(1+P8)
#r (@, 5) T¥B1ap 1+,645raﬁ T+p3+ap 0
ﬂ’*G (aa ﬁ) 1+a+af 1+a+af 0 m

A geometric characterization of the set of correlated equilibria that highlights the differences
between NE (v,) and CE () is the following.



Proposition 2 CFE (v, («a,3)) is a polytope of As with five vertices defined in (2).°

Note that the correlated strategies uf, (o, 3), up, (o, ) and uj (o, 3), that correspond to the
Nash equilibria of 7, (v, 3), are all vertices of CE (v, (o, 3)). This is consistent with Evangelista and
Raghavan (1996) who establish that every extreme point of a maximal Nash set is an extreme point
of the set of correlated equilibria. p}, (o, 8) and pf (o, 3) are additional vertices of the correlated
equilibrium set not belonging to the convex hull of the Nash equilibria.

Propositions 2 provides a simple tool to construct the correlated equilibrium polytope of any
coordination game v (A,B) € G°. It suffices to compute o and (3 and get the five vertices of
CE (v (A, B)) with (2). If v(A, B) € G° is an anticoordination game, the duality result in Lemma
2 implies that the vertices of CE (v (A, B)) are the same that in (2) where /3 is replaced by 1/3
and the out-of-diagonal probabilities are swapped with the diagonal terms.

Example 1. Consider the following game, y******" known as the ‘chicken game’:

0 1
0[6,6]27
7,2 10,0

This game falls into the equivalence class of general anticoordination games, with a = 0.5 = (.

The five vertices of the correlated equilibrium polytope are the following.

L Hoo M1 B0 Mol

ps 0 0 10
pp 0 0 1
7R S B B
ppooz 01 g
pe 0 3 3 2

9A point of a polyhedron is called an extreme point or a vertex if it is not a convex combination of two other

elements of the polyhedron.



chicken

on As.

Figure 1 shows the set of correlated equilibrium strategies of ~

Hoo

Figure 1. The correlated equilibrium set of y¢hicken,

In Figure 1, C and D correspond to the two Nash equilibria in pure strategies of y¢*en while F
is the Nash equilibrium in (completely) mixed strategies. The convex hull of the Nash equilibria
corresponds to the ‘slice’” CDFE of CFE (fyChiCken). The vertices F' and G are correlated equilibria

not belonging to this convex hull.

The geometry of correlated equilibrium payoffs of 2 x 2 coordination games Let
v(A,B) € G° such that CE (y(A,B)) = CE (v, («a,3)). For all p € CE(y,(a,/3)) denote by
w(p) = (ug (1) ,up (1)) the correlated equilibrium payoffs for players a and b. We have:

Uq (1) = foo@00 + H11011 + f10@10 + HorAo1 3)
up (1) = popboo + f11011 + Hy9b10 + Horbot

Denote by CEP (v (A, B)) = {(uq (1) ,up (1)) €R?* | p € CE (7 (A, B))} the set of correlated equi-
librium payoffs of v (A, B). We have the following result.

Proposition 3 Let v (A, B) € G° be a coordination game. Then, CEP (v (A, B)) is a polytope
of R? with either three or four different vertices. The pure Nash equilbrium payoffs u (ug (v, 3))
and u (©5, (o, 3)) are always vertices, and either u (i}, (o, 3)), or u (u (o, 3)) or both are the other

vertices.

A sketch of the proof is as follows. First, any vertex of the polytope of payoffs is necessar-

ily obtained with a vertex of the polytope of strategies. Therefore, CEP (v (A, B)) has at most



five different vertices. Second, by Proposition 2, the completely mixed strategy Nash equilibrium
1y (o, B) is a vertex of CE (v (A, B)). Yet, it is a standard result that the mixed equilibrium
payoffs of coordination games are (strictly) Pareto-dominated by some correlated equilibrium pay-
offs.!” Observing that the same result applies to a suitable transformation of v (4, B), we deduce
that mixed equilibrium payoffs is an interior point of the polytope of correlated equilibrium pay-
offs. Moreover, the mixed Nash equilibrium payoffs u (u}; (o, 3)) and the purely correlated payoffs
u (15 (o, 3)) and w (g (o, 3)) are Pareto-ranked, with the correlated payoffs being the extremal
ones.

Propositions 2 and 3 altogether provide simple tools to construct the polytope of the correlated
equilibrium strategies and payoffs of any 2 x 2 coordination game. Together with Lemma 2, they
also cover the family of 2 x 2 coordination games.

chicken

Example 2. The polytope of correlated equilibrium payoffs of is displayed in Figure
2 —grey-shaded area. The convex hull of the Nash equilibrium payoffs, delineated with a dashed

line, is included in CEP (VCMC’“").

L)

@7

(21/4,21/4)

(18/5,18/5)

(7.2)

chicken

Figure 2. The correlated equilibrium payoffs of

Computing the vertices of the correlated equilibrium polytope with (2) is a crucial step to
identifying the set of payoffs that can be achieved with a correlated equilibrium in 2 x 2 games.
Identifying this set of payoffs, in turn, is crucial to distinguish between the payoffs belonging to
the convex hull of the Nash equilibrium payoffs and that can be achieved through jointly controlled

lotteries,!! from the ‘purely’ correlated equilibrium payoffs that require other types of mechanisms

19See, e.g., Moulin and Vial (1978).
'1See Aumann and Maschler (1995) for details on jointly controlled lotteries.



to be implemented.'?

Games with dominated strategies It is straightforward to check that strictly dominated
strategies cannot be used with positive probability in any correlated equilibrium of a finite game.
The set of correlated equilibria of a dominance solvable 2 x 2 game thus coincides with the set of
Nash equilibria of that game.

Consider now the case of weakly dominated strategies. Games with weakly dominated strategies
are such that either a = 0, or 3 = 0 or both. Denote by D (a,3) and O (a,3) the extensions of
D (o, 3) and O (a, ), respectively, to ]Ri defined as follows:

D(a,8)=D(a,f), forall a, 3 >0
D(0,8) = {(az,y) EIRQ+ |1+08)x+y > 1}

and the natural extension to 3 =0,

O(a,p) =0 (a,3), for all a, 3 > 0
0(0,8) = {(z,y) eRY |1 +1/B)z+ (1 +8)y <1}
O(,0)={(z,y) eR3 |1+ a)z+(1+1/a)y <1}
0(0,0) = {(z,y) eRZ |z +y < 1}

We have the following result.
Corollary 1 Let a,3 > 0. Then, CE (v, (o, 3)) = (@ (o, B) % 6(&,6)) N As.

Let v(A,B) € G\G° without strictly dominant strategies. Therefore, v (A, B) has weakly
dominant strategies. Small perturbations of payoffs yield a game in G°, without neither weakly nor
strictly dominant strategies. Proposition 1, together with Lemma 2, and the criteria for assigning
an equivalence class to any game in G° provide a full characterization of the set of correlated
equilibrium strategies for the perturbed game. CE (v (4, B)) is then obtained by a limit argument

as the payoffs’ perturbations vanish.!3

12Such as, for instance, the long mediated talk of Lehrer (1994), or the one-shot public mediated talk of Lehrer
and Sorin (1997).

Y3Suppose, for instance, that v (A, B) is a general coordination game except that ago = @10, that is, 0 is a weakly
dominated strategy for player a. The set of correlated strategies is then deduced from Figure 4 in Section 3 by letting
o = 0. In particular, gy, = 0 for any p € CE (v (A4, B)). In the language of Myerson (1986), the strategy profile

(0,1), that includes the weakly dominated strategy for a, is an unacceptable action.



3 Proofs

Proof of Lemma 1: Suppose first that agg > a19, a11 > a1, boo > bo1, and b11 > byg. Then, (1)
is equivalent to
Hoo® = Hoy
P11 = P (4)
ooB 2 140
p11 = Ho1B
implying that CE (y(A,B)) = CE (v, (o, 3)). The cases where agy < a9, a1 < ap1, boo < bo1,
and b1 < byg, or agg < a1, a11 < ap1, boo > bo1, and by > byg, are similar. |l

Proof of Lemma 2: Let = (pg9, f11, 105 Ho1) € CE (7, (e, 3)). Specializing (1), this is

equivalent to

Hoo® 2 o1 —M10® = —f11
K11 = H10Q o ) THo 2> —Hoo®
FooB 2 o —t10/B > — koo
pa1 = po1 P —Ho1 > —H11/B

equivalent to 7 (1) = (ft10- Ho1> Hoo» H11) € CE (7 (o, 1/53)).11

Proof of Proposition 1: Let (pgg, /1) € R2. Then, (ygq, 1) are the diagonal probabilities
of some correlated equilibrium strategy of 7, (o, 3) if and only if there exists some (19, pt9;) € R2
such that g = (1o, 4115 10, Ho1) Satisfies (4), and pgg + f4q1 + f10 + o1 = 1. Note that (4) is
equivalent to

{ min {11003; 11/} = pag
min {4900 p11/8} = b
Therefore, it is possible to find two out-of-diagonal probabilities (19, 1g;) satisfying the above
requirements if and only if (19, 1411) € D («, 3).

Let now (ft19, ft91) € R?2. By Lemma 2, (g0, ft91) are the out-of-diagonal probabilities of some

correlated equilibrium strategy of 7, («, (3) if and only if there are the diagonal probabilities of some

correlated equilibrium strategy of v,, (o, 1/3). Specializing (1) for v, (a, 1/3) we have:

too = max {0/ B; poy /ot
f1 = max {Mwa; Hmﬁ}

for v = (p10, o1y Hoos 111) € CF (77 (a,1/3)). With a similar reasoning than before, we de-
duce that (g9, f1) are the out-of-diagonal probabilities of some correlated equilibrium strategy of

Y (a, 3) if and only if (419, 91) € O (o, 5).

Proof of Proposition 2: We first describe a planar geometric representation of Ag.
Consider a squared Edgeworth box of size unity. Any z = (z1, 22, 23, 24) € Ag can be represented
on the Edgeworth box as a couple of points (Z4, Z,), where Z; = (z1,29) (resp. Z, = (23,24))

10



corresponds to the first two (resp. last two) coordinates of z. Let § = 21 + 22. Then, 23 4+ 24 =
1 —(z14+2) = 1—46. Therefore, for a given Z;, the set of possible loci for Z, is given by the
segment {(azg,x4) ER? |23+ 24=1— 6}.14 See Figure 3.

Ty 1 Zg 0
zgta,=1-0
z
z, 4
2z, Za
T+~
0 2 1 x;
z

Figure 3. A planar geometric representation of As.

Using the previous planar representation for elements of Ag, a correlated equilibrium strategy
= (Hoos 115 105 Mo1) 1S identified by a couple of points (My, M,) on the Edgeworth box, where
My = (poo, 1411) are the diagonal probabilities and M, = (g0, f491) the out-of-diagonal probabilities.

Let a,3 > 0. The grey-shaded are in Figure 4 represents CE (v, (a, 3)) as characterized by

Y1 Z4 = (21, 22) is simply the projection of z on the subset {(mhwz) ER? |21+ 20 < 1,21 > 0,20 > 0} and Z, =
(23, z4) the projection of z on the subset {(1'3, 24) ER? |23+ 24 < 1,23 > 0,24 > O}.

11



Proposition 1.

Ty

g | B(L+B+ap) PI+a)(1+B) O
Pa T~ 0BT,
ap/(1+o+a) |..... .
E
/(1
G, a/(1+o+aB)
AB/(L+B+OB) oo
AB/(L+Q) (L) fooeeeeee
E,
C,
0| V(1+o)(1+p) I 2,
Z

Figure 4. The set of correlated equilibrium strategies of v, (o, 3).

In Figure 4, (Cy4,C,) and (Dy, D,) correspond to the two Nash equilibria in pure strategies of 7,
and (Eq, E,) is the Nash equilibrium in (completely) mixed strategies of ;. Finally, (Fy, F,) and
(G4,G,) correspond to the vertices pf, and pg, in (2), respectively.

Let V={C,D,E,F,G}. For alli € V, let pf = (/‘:l,z’v'“z,i)’ where p; (resp. fi,;) denotes the
diagonal (resp. out-of-diagonal) probabilities of pf. We show that V is the set of vertices of the
polytope CE (7, (a, 3)).

Given some A C R?*, let Pryg(A) = {(2z1,22) | 3 (23,24) : (z1,22,73,24) € A}. This is the pro-
jection of A on the first two coordinates of R%. Similarly, define the projection of A on the two
second coordinates as Pr, (A) = {(x3,x4) | I (21, 72) : (21,72, 73, 74) € A}.

We proceed in two steps.

Step 1: We first prove that any p € CE (v, (o, 3)) is a convex combination of pf,i € V. Let
= (g, tto) € CE (v, (a0, 8)). Noting that Pr, CE (v, (o, 3)) = cov (Co, Eo, F) U cov (Co, Eo, G).,
we can assume, without loss of generality, that u, € cov(C,, E,, F,). Let thus \;, i € {C,E,F}
such that A\; > 0, A\c + A\ +Ar =1, and p, = )‘CMZ,C +)‘EMZ,E +)\F,u:§7F. For all p € [0, 1], define:

ta (P, A) = pAckgc + (1= p) Adotgp + Aekap + Aritgr

The set {ig(p,\) | p € 10,1]} is a segment that belongs to the set of diagonal probabilities that,

together with p,, form a correlated strategy (that is, the sum of the corresponding probabilities is

12



equal to one). We denote by 1ty (0,A) and 14 (1, ) its endpoints. See Figure 5.

z, 1

D, C,D,

: M+ AellE
___________________________________________ i
Hy(O.) i
GO
17}
E,
0 Cd
0 1 Ty
z

Figure 5. The segment {1, (p, A) : p € [0,1]}.
We prove that, in fact, {1z (9, \) | p € [0, 1]} = {7ia | (a> o) € CF (3 (o, B))}. Let p € [0,1]. The
correlated strategy (uy (p, A), it,) can be written as:
(1 (P A) s o) = pPAce + (1= p) Aapp + Ak + Ar i,

It is thus a convex combination of correlated equilibrium strategies. As such, it is also an equilibrium
strategy. Therefore, {py(p,A) | p € 0,1} C {fg| (ftg; o) € CE (7; (o, 3))}. We now establish
equality. The endpoint 14 (0, A) is a convex combination of /,L:;’C, /,L;;’ p and ,u?;, 5 with weights equal
to, respectively, Ac, Ag and Ap. Therefore,

too (0,A) = A5y i + AF o r
10 (0,A) = Apptio g + Arpio p
Note that (see Figure 4) E and F' are such that
ﬂSO,Eﬂ = ﬂSO,E/O‘ = /qo,E _
:“SO,FB = /“LSO,F/Q = /qo,F

implying (14 (0, ), 11,) satisfies the equilibrium condition min {f9/3; pt11/a} > iy with equality.
Any correlated strategy (fig, ft,) such that figg < 199 (0, \) violates this condition. With a similar
reasoning for 15 (1, \) we deduce that:

{ra(p, ) | p € 10,11} = {f1g | (f1a, 1) € CE (7 (a0, 5))}
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Therefore, there exists a unique p € [0, 1] such that p; = g (p, A). With such p, we have:
1 ="PpAcpc + (L =0) Aepp + Appp + A

Step 2: It is clear from Figure 5 that, for all « € V, pf can not be obtained as a convex
combination of the 17, j € V\ {i}.ll

Proof of Proposition 3: We first show that the set of vertices of CEP (v, (o, 3)) is a subset of
{u () | i € V}. Suppose not. Let pn € CE (v, (a, 3)) such that u (p) is a vertex of CEP (7, («, 3)),
and po & {pf | i € V}. Let A, i € Vsuch that A\; >0, > .., N =1and p=)",., A\jpf. Given that
pé {p; | i€V}, at least two A; are non zero. By (3), we have u (p) = Y.y, Aiw (pf) with at least
two \; non zero, which is a contradiction.

Second, we show that the completely mixed Nash equilibrium payoffs are not a vertex of
CEP (v (A, B)) whenever v (A, B) is either a coordination or an anticoordination game. Both gen-
eral coordination and anticoordination games are such that (ago + a11 — ag1 — a10) (boo + b11 — bo1 — b1o) >
0. Corollary 4, p. 210, and Table 1, p. 211 of Moulin and Vial (1978) imply that, for such games,
the completely mixed equilibrium payoffs are (strictly) Pareto-dominated by some correlated equi-
librium payoffs. Let v (A, B) be a general coordination game and w (p) the payoffs corresponding
to some p € Ag. Let Tt be the completely mixed Nash equilibrium of v (A, B) yielding payoffs u (1).
By the previous observation, there exists some ' € CE (v (A, B)) such that u (1) > w (&), where
> is the component-wise ordering, and with at least one strict inequality.

Let now

A* =

aip a1 ]
apop o1

and B* defined similarly. Then, v (—A*,—B*) is a general coordination game with (completely)
mixed Nash equilibrium payoffs —u (7). Using again the previous observation, there exists some g’
€ CE (v (—A*,—B*)) whose payoffs Pareto-dominate —u (). Specializing (1) for v (—A*, —B*),
one can check that 7 (1”) € CE (y(A,B)) and —u (7 (¢")) > —u (), that is, the mixed Nash
equilibrium payoffs of v (A, B) Pareto-dominate those stemming from 7 (x").

Proof of Corollary 1: the result derives from a simple limit argument on perturbed payoffs,
that we leave to the reader. ||
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