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1. Introduction

The literature on stock market design has recently devoted attention to mechanisms allowing traders

to exchangeportfolios of assets. The idea behind these contributions is that the impossibility of

operating in more than one market at the same time, a feature that characterizes virtually all of the

existing stock markets, may either affect traders’ capability to rebalance their portfolios (Bossaerts,

Fine, and Ledyard, 2002) or seriously hamper their ability to exploit trade relevant information, and

trigger program trades that cause priceoscillations(Amihud and Mendelson1991a; Amihud and

Mendelson1991b). A mechanism allowing the trade of asset portfolios would thus mitigate price

volatility and permit better portfolio re-balancing.

From the perspective of market design it is then important to understand how to concretely

implement such a trading system. Consider, for instance, a trader submitting an order to buy a given

vector of assets. She may want to condition her demand not only on the price of the asset she is

trading, but also to take advantage ofcross-conditioningpossibilities. In particular, she may want

to condition her decision to buy say a hundred shares of companyA both on the price of company

A and on that of companyB, to the extent that information flows about the two companies are

somewhatrelated. This type of cross-conditioning has been advocated by many authors on grounds

of improved efficiency and reduced volatility (Beja and Hakansson, 1979;Amihud and Mendelson,

1991b;Economides and Schwartz, 1995). Surprisingly, little theoretical analysis has assessed the

desirability of its introduction.

Aside from theoretical considerations, this analysis is prompted by the deep changes in trading

procedures spurred by recent advances in information technology. ITG, the technology company

running the POSIT network, has recently started allowing its clients the submission of multi-price
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contingent orders.1 Optimark, a trading system directed to institutional traders, allowed the spec-

ification of different parameters upon which to condition trade execution.2 Archipelago, an open

limit order book system, allows participants to submitnon standardtypes of orders.3

Motivated by these considerations, I analyze the properties of two call-auction trading mecha-

nisms in which a vector of (two) risky assets is traded among a continuum of risk-averse informed

speculators and liquidity traders, with the intermediation of a competitive, risk-neutral market-

making sector. Informed traders receive a vector of private (noisy) signals about the vector of

liquidation values and, in theunrestrictedmechanism, submitmulti-price contingent orders; in the

restrictedmechanism they submitstandard(single-price contingent) limit orders. Market makers in

the unrestricted mechanism compete for each asset order flow, whereas in the restricted mechanism

their competition is restricted to the order flow of the asset they are assigned to. In both cases,

equilibrium prices are set equal to the expected value of the risky asset conditional on all public

information. Liquidity traders are modeled as having a vector of random demands. All random

variables are normally distributed and informed traders display a constant absolute risk-aversion

utility function. Equilibrium behavior is analyzed and implications for price informativeness and

traders’ welfare are addressed.

Contrary to common intuition, this analysis challenges the view that a multi-price contingent

1The electronic equity-matching system ITG started operating 14 years ago. Its trading platform QuantEX permits an
order submission strategy (“Pairs”) that automatically executes orders “when the spread differential between two stocks
reaches a specified level.”QuantEX, Electronic Trading Made Intelligent,available athttp://www.itginc.com . I
thank Ekkehart Boehmer for pointing out this evidence to me.

2Besides submitting traditional limit and market orders, traders could condition their demand on a number of contin-
gencies. For instance, a trader could specify her willingness to pay more for a larger order size in a confidential way, so
that the actual transaction price would not be affected. SeeClemons and Weber (1998).

3For instance, traders can post “discretionary orders,” where they specify both a limit price and the price difference
they are willing to accept to get the order executed (for instance, a trader may want to buy 1000 shares at $10 but may be
willing to pay $101/4 at most. The order is posted at $10 and if a sell at $101/4 enters the book, it is executed). Also, they
can post tracking orders that are automatically adjusted to the National Best Bid and Offer (NBBO) changes. SeeWall
Street Letter, December 4, 2000. For a survey of recent trading platforms’ innovations see theEconomist, May, 18th
2000.
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system shouldalwaysrender the market more efficient.Amihud and Mendelson(1991b, p. 127)

argue that “a mechanism which enablessimultaneous conditioningof orders for different assets (. . . )

would increase the information available to traders, improve value discovery and reduce volatility.”

This assertion points at the positive effect that observing multiple sources of correlated information

has. By contrast, my paper unveils the dark side of a multi-price contingent system, by analyzing

its feedbackeffect on traders’ speculative aggressiveness.

A fundamental insight of a multi-asset market is that a trader’s use of multi-dimensional private

information depends on thetype of order she submits, and on theamountof information market

makers observe (which, as a consequence, is reflected by equilibrium prices). In the unrestricted

system, market makers set prices conditionally on the vector of all order flows; thus, all the cross-

order flow information about fundamentals is already reflected into prices, and traders do not find

such information useful to improve their position vis-à-vis market makers. However, market makers

cannot observe the signals informed traders receive. Therefore, insofar as private signal error terms

are correlated, traders use multi-signal conditioning to disentangle error terms from fundamentals in

their private signals. Conversely, in the restricted system, market makers set prices conditionally on

the observation of the asset order flow they are assigned to. Hence, equilibrium prices only partially

reflect cross-order flow information about fundamentals. This, in turn, renders multiple private

signals useful to informed tradersbeyondthe correlated information about error terms they contain.

The upshot is that whenever private signal error terms areindependent, traders speculatemore

aggressively on their private information in the restricted system than in the unrestricted system.

This implies that, when the information structure is homoscedastic, if order flows are correlated only

through fundamentals, the restricted system deliversmore informative prices than the unrestricted

system.
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The central idea behind the efficiency result is that differently from a single-asset framework,

in a multi-asset setup price informativeness depends ontwo factors: thecorrelation between each

order flow and the asset payoffand thecorrelation across order flows. Indeed, the more correlated

with the fundamentals the order flows are, the more fundamental information can be extracted by

observing them; also, the more correlated order flows are among themselves, the easier it is to

disentangle noise from information within each order flow. Due to collinearity effects, the interplay

between these two factors may impair price informativeness in both trading systems. However,

this problem is neutralized in the restricted system as the stronger aggressiveness traders exhibit

magnifies the effect of the second factor, boosting price informativeness. This, on the other hand,

comes at the cost of making the price impact of trades harsher and, thus, noise traders’ expected

losses higher.

There is by now a vast literature studying the effects of different trading mechanisms on agents’

behavior and market patterns. However, most of it has concentrated on the analysis of single (risky)

asset markets.Madhavan (1992) compares the properties of quote driven systems with those of

order driven systems.Biais (1993) contrasts centralized and fragmented markets.Pagano and R̈oell

(1996) assess the effects of market transparency on uninformed traders’ losses.Grossman (1992),

in a paper which is closely related to the present one, justifies the coexistence of upstairs and down-

stairs markets. He argues that, contrary to what economic theory usually assumes, technical lim-

itations prevent investors from expressing their demands as a function of a price vector, and from

continuously updating them as new information arrives. This precludes investors’ preferences from

being accurately represented on organized markets, and gives upstairs dealers, acting asreposito-

ries of informationabout unexpressed demands, a transaction cost advantage vis-à-vis downstairs

dealers. In view of this paper’s results, and insofar as a major function stock markets perform is to
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signal firms’true assets’ payoffs, overcoming technological limitations may not always be a good

idea, as it can impair price efficiency.4

Little is known about the properties of markets where traders’ private information is multi-

dimensional. A notable exception is the paper byManzano (1997) where the author compares

multi-price and single-price contingent systems in a model with strategic traders. Also related

are the analyses ofWohl and Kandel (1997) andBrown and Holden (2002). These papers study

a trading mechanism where traders condition their demand for a given asset on a market index.

Hence, their focus is rather on the advantages of avoidingmispricing risk. 5 However, none of the

above papers assesses the effect that observing multiple sources ofendogenouspublic information

(i.e. equilibrium prices) has on the use that traders make of multidimensional private information,

and on price efficiency.

The paper is organized as follows. In the next section, I compare a one-asset market where

traders submit limit orders to one where they submit market orders. This provides a useful bench-

mark on which to build the comparison of market mechanisms in the multi-asset setup. In the third

section, I characterize the unique linear equilibria of the two mechanisms. In the fourth section,

I compare their properties. In the fifth section I consider two extensions of the multi-asset model,

generalizing the structure of private information, and introducing anintermediatemechanism where

traders’ orders are restricted while market-makers are able to observe multiple order flows. The sixth

section concludes the paper. Most of the proofs are relegated to the final appendices.

4SeeFishman and Hagerty (1992) for a discussion of the importance of stock price efficiency for production decisions
within and outside the firm.

5Mispricing risk is the risk that a limit order is executed at a mispriced limit price (as is the case, e.g. when some
relevant information is revealed to the market and the limit price is not updated to take it into account).
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2. The benchmark: limit orders vs. market orders

In this section I compare the properties of two markets where all the informed traders either submit

limit ordersor submitmarket orders. As will become clear later, insofar as traders in the restricted

system fail to condition their demand on all the sources of information related to the fundamentals

(as they do when submitting a market order), this analysis provides a useful benchmark on which to

build the comparison of market mechanisms in the multi-asset setup.6

In both markets a single risky asset with liquidation valuev ∼ N(v̄, τ−1
v ) and a riskless asset

with unitary return, are traded among risk averse informed speculators and noise traders with the in-

termediation of a competitive, risk neutral market making sector. There is a continuum of informed

traders in the interval[0, 1]. Each informed traderk receives a private signalsk = v + εk about

the unknownv, whereεk ∼ N(0, τ−1
ε ), andεk, εh are independent fork 6= h. Assume that her

preferences are represented by a CARA utilityU(πk) = − exp{−πk/γ} whereγ > 0 denotes the

coefficient of constant absolute risk tolerance andπk = xk(v − p) indicates the profit of buying

xk units of the asset at pricep. Normalize the informed traders’ initial wealth to zero and let noise

traders submit a random demandu ∼ N(0, τ−1
u ). Finally, assume that the random variablesv, u, εk

are independent∀k and that, givenv, the average signal
∫ 1
0 skdk equals almost surelyv (i.e. errors

cancel out in the aggregate:
∫ 1
0 εkdk = 0).

The “limit order” market

Suppose that all informed traders submit limit orders. Therefore, every traderk submits a schedule

XLk(sk, p) indicating her desired position in the risky asset contingent on her private signal and on

6Thus, this analysis does not provide a theory of order flow composition asall informed traders are assumed to make
the same choice as to the type of order they submit in a market populated by risk neutral market makers and liquidity
traders. For a theory of order flow composition seeFoucault (1999).
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the price. I restrict my attention to linear equilibria whereXLk(sk, p) = aLsk + bLp. Competitive,

risk neutral market makers set a semi-strong efficient equilibrium price conditional on the observa-

tion of the order flowL(p) =
∫ 1
0 XLk(sk, p)dk + u = aLv + u + bLp. Let zL = aLv + u denote

the informational content of the order flow. Then,p = E[v|zL] and the following result applies

Proposition 1 (Vives (1995b)) In the limit order market there is a unique linear equilibrium. It is

symmetric and given byXLk(sk, p) = aL(sk − p) andp = λLzL + (1− λLaL)v̄, whereaL = γτε,

λL = aLτu/τL andτL = (Var[v|zL])−1 = τv + a2
Lτu.

Intuitively, informed speculators’ trading aggressiveness in the limit order marketaL increases

in the precision of their private signal and in the risk tolerance coefficient. Market makers’ reaction

to the presence of informed speculatorsλL = aLτu/τL is captured by the OLS regression coefficient

of the unknown payoff value on the order flow. As common in this literatureλL measures the

reciprocal of market depth (see e.g.Kyle, 1985 and Vives1995b, 1995a). The informativeness

of the equilibrium price is measured by the reciprocal of the payoff conditional variance given the

order flow:(Var[v|zL])−1 = τL. The higherτL, the smaller the uncertainty on thetrue payoff value

once the order-flow has been observed.

The “market order” market

Suppose instead all informed traders submit market orders. Thus, assume each traderk submits

a scheduleXMk(sk) indicating her desired position contingent on the private signal she receives,

and restrict attention to linear equilibria whereXMk(sk) = aMsk + bM . Competitive, risk neutral

market makers set a semi-strong efficient equilibrium price conditional on the observation of the
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order flowL =
∫ 1
0 XMk(sk)dk+u = aMv+u+bM . 7 Let zM = aMv+u denote the informational

content of the order flow. Then,p = E[v|zM ] and the following result applies

Proposition 2 (Vives (1995a)) In the market order market there is a unique linear equilibrium. It

is symmetric and given byXMk(sk) = aM (sk − v̄) andp = λMzM + (1 − λMaM )v̄, where

aM = γ(τ−1
ε + Var[p])−1 is the unique positive root of the cubic equationF (aM ) = ((aM/γτε)−

1)τv + (λM/γ)a2
M = 0, with λM = aMτu/τM andτM = (Var[v|zM ])−1 = τv + a2

Mτu.

Informed speculators’ trading aggressiveness in the market order marketaM is inversely related

to the ex-ante volatility of the priceVar[p]. Indeed, while traders condition on private information,

they do not anticipate the equilibrium price. Thus, the larger the equilibrium price variance, the

higher theexecutionrisk, i.e. the risk of having their order executed at a price different from the

one prevailing when they submitted it, and the smalleraM .

Comparing limit orders with market orders

Given the previous results, we can now compare traders’ behavior, market performance and traders’

welfare in the two markets. Indicate withVar[p; aL] and Var[p; aM ] respectively the ex-ante price

volatility in the limit order market and in the market order market.

Proposition 3

1. Informed traders in the market order market trade less aggressively than in the limit order

market: aM < aL; as a result prices in the market order market are less informative and

ex-ante less volatile than in the limit order market:τM < τL andVar[p; aM ] < Var[p; aL].

7An equivalent interpretation of this market is one where prices are set through a market clearing process, the com-
petitive market making sector submits limit orders while informed and noise traders submit market orders to a centralized
auctioneer (seeVives, 1995a).
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2. The market order market is deeper than the limit order market if and only ifaM/aL < τM/τL.

Proof. The first part follows immediately from the definitions ofaM andaL, sinceaM ≡ γ(τ−1
ε +

Var[p; aM ])−1 < γτε ≡ aL. Given this,τM < τL and owing to price efficiencyVar[p; aM ] =

τ−1
v − τ−1

M < τ−1
v − τ−1

L = Var[p; aL]. Part 2 follows from the definition ofλM andλL. It is

immediate to see that there are values of the parameters for whichλM < λL as rearranging this

inequality leads to(aM − aL)(τv − aMaLτu) < 0. As aM < aL, for this condition to hold it must

be thatτv > aMaLτu. Suppose this is never possible, i.e.τv/aLτu ≤ aM , then asaM < aL, this

impliesτv/τu < a2
L which is clearly not always true. Q.E.D.

The intuition for the above results is straightforward: risk averse informed speculators in the

market order market suffer from execution risk. As a consequence, they scale back their aggressive-

ness compared with speculators in the limit order market. Therefore, they embedlessinformation

in the order flow, lowering the market order market price informativeness.8 Indicating withρv,zM

the correlation coefficient between the informational content of the order flow and the asset payoff

in the market order market it is immediate to show that

Var[p; aM ] = τ−1
v − τ−1

M = τ−1
v ρ2

v,zM
. (2.1)

Hence, in a semi-strong efficient market, ex-ante price volatility reflects the arrival of information

(analogously in the limit order marketVar[p; aL] = τ−1
v ρ2

v,zL
). The stronger is the correlation

between the informational content of the order flow and the fundamentals (i.e. the more informative

is the price about the liquidation value), the higher is the ex-ante volatility of the price.

8This result thus contrasts withRochet and Vila (1994), who in their analysis ofKyle (1985) show that price infor-
mativenessdoes notdepend on the type of order the insider submits. The reason is that in their model strategic behavior
leads the limit order insider to scale down her aggressiveness, equalizing the amount of information flowing to the market
to that of the market order model. In the present context, no strategic effects arise while risk aversion translates execution
risk into a trading aggressiveness reduction.
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Comparing depth across the two markets, two effects are at play: first, asaM < aL, market

makers’ adverse selection problem is less severe in the market order market; second, sinceτM < τL,

market makers in the market order market are less able to disentangle noise from information. If

the positive effect coming from the reduction in traders’ aggressiveness is stronger than the negative

effect due to the reduction in transparency, the market order market is deeper.

Indicate with Var[v− p|sk; aM ] (Var[v− p|p, sk; aL]) the variance of the returns conditional on

private information in the market (limit) order market and withVar[v − p|p; aM ] (Var[v − p|p; aL])

the variance of the returns conditional on the order flow in the market (limit) order market.

Proposition 4

1. An informed traderk prefers to trade in the limit order market rather than in the market order

market if and only if(Var[v− p|p; aL])−1/2Var[v− p|p, sk; aL]1/2 < (Var[v− p|p; aM ])−1/2

Var[v − p|sk; aM ]1/2.

2. Noise traders’ expected losses are larger in the limit order market if and only ifaM/aL ≤

τM/τL.

Proof. Standard normal calculations giveE[− exp{−γ−1xMk(v − p)}] = E[E[− exp {−γ−1xMk

(v−p)}|sk]] = E[− exp{−γ−1 (E[xMk(v−p)|sk]−(1/2γ)Var[xMk(v−p)|sk])}] = E[− exp{−(1/2)

Var[v− p|sk]−1E[v− p|sk]2}], and applying lemmaB1, E[− exp{−γ−1xMk(v− p)}] = (Var[v−

p|p; aM ])−1/2 Var[v−p|sk; aM ]1/2. Similarly,E[− exp{−γ−1xLk(v−p)}] = −(τL/(τL +τε))1/2

= (Var[v− p|p; aL])−1/2 Var[v− p|p, sk; aL]1/2. For part 2,E[u(v− p)] = −λMτ−1
u in the market

order market andE[u(v − p)] = −λLτ−1
u in the limit order market. The result follows. Q.E.D.

Thus, the ex-ante expected utility that an informed trader earns submitting a market (limit)

order, depends on the informational advantage she retains over the market makers. The smaller is
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the volatility of returns, given the trader information, vis-à-vis the volatility of returns, given the

market maker information, the more precise is traders’ estimate of asset returns compared to market

makers’. For a given payoff volatility and noise traders’ demand dispersion, the condition in the

proposition is satisfied whenever the quality of private information is poor, and traders are very

risk averse (τv = τu = τε = γ = .1). If this is the case, submitting a limit order (i.e. drawing

inferences from the price) improves the precision of a trader’s forecast without dissipating too much

information to the benefit of market makers. As the quality of information improves and traders

become more risk tolerant (e.g.τv = τu = .1, τε = 4, andγ = 1), the reverse occurs, as the higher

aggressiveness traders display submitting a limit order makes them loose most of their informational

advantage to market makers. In this situation, a trader rather submits a market order.

As noise traders’ expected losses are inversely proportional to market depth, whenever the mar-

ket order market is deeper than the limit order market, noise traders experience lower expected

losses in that market.

3. Multi-asset vs. single-asset trading mechanisms

In this section I extend the assumptions of the previous section to a two-asset setup. For the nota-

tion let us indicate withΠx the precision matrix of the two-dimensional random vectorx; with τxi

the precision of the random variablexi and withρx the correlation coefficient of the random vector

(x1, x2). Suppose that informed and noise traders exchange a vector oftwo risky assets with random

liquidation valuev = (v1, v2) ∼ N(v̄,Π−1
v ) and a riskless one with unitary return with the inter-

mediation of a competitive, risk neutral market making sector. There is a continuum of informed

traders in the interval[0, 1]. Each informed traderk receives a vector of private signalssk = v + εk

about the unknownv, whereεk = (εk1, εk2) ∼ N(0,Π−1
ε ), andεk andεh are independent for
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k 6= h. Assume that her preferences are represented by a CARA utilityU(πk) = − exp{−πk/γ}

whereγ > 0 indicates the coefficient of constant absolute risk tolerance andπk = x′k(v − p) de-

notes the profit of buying(xk1, xk2) units of each asset at pricep. Normalize the informed traders’

initial wealth to zero and let noise traders submit a random demandu = (u1, u2) ∼ N(0,Π−1
u ).

Assume that the random vectorsv,u, εk are independent∀k and that givenv, the vector of average

signals
∫ 1
0 skdk equals almost surelyv. Finally, let each ofΠ−1

v ,Π−1
u , andΠ−1

ε be positive def-

inite and suppose that the distributional assumptions are common knowledge among the agents in

the economy.

With the above assumptions, I consider two market mechanisms:

1. theunrestricted mechanismwhere(a) speculators condition their demand for each assetj on

the vector of private signalssk and on the price of assetsj = 1, 2, and(b) market makers set

the price of assetj conditionally on the observation of the order flow of both assetsj = 1, 2;

2. therestricted mechanismwhere(a) speculators condition their demand for an assetj on the

vector of private signalssk and on the price of assetj only and(b) market makers set the price

of assetj conditionally on the observation of the order flowj. In this case, interpreting market

makers as uninformed speculators, the model captures the features of the opening auction in

those markets where traders are allowed to condition their demand for an asset only on its

own price.

The unrestricted system

The unrestricted system is a version of the multi-asset model ofAdmati (1985) with the addition of

a risk-neutral, competitive, market-making sector as inVives (1995b). 9

9For noisy rational expectations equilibrium models with a single risky asset seeHellwig (1980), Diamond and Ver-
recchia (1981) andGrossman and Stiglitz (1980).
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Suppose informed traders submit multi-price contingent orders. Thus, each traderk submits a

vector of demand schedulesXk(sk,p), indicating the position desired in each assetj at every price

vectorp, contingent on the available private information. I restrict my attention to linear equilibria.

In equilibrium, then, prices will be normally distributed.

Market makers observe the vector of aggregate order flowsL(p) =
∫ 1
0 Xk(sk, p)dk+u. There-

fore, in pricing assetj each market maker usesboth the information contained in order flowj

and that contained in order flowi 6= j. Owing to the assumed ex-ante symmetric information

structure, the vector of demand functions and the equilibria will be symmetric. Suppose then that

Xk(sk, p) = Ask + φ (p), whereA, andφ(·) are, respectively, the matrix of trading intensities

and a linear function of current prices. The aggregate order flow is then given byL(p) = z +φ(p),

wherez = Av + u, denotes the vector of order flows’ informational contents. Owing to compe-

tition for each order flow and risk neutrality, market makers set a semi-strong efficient price vector

p = E[v|z] = Π−1 (Πvv̄ + A′Πuz), whereΠ = Πv + A′ΠuA, and the following result

holds:

Proposition 5 In the unrestricted system there exists a unique equilibrium in linear strategies. It is

symmetric and given by

Xk(sk, p) = A(sk − p),

andp = Λz + (I −ΛA) v̄, whereA = γΠε andΛ = Π−1A′Πu.

Proof. See Appendix A.

Remark 1The matrixΛ maps order flows into prices. For the equilibrium to be well-defined,Λ

must be invertible and, given the model’s assumptions, this is always the case. Notice also that,
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owing to multicollinearity effects, the diagonal elements of this matrix can be negative (seeAdmati,

1985).

The next corollary characterizes how speculators use public and private information in equilib-

rium.

Corollary 1 In the unrestricted system, an informed speculator’s demand for each assetj = 1, 2,

depends on the whole private signal vectorsk and on the whole price vectorp if and only if ρε 6= 0.

Proof. Follows from the fact thatA = γΠε.

Corollary 1 highlights a fundamental property of the unrestricted system: informed traders’

multi-price (and signal) conditioning is optimal if and only if the private signals’ conditional preci-

sion matrix isnotdiagonal. The intuition is as follows. As market makers observe both order flows,

equilibrium prices reflect all cross-order flow information about the fundamentals. Hence, informed

traders do not find such information useful to improve their position vis-à-vis market makers. How-

ever, market makers cannot observe the signals informed traders receive. Therefore, insofar as error

terms are correlated, traders use multi-price (and multi-signal) conditioning to disentangle error

terms from fundamentals within their private signals.

Remark 2Writing in scalar form a trader’s strategy one can see that the trading intensity in an asset

j is the composition of two effects: adirect one stemming from the informational advantage the

speculator has over the rest of the market in assetj, and anindirectone coming from the informa-

tional advantage she has on the other asset, to the extent that the received signals are correlated. To

see this, indicate withτεj , j = 1, 2 the (conditional) signal precision in assetj. Then, the strategy

15



of a speculator in assetj can be written as follows:

Xkj(sk, p) =
γτεj

(1− ρ2
ε )

(skj − pj)−
γρε

√
τεjτεi

(1− ρ2
ε )

(ski − pi). (3.2)

Assume thatρε > 0 and that speculatork receives two signalsskj , ski such thatskj > pj and

ski > pi. This can happen for two reasons: either both assets are worth more than what the market

thinks (i.e. asset prices are biased downwards e.g. by noise traders’ selling pressure); or both signals

are biased upwards. A downward bias in equilibrium prices is good news since it gives the trader the

possibility of taking advantage of the market’s forecast error. Her demand in each asset is larger, the

more precise are the signals she has received. However, the existence of positive correlation across

signal-error terms strengthens the hypothesis of a contemporaneous, upward bias in the speculator’s

signals. Given this, the speculator reinforces her belief that the good news she received about both

assets is due to the effect of error terms and reduces her demand in both assetj and asseti. 10

When no correlation across error terms exists (ρε = 0), speculators have no way to reduce the

bias in their strategies by pooling together private signals and find it optimal to submit single-signal

andsingle-price contingent orders.

Notice, however, that even ifρε = 0, market makers still use the information contained in all the

order flows when pricing an asset. Indeed, their demand can be written asXMM (p) = (Λ−1 −

A)(v̄ − p), and it is easy to see that the diagonality ofΠε does not imply the diagonality of

(Λ−1 −A). 11

10One can interpret the second term in the speculator’s strategy (3.2) as a “correction” of the position the trader takes
by only observingskj , due to the observation ofski. This correction is stronger (weaker) the higher (lower) is the
correlation across error terms. Indeed, for a bivariate normal distribution, the value ofFρε(εk1, εk2) is increasing inρε

for all ρε ∈ [−1, 1] and all fixed(εk1, εk2): a higher correlation across error terms increases the probability that a joint
bias in private signals occurs (see e.g.Tong, 1990).

11Notice that differently fromAdmati (1985) in this market, multicollinearity problems may determine the existence
of a “Giffen” asset in the market makers’ demand, butnot in the demand of an informed trader (see Cespa,2003).
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The restricted system

In the restricted system, a speculatork can condition her demand for an assetj on the whole vec-

tor of private signalssk and on the price of assetj only. Assume she submits a demand schedule

XRkj(sk, pRj), indicating the desired position in assetj at every pricepRj , contingent on the avail-

able information. As done for the unrestricted system, I restrict my attention to linear equilibria.

Therefore, equilibrium prices will be normally distributed.12

The market makers of assetj observe the asset order flow (that potentially carries informa-

tion about both assets) butdo not observe the order flow of the other asset. Formally, they thus

observeLRj(pRj) =
∫ 1
0 XRkj(sk, pRj)dk + uj . As the information structure is assumed to be

ex-ante symmetric, demand functions and equilibria will again be symmetric. Suppose then that

XRkj(sk, pRj) = j′ARsk + φRj(pRj), wherej is a column vector containing a1 in the j-th

position and a zero elsewhere,AR is the matrix of trading intensities in the restricted system,

and φRj(·) is a linear function of thej-th price. The aggregate order flow of assetj is then

LRj(pRj) = zRj + φRj(pRj), wherezRj = j′(ARv + u), denotes the order flow’s informa-

tional content. Given competition and market makers’ risk neutrality, the equilibrium price of asset

j is given bypRj = v̄j +λRjj
′(AR(v− v̄)+u), whereλRj = (Var[zRj ])−1Cov[vj , zRj ], indicates

the OLS regression coefficient ofvj onzRj (i.e. the usual measure of market depth). Consequently,

we have the following

Lemma 1In every linear equilibrium of the restricted system, the vector of equilibrium prices is

given by

pR = ΛRzR + (I −ΛRAR) v̄, (3.3)

12To the best of my knowledge, this is the first attempt to characterize the equilibrium in a multi-asset framework
where competitive,risk aversetraders receive different signals and bear restrictions in the number of asset prices they can
condition upon.
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whereΛR = diag(λR1, λR2) andzR = ARv + u are respectively the matrix of market depths and

the vector of order flows’ informational contents in the restricted model.

In the restricted system market makers can exploit cross-asset information in estimating an

asset valueif and only if speculators use both their signals when trading the asset. Conversely, in

the unrestricted system even ifA is diagonal, the price of an assetj depends on the order flow of

the other asset (to the extent that eitherΠv or Πu are not diagonal).

The following lemma characterizes informed speculators’ equilibrium demand parameters.

Lemma 2In every linear equilibrium of the restricted system, an informed speculatork’s demand

for assetj = 1, 2 is given byXRkj(sk, pRj) = j′AR(sk − v̄) + bRj(v̄j − pRj), where

j′AR = γ (Var[vj |sk, pRj ])
−1 c2j , andbRj = γ (Var[vj |sk, pRj ])

−1 (1− c1j/λRj) , (3.4)

andc1j , c2j , and Var[vj |sk, pRj ] are defined in Appendix A.

Proof. See Appendix A.

The next proposition proves existence and uniqueness of the equilibrium in the restricted system,

and the following corollary characterizes the equilibrium parameters.

Proposition 6 In the restricted system there exists a unique equilibrium in linear strategies. The

equilibrium is symmetric and the price vector is given by (3.3), while the demand parameters are

implicitly defined by (3.4).

Corollary 2 Let aRjj = (AR)jj and aRji = (AR)ji. In the unique linear equilibrium of the

restricted system:
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1. aRji > 0 if and only if ρε

√
τεj/τεi < ρv

√
τvj/τvi ;

2. (a)aRjj = γτεj (1− γ−1aRjiCov[ε1, ε2]) > 0 and (b)λRj > 0;

3. if ρε = 0, aRjj = γτεj andaRji 6= 0;

4. if ρε

√
τεj/τεi = ρv

√
τvj/τvi , aRjj = γτεj , aRji = 0, andbRj = −aRjj .

Proof. See Appendix A.

The interpretation of these results is as follows. For part 1, suppose an informed speculator

trading asset 1 receives two “high” signalssk1, sk2. This may be the effect of either fundamental

information, or of errors in the signals. The first possibility is more likely the stronger is the corre-

lation of asset payoffs compared to error terms’ correlation and the higher is the relative dispersion

of asset payoffs compared to error terms’ relative dispersion. In this case, indeed, the effect of fun-

damental informationdominatesthe effect of errors in the signal vector. For part 2 (a) suppose that

aR12 > 0. This means that an informed trader increases her speculative position in asset1 upon

receiving “good news” about asset 2. However, ifρε > 0, good news about asset 1 may come from

the joint effect of signal error terms. Therefore, the trader scales down the weight she puts onsk1,

the higher is the trading intensity she puts onsk2. For 2 (b), the impossibility of observing more

than one order flow when pricing an asset eliminates the multicollinearity effects that occur in the

unrestricted system. Therefore, the matrixΛR is positive definite.13 For part 3, the intuition is that

a given signalski is useful in trading an assetj 6= i if it carries information either aboutvj or about

the error termεkj . As the correlation across error terms vanishes,ski is still useful for the informa-

tion it contains aboutvj . Therefore, speculators use it in trading assetj. Notice that this result is

13This explanation is therefore different from the one inCabalĺe and Krishnan (1994), where the phenomenon is due to
the hypothesis of imperfect competition among insiders that prevents the existence of unexploited arbitrage opportunities.
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in stark contrast with corollary1: market makers’inability to observe all order flows renders both

signals useful to informed tradersbeyondthe correlated information about error terms they contain.

The last result is not surprising given what we said above. Ifρε

√
τεj/τεi = ρv

√
τvj/τvi , there is

no way for a speculator to disentangle error terms from information by pooling the two signals she

receives. As a consequenceaRji = 0.

Remark 3As done for the unrestricted system, let us consider more closely a trader’s strategy in

the restricted system:

XRkj(sk, pRj) = aRjj(skj − v̄j) + aRji(ski − v̄i) + bRj(v̄j − pRj).

Again, k’s trading intensity in assetj is the composition of 2 effects: adirect one stemming

from the informational advantage the speculator has over the rest of the market in assetj, and

an indirectone coming from the informational advantage she has on the other asset, to the extent

that she received conditionally correlated signals. Supposeρε

√
τεj/τεi < ρv

√
τvj/τvi , and that

skj > v̄j , ski > v̄i. As the effect of fundamental informationdominatesthe effect of errors in the

signal vector, the speculator reinforces her belief that the asset value is high and increases her long

position. If v̄j > pRj , such a long position is further increased because of the low price the market

gives to the asset.14

14Numerical simulations show thatbRj > 0.
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4. Comparing the unrestricted with the restricted system

Trading aggressiveness and price informativeness

In section 2, I have related a trader’s aggressiveness to the type of order she submits in a single asset

market, and analyzed the implications of different order types for price informativeness. In this

section, I first show that in a multi-asset world not only thetype of order, but also the way prices

are formed influences a trader’s aggressiveness. I then analyze the relationship between trading

aggressiveness and price informativeness.

Proposition 7 Let ajj = (A)jj andaji = (A)ji. Then,

1. whenρv = 0 andρε 6= 0, ajj > aRjj , |aji| > |aRji|;

2. whenρε = 0 andρv 6= 0, ajj = aRjj , |aji| < |aRji|;

3. whenρε = ρv = 0 andρu 6= 0, ajj = aRjj = τεj , |aji| = |aRji| = 0.

Proof. See Appendix A.

Proposition7 shows that the ranking of traders’ aggressiveness across the two systems depends

on correlation coefficients. As shown in corollaries1 and2, informed speculators combine private

signals to disentangle error terms from fundamental information. Whenρv = 0 andρε 6= 0, in the

unrestricted system this can be done comparing signals with prices whereas in the restricted system

traders compare signals with prior means. As prices arebetter estimators of the fundamentals,

traders in the unrestricted system are better able to assess the extent of their signal bias. As a

consequence, they speculatemore aggressively on their private information. Whenρε = 0 and

ρv 6= 0, in the unrestricted system informed traders don’t use multidimensional private information

to improve their strategies, and submit single signal-contingent orders. Conversely, in the restricted
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system they use the cross asset information contained in their signals (and not already fully reflected

in the price). This, in turn, boosts their trading aggressiveness. Finally, whenρε = ρv = 0 and

ρu 6= 0 in both systems there is no way for speculators to disentangle error terms from information,

and their trading aggressiveness coincide.15

Price informativeness is measured by the reduction in the unconditional variance of an asset

j’s payoff due to the observation of the vector of order flows. Thus, in the unrestricted system

Ipj = τ−1
vj
− Var[vj |z], while in the restricted systemIpRj = τ−1

vj
− Var[vj |zR]. This definition is

natural in the unrestricted system as it corresponds to the ex-ante volatility of assetj’s price. In the

restricted system it captures the point of view of an econometrician interested in estimating thedeep

parameters of the market, that regresses assetj’s fundamentals on the order flows, and measures the

informativeness of these regressors usingIpRj . Alternatively, it captures the perspective of a trader

who, before submitting an order observes the past asset price as well as the price formed in a related

market. I will thus say that the unrestricted system prices aremore informative than those of the

restricted system if and only ifIpj ≥ IpRj , for j = 1, 2. 16

Straightforward normal calculations give

Ipj = τ−1
vj

(
ρ2

vj ,zj
+ ρ2

vj ,zi
− 2ρzj ,ziρvj ,zjρvj ,zi

1− ρ2
zj ,zi

)
,

(4.5)

IpRj = τ−1
vj

(
ρ2

vj ,zRj
+ ρ2

vj ,zRi
− 2ρzRj ,zRiρvj ,zRjρvj ,zRi

1− ρ2
zRj ,zRi

)
.

15 Part 2 of proposition7, may seem to contrast with the intuition formed in section 2. As in the restricted system
strategies do not depend on all the information related to the fundamentals - as in the market order market - one may
think that a trader should also speculateless aggressively. However, in the restricted system market makers do not
observe both order flows; thus, lack of cross-conditioning ability does not expose traders to price movements spurred by
events affecting other order-flows.

16For an efficiency comparison in a one-asset, strategic set up where traders have information both on the fundamental
valueand on the source of noise seePalomino (2001).

22



It is useful to compare the above formulas with their analogues in a single asset framework (equa-

tion (2.1)). Differently from the one-asset setup – for a given payoff volatility – in a multi-asset

market price informativeness depends ontwo factors: thetotal correlation between order flows and

the asset payoff– taking into account the potential “correction” for redundant information – and

the correlation across order-flows. 17 The more correlated with the fundamentals the order flows

are (i.e. the higher is the numerator in each one of (4.5)), the more fundamental information can be

extracted by observing them. The more correlated among themselves the order flows are (i.e. the

lower is the denominator in each one of (4.5)), the easier it is to disentangle noise from information

within each order flow.18

From now on I restrict attention to the “homoscedastic case,” assuming thatτvj = τv, τuj = τu,

and thatτεj = τε, for j = 1, 2. Besides simplifying the analysis, this also allows us to concen-

trate on correlation effects, abstracting from the role that differences in signals’ precisions, payoffs

dispersions and noise trader demands’ volatilities play on the use of private information.

Proposition 8 In the homoscedastic case, whenρε = ρu = 0, for ρv small, prices in the restricted

system are more informative than in the unrestricted system.

Proof. See Appendix A.

Numerical simulations support the above result also for larger values of|ρv|. In particular,

letting ρv ∈ {−.9,−.8, . . . , .8, .9}, ρu = ρε = 0 and γ, τu, τv, τε ∈ {.2, .4, .5, .6, .8, 1, 3, 4}

17To understand the negative term in the numerator of (4.5), consider for instance the case in whichρvj ,zRj > 0,
ρvj ,zRi > 0, andρzRj ,zRi > 0. In this situation, observing a high value ofzRj induces one to believe thatvj is high.
This belief is further reinforced ifzRi is also high. However, asρzRj ,zRi > 0, such inference could be upward biased
as part of thezRj andzRi realizations may be due to the positive correlation that links these two random variables. The
negative term in the numerator of (4.5) corrects for this kind of problems.

18For example, observing two “large” order flows realizations, and knowing that order flows are, say, positively cor-
related only through fundamentals, leads one to conclude that these signals are likely to be result of high fundamentals
rather than positive noise traders demands.
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price informativeness is always higher in the restricted system (see figures 1 and 2, panel (a) for an

example).19

According to proposition7, if order flows are correlated only through payoffs, traders in the

restricted system speculate more aggressively than in the unrestricted system. As a result, the corre-

lation between each order flow and the asset payoffand across order flows in the restricted system

is larger than in the unrestricted system. This has two effects on price informativeness. First, owing

to the correction for redundant information, itmay make the total correlation between order flows

and the asset payoff in the restricted system lower than in the unrestricted system. Second, it unam-

biguously improves the ability to disentangle noise from information within each order flow in the

restricted system. As the latter effect isalwaysstronger than the former, prices end up being more

informative in the restricted system.20

This finding is in stark contrast with the common wisdom that a major benefit of a multi-price

contingent system is that of rendering the market more efficient. Indeed,Amihud and Mendelson

(1991b, p. 127) argue that a “mechanism which enablessimultaneous conditioningof orders for

different assets (. . . ) would increase the information available to traders, improve value discovery

and reduce volatility.” This assertion points at the positive effect that observing multiple sources

of correlated information has. By contrast, proposition8 unveils the dark side of a multi-price

contingent system, by uncovering itsfeedbackeffect on price informativeness.

The above result can also be interpreted as a multi-asset analogue of theGrossman and Stiglitz

(1980) paradox on the impossibility of informationally efficient markets. Indeed, the more informa-

tion is revealed by prices (and the more prices traders observe), the lower is the weight traders put

19Simulations were run with the aid of Octave.
20Notice that the condition given in proposition8 is sufficient but it is by no means anecessaryone. It is easy to show

that in the homoscedastic case whenρv = ρε 6= 0 andρu = 0, prices in the restricted system are more informative than
in the unrestricted system.
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on their signals; this, in turn, makes prices in the unrestricted system less informative than in the

restricted system. It is however worth stressing that in a in a multi-asset setup a stronger aggressive-

nessper-sedoes not grant a higher price informativeness; for as a result of a strong aggressiveness,

order flows can be highly correlated among themselves but poorly correlated with the fundamen-

tals (examples can be constructed where forρε 6= 0 andρv = ρu = 0 in the homoscedastic case,

prices in the restricted system aremoreinformative than in the unrestricted system, although traders

speculate more aggressively in the unrestricted system).

How reasonable is the chosen parameterization and how robust are the results presented above?

First of all, it seems realistic to assume thatρε = 0, as it is likely that each signal in the vec-

tor a trader receives contains information produced by a different analyst. More interesting is the

situation in which noise traders’ demands are correlated. In this case, the final effect on price in-

formativeness is ambiguous. For values of|ρu| smaller than.002%, and for the same parameter

space described above, the restricted system prices are still more informative than those of the un-

restricted system. However, larger values of|ρu| reduce the strong correlation across order flows in

the restricted system (i.e. increase the denominator ofIpRj in (4.5)), dampening its positive effect

on price informativeness, and, for some parameter values, revert the informativeness ranking.

Please insert figure 1 here.

Informed expected utility and noise traders’ losses

In this section I study traders’ welfare in the two systems. As to noise traders, their expected losses

depend on theprice impact of trades, i.e. the extent to which prices move as a result of market
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makers’ order flow observation. For what concerns informed traders, the decision to trade in the

unrestricted instead of the restricted system depends on the informational advantage they are able

to retain vis-̀a-vis market makers in each mechanism.

To fix notation, indicate withπk = x′k(v − p) and withπRk = x′Rk(v − pR) respectively an

informed traderk’s profit in the unrestricted and in the restricted system. Also let−E[u′(v−p)] =

tr(ΛΠ−1
u ) and−E[u′(v − pR)] = tr(ΛRΠ−1

u ) denote respectively noise traders’ expected losses

in the unrestricted and in the restricted system.

As for informed traders, in the unrestricted system a straightforward application of lemmaB1

givesE[− exp{−γ−1πk}] = −|Π|1/2 |Π + Πε|−1/2, whereas for the restricted system see Ap-

pendix B.

Proposition 9 In the homoscedastic case, whenρε = ρu = 0, for ρv small, noise traders’ expected

losses are always higher in the restricted system.

Proof. See Appendix A.

With the above parameter configuration, speculators trade more aggressively in the restricted

system, embedding more information in the order flows. This worsens market makers’ adverse

selection problem in the restricted system, making the price impact of trade stronger and noise

traders’ expected losses higher.

Numerical simulations support the result also for higher values of|ρv|. In particular, using the

same parameterization of section 4, noise traders’ expected losses arealwayshigher in the restricted

system (see figures 1 and 2, panel (b) for an example).21

21If noise traders’ demands are correlated the above ranking may be reverted. To see why, notice that in the ho-
moscedastic case−E[u′(v − p)] = 2τ−1

u (λ1 + ρuλ2), and−E[u′(v − pR)] = 2τ−1
u λR, whereλ1 andλ2 indicate

respectively the main and off-diagonal terms of the matrixΛ. Thus, in the unrestricted system as the price of each asset
reacts to both order-flows, noise traders’ losses also depend on the off-diagonal terms of the matrixΛ. Conversely, in the
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For what concerns informed speculators, as long as their risk aversion is strong and the quality

of private information is poor (e.g.γ andτε, smaller than1) they are better off in the unrestricted

system but asτε or γ increase, they are better off in the restricted system (see figures 1 and 2, panel

(c) for an example). The intuition is along the lines of what was said in section 2. Traders prefer

the unrestricted system as long as they speculate less aggressively, (either because their information

is poor, or because their risk aversion is high). In this situation they take advantage of multiple

sources of information (prices) without losing much of their advantage vis-à-vis market makers.

However, as their information becomes more precise (or they are less averse to the risk of trading),

their aggressiveness increases and the possibility for market makers to observe both order-flows in

the unrestricted system becomes a drawback. In this case, thus, they rather trade on the restricted

system where – although they impound more correlated information in each price – market makers

only observe the order flow of the asset they price.22

Please insert figure 2 here.

restricted system, noise traders’ losses in each asset only depend on the price impact of trades in the relative market. For
small values of|ρu| (e.g. |ρu| ≤ .0001), cross-order flows effects are mild and noise traders are always better off in the
unrestricted system. As|ρu| increases, however, the reverse may happen.

22More precisely, the advantage of trading in the unrestricted system is stronger, the more concentrated is noise traders’
demand, and the better is the ex-ante information about fundamentals. In this case, indeed, for high values ofγ andτε, the
stronger aggressiveness displayed in the use of multidimensional information in the restricted system counteracts market
makers’ possibility to observe multiple order flows in the unrestricted system.
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5. Discussion and extensions

An alternative information structure

In the analysis conducted so far, I have ruled out the possibility that traders’ private signals are

biased by the presence of a “common” error term. However, insofar as signals may incorporate an

industry bias, such a possibility becomes relevant.

Formally, in this case a traderk’s private signal (vector) is given bysk = v + η + εk, where

η ∼ N(0,Π−1
η ), represents the common error term that I assume to be independent from both the

payoff (Cov[η,v] = 0), and the idiosyncratic component (Cov[η, εk] = 0, ∀k ∈ [0, 1]). An imme-

diate consequence of this assumption is that in this market the vector of average private signals no

longer reveals the true asset payoffs. This increases traders’ uncertainty in both systems, potentially

affecting their trading aggressiveness and thus price efficiency.23

To what extent do the results obtained in section 4 carry over to the present setup? While a

closed form solution ceases to be available for the unrestricted system, numerical methods can be

used to compute the linear equilibria of both systems in the homoscedastic case. The results broadly

confirm most of the intuitions gained in the previous sections. In particular, it is still true that in the

presence of correlationonly across payoffs traders use multidimensional private information in the

restricted system but refrain from doing so in the unrestricted system. This, in turn, increases the

correlation across order flows in the restricted system, making its pricesmoreinformative than those

of the unrestricted system. Results on noise traders’ expected losses are, however, inconclusive: for

large values ofγ, τu, τε, andτη, these are higher in the unrestricted system; the opposite occurs for

23In a one-asset, limit order setup where traders’ signals are biased by a common and an idiosyncratic error component,
it is easy to verify that the unique linear equilibrium trading aggressiveness is given bya = (τε + τη + a2τu)−1γτετη,
wherea is the unique positive root of the cubicF (a) = a3τu + a(τε + τη) − γτετη = 0, andτη is the precision
of the common error term. As one can verifya < γτε. Thus, the higher uncertainty makes traders scale back their
aggressiveness.
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smaller values of the above parameters.24

An “Intermediate” system

The results obtained in the previous sections have shown that a mechanism disseminating alarge

amount of (endogenous) public information may have a negative impact on price informativeness. If

this is the case, a system where market makers observe both order flows, while informed speculators

bear single-price restrictions, should deliver prices that are contemporaneouslylessinformative than

those of the restricted system, andmore informative than those of the unrestricted system. The

opening call auction of the NYSE provides an example of such a system. There, eachspecialist

handles more than one stock, and can thus make “cross” asset inference at the moment of setting the

opening price; speculators, however, condition their strategies only on the price of the stock they

want to trade.25

Notice that differently from the restricted system, in this case market makers learn cross asset

information independentlyfrom informed traders’ equilibrium behavior. As a consequence, the

equilibrium price of each asset is informationally equivalent to the linear combination of both order

flows’ informational content. In this framework, a closed form solution is unavailable. However,

restricting attention to the homoscedastic case, it can be shown that a linear rational expectations

equilibrium exists.26

To compare price efficiencies, I run simulations on the three models, using the same parameter-

ization of section 4. The results broadly accord to intuition: for most parameter values, when only

24Computations are available from the author. Numerical simulations where run lettingρv ∈ {−.9,−.8, . . . , .8, .9},
ρu = ρε = ρη = 0, andγ, τu, τv, τε, τη ∈ {.2, .4, .5, .6, .8, 1, 3, 4}. For this parameters’ space, increased payoff
uncertainty has a different impact on traders’ aggressiveness across the two systems: ifρε = ρu = ρη = 0 andρv 6= 0,
numerical simulations show thatajj > 0, aRjj > 0, andajj > aRjj , while |aRji| > |aji| = 0.

25Lindsay and Schaede(1990, p. 12) report that in 1987 “(. . . ) the average number was 3.7 stocks per specialist.”
26The proof is available from the author. Uniqueness of the equilibrium is an issue. Numerical simulations have been

carried out and for different initial conditions the solution of the fixed point problem did not change.
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correlation across fundamentals affects order flows, speculators in the restricted system trade more

aggressively than in the intermediate system; in turn speculators in the intermediate system trade

more aggressively than in the unrestricted system. This induces a price vector in the intermediate

system that on the one hand islessinformative than in the restricted system and on the other hand

is more informative than in the unrestricted system (figure 3, panel (c)).27

There are however exceptions: when(a) noise traders’ demand is very dispersed (τu ≤ .2),

and(b) correlation across payoffs is strong (|ρv| ≥ .8) the aggressiveness-informativeness ranking

between the restricted and the intermediate system is reversed. Owing to high noise traders’ demand

dispersion, risk-averse speculators in the restricted system suffer from a large conditional volatility

of the payoff and scale back their aggressiveness. Conversely, in the intermediate system, market

makers’ multiple order flows observation dampens the price impact of trades reducing speculators’

payoff conditional volatility. As a result, speculators trade more aggressively and embed more

information in the order flows rendering prices more informative (figure 3, panel (a)).

Results for noise traders’ expected losses are inconclusive: for some parameterizations noise

traders are better off in the intermediate system than in the unrestricted one (figure 3, panel (b))

while for other parameterizations the reverse occurs (figure 3, panel (d)).28

Please insert figure 3 here.

27More precisely, the aggressiveness ranking makes the total correlation between order flows and the asset payoffand
across order flows in the restricted system larger than in the intermediate system. As a consequence, the restricted system
price vector turns out to be more informative than the intermediate system one. As for the intermediate–unrestricted
informativeness ranking, the pattern parallels what has been observed in section 4.

28To study price informativeness, simulations have been extended lettingγ, τv, τu andτε ∈ {.01, .1, .2, .4, .5, .6,
.8, 1, 3, 4}. As far as noise traders’ expected losses, in some simulations they can even be higher in the intermediate
system than in the restricted one.
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6. Conclusions

Advances in information technology are deeply modifying the way stock market procedures are

handled. ITG, a technology company, through its trading platform QuantEX permits a submis-

sion strategy (“Pairs”) that automatically executes orders “when the spread differential between

two stocks reaches a specified level.” The Optimark platform provides a system allowing traders

to specify different parameters upon which to condition execution and Bondconnect implements a

mechanism allowing the exchange of portfolios of assets. These examples testify the effort to im-

prove trade execution, allowing more flexibility both in the determination of thenumberof assets

to exchange and in theamountof trade relevant information to exploit when submitting an order.

Motivated by this evidence, I have analyzed two trading systems where competitive speculators ex-

ploit multi-dimensional sources of private information, and contrasted their properties on the basis

of two different pricing schemes. In theunrestrictedmechanism, traders submit multi-price con-

tingent demand functions and market makers set prices observing all order flows; in therestricted

mechanism, speculators submit standard limit orders and market makers bear a single order flow

restriction.

The results show that the way traders use private information crucially depends both on thetype

of order they submit and on the specificprice formation mechanismone considers. Indeed, to the

extent that private and public information are substitutable, a system allowing traders to observe

more public signals, under some conditions, reduces the weight they put on their private signals.

This, in turn,reducesthe amount of information embedded in the order flows and may ultimately

make a multi-price contingent mechanismlessefficient than a single price contingent one, in stark

contrast with the view that a mechanism of the first type should render prices more informative. The

paper thus uncovers the existence of a possible trade-off between thequantityof multi-dimensional
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public information that traders can access, and its resultingquality.

Many issues are left for future research. In particular, a dynamic extension of the model pre-

sented here would allow one to study how information updating through the observation of past

prices influences traders’ behavior and market properties.29 Also, introducing production in the

restricted model would allow to study the interactions among firms’ competition, traders’ behavior,

and stock price determination. This last issue seems particularly relevant given that there is virtually

no analysis of the links between firms’ conduct in the product market and investors’ reactions to the

resulting stock price effects.30

29See He and Wang (1995), Vives (1995a;1995b), and Cespa (2002) for models of single-asset, dynamic trading in a
competitive stock market.Chan (1992) studies price determination in a multi-assetKyle (1985) market where in each
periodn, market makers observe the order flow of the asset they price and the periodn − 1 prices of all the other
assets. However, in his case informed speculators’ behavior is not modeled, thus thefeedbackeffects of prices on private
information usage cannot be analyzed.

30Fishman and Hagerty (1989) andDow and Rahi (2002) analyze how the information gathered in the market place
affects a firm’s investment decisions;Gertner, Gibbons, and Scharfstein (1988) investigate how product-market consid-
erations influence aninformed firm’s decision to reveal information to the capital market;Poitevin (1989) shows how a
financially-constrained entrant, by signaling information about its leverage to the capital market, spurs a “deep-pocket”
incumbent to engage in predatory practices.
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Appendix A

Proof of proposition5. Notice that in every linear equilibrium, asp = E[v|z] = Π−1(Πvv̄ +

A′Πuz), where(Var[v|z])−1 = Π = Πv + A′ΠuA, the vector of equilibrium prices is ob-

servationally equivalent toz. Next, owing to CARA preferences, the trader’s demand vector is

given byXk(sk,p) = (Var[v|sk,p])−1 (E[v|sk, p] − p). Assume that the matrixA is invertible,

thenA−1z = (A′ΠuA)−1 (Πp−Πvv̄)|v ∼ N(v,A−1Π−1
u (A−1)′), andsk|v ∼ N

(
v,Π−1

ε
)
.

Thus, using the properties of the multivariate normal,(Var[v|sk, p])−1 = Πv + A′ΠuA + Πε

= Π + Πε andE[v|sk, p] = (Π + Πε)−1(ΠE[v|z] + Πεsk) (see for instanceDeGroot, 1969).

Plugging these expressions into the trader’s strategy and simplifyingXk(sk, p) = γΠε(sk − p).

Hence,A = γΠε is a positive definite matrix. Q.E.D.

Proof of lemma2. In the restricted system a speculatork determines her position in each asset

separately and independently. Therefore, owing to CARA preferences, her demand for each asset

j is given byXRkj(pRj , sk) = γ(Var[vj |pRj , sk])−1 (E[vj |pRj , sk] −pRj), and because of the

assumed ex-ante symmetric information structure (whereby each informed trader receives a signal

of the same precision), demand functions and equilibria will be symmetric. Then,E[vj |pRj , sk] =

v̄j +(c1j c′2j) ((j′λ−1
j (p− v̄))′ (sk − v̄)′)′, where the scalarc1j and the vectorc′2j are defined as

follows: (c1j c′2j) Var[pRj , sk] = Cov[vj , {pRj , sk}]. Standard normal computations give

Var[pRj , sk] =




j′
(
ARΠ−1

v A′
R + Π−1

u
)
j j′ARΠ−1

v

(
j′ARΠ−1

v
)′

Π−1
v + Π−1

ε




, (A1)

andCov[vj , {pRj , sk}] = ( (j′ARΠ−1
v j)′ (j′Π−1

v )′ )′.
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Inverting (A1) I obtain

(Var[pRj , sk])−1 =




D−1
1 −D−1

1 j′AR(Πv + Πε)−1Πε

−D−1
1

(
j′AR(Πv + Πε)−1Πε

)′
D2




,

whereD1 = j′(AR(Πv + Πε)−1A′
R + Π−1

u )j, and

D2 = Πv(Πv + Πε)−1Πε + D−1
1 (Π−1

v + Π−1
ε )−1Π−1

v A′
Rjj′ARΠ−1

v (Π−1
v + Π−1

ε )−1.

Using the previous covariance matrix and sinceVar[vj |pRj , sk] = j′Π−1
v j− (Cov[vj , {pRj , sk}])′

(Var[pRj , sk])−1(Cov[vj , {pRj , sk}]), after standard normal calculations I obtainc1j = (j′AR(Πv+

Πε)−1j)/D1, c2j = j′(I−ARc1j)(Πv+Πε)−1Πε, and,Var[vj |pRj , sk] = j′(I−ARc1j)(Πv+

Πε)−1j. Q.E.D.

Proof of proposition6. Equilibrium existence depends on the existence of a solution to the fixed

point problem given by the first of (3.4). To compute the equilibrium, notice that forj = 1, 2, i 6= j,

this system can be rewritten as follows:

aRjj = γτεj − ρεaRji

√
τεj/τεi ,

(A2)

aRji =
γ

1− ρ2
ε

(
τεi

(
hji

hjj

)
− ρε

√
τεjτεi

)
,

whereaRjj = (AR)jj , aRji = (AR)ji, hjj = ((I −ARc1j)(Πv + Πε)−1)jj , andhji = ((I −

ARc1j)(Πv + Πε)−1)ji. To see this, notice that given the above definitions,(Var[vj |sk, pRj ])−1

c2j = (1 (hji/hjj))Πε, aRjj = (γ/(1 − ρ2
ε )) (τεj− ρε(hji/hjj)

√
τεjτεi), andaRji = (γ/(1 −
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ρ2
ε ))(τεi(hji/hjj) − ρε

√
τεjτεi). Multiplying both sides of the latter equation by−ρε

√
τεj/τεi and

rearranging:−ρεaRji

√
τεj/τεi = −(γρε/(1 − ρ2

ε ))(
√

τεjτεi(hji/hjj) − ρετεj ). Finally, adding

γτεj , and simplifying I get (A2).

There are now two cases to consider: the case in whichρε = 0, that givesaRjj = γτεj and a

cubic equation inaRjj , and the case in whichρε 6= 0. Start by considering the second (the former is

just a simplification of the latter). Substituting the first equation in (A2) into the second one, gives

the following cubic equation inaRji

(aRji)3(1− ρ2
ε )(1− ρ2

v)φ1 + aRjiφ1φ2 + φ3 = 0, (A3)

whereφ1 = τεjτεi(1−ρ2
v) +τvjτεi+ τviτεj +τvjτvi(1−ρ2

ε )−2ρερv
√

τεjτεiτvjτvi , φ2 = ((1−ρ2
v)τεi

+(1−ρ2
ε )τvi +γ2(1−ρ2

v)τεjτεiτuj ), andφ3 = γ(ρε
√

τεjτvi−ρv
√

τεiτvj )
√

τεiτvi{(τvj (τvi(1−ρ2
ε )+

τεi) +τεj (τvi + τεi(1− ρ2
v)))− 2ρvρε

√
τviτεiτεjτvj}. The discriminant associated to this equation

is ∆ = 4(φ2/(1− ρ2
ε )(1− ρ2

v))
3 + 27(φ3/(1− ρ2

ε )(1− ρ2
v)φ1)2, which can be easily proved to be

positive. Hence, there exists a unique realaRji that satisfies (A3), and the result follows. Q.E.D.

Proof of corollary2. For part 1, rearranging the cubic equation definingaRji gives

aRji φ1

(
(1− ρ2

ε )(1− ρ2
v)(aRji)2 + φ2

)
︸ ︷︷ ︸

(1)

+φ3 = 0.

It is easy to check that (1) is positive. Therefore for a solution to exist, it must be the case that

aRji has a sign opposite toφ3. Sinceφ3 > 0 ⇔ τεj Cov[εj , εi] > τvj Cov[vj , vi], the result follows.

For part 2, ifρε = 0 the proof is straightforward. Otherwise, assume thataRjj < 0, then we have

aRji = ρ−1
ε

√
τεi/τεj (γτεj − aRjj). If ρε > (<)0, aRji > (<)0 always, a contradiction. Next,
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given the properties of trading intensities, it is easy to see thatλRj = (τuj (a
2
Rjjτvi + a2

Rjiτvj +

2ρvaRjjaRji
√

τvjτvi)+τvjτvi)
−1τujτvi(γτεj +aRji(ρv

√
τvj/τvi−ρε

√
τεj/τεi)) is always positive.

Finally, parts 3 and 4 follow by manipulating (A2). Q.E.D.

Proof of proposition7. For part 1, I will prove the result by contradiction. Suppose that forρv = 0,

|aji| ≤ |aRji|. First, let’s show that it cannot be that|aji| = |aRji|, for if this was the case then,

rewriting (A3)

−γρε(τεj (τεi +τvi)+τvj (τεi +τvi(1−ρε
2)))

τεj

√
τεiτεj

(1− ρε
2)2

((1+γ2τεjτuj )(1−ρε
2)+γ2ρε

2τεj ). (A4)

The last equation is null if and only ifρε = 0, hence|aji| 6= |aRji|. Next, suppose|aji| < |aRji| and

choose w.l.o.g.ρε > 0 (i.e. aRji < 0). Hence, assumeaRji < −γρε
√

τεjτεi/(1−ρε
2). Substituting

−γρε
√

τεjτεi/(1 − ρε
2) into (A3) its sign should thus be positive. However, as shown by (A4),

whenρε > 0, this equation is always negative. A similar argument can be given in the caseρε < 0.

Thus,|aRji| > |aRji|. Finally, let us show thatajj > aRjj . Consider againρε > 0. I have just

shown that in this case eitheraRji > −γρε
√

τεjτεi/(1 − ρε
2) or −aRji < γρε

√
τεjτεi/(1 − ρε

2).

Multiply both sides of the last inequality byρε

√
τεj/τεi and addγτεj . Rearranging this gives

aRjj ≡ γτεj − ρεaRji

√
τεj/τεi < γτεj/(1 − ρε

2). A similar argument can be given forρε < 0.

Hence,ajj > aRjj and the result follows. For part 2, ifρε = 0 thenaji = 0, while |aRji| > 0,

hence|aRji| > |aji|, whereasaRjj = ajj = γτεj . For part 3, ifρε = ρv = 0, trading intensities

coincide across the two systems. Q.E.D.

Proof of proposition8. Supposeρε = ρu = 0, and seta1 = A11 = A22, a2 = A12 = A21, aR1 =

(AR)11 = (AR)22, andaR2 = (AR)12 = (AR)21. Straightforward normal calculations in the

homoscedastic case giveIp = τ−1
v − (τ2

v +a4
1τ

2
u(1−ρ2

v)+2a2
1τuτv)−1 (τv+a2

1τu(1−ρ2
v)), andIpR =
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τ−1
v − (τ2

v +τ2
u(1−ρ2

v)(a
2
R1−a2

R2)
2+2τuτv(a2

R1+a2
R2+2ρvaR1aR2))−1 (τv +(a2

R1+a2
R2)τu(1−

ρ2
v)). Implicitly differentiating (A3) with respect toρv, one can see thatIpR is convex inρv and

has a local minimum inρv = 0. The same result can be obtained forIp. Perform a second order

expansion ofIpR andIp aroundρv = 0 to getIpR(ρv) = IpR(0)+(ρ2
v/2)(∂2IpR/∂ρ2

v)|ρv=0+R1(0)

andIp = Ip(0) + (ρ2
v/2)(∂2Ip/∂ρ2

v)|ρv=0 + R2(0), where(∂2IpR/∂ρ2
v)|ρv=0 = (2a2

R1τuτv((τε +

a2
R1τu)2+3τv(τ +2τε+τv)))/(τ3(τ +τε)2), (∂2Ip/∂ρ2

v)|ρv=0 = (2a2
1τuτv)/τ3 andτ = τv +a2

1τu,

a1 = γτε. As for ρv = 0, A = AR then IpR(0) = Ip(0), and IpR − Ip = (ρ2
v/2)(τ3(τ +

τε)2)−1(2a2
1τuτ2

v (4τε + a2
1τu + 5τv)), which is always positive. The result follows. Q.E.D.

Proof of proposition9. Using the same notation of the previous proof, supposeρε = ρu = 0.

Perform a second order Taylor expansion ofλR(ρv) = (τu(a2
R1 + a2

R2 + 2ρvaR1aR2) + τv)−1

(τu(γτε + aR2ρv)) aroundρv = 0, thenλR(ρv) = λR(0) + (ρ2
v/2)(∂2λR/∂ρ2

v)|ρv=0 + R1(0),

where(∂2λR/∂ρ2
v)|ρv=0 = −(τ2(τ + τε)2)−1 (2γτετuτv (a4

1τ
2
u + a2

1τu(τε + τv)− τv(τε + τv)). In

the same way, for the unrestricted systemλ(ρv) = λ(0) + (ρ2
v/2)(∂2λ/∂ρ2

v)|ρv=0 + R2(0), where

(∂2λ/∂ρ2
v)|ρv=0 = −τ−32a3

1τ
2
uτv. As λR(0) = λ(0), andλR(ρv) − λ(ρv) = (ρv/2)2(τ3(τ +

τε)2)−1 (2γτετuτv (a4
1τ

2
uτε + τ2

v (τε + τv) +a2
1τu(τε + τv)2)) > 0, the result follows. Q.E.D.

Appendix B

First of all, I state a well known result on multivariate normal random variables (see e.g.Danthine

and Moresi, 1992).

Lemma B1Let w be a vector ofn random variables. Assumew ∼ N(µ,Σ), with Σ non singular.

DefineQ(w) = D + b′w + w′Fw, whereD ∈ <, b ∈ <n, andF is a symmetric(n× n) matrix.
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Then if2F + Σ−1 is positive definite

E[exp(Q(w))] = |Σ|−1/2|2F + Σ−1|−1/2×

exp
{

D + b′µ + µ′Fµ +
1
2
(b− Fµ)′(2F + Σ−1)−1(b− Fµ)

}
.

Determination of the informed ex-ante expected utility in the restricted system.

Notice that a traderk’s strategy in both assets, can be expressed asXRk(sk, pR) = AR(sk −

v̄) + B(v − pR), where

AR =




aR11 aR12

aR21 aR22


 , B =




bR1 0

0 bR2


 .

Next, standard normal computations give

E[πRk|v, pR]− (1/2γ)Var[πRk|v, pR] =




v − pR

v̄ − pR




′

Ω




v − pR

v̄ − pR


 ,

whereπRk = x′Rk(v − pR),

Ω =




A′
R − (1/2γ)ARΠ−1

ε A′
R (1/2)(B′ −A′

R)

(1/2)(B′ −A′
R) 0




,




v − pR

v̄ − pR


 ∼ N( 0, Ψ ),
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and

Ψ =




(I −ΛRAR)Π−1
v (I −ΛRAR)′ + ΛRΠ−1

u Λ′
R −((I −ΛRAR)Π−1

v A′
R + ΛRΠ−1

u )Λ′
R

−ΛR((I −ΛRAR)Π−1
v A′

R + ΛRΠ−1
u )′ ΛR(ARΠ−1

v A′
R + Π−1

u )Λ′
R




.

Notice thatE[− exp{−γ−1πRk}|v, pR] = − exp{−γ−1(E[πRk|v, pR]−(1/2γ)Var[πRk|v,pR])},

andE[− exp{−γ−1πRk}] = E[E[− exp{−γ−1πRk}|v,pR]]. As Ψ can be checked to be non sin-

gular, applying lemmaB1 with ((v − pR)′, (v̄ − pR)′)′ = w, one findsE[− exp{−γ−1πRk}]

= −|Ψ|−1/2|(2/γ)Ω + Ψ−1|−1/2.
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