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Abstract

We propose a stylized model of a problem-solving organization whose internal com-
munication structure is given by a …xed network. Problems arrive randomly anywhere
in this network and must …nd their way to their respective “specialized solvers”by
relying on local information alone. The organization handles multiple problems simul-
taneously. For this reason, the process may be subject to congestion. We provide a
characterization of the threshold of collapse of the network and of the stock of ‡oat-
ing problems (or average delay) that prevails below that threshold. We build upon
this characterization to address a design problem: the determination of what kind of
network architecture optimizes performance for any given problem arrival rate. We
conclude that, for low arrival rates, the optimal network is very polarized (i.e. star-like
or “centralized”), whereas it is largely homogenous (or “decentralized”) for high arrival
rates. We also show that, if an auxiliary assumption holds, the transition between these
two opposite structures is sharp and they are the only ones to ever qualify as optimal.
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1 Introduction
E¢cient information transmission is one of the most pressing problems faced by
organizations, say …rms. This is specially important in modern economies, for at
least two reasons. One is that more …rms now are pure knowledge-based out…ts
(think of large engineering, consulting, research and development or …nancial
services enterprises). The other is that with an ever increasing stock of knowledge,
most individuals cannot be reasonably expected to master signi…cant fractions of
that knowledge.
Thus, the amount of available knowledge, plus the limitations inherent to the

human mind, make knowledge specialization a necessity. Yet there is another
limitation that comes with specialization. We not only ignore certain things, but
also ignore who knows them. Without this limitation, it would be simple to deal
with information transmission within organizations (barring incentive problems,
from which we abstract). Suppose anybody in an organization had a problem
she could not solve. She would only need to contact the expert in the topic, who
would then deal with it. Some classes of problems are, arguably, simple enough
that this mode of information transmission would be su¢cient. This paper deals
with classes of problems where being aware of the knowledge sets of others is a
scarce resource.
In this context, we explore what is the most e¢cient form of organizing com-

munication. The organization is modelled as a network, whose objective is to
solve problems. The individuals are the nodes of this network and they have
the ability to solve a particular class of problems. New problems originate at
randomly chosen nodes, and for every problem there is another, independently
chosen, node within the organization who can solve it. The (mutual) knowledge
of two individuals about each other’s abilities are the links of this network. That
is, individuals only know whether they can solve a problem that arrives to them
(either because the problem originates with them, or because another member
of the organization handed it to them), or whether any of their directly linked
neighbors can do it. The search algorithm that routes information through the
organization can only use that knowledge. Our aim is to …nd the best way to
connect the nodes, given a …xed number of links and an algorithm with purely
local knowledge.
The fundamental relationship we uncover is a trade-o¤ between decreasing

the average distance between nodes and the countervailing e¤ect on performance
induced by problem overload and congestion. If congestion were not an issue,
the optimal organizational structure would be very polarized. If one node were
connected with all the rest, and that node were the only one with which the others
were connected (a star-like organization), any problem could reach its solution
in, at most, two steps. The number of links required for this would be one less
than the number of nodes. The drawback of this organizational form is that it
would collapse when the average number of problems arriving to an organization
per period were larger than the number of problems the center could handle per
period.
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Motivated by these considerations, our …rst contribution is to solve (given
any organizational structure) for the smallest rate of problem generation such
that the average stock of unsolved pending problems in the organization diverges
to in…nity, that is, the network collapses. Furthermore, for arrival rates of new
problems that are smaller than this critical value, we determine its average stock
of ‡oating problems. This stock, in turn, is directly related to the average length
of time that each problem spends in the organization. It can, thus, be interpreted
as a measure of the “quality of the (problem-solving) service” that the organi-
zation provides. Using this characterization of the average delay, we then turn
to considering what is the optimal organizational form that minimizes the delay.
For low rates of problem arrival, we conclude that it is a polarized (star-like or
“centralized”) network, whereas for high ones it is an homogenous (or “decentral-
ized”) structure. Making an auxiliary assumption, we also …nd that the degree
of polarization of the optimal network varies monotonically (in a weakly non-
decreasing fashion) with the rate of problem arrival. In fact, our substantially
stronger …nding in this respect is that that transition between the extreme kinds
of network (i.e. the polarized and the homogenous) is abrupt, with only these
two structures ever arising as optimal.
As indicated, the latter results depend on an auxiliary assumption that per-

tains to how the set of admissible networks translates into the corresponding set
of so-called “betweenness” (roughly, the betweenness of a node is a measure of
the centrality bestowed on it by the search protocol). Speci…cally, it is posited
that the lower frontier of the “betweenness possibility set” displays the same
curvature throughout (i.e. concave or convex). Even though this assumption is
plausible, it is very hard to check directly. This is why we conclude the paper
by exploring an array of di¤erent speci…c environments where the design issue
is addressed numerically. In all of them, the optimal network architectures are
found to display the behavior predicted by the theoretical analysis.
The paper is organized as follows. Section 2 describes the model. Section 3

carries out the analysis by completing, in turn, the following steps: the study of
a benchmark setup without congestion (Subsection 3.1), the analytical charac-
terization of the collapse threshold (Subsection 3.2), an analogous task for the
problem load (Subsection 3.3), and the organizational design problem (Subsec-
tion 3.4). Section 4 discusses the related literature. Section 5 summarizes and
discusses some avenues for further research.

2 The model

Our organization will be modelled as a network, or more precisely by an undi-
rected graph. In this graph, the nodes are the individual members of the organi-
zation. Let N = f1; 2; :::; ng be the set of all individual nodes: Each individual
can solve some speci…c class of problems. A link between two nodes i and j
implies that both individuals know the set of problems that the other individ-
ual in the pair can solve. Formally, for each pair of nodes i and j, we de…ne
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gij 2 f0; 1g: The condition gij = 1 is taken to imply that the two nodes are
linked, whereas gij = 0 implies that the two nodes are not linked. Since the
graph is undirected, gij = 1 if and only if gji = 1: Let ¡ = fN; (gij)ni;j=1g be a
given network. Then, the set of neighbors of any given agent i 2 N , denoted by
Ni, is given by Ni = fj 2 N : gij = 1g:
The mission of this organization is to solve problems. At each point in time,

modelled continuously, problems make their …rst appearance in an organization
at an independent rate ½ at each node: Each problem starting at i 2 N has an
“address” indicating the node k where it is to be solved. We, thus, implicitly
assume that individual knowledge is su¢ciently speci…c that each problem can
be solved by only one person.1 Let us then refer to “problem k” as any problem
that can be solved only at node k: Typically, of course, k will be di¤erent from
the node where it arrives.
We now have to de…ne the rules by which the problem travels through the

organization. If the node where the problem arrives, either at the beginning of
the process or at some intermediate step, can solve it, then it will do so and
the problem disappears from the organization. We will now specify the rules
determining further travel, when the node which receives the problem cannot
solve it. But …rst notice that there may be several problems “waiting” at node
i, at any point in time. Not all of them may be chosen to travel further at one
particular time. The rules through which “queues” are managed will be speci…ed
in section 3.1. We will now explain how problems that are chosen to travel further
“decide” a destination. Denote by pkij the probability with which a problem k
being at node i will go to node j if chosen to be sent forward.2

Once a problem k is at (faced by) node i, one the following two alternative
rules are applied:

² If k 2 Ni, the problem is sent to k with pkik = 1 and it is solved immediately.
² If k =2 Ni; the problem is sent to some j 2 Ni with some probability pkij. (Of
course,

P
j2Ni p

k
ij = 1:)

Any problem proceeds as above until solved. The …rst rule should not be
controversial. The second rule assumes that the knowledge that individuals can
use to route problems is the identity of their neighbors, and the …nal destination.
This implicitly allows them to have the underlying network geography in mind,
but not exploit the knowledge of what is the current state of congestion (even at
the level of …rst neighbors). Such an assumption is taken here for convenience,
and we presume that little of interest would be changed by relaxing it.

1In the literature review we discuss alternative approaches.
2Since the problem is supposed not yet to be solved, we are implicitly assuming that i 6= k:

However, if we had i = k, it is formally convenient to simply make the corresponding travel

probabilities uniformly zero, i.e. pkkj = 0 for all k 2 N:
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The network combined with the protocol that guides the problems lead to a

collection of communication (pseudo-stochastic) matrices

fP k ´ (pkij)i;j2Ngk2N : (1)

These matrices de…ne the stochastic process that governs the steps (or direction)

followed by the each problem k. In line with the previous discussion, they are

assumed to display the following features:

pkij = 0 if j =2 Ni

pkik = 1 if k 2 Ni

pkkj = 0 8j 2 N:

We may compute, for each r 2 N:

qkij(r) =
X

l1;l2;:::;lr¡1

pkil1p
k
l1l2 ¢ ¢ ¢ pklr¡1j

as the probability of a problem k currently in i to be in node j after r steps.

Or, using matrix notation, we may simply de…ne Qk(r) as the matrix whose ijth

element is qkij(r) so that:

Qk(r) = (P k)r = P k
(r times)¢ ¢ ¢ P k

To be sure, note that the above probabilities only govern the direction of
movement of the packages, but not necessarily the time they spend unsolved.
To address the latter, we need to superimpose on the above “congestion-blind”
formulation the processing delays which may impede swift movement of packages
across nodes in the presence of waiting queues.
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3 Analysis

3.1 Steady-state analysis and the threat of collapse

Now, let us return to the case which has motivated our approach, where each
agent/node has limited processing capability. Speci…cally, we assume that the
nodes behave as queues. This means that they have unlimited storage capac-
ity but process problems, in expected terms, at a constant rate per instant of
time, which we normalize to unity. Thus, under the maintained assumption of
stationarity, the number of pending problems standing in a queue behaves like
an in…nite-state Markov process and the arrivals and departures from each node
i follow Poisson processes. As long as the ‡uctuations have …nite variance, the
overall process displays well-de…ned steady state probabilities and averages.

Thus suppose that the process reaches a steady state and let us describe its

characteristics. Denote by akij the stationary arrival rate to node j of problems

which appeared in the network at node i with destination k, and let ±kij stand

for the stationary departure rate of problems from node j of problems which

appeared in the network at node i with destination k. Then, since the arrival

rate to a node is the sum of the arrival rate from the outside of the system (new
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problems) plus arrival rates from other nodes we have:3

akij =

8>><>>:
½
n¡1 +

Pn
l=1 ±

k
ilp
k
lj, when j 6= k

0, when j = k

(2)

The second line is zero, since we assume that problems that reach their des-

tination get solved, so they do not get added to the queue. But given that in

steady state all problems that arrive to a node eventually depart from it in …nite

time, we must have that akij = ±
k
ij for all i; j; k and therefore:

akij =

8>><>>:
½
n¡1 +

Pn
l=1 a

k
ilp
k
lj, when j 6= k

0, when j = k:

(3)

Let Rk be a diagonal matrix such that rkij = 1 for i = j 6= k and rkij = 0

otherwise. Now, making Ak ´ (akij)i;j2N ; we can write the equations (3) in

matrix form as follows:

Ak =
½

n¡ 1R
k +AkP kRk

Ak =
½

n¡ 1R
k(I ¡ P kRk)¡1

3The queuing network considered here is closely related to what is known in the Operations

Research literature as a multi-class Jackson network (see e.g. Chao, Miyazawa and Pinedo

1999). These networks are known to generate an ergodic Markov process whose invariant

distribution is a product measure. This property is also satis…ed in our case and permits

analyzing the ‡ow of problems faced by each node as a composition of independent Poisson

processes. Consequently, the arrival rates from di¤erent sources can be made to add up to

a combined arrival rate, as postulated in (2).
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In order to interpret the induced arrival rates, let us consider a (…ctitious)

scenario, in which time is discrete and the number of nodes visited by a problem

is equivalent to the time it spends in the network. That is, all problems arriving to

a node on any given period are always dispatched prior to entering the following

period without delay. Further assume, in order to …x ideas, that, for every k

and i; a problem k is created in i with probability one at each period. Then, the

probability qkij(r) de…ned at the end of section 2 can be trivially reinterpreted

as the probability that, at any given time t(¸ r); there is a problem k which

originated r periods ago in node node i that is currently faced by node j: With

this interpretation in mind, the expression

bkij ´

8>><>>:
P1

r=0 q
k
ij(r), when j 6= k

0, when j = k

can be viewed as the limiting (or steady-state) expected number of problems k

which arose in i sometime in the past and are currently passing through j at

some “distant” period t.4 Let Bk denote the matrix (bkij)i;j2N for any given k:

Then, compactly, we may write in matrix form:

Bk =

1X
r=0

Qk(r)Rk =

1X
r=0

(P k)rRk = (I ¡ P k)¡1Rk

4We have bkik = 0, since we assumed that problems that reach their destination are solved

immediately.
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Based on these magnitudes, let us de…ne the (algorithmic) betweenness of any

particular node j by:

¯j ´
nX
i=1

nX
k=1

bkij

That is, we simply add over all possible origins i and destinations k: In line
with the previous discussion, one can interpret ¯j as the expected number of
problems (of any kind, and with any origin) that are going through node j in the
long run.5 The magnitude embodied by each ¯j abstracts from considerations of
congestion. We will see, nevertheless, that this magnitudes bears a very strong
connection with the behavior of the model, in particular concerning the arrival
rates displayed in Ak.

To make this connection, we need to carry out the following derivations. No-

tice …rst that since pkkj = 0 for all j, we have that R
kP k = P k. Postmultiplying

both matrices by Rk, this implies that:

¡RkP kRk = ¡P kRk

Adding Rk on both sides and then isolating the common factor Rk also on both

sides we have:

Rk
£
I ¡ P kRk¤ = £I ¡ P k¤Rk

Now, premultiplying both sides by
£
I ¡ P k¤¡1 and postmultiplying £I ¡ P kRk¤¡1

£
I ¡ P k¤¡1Rk = Rk £I ¡ P kRk¤¡1

5Note that the present notion of betweenness is algorithmic-based, in the sense that it

is associated to the particular search protocol used by the organization. Thus, it is to be

distinguished from the more usual notion of topological betweenness (Freeman 1977, Newman

2001), which assumes that the search algorithm at work is globally e¢cient and is able to

identify the minimal distance paths between nodes.
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so that Ak = ½
n¡1B

k. This implies that if we denote by ®j =
Pn

i=1

Pn
k=1 a

k
ij the

total arrival rate of problems to a node (from every origin i and destination k),

then

®j =
½

n¡ 1¯j (4)

i.e. the total problem arrival rate faced by any node is proportional to its be-
tweenness.

Recall that we have normalized the departure rate of problems from each non-

idle node to 1. Under these conditions, the length of the queue is expected to

grow without bound if, and only if, the expected number of problems arriving

every period to the queue is larger than the expected number of problems that

can be processed in each period. Therefore, relying on (4), we can formulate

matters in terms of the corresponding betweenness and state that a particular

node j collapses, provided no other does, i¤

½

n¡ 1¯j > 1;

which implies that the maximum ½ consistent with no node collapsing in the

network is:

½c =
n¡ 1
¯¤

(5)

where ¯¤ ´ maxj ¯j is the maximum betweenness.
At this point, it may be useful to provide a concrete example that naturally

…ts in our theoretical framework. Consider a scenario where:

(a) the probabilities pkij that de…ne the communication protocol of the organiza-

tion are unbiased in the following sense: For all i; j; k 2 N; such that i 6= k
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and k =2 Ni,6

pkij =
1

jNij :

(b) For every problem k awaiting at node i; this problem is processed with inde-
pendent probability equal to 1

qi
; where qi stands for the number of problems

in the queue.7

Any scenario satisfying (a)-(b) is consistent with our maintained assumptions,
i.e. its communication protocol can be described by a corresponding set of matri-
ces as in (1) and the nodes behave as queues (they process an expected number
of problems equal to unity). Notice that assumption (a) precludes the possibil-
ity that a problem is routed taking into account its …nal destination. This is
consistent with our philosophy that the links represent the mutual knowledge of
two individuals about each other’s abilities. Thus, the absence of a link with k
implies that individual i (with k =2 Ni) has no knowledge of the “best” direction
of movement. In the concluding remarks we discuss what can happen when this
assumption is relaxed.

3.2 Organizational performance

Assume that for all i 2 N , ½
n¡1¯i < 1, that is, the expected number of arrivals

to all nodes is smaller than the expected number of exit opportunities. This, as
explained, averts the possibility of collapse. However, the fact that, in expected
terms, the number of unsolved problems cannot grow unboundedly does not rule
out the possibility that queues of positive length might persist throughout the
network. To understand this intuitively, note that the (unavoidable) ‡uctuations
that are forever present along the process induce inherently asymmetric e¤ects
on the length of queues. On the one hand, when no problems stand in the queue
of a certain node, the queue can obviously become no shorter. Instead, no matter
how long a queue might be, there is always positive probability that it increases
even further. In heuristic terms, one could describe the basis of this asymmetry

6Recall that, if k 2 Ni; it was required that pkik = 1:
7We could easily handle non-random disciplines for problem delivery, like FIFO (First-In-

First-Out). The advantage of a random discipline is that is minimizes the amount of memory

needed for numerical computation (as the algorithm does not need to keep track of an order

of arrival to the queue at each node). Thus, it speeds up the simulations we perform in the

next section.

11



as follows: whereas upward ‡uctuations always increase congestion, downwards
‡uctuations cannot “anticipatorily save” on it. This, in the end, implies that
queues of some positive length should be expected to persist even in the long-
run.
Thus, let us maintain the assumption that ½ < ½c: Then, the arrivals and

departures from each node i follow Poisson processes with rates equal to ®i =
½ ¯i
n¡1 and unity, respectively. Denote by pim the steady state probability of a
queue of size m in node i (i.e. the probability that there is a load of m pending
problems being faced by node i): The induced probability distribution (pim)1m=0
must satisfy:8

®ipi;m¡1 + pi;m+1 = (®i + 1)pim (m = 1; 2; :::)

pi1 = ®ipi0

The left-hand side of the …rst equation is the mean ‡ow rate into the state m:
That is, it adds the transition rate from state m ¡ 1 to state m (the queue has
m¡ 1 elements and a new problem arrives) plus the rate from m+ 1 to m (the
queue has m+ 1 elements and a problem is solved). There are no other possible
transitions into state m, since the arrival or departure of two problems at the
same time has probability zero in a continuous-time Poisson process. On the
other hand, the right-hand side of the …rst equation represents the ‡ow out from
state m, i.e. it adds the rates at which a queue that has m problems receives
one more, or solves one. In sum, therefore, the …rst equation only says that in
a steady state the ‡ow into any given state has to be equal to the ‡ow out of
that state. The second equation is just like the …rst one, except that it re‡ects
the simple fact that a queue in state m = 0 cannot go to state m = ¡1, since a
problem can only be tackled when it arises.
The solution to the system of equations above can be checked to be:

pim = (1¡ ®i)®mi ; m = 0; 1; 2; : : :

Therefore, the expectation for the length of the queue at node i in the steady

8See Allen (1990) for a good introduction to queueing theory.
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state, which we denote by ¸i; is:

¸i =

1X
m=0

m(1¡ ®i)®mi =
®i

1¡ ®i :

Over the whole network, the total expected length of the queues, i.e. the

expected size of what might be called the stock of ‡oating problems is (using (4))

¸(½) =
X
i2N

¸i(½) =
X
i2N

½ ¯i
n¡1

1¡ ½ ¯i
n¡1

: (6)

This magnitude, in turn, has its mirror image in the time dimension, where

it shows as the average delay, say ¢(½); involved in solving problems. By the

so-called Little’s Law,9 it follows that

¢(½) =
1

n½
¸(½):

9Proofs for this Law can be found in Little (1961) and Stidham (1974). A simple proof,

which we adapt from Bentley (2000) is the following. De…ne X(T ) = C(T )=T , as the rate

of problems solved up to a certain period T , where C(T ) is the number of problems solved

up to that period. Let Z(t) denote the stock of problems in the system at time t 2 [0; T ].
LetW (T ) be the area under Z(t) from 0 to T , which represents the total aggregated waiting

time over all problems in the system in that interval. The mean waiting time per problem

solved is de…ned as R(T ) = W (T )=C(T ). The mean number of problems in the system is

the average height of Z(t); which is L(T ) = W (T )=T . Clearly, L(T ) = R(T )X(T ). On the

other hand, by de…nition, we have that limT!1L(T ) = ¸; and limT!1R(T ) = ¢: Since, in

a steady state, the average number of exits from the system per unit of time must equal the

number that enter the system, it follows that limT!1X(T ) = n½: Thus, ¸ = ¢ ¢ n½; which
is the desired conclusion.
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Intuitively, this merely re‡ects an “accounting identity”: on average, the stock
of ‡oating problems ¸(½) is to be viewed as the result of the mean delay ¢(½)
displayed by each of the n½ problems arising in the network per unit of time.

3.3 Designing the network for optimal performance

Once we understand the dynamics of a given network, we can address the issue
of what is the optimal network layout of an organization, given that it involves
some pre-speci…ed set of nodes and has a given number of links at its disposal.

First, we introduce some notation. Given any network ¡, denote by ¸¡; ½¡c ;

¯¡i ; the value that the variables ¸; ½c; ¯i take for this network. Now let U stand

for the set of all networks that can be constructed with a certain number of nodes

and links, and denote by ¸¤ the lower envelope of f¸¡g¡2U ; i.e.

¸¤(½) ´ min
¡2U

¸¡(½)

with

N ¤(½) ´ argmin
¡2U

¸¡(½):

Since

¸¡(½) =
X
i2N

½ ¯¡i
n¡1

1¡ ½ ¯¡i
n¡1

(7)

it obviously follows that

¸¤(0) = 0

lim
½"½¡c

¸¤(½) = 1:

For any ½ < ¹½c ´ max¡2U ½¡c , the lower envelope ¸¤(½) de…nes the optimal per-

formance (i.e. lowest stock of ‡oating problems) displayed by an organization
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which faces the demands (nodes) and limitations (links) embodied by U : Cor-

respondingly, N ¤(½) speci…es the optimal network architectures (in general not

unique) that underlie such an optimal performance. Our aim here is to char-

acterize the topological properties of the networks in N ¤(½) for each ½ < ¹½c: In

particular, for any such network ¡ (and their corresponding ¯¡i ); we shall focus

on its polarization µ(¡); which is de…ned as follows:

µ(¡) =
maxi2N ¯¡i ¡

­
¯¡i
®­

¯¡i
®

For the moment, let us maintain the tentative assumption that, for each ½ < ¹½c;
all networks associated to N ¤(½) display the same polarization and denote this
value µ¤(½):
It is intuitive that the following two properties should hold for an optimal

network. First, for ½ low, congestion is not expected to be an issue. Thus,
optimality should involve minimizing distance, which is achieved by a network
with the highest polarization: a star (or star-like) network. That is, for low
values of ½; we would expect µ¤(½) to take the highest possible value. On the
other hand, as ½ draws close to the maximum value given by ¹½c; congestion must
become the crucial factor, and optimality should involve a balanced (symmetric)
network. That is, µ¤(½) would take the smallest possible value for such high ½.

To cast the previous discussion in more formal terms, note that, for low ½ (i.e.

as ½ # 0); the performance of a network ¡ can be approximated as follows:

¸¡(½) =
X
i2N

½
¯¡i
n¡1

1¡ ½ ¯¡i
n¡1

t
½

n¡ 1
X
i2N

¯¡i :

Therefore, for low ½ (“slightly above” zero), the task of …nding the optimal net-
works in ¡¤(½) involves singling out those networks ¡ that minimize the aggregate
betweenness

P
i2N ¯

¡
i .
10 It is easy to verify that this minimization is attained

10If we de…ne logarithmic distance as the average number of nodes that a problem has to

travel in order to reach its destination, aggregate betweenness is equivalent to algorithmic

distance. To see this, note that every time a problem goes from one node to another, it
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by a star-like network where the polarization is maximal,11 as indeed suggested
above.

Instead, for high ½ (i.e. as ½ " ½¡c ); the stock of ‡oating problems (which rises

unboundedly with ½) is of the following order:12

¸¡(½) » O
Ã
max
i2N

1

1¡ ½ ¯¡i
n¡1

!
= O

Ã
1

1¡ ½
n¡1 maxi2N ¯

¡
i

!
:

This implies that, for high ½ (“slightly below” ¹½c); optimal performance is achieved
by networks ¡ with a minimum value for maxi ¯

¡
i . Thus, as suggested in our dis-

cussion, the optimal network in this case is to be an homogenous one, where the
maximum betweenness is minimized and thus polarization is minimal.

As ½ rises from very low levels to values close to ¹½c; it is natural to conjecture

that the optimal level of polarization µ¤(½) should vary in a monotonic (non-

increasing) fashion. To check the validity of this conjecture, it is useful to turn

our attention to the form of the objective function ¸¡(½) which is minimized over

¡ 2 U (cf. (7)). A …rst useful observation in this respect is that the dependence

of this function on ¡ is solely channeled through the corresponding vector of

induced betweenness ¯¡: Thus, for each ½ < ¹½c, we may equivalently reformulate

increases both its algorithmic distance by 1 unit and the betweenness of the receiving node

by 1 unit.
11To see this simply note the following. First, the topological betweenness is never higher

than the algorithmic betweenness – recall Footnote 5. Second, the topological betweenness is

minimized at a star network, where the average (topological) distance is minimized. Third,

at a star network, both notions of betweenness (topological and algorithmic) coincide.
12We say that f(½) » O (g(½)) if 0 < lim½!½¡c f(½)

g(½)
<1.
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the optimization problem underlying µ¤(½) as follows:

min
¯2B

¸¯(½) ´
X
i2N

½ ¯i
n¡1

1¡ ½ ¯i
n¡1

:

Then, to proceed formally, we would need a su¢ciently detailed characterization

of the range of feasible betweenness vectors

B ´ f¯ = (¯i)i2N 2 Rn+ : ¯ = ¯¡ for some ¡ 2 Ug

that can be spanned by the set of admissible networks U . This, unfortunately,
seems an especially di¢cult task, given the complex combinatorial considerations
involved. We may hope, however, to shed some light on the problem if we rely on
the following two simple features of the situation. First, we note that ¸¯(½) is an
increasing and convex function on Rn+ whose curvature increases with ½. Thus,
in particular, its level curves f¯ : ¸¯(½) = Kg pass from being linear when ½ = 0
to displaying a “right-angle kink” at points of uniform betweenness (i.e. in the
bisectrix) as ½! ¹½c (cf. Figure 1).

A second important observation derives from an already explained fact: the

sum of betweenness is minimized over the set B at star-like con…gurations. To

help formalize the implications of this fact, suppose that “perfect-star” networks

with just one node i at the hub and all other nodes j 6= i as symmetric pure

spokes are admissible con…gurations in the set U : Then, if we denote such star

networks by b¡i; it follows that the set B must lie above the following hyperplane
in Rn:

H ´ f¯ = (¯i)i2N 2 Rn :
nX
i=1

¯i = ¯
b¡i for any i 2 Ng:

17



1β

2β
������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������

B
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45!

1 2ρ ρ<

Figure 1: Optimal betweenness pro…le ¯¤(½) as ½ passes from a relatively low ½ = ½1 to

a higher ½ = ½2: For the lower ½; the level curves display less marked curvature and the

optimal pro…le occurs at the two extreme betweenness points where the corresponding level

curve and the lower frontier of B meet in each of the two axes. For the higher ½, the optimal

pro…le lies at the tangency between the corresponding level curve and the lower frontier of

B that lies in the bisectrix of the positive orthant.
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Let us now make the plausible assumption13 that the lower frontier of B; i.e.

@B ´ f¯ = (¯i)i2N : [¯ 0 2 B, ¯ 0i < ¯i for some i 2 N ])
£
¯0j ¸ ¯j for some j 2 N

¤

does not change curvature throughout the space Rn+: (An illustration of the situ-
ation is again provided in Figure 1 for the bidimensional case.) Then, combining
the above considerations, it readily follows that, as suggested above, the po-
larization µ¤(½) associated to the optimal network depends on ½ in a weakly
monotonic (non-decreasing) fashion. But the analysis can go much farther than
this anticipated dependence and arrive at the following startling conclusion. As
the problem rate ½ rises (and the “bending” of the level curves becomes progres-
sively more acute) there is a threshold transition from the case where the optimal
network displays a polarized betweenness (i.e. it is star-like) to a situation where
the betweenness vector is essentially symmetric (and the network is basically ho-
mogenous). Thus, what this analysis suggests is that, as ½ changes, there is a
qualitative “discontinuous” change in the optimal network that basically reduces
the range of optimal con…gurations to two extreme cases: a fully centralized and
a fully decentralized network.
We have checked the conclusions derived from this analysis (in particular, the

validity of our simplifying assumptions) by exploring matters numerically in a
variety of computationally amenable contexts. The results are shown in Figure
2 for the leading scenario described in Subsection 3.1 and a range of di¤erent
possible speci…cations of U (i.e. di¤erent number of nodes and possible links).

Figure 2 plots the value of µ¤(½) as a function of ½; for organizations that
di¤er in the number of links (64, 96, 128, 160). The organizational size is kept
constant at N = 32. The value of µ¤(½) was obtained through algorithmic search
over the set of admissible networks.14 In all cases, we observe that the degree
of polarization associated to the optimal architecture depends on ½ as predicted
by theoretical model, i.e. it is non-increasing in ½ and displays an abrupt change

13We ignore at present how restrictive this assumption really is, although we conjecture

that it may be a su¢ciently good approximation of the situation when the problem at hand

is large enough, i.e. there are su¢ciently many nodes and the considerations pertaining

to “node indvisibility” are of second-order importance. As reported below, the simulations

conducted in di¤erent (small) contexts provide indirect evidence in support of this conjecture.
14Let us explain the method used to perform the numerical search for the optimal network.

We use generalized simulated annealing, as described in Penna (1995) and Tsallis and Stariolo
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Figure 2: Polarization of the optimal structure as a function of ½, for networks of size n = 32

and di¤erent number of links m = 64; 96; 128; 160: The star-like con…guration (top left) is

optimal for low ½ , while an homogeneous con…guration (bottom left) is optimal for high ½ .

between the two extreme topologies – i.e. star-like and homogenous – as ½ varies.

(1994). Starting from a given initial network con…guration, random rewiring of individual

links are performed. The cost ¸¡(½) is then evaluated. The change is accepted with a certain

probability that depends on a computational temperature. This temperature is decreased

with time so that the system tends to explore regions of the con…guration state with lower

and lower costs.

Regarding the cooling, at a given temperature, each node of the network is allowed to try

a rewiring. Then the temperature is decreased by 1%, and the process is repeated until a

minimum temperature is reached or, alternatively, the system has remained unchanged after

a signi…cantly large amount of rewiring trials.

Di¤erent sets of initial conditions are explored: for a given value of ½, the optimization
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Moreover, throughout the whole range of ½, only these two topologies ever qualify
as optimal.

4 Related literature

In the last few years there has been a booming interdisciplinary interest in the
study of networks. Social scientists have been working steadily on this topic,
but also physicists interested in the dynamics of complex systems, or biochemists
studying autocatalytic networks and the origin of life. This vast line of research
has been motivated by the belief that social, physical, or biological models that
ignore the topological structure of interaction are often unable to give account of
many interesting phenomena. The increasing importance of the world wide web
for scienti…c, governmental and commercial purposes is another powerful source
of interest in this topic.
Our paper belongs most directly to the literature on the economics of orga-

nizations. In a sense, our analysis re‡ects the same informational considerations
that have long lied at the core of the controversies on the merits and drawbacks of
economic (de)centralization.15 However, rather than highlighting how the rich-
ness of information or the cost of communication bears on the problem, our
analysis displays a somewhat di¤erent focus. We stress that limitations on the
ability to process a large amount of information simultaneously raises the threat
of organizational collapse or at least long delays in the organization tackling the
required tasks.
There is a recent strand of the economic literature that is motivated by similar

concerns and also identi…es organizations with networks whose objective is to
process information. The paper initiating this line of research was Radner (1992),
then followed, among others, by Bolton and Dewatripoint (1994), and van Zandt
(1999). Their work mostly abstracts from search issues. The information that
‡ows in an organization is such that any of its members can process it. Typically,
there are advantages in terms of processing time if di¤erent bits of the same
problem are processed in parallel. But, in this case, the di¤erent bits must be
combined in order to obtain the …nal output, and the required communication

process is started from random initial con…gurations and also from networks that turned out

to be optimal at similar values of ½. Of all the realizations, only the network with a smallest

cost is considered as optimal.
15This debate, for example, is nicely epitomized by the well-known work of Lange (1936,

1937) and Hayek (1940). The central issues raised by these authors were later formulated

and addressed formally by the Theory of Mechanisms, as initiated by Hurwicz (1960). See

van Zandt (1999) for a good survey on this topic.
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brings about a coordination problem. The main trade-o¤ here is the one between
parallelization and coordination costs. The organization consists, thus, of a rather
mechanical process of combining disperse information. Sah and Stiglitz (1986)
and Visser (2000) also study an analogous design problem, their main focus
being on the contrast between the performance of a hierarchic and a poliarchic
organization.
Closer in spirit to our work is Garicano (2000). In his model, each individual

specializes in solving a certain type of problems. If she cannot solve a problem
that reaches her, there is another person to whom she must deliver that prob-
lem. The task of the organization designer is twofold. First, she must assign
knowledge sets to each individual in the organization. Then, she must design
the routes through which unsolved problems must travel. Both knowledge ac-
quisition and communication are costly. There is, then, a fundamental trade-o¤
between acquiring knowledge and communicating it. The solution to this trade-
o¤ is to organize workers along a hierarchy. All problems are …rst given to the
workers lowest in the hierarchy, who have the knowledge about the most ordinary
problems. Those relatively uncommon problems that they cannot solve are then
transferred to individuals in the next higher level, and so on.16

Despite the similarity in spirit, there is a crucial di¤erence between Garicano’s
(2000) model and ours. We assume that knowledge acquisition cannot be con-
trolled or designed and thus the organization planner must take the knowledge
sets of workers as given. This, in turn, creates a congestion problem in our set-up
which does not appear in his context. Since the planner in Garicano (2000) has
control about what every worker knows, the organization can be designed so that
bottlenecks are avoided. We feel that our model is relevant for …rms in which
endowments of knowledge are not easy to replicate in a standardized fashion.
Even if a university wanted, it would be hard to …nd two solvers of Fermat’s last
conjecture for every ten solvers of standard elliptic partial di¤erential equations.
We conjecture that the high-level knowledge-based organizations we used to mo-

16Beggs (2001) introduces a model that is close (and produces similar conclusions) to

Garicano (2000), with two important di¤erences. From the conceptual point of view, the

di¤erences between workers in Beggs (2001) arises because of di¤erent ability (processing

power) between individuals, rather than because of specialization, as in Garicano (2000).

From the technical point of view, Beggs (2001) uses an explicitly stochastic model, and the

techniques come mainly from queuing theory. The di¤erence between individuals in our

model occurs because of specialization, so in that sense we are closer to Garicano (2000). In

the technical respect, however, we are closer to Beggs (2001), which also makes a imporatnt

use of queueing theory.
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tivate our paper present characteristics that make them look more like those in
our model.
A more technical literature has focused in the problem of search in complex

networks. Watts and Strogatz (1998) pioneered the recent surge of interest in
what has been called small-worlds (see also Watts 2000, and Newman, Moore
and Watts 2000). This term refers to regular lattices where nodes have many
local links (links that connect nodes to neighbors in an underlying topological
sense) and a few long-range links. This kind of networks have the characteristic
that the average distance between two randomly chosen nodes is relatively low.
This is so despite the fact that most connections are purely local. The small-
worlds literature abstracts from search problems (and also congestion), since
distance here means minimal graph distance and thus implicitly presumes global
knowledge of the network. Albert and Barabási (2002) survey the …ndings in the
area.
Kleinberg (1999, 2000), on the other hand, does address search issues in the

context of complex networks. In his model, problems have to travel through a
network looking for its (known) destination. The search is helped by knowledge
of the underlying “geographic structure” (and the links of each node). This struc-
ture may be very e¤ective in guiding search within a small-world type network. In
contrast, it is not useful in a random network (i.e. one whose links are completely
random), despite the fact that average distance is actually smaller. Kleinberg’s
model helps to explain the speed and e¤ectiveness of search in some large com-
plex networks (e.g. the huge world-wide web). It abstracts, however, from the
congestion issues that are our main interest here and that, undoubtedly, also rep-
resent a key consideration in many real-world contexts. Arenas, Díaz-Guilera and
Guimerà (2001) address problems similar to those considered here and study, in
particular, the trade-o¤ between congestion and distance. They restrict, however,
to a limited range of possible organizational forms, namely hierarchies, which face
no genuine issue of search. In a hierarchy, all problems (which are aware of their
destination) know the (…xed) route they have to travel.

5 Summary and extensions

We have proposed an abstract model of a problem solving organization which
(a) operates through local communication, (b) is forced to search restricted by
local information (c) is subject to the e¤ects of congestion. For this model, we
provide an analytical characterization of the threshold of collapse and the stock of
‡oating problems (or average delay) below that threshold. We then build upon
this characterization to start addressing a design problem, namely to …nd the
network which optimizes performance for any given problem arrival rate.
A number of extensions could be explored. An interesting one concerns study-

ing the e¤ect of a larger “information radius” on the performance of the orga-
nization. That is, when designing the optimal organization, we assumed that
individuals only use information about their direct neighbors to route a problem.
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We are currently undertaking research to relax this assumption. Individuals may
use the knowledge of their neighbors’connections (or even of individuals with
higher order degrees of separation). First, concerning the issues of congestion
and delay, it is easy to see that the analytical approach used here to character-
ize the congestion threshold and the average delay may be applied unchanged
for any information radius (remember we only started use the assumption of
…rst neighbors knowledge for the design problem). Turning then to the issue of
organizational design, preliminary numerical results suggest that, as one would
expect, the optimal network becomes less polarized as the information radius
expands. This is intuitive since, as the information of nodes becomes less lo-
cal, the informational advantages of a polarized network should correspondingly
decrease.
Many other extensions could be easy to handle in our framework. For example,

the problems could be sent with higher (or even lower) probability to nodes with
a larger number of connections. Also, the rate at which problems originate at
one node could depend on the node where they can be solved, which may create
local “communities” of problem-solvers.
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