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The purpose of this paper is two-fold. First, we develop the measurement the-
ory of polarization for the case in which income distributions can be described
using density functions. Second, we provide sample estimators of population po-
larization indices that can be used to compare polarization across time or entities.
Distribution-free statistical inference results are also derived in order to ensure that
the orderings of polarization across entities are not simply due to sampling noise.
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polarization and inequality orderings can often differ in practice.
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the startup phase of this project. Esteban is a member of Barcelona Economics and thanks
the support from the Generalitat de Catalunya, the Instituto de Estudios Fiscales and the
MCYT. We thank Oliver Linton, Patrick Richard, a Co-Editor, and two anonymous referees
for useful comments. Finally, we are grateful to Nicolas Beaulieu for his excellent research
assistance.

A.HERNANDEZ
Barcelona Economics WP nº 46

A.HERNANDEZ

A.HERNANDEZ
September, 2003

A.HERNANDEZ
JEL Classification: D31, D74

A.HERNANDEZ
Keywords: Polarization; Income distribution; Conflict.



1

1. Introduction

Initiated by Esteban and Ray (1991, 1994), Foster and Wolfson (1992) and Wolf-
son (1994), there has been a recent upsurge of interest in the measurement of po-
larization1 and in the use of such measures as a correlate of different aspects of
socioeconomic performance. It seems fairly widely accepted that polarization is a
concept that is distinct from inequality, and that — at least in principle — it could
be connected with several aspects of social, economic and political change.2

Following Esteban and Ray (1991, 1994), we rely almost exclusively on what
might be called the identification-alienation framework. The idea is simple: po-
larization is related to the alienation that individuals and groups feel from one
another, but such alienation is fuelled by notions of within-group identity. In concen-
trating on such phenomena, we do not mean to suggest that instances in which
a single isolated individual runs amok with a machine gun are rare, or that they
are unimportant in the larger scheme of things. Rather, these are not the objects
of our enquiry. We are interested in the correlates of organized, large-scale social
unrest — strikes, demonstrations, processions, widespread violence, and revolt or
rebellion. Such phenomena thrive on differences, to be sure. But they cannot exist
without notions of group identity either.

This brief discussion immediately suggests that inequality, inasmuch as it con-
cerns itself with interpersonal alienation, captures but one aspect of polarization. To
be sure, there are some obvious changes that would be branded as both inequality-
and polarization-enhancing. For instance, if two income groups are further sepa-
rated by increasing economic distance, inequality and polarization would presum-
ably both increase. However, local equalizations of income differences at two dif-
ferent ranges of the income distribution will most likely lead to two better-defined
groups — each with a clearer sense of itself and the other. In this case, inequality
will have come down but polarization may be on the rise.

The purpose of this paper is two-fold. First, we develop the measurement the-
ory of polarization for the case in which the relevant distributions can be described
by density functions. There are many such instances, the most important being
income, consumption and wealth – regrouped under “income" for short. The rea-
son for doing so is simple: with sample data aggregated along income intervals,
it is unclear how to provide a statistically satisfactory account of whether dis-
tributive measures (based on such data) are significantly different across time or
entities. Indeed, a rapidly burgeoning literature on the statistics of inequality and
poverty measurement shows how to construct appropriate statistical tests for such
measures using disaggregated data (see, e.g., Beach and Davidson, (1983), Beach
and Richmond (1985), Bishop et al. (1989), Kakwani (1993), Anderson (1996), and

1See Esteban and Ray (1991, 1994), Foster and Wolfson (1992), Wolfson (1994, 1997), Alesina and
Spolaore (1997), Quah (1997), Wang and Tsui (2000), Esteban, Gradín and Ray (1998), Chakravarty and
Majumder (2001), Zhang and Kanbur (2001) and Rodríguez and Salas (2002).

2See, for instance, D’Ambrosio and Wolff (2001), Collier and Hoeffler (2001), Fajnzylber, Lederman
and Loayza (2000), Garcia-Montalvo and Reynal-Querol (2002), Gradín (2000), Knack and Keefer (2001),
Milanovic (2000), Quah (1997) and Reynal-Querol (2002). See also Esteban and Ray (1999) for a formal
analysis of the connections between polarization and the equilibrium level of conflict in a model of
strategic interaction.
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Davidson and Duclos (1997, 2000)). A rigorous axiomatic development of the po-
larization concept in the “density case" is then a prerequisite for proper statistical
examination of polarization.

In this paper we concentrate on the axiomatics and estimation of “pure income
polarization”, that is, of indices of polarization for which individuals identify them-
selves only with those with similar income levels. This brings us to the second,
predominantly statistical, issue of how the estimation of polarization is to be con-
ducted. The main problem is how to estimate the size of the groups to which
individuals belong. Again, using arbitrary income intervals would appear some-
what unsatisfactory. Instead, we estimate group size non-parametrically using
kernel density procedures. A natural estimator of the polarization indices is then
given by substituting the distribution function by the empirical distribution func-
tion. Assuming that we are using a random sample of independently and iden-
tically distributed observations of income, we show that the resulting estimator
has a limiting normal distribution with parameters that can be estimated free of
assumptions on the true (but unknown) distribution of incomes. Distribution-free
statistical inference can then be applied to ensure that the orderings of polarization
across entities are not simply due to sampling noise.

It is useful to locate this paper in the context of the earlier step in the measurement
of polarization in Esteban and Ray (1994) — ER from now on. The measure derived
in ER was based on a discrete, finite set of income groupings located in a continuous
ambient space of possible income values. This generated two major problems, one
conceptual and the other practical. At the conceptual level we have the drawback
that the measure presents an unpleasant discontinuity. This is precisely due to
the fact that ER is based on a population distributed over a discrete and distinct
number of points.3 The practical difficulty is that the population is assumed to have
already been bunched in the relevant groups. This feature rendered the measure of
little use for many interesting problems.4 As mentioned above, the present paper
addresses both problems and provides what we hope is a useable measure.

In addition, the main axioms that we use to characterize income polarization are
substantially different from ER (though they are similar in spirit). In large part, this
is due to the fact that we are dealing with a completely different domain (spaces
of densities). We therefore find it of interest that these new axioms end up charac-
terizing a measure of polarization that turns out to be the natural extension of ER
to the case of continuous distributions. At a deeper level, there are, however, im-
portant differences, such as the different bounds on the “polarization-sensitivity”
parameter α that are obtained.

In Section 2 we axiomatically characterize a measure of pure income polarization
and examine its properties. In Section 3, we turn to estimation and inference issues
for polarization measures. In Section 4 , we illustrate the axiomatic and statistical
results using data drawn from the Luxembourg Income Study (LIS) data sets for
21 countries. We compute the Gini coefficient and the polarization measure for
these countries for years in Wave 3 (1989–1992) and Wave 4 (1994–1997), and show
that the two indices furnish distinct information on the shape of the distributions.

3ER (Section 4, p. 846) mention this problem.
4In Esteban, Gradín and Ray (1998) we presented a statistically reasonable way to bunch the popu-

lation in groups and thus make the ER measure operational. Yet, the number of groups had to be taken
as exogenous and the procedure altogether had no clear efficiency properties.
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Section 5 summarizes the results and discusses an important extension. All proofs
are in Section 6.

2. Measuring Income Polarization

The purpose of this section is to proceed towards a full axiomatization of income
polarization.

2.1. Starting Point. The domain under consideration is the class of all continu-
ous (unnormalized) densities in IR+, with their integrals corresponding to various
population sizes. Let f be such a density. An individual located at income x is pre-
sumed to feel a sense of identification that depends on the density at x, f(x). More
generally, one might consider the possibility that individuals have a nondegener-
ate “window of identification". However, the foundations for the width of such an
identification window appear unclear. We have therefore opted for defining our
family of polarization measures for the limit case when the window width becomes
zero. The discussion in Section 2.4.4 makes this last statement more precise.

An individual located at x feels alienation |x− y| as far as an individual located
at y is concerned. As in ER, we write the effective antagonism of x towards y (under
f ) as some nonnegative function

T (i, a),

where i = f(x) and a = |x − y|. It is assumed that T is increasing in its second
argument and that T (0, a) = T (i, 0) = 0, just as in ER. We take polarization to be
proportional to the “sum" of all effective antagonisms:

(1) P (F ) =
∫ ∫

T (f(x), |x− y|) f(x)f(y)dxdy,

This class of measures is neither very useful nor operational. In particular, much
depends on the choice of the functional form T . In what follows, we place axioms
on this starting point so as to pin down this functional form.

2.2. Axioms.

2.2.1. Densities and Basic Operations. Our axioms will largely be based on domains
that are unions of one or more very simple densities f that we will call basic densities.
These are unnormalized (by population), are symmetric and unimodal, and have
compact support.5

To be sure, f can be population rescaled to any population p by simply multiplying
f pointwise by p to arrive at a new distribution pf (unnormalized). Likewise, f
can undergo a slide. A slide to the right by x is just a new density g such that
g(y) = f(y − x). Likewise for a slide to the left. And f with mean µ′ can be income
rescaled to any new mean µ that we please as follows: g(x) = (µ′/µ)f(xµ′/µ) for
all x.6 These operations maintain symmetry and unimodality and therefore keep
us within the class of basic densities.

5By symmetry we mean that f(m − x) = f(m + x) for all x ∈ [0, m], where m is the mean and by
unimodality we mean that f is nondecreasing on [0, m].

6The reason for this particular formulation is best seen by examining the corresponding cumula-
tive distribution functions, which must satisfy the property that G(x) = F (xµ′/µ), and then taking
derivatives.
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If we think of slides and scalings as inducing a partition of the basic densities,
each collection of basic densities in the same element of the partition may be asso-
ciated with a root, a basic density with mean 1 and support [0, 2], with population
size set to unity. That is, one can transform any basic density to its root by a set
of scalings and slides. [This concept will be important both in the axioms as well
as in the main proof.] Two distinct roots differ in “shape", a quality that cannot be
transformed by the above operations.

Finally, we shall also use the concept of a squeeze, defined as follows. Let f be any
basic density with mean µ and let λ lie in (0, 1]. Aλ-squeeze of f is a transformation
as follows:

(2) fλ(x) ≡ 1
λ
f

(
x− [1 − λ]µ

λ

)
.

A (λ-) squeeze is, in words, a very special sort of mean-preserving reduction in the
spread of f . It concentrates more weight on the global mean of the distribution, as
opposed to what would be achieved, say, with a progressive Dalton transfer on the
same side of the mean. Thus a squeeze truly collapses a density inwards towards
its global mean. The following properties can be formally established.

[P.1] For each λ ∈ (0, 1), fλ is a density.

[P.2] For each λ ∈ (0, 1), fλ has the same mean as f .

[P.3] If 0 < λ < λ′ < 1, then fλ second-order stochastically dominates fλ′
.

[P.4] As λ ↓ 0, fλ converges weakly to the degenerate measure granting all weight
to µ.

Notice that there is nothing in the definition that requires a squeeze to be applied
to symmetric unimodal densities with compact support. In principle, a squeeze as
defined could be applied to any density. However, the axioms to be placed below
acquire additional cogency when limited to such densities.

2.2.2. Statement of the Axioms. We will impose four axioms on the polarization
measure.

Axiom 1. If a distribution is composed of a single basic density, then a squeeze of
that density cannot increase polarization.

Axiom 1 is self-evident. A squeeze, as defined here, corresponds to a global
compression of any basic density. If only one of these makes up the distribution
(see Figure 1), then the distribution is globally compressed and we must associate
this with no higher polarization. Viewed in the context of our background model,
however, it is clear that Axiom 1 is going to generate some interesting restrictions.
This is because a squeeze creates a reduction in inter-individual alienation but
also serves to raise identification for a positive measure of agents — those located
“centrally" in the distribution. The implied restriction is, then, that the latter’s
positive impact on polarization must be counterbalanced by the former’s negative
impact.

Our next axiom considers an initial situation (see Figure 2) composed of three
disjoint densities all sharing the same root. The situation is completely symmetric,
with densities 1 and 3 having the same total population and with density 2 exactly
midway between densities 1 and 3.
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Income

Figure 1: A Single Squeeze Cannot Increase Polarization.

Axiom 2. If a symmetric distribution is composed of three basic densities with the
same root and mutually disjoint supports, then a symmetric squeeze of the side
densities cannot reduce polarization.

In some sense, this is the defining axiom of polarization. This is precisely what
we used to motivate the concept. Notice that this axiom argues that a particular
“local" squeeze (as opposed to the “global" squeeze of the entire distribution in
Axiom 1) must not bring down polarization. At this stage there is an explicit
departure from inequality measurement.

Our third axiom considers a symmetric distribution composed of four basic den-
sities, once again all sharing the same root.

Axiom 3. Consider a symmetric distribution composed of four basic densities with
the same root and mutually disjoint supports, as in Figure 3. Slide the two middle
densities to the side as shown (keeping all supports disjoint). Then polarization
must go up.

Our final axiom is a simple population-invariance principle. It states that if one
situation exhibits greater polarization than another, it must continue to do so when
populations in both situations are scaled up or down by the same amount, leaving
all (relative) distributions unchanged.
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Income

Figure 2: A Double Squeeze Cannot Lower Polarization.

Axiom 4. If P (F ) ≥ P (G) and p > 0, then P (pF ) ≥ P (pG), where pF and pG
represent (identical) population scalings of F and G respectively.

2.3. Characterization Theorem.

Theorem 1. A measure P , as described in (1), satisfies Axioms 1–4 if and only if it is
proportional to

(3) Pα(f) ≡
∫ ∫

f(x)1+αf(y)|y − x|dydx,

where α ∈ [0.25, 1].

2.4. Discussion. Several aspects of this theorem require extended discussion.

2.4.1. Scaling . Theorem 1 states that a measure of polarization satisfying the pre-
ceding four axioms has to be proportional to the measure we have characterized.
We may wish to exploit this degree of freedom to make the polarization measure
scale-free. Homogeneity of degree zero can be achieved, if desired, by multiplying
Pα(F ) by µα−1, where µ is mean income. It is easy to see that this procedure is
equivalent to one in which all incomes are normalized by their mean, and (3) is
subsequently applied.
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Income

Figure 3: A “Symmetric Outward Slide” Must Raise Polarization.

2.4.2. Importance of the IA Structure. The theorem represents a particularly sharp
characterization of the class of polarization measures that satisfy both the axioms
we have imposed and the IA structure. It must be emphasized that both these
factors play a role in pinning down our functional form. In fact, it can be checked
that several other measures of polarization satisfy Axioms 1–4, though we omit
this discussion for the sake of brevity. The IA framework is, therefore, an essential
part of the argument.

2.4.3. Partial Ordering. At the same time, and despite the sharpness of the func-
tional form, notice that we do not obtain a complete ordering for polarization, nor
do we attempt to do this.7 A range of values of α is entertained in the theorem. The
union of the complete orderings generated by each value gives us a partial order
for polarization. Pinning down this order completely is an open question.

2.4.4. Identification Windows. We now turn to a discussion of our choice of basing
identification on the point density. We may more generally suppose that individ-
uals possess a “window of identification” as in ER, section 4. Individuals within
this window would be considered “similar” — possibly with weights decreasing

7Indeed, it is possible to impose additional requirements (along the lines explored by ER, for instance)
to place narrower bounds on α. But we do not consider this necessarily desirable. For instance, the
upper value α = 1 has the property that all λ-squeezes of any distribution leave polarization unchanged.
We do not feel that a satisfactory measure must possess this feature. This is the reason we are more
comfortable with a possible range of acceptable values for α.
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with the distance — and would contribute to a sense of group identity. At the same
time, individuals would feel alienated only from those outside the window. Thus,
broadening one’s window of identification has two effects. First, it includes more
neighbors when computing one’s sense of identification. Second, it reduces one’s
sense of distance with respect to aliens — because the width of the identification
window affects the “starting point” for alienation.

These two effects can be simultaneously captured in our seemingly narrower
model. Let t be some parameter representing the “breadth" in identification. Sup-
pose that this means that each individual xwill consider an individual with income
y to be at the point (1 − t)x + ty. [Thus t is inversely proportional to “breadth".]
The “perceived density" of y from the vantage point of an individual located at x
is then

1
t
f

(
y − (1 − t)x

t

)
so that if t < 1, the sense of identification is generally heightened (simply set x = y
above). Thus a small value of t stands for greater identification.

It can be easily shown that the polarization measure resulting from this extended
notion of identification is proportional to our measure by the factor t1−α. Therefore,
broadening the sense of identification simply amounts to a re-scaling of the measure
defined for the limit case in which one is identified with individuals having exactly
the same income.

It is also possible to directly base identification on the average density over a
non-degenerate window. It can be shown that when our polarization measure
is rewritten to incorporate this notion of identification, it converges precisely to
the measure in Theorem 1 as the size of the window converges to zero. Thus
an alternative view of point-identification is that it is a robust approximation to
“narrow” identification windows.

2.4.5. Asymmetric Alienation. In ER we already pointed out that in some environ-
ments our implicit hypothesis of a symmetric sense of alienation might not be ap-
propriate. It can be argued that while individuals may feel alienated with respect to
those with higher income or wealth, such sentiments need not be reciprocated. For
the extreme case of purely one-sided alienation the appropriate extension would
be

Pα(f) ≡
∫
f(x)1+α

∫
x

f(y)(y − x)dydx.

[This is not to say that we have axiomatized such an extension.]

2.4.6. Remarks on the Proof, and the Derived Bounds on α. The proof of Theorem 1 is
long and involved, so a brief roadmap may be useful here. The first half of the proof
shows that our axioms imply (3), along with the asserted bounds on α. We begin
by noting that the function T must be (weakly) concave in alienation (Lemmas 1
and 2). Axiom 2 yields this. Yet by Lemmas 3 and 4 (which centrally employ Axiom
3), T must be (weakly) convex as well. These two assertions must imply that T
is linear in alienation, and so is of the form T (i, a) = φ(i)a for some function φ.
(Lemma 4 again). Lemma 5 completes the derivation of our functional form by
using the population invariance principle (Axiom 4) to argue that φ must exhibit
constant elasticity.
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Our measure bears an interesting resemblance to the Gini coefficient. Indeed,
if α = 0, the measure is the Gini coefficient. However, our arguments ensure that
not only is α > 0, it cannot go below some uniformly positive lower bound, which
happens to be 0.25. Where, in the axioms and in the IAstructure, does such a bound
lurk? To appreciate this, consider Axiom 2, which refers to a double-squeeze of
two “side" basic densities. Such squeezes bring down internal alienations in each
component density. Yet the axiom demands that overall polarization not fall. It
follows, therefore, that the increased identifications created by the squeeze must
outweigh the decreased within-component alienation. This restricts α. It cannot
be too low.

By a similar token,α cannot be too high either. The bite here comes fromAxiom 1,
which decrees that a single squeeze (in an environment where there is just one basic
component) cannot increase polarization. Once again, alienation comes down and
some identifications go up (as the single squeeze occurs), but this time we want the
decline in alienation to dominate the proceedings. This is tantamount to an upper
bound on α.8

The above arguments are made using Lemmas 6 and 7, which also begin the
proof that the axioms are implied by our class of measures. The various steps for
this direction of the proof, which essentially consist in verifying the axioms, are
completed in Lemmas 8 through 11.

The approach to our characterization bears a superficial similarity to ER. Actu-
ally, the axioms are similar in spirit, dealing as they do in each case with issues of
identification and alienation. However, their specific structure is fundamentally
different. This is because our axioms strongly exploit the density structure of the
model (in ER there are only discrete groupings). In turn, this creates basic dif-
ferences in the method of proof. It is comforting that the two approaches yield
the same functional characterization in the end, albeit with different numerical
restrictions on the value of α.

2.5. Comparing Distributions. The fundamental hypothesis underlying all of our
analysis is that polarization is driven by the interplay of two forces: identification
with one’s own group and alienation vis-a-vis others. Our axioms yield a particular
functional form to the interaction between these two forces. When comparing
two distributions, which should we expect to display the greater polarization?
Our informal answer is that this should depend on the separate contributions of
alienation and identification and on their joint co-movement. Increased alienation
is associated with an increase in income distances. Increased identification would
manifest itself in a sharper definition of groups, i.e., the already highly populated
points in the distribution becoming even more populated at the expense of the
less populated. Such a change would produce an increase in the variability of the
density over the support of the distribution. Finally, when taken jointly, these effects
may reinforce each other in the sense that alienation may be highest at the incomes
that have experienced an increase in identification, or they may counterbalance
each other.

8One might ask: why do the arguments in this paragraph and the one just before lead to “compatible"
thresholds for α? The reason is this: in the double-squeeze, there are cross-group alienations as well
which permit a given increase in identification to have a stronger impact on polarization. Therefore the
required threshold on α is smaller in this case.
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To be sure, it is not possible to move these three factors around independently.
After all, one density describes the income distribution and the three factors we
have mentioned are byproducts of that density. Nevertheless, thinking in this
way develops some intuition for polarization, which we will try and put to use in
Sections 4.1 and 4.2.

To pursue this line of reasoning, first normalize all incomes by their mean to
make the results scale free. Fix a particular value of α, as given by Theorem 1.
[More on this parameter below.] The α-identification at income y, denoted by ια(y),
is measured by f(y)α. Hence, the average α-identification ῑ is defined by

(4) ῑα ≡
∫
f(y)αdF (y) =

∫
f(y)1+αdy.

The alienation between two individuals with incomes y and x is given by |y−x|.
Therefore, the overall alienation felt by an individual with income y, a(y), is

(5) a(y) =
∫

|y − x|dF (x)

and the average alienation ā is

(6) ā =
∫
a(y)dF (y) =

∫ ∫
|y − x|dF (x)dF (y).

[Notice that ā is twice the Gini coefficient.] Now conduct a completely routine
exercise. Define ρ as the normalized covariance between identification and alienation:
ρ ≡ covια,a/ῑαā. Then

ρ ≡ covια,a

ῑαā
=

1
ῑαā

∫
[ια(y) − ῑα][a(y) − ā]f(y)dy

=
1
ῑαā

[∫
f(y)1+αa(y)dy − āῑα

]
=

Pα(f)
ῑαā

− 1,

so that

(7) Pα(f) = āῑα [1 + ρ]

This is a more precise statement of the informal idea expressed at the start of this
section.

There is one dimension, however, along which this decomposition lacks intu-
ition. It is that α unavoidably enters into it: we make this explicit by using the term
α-identification (though we will resort to “identification" when there is little risk of
confusion). This sort of identification is not intrinsic to the density. Yet the formula
itself is useful, for it tells us that — all other things being equal — greater variability
in the density is likely to translate into greater polarization for that density, this
effect making itself felt more strongly when α is larger. The reason is simple: the
main ingredient for α-identification is the function x1+α (see (4)), which is a strictly
convex function of x.

Greater variability of density is reminiscent of multimodality, and therefore ties
in with our graphical intuitions regarding polarization. We reiterate, however,
that this is only one factor of several, and that often it may not be possible to
change this factor in the direction of higher polarization without infringing the
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ceteris paribus qualification.9 Nevertheless, the observation may be helpful in some
situations, and we will invoke it in the empirical discussion of Section 4.2. Indeed, in
unimodal situations (which present the most subtle problems as far as polarization
is concerned), these factors can act as guides to simple visual inspection.

3. Estimation and Inference

We now turn to estimation issues regarding Pα(F ), and associated questions of
statistical inference.

3.1. Estimating Pα(F ). The following rewriting of Pα(F ) will be useful:
Observation 1. For every distribution function F with associated density f and mean µ,

(8) Pα(F ) =
∫
y

f(y)αa(y) dF (y) ≡
∫
y

pα(y) dF (y),

with a(y) ≡ µ+ y (2F (y) − 1) − 2µ∗(y), where µ∗(y) =
∫ y

−∞ xdF (x) is a partial mean
and where pα(y) = f(y)αa(y).

Suppose that we wish to estimate Pα(F ) using a random sample of n iid obser-
vations of income yi, i = 1, ..., n, drawn from the distribution F (y) and ordered
such that y1 ≤ y2 ≤ ... ≤ yn . A natural estimator of Pα(F ) is Pα(F̂ ), given by
substituting the distribution function F (y) by the empirical distribution function
F̂ (y), by replacing f(y)α by a suitable estimator f̂(y)α (to be examined below), and
by replacing a(y) by â(y). Hence, we have

(9) Pα(F̂ ) =
∫
f̂(y)αâ(y)dF̂ (y) = n−1

n∑
i=1

f̂(yi)αâ(yi),

with the corresponding p̂α(yi) = f̂(yi)αâ(yi). Note that yi is the empirical quantile
for percentiles between (i− 1) /n and i/n. Hence, we may use

(10) F̂ (yi) =
1
2

(
(i− 1)
n

+
(i)
n

)
= 0.5n−1 (2i− 1)

and

(11) µ̂∗(yi) = n−1

i−1∑
j=1

yj +
i− (i− 1)

2
yi

 ,

and thus define â(yi) as

(12) â(yi) = µ̂+ yi

(
n−1 (2i− 1) − 1

) − n−1

2
i−1∑
j=1

yj + yi

 .

where µ̂ is the sample mean.
We have not yet discussed the estimator f̂(y)α, but will do so presently. Observe,

however, that adding an exact replication of the sample to the original sample
should not change the value of the estimator Pα(F̂ ). Indeed, presuming that the

9As an example: greater variability can be achieved by throwing in several local modes, but multi-
modality per se does not indicate higher polarization. There is no contradiction, however, because the
existence of several modes may also bring average alienation down relative to the bimodal case (for
instance).
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estimators f̂(·)α are invariant to sample size, this is indeed the case when formulae
(9) and (12) are used. We record this formally as

Observation 2. Let y = (y1, y2, ..., yn) and ỹ = (ỹ1, ỹ2, ..., ỹ2n) be two vectors of sizes
n and 2n respectively, ordered along increasing values of income. Suppose that for each
i ∈ {1, . . . , n}, yi = ỹ2i−1 = ỹ2i for all i = 1, ..., n. Let Pα(Fy) be the polarization index
defined by (9) and (12) for a vector of income y. Then, provided that fy(yi) = fỹ(yi) for
i = 1, . . . , n, it must be that Pα(Fy) = Pα(Fỹ).

Remark. We may call this feature (sample) population-invariance.10 When obser-
vations are weighted (or “grouped”), with wi being the sampling weight on obser-
vation i and with w =

∑n
j=1 wj being the sum of weights, a population-invariant

definition of ĝ(yi) is then:

(13) â(yi) = µ̂+ yi

w−1

2
i∑

j=1

wj − wi

 − 1

 − w−1

2
i−1∑
j=1

wjyj + wiyi

 .

(12) is a special case of (13) obtained whenwi = 1 for all i. For analytical simplicity,
we focus below on the case of samples with unweighted iid observations.

3.2. f(yi)α and the Sampling Distribution ofPα(F̂ ). It will be generally desirable
to adjust our estimator of f(yi)α to sample size in order to minimize the sampling
error of estimating the polarization indices. To facilitate a more detailed discussion
of this issue, first decompose the estimator Pα(F̂ ) across its separate sources of
sampling variability:

Pα(F̂ ) − Pα(F ) =
∫

(p̂α(y) − pα(y)) dF (y) +
∫
pα(y)d(F̂ − F )(y)

+
∫

(p̂α(y) − pα(y)) d(F̂ − F )(y).(14)

The first source of variation, p̂α(y)−pα(y), comes from the sampling error made in
estimating the identification and the alienation effects at each point y in the income
distribution. It can be decomposed further as:

p̂α(y) − pα(y) =
(
f̂(y)α − f(y)α

)
a(y) + f(y)α (â(y) − a(y))

+
(
f̂(y)α − f(y)α

)
(â(y) − a(y)) .(15)

As can be seen by inspection, â(y) − a(y) is of order O(n−1/2) . Assuming that
f̂(y)α − f(y)α vanishes as n tends to infinity (as will be shown in the proof of
Theorem 2), the last term in (15) is of lower order than the others and can therefore
be ignored asymptotically.

10It is not to be confused with the conceptual discussion of what happens to polarization if the true
population size is changed (and not that of the sample).
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This argument also shows that p̂α(y) − pα(y) ∼ o(1). Because F (y) − F̂ (y) =
O(n−1/2), the last term in (14) is of order o(n−1/2) and can also be ignored. Com-
bining (14) and (15), we thus see that for large n,

Pα(F̂ ) − Pα(F ) ∼=
∫ (

f̂(y)α − f(y)α
)
a(y)dF (y)(16)

+
∫
f(y)α (â(y) − a(y)) dF (y)(17)

+
∫
pα(y)d(F̂ − F )(y).(18)

The terms (17) and (18) are further developed in the proof of Theorem 2 in the
appendix.

We thus turn to the estimation of f(y)α in (16), which we propose to do non-
parametrically using kernel density estimation11. This uses a kernel functionK(u),
defined such that

∫ ∞
−∞K(u)du = 1 (this guarantees the desired property that∫ ∞

−∞ f̂(y)dy = 1) andK(u) ≥ 0 (this guarantees that f̂(y) ≥ 0). It is also convenient
to choose a kernel function that is symmetric around 0, with

∫
uK(u)du = 0 and∫

u2K(u)du = σ2
K < ∞. The estimator f̂(y) is then defined as

(19) f̂(y) ≡ n−1
n∑

i=1

Kh (y − yi) ,

where Kh (z) ≡ h−1K (z/h). The parameter h is usually referred to as the band-
width (or window width, or smoothing parameter). For simplicity, we assume it
to be invariant across y, though we discuss later how it should optimally be set
as a function of sample size. One kernel function that has nice continuity and
differentiability properties is the Gaussian kernel, defined by

(20) K(u) = (2π)−0.5 exp−0.5u2
,

a form that we will use later for illustrative purposes.12

With f(y)α estimated according to this general technique, we have the following
theorem on the asymptotic sampling distribution of P̂α.
Theorem 2. Assume that the order-2 population moments ofy, pα(y), f(y)α,

∫ y

−∞ zf(z)αdF (z)
and y

∫ y

−∞ f(z)αdF (z) are finite. Let h in Kh(·) vanish as n tends to infinity. Then

n0.5
(
Pα(F̂ ) − Pα(F )

)
has a limiting normal distribution N(0, Vα), with

(21) Vα =var
f(y)

(vα(y)) ,

where

(22) vα(y) = (1 + α)pα(y) + y

∫
f(x)αdF (x) + 2

∫ ∞

y

(x− y) f(x)αdF (x).

Observe that the assertion of Theorem 2 is distribution-free since everything in
(21) can be estimated consistently without having to specify the population distri-
bution from which the sample is drawn. Pα(F̂ ) is thus a root-n consistent estimator

11The literature on kernel density estimation is large – see for instance Silverman (1986), Härdle
(1990) and Pagan and Ullah (1999) for an introduction to it.

12Note that the Gaussian kernel has the property that σ2
K = 1.
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ofPα(F ), unlike the usual non-parametric density and regression estimators which
are often n2/5 consistent. The strength of Theorem 2 also lies in the fact that so long
as h tends to vanish as n increases, the precise path taken by h has a negligible
influence on the asymptotic variance since it does not appear in (21).

3.3. The Minimization of Sampling Error. In finite samples, however, Pα(F̂ ) is
biased. The bias arises from the smoothing techniques employed in the estimation
of the density function f(y). In addition, the finite-sample variance ofPα(F̂ ) is also
affected by the smoothing techniques. As is usual in the non-parametric literature,
the larger the value of h, the larger the finite-sample bias, but the lower is the finite-
sample variance. We can exploit this tradeoff to choose an “optimal" bandwidth
for the estimation of Pα(F̂ ), which we denote by h∗(n).

A common technique is to select h∗(n) so as to minimize the mean square error
(MSE) of the estimator, given a sample of sizen. To see what this entails, decompose
(for a givenh) the MSE into the sum of the squared bias and of the variance involved
in estimating Pα(F ):

(23) MSEh(Pα(F̂ )) =
(

biash

(
Pα(F̂ )

))2
+ varh

(
Pα(F̂ )

)
,

and denote by h∗(n) the value of h which minimizes MSEh(Pα(F̂ )). This value is
described in the following theorem:

Theorem 3. For large n, h∗(n) is given by

(24) h∗(n) =

√
− cov (vα(y), p′′

α(y))

ασ2
K

(∫
f ′′(y)pα(y)dy

)2n
−0.5 +O

(
n−1) .

It is well known that f
′′
(y) is proportional to the bias of the estimator f̂(y). A

large value of ασ2
K

(∫
f ′′(y)pα(y)dy

)2 will thus necessitate a lower value of h∗(n)
in order to reduce the bias. Conversely, a larger negative correlation between
vα(y) and p′′

α(y) will militate in favor of a larger h∗(n) in order to decrease the
sampling variance. More importantly, the optimal bandwidth for the estimation
of the polarization index is of order O(n−1/2), unlike the usual kernel estimators
which are of significantly larger order O(n−1/5). Because of this, we may expect
the precise choice of h not to be overly influential on the sampling precision of
polarization estimators13.

To compute h∗(n), two general approaches can be followed. We can assume
that f(y) is not too far from a parametric density function, such as the normal
or the log-normal, and use (24) to compute h∗(n) (for instance, in the manner of
Silverman (1986, p.45) for point density estimation). Alternatively, we can estimate
the terms in (24) directly from the empirical distribution, using an initial value of h
to compute the f(y) in the vα(y) and pα(y) functions. For both of these approaches
(and particularly for the last one), expression (24) is clearly distribution specific,
and it will also generally be very cumbersome to estimate.

It would thus seem useful to devise a "rule-of-thumb" formula that can be used
to provide a readily-computable value for h. When the true distribution is that of

13See Hall and Marron (1987) for rates of convergence of kernel density
estimation for integrals of squared derivatives of various orders.
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a normal distribution with variance σ2, and when a Gaussian kernel (see (20)) is
used to estimate f̂(y) , h∗ is approximately given by:

(25) h∗ ∼= 4.7n−0.5 σα0.1.

Easily computed, this formula works well with the normal distribution14 since
it is never farther than 5% from the h∗ that truly minimizes the MSE. The use
of such approximate rules also seems justified by the fact that the MSE of the
polarization indices does not appear to be overly sensitive to the choice of the
bandwidth h. (25) seems to perform relatively well with other distributions than
the normal, including the popular log-normal one, although this is less true when
the distribution becomes very skewed. For skewness larger than about 6, a more
robust — though more cumbersome — approximate formula for the computation
of h∗ is given by

(26) h∗ ∼= n−0.5IQ
(3.76 + 14.7σln)

(1 + 1.09 · 10−4σln)(7268+15323α) ,

where IQ is the interquartile and σln is the variance of the logarithms of income –
an indicator of the skewness of the income distribution.

4. An Illustration

We illustrate our axiomatic and statistical results with data drawn from the
Luxembourg Income Study (LIS) data sets15 on 21 countries for each of Wave 3
(1989–1992) and Wave 4 (1994–1997). Countries, survey years and abbreviations are
listed in Table 1. [All figures and tables for this section are located at the end of the
paper.] We use household disposable income (i.e., post-tax-and-transfer income)
normalized by an adult-equivalence scale defined as s0.5, where s is household size.
Observations with negative incomes are removed as well as those with incomes
exceeding 50 times the average (this affects less than 1% of all samples). Household
observations are weighted by the LIS sample weights times the number of persons
in the household. As discussed in Section 2.4.1, the usual homogeneity-of-degree-
zero property is imposed throughout by multiplying the indices Pα(F ) by µα−1 or
equivalently by normalizing all incomes by their mean. For ease of comparison,
all indices are divided by 2, so that Pα=0(F ) is the usual Gini coefficient.

4.1. Results. Tables 2 and 3 show estimates of the Gini (P0) and four polarization
indices (Pα forα = 0.25, 0.5, 0.75, 1) in 21 countries for each of the two waves, along
with their asymptotic standard deviations. The polarization indices are typically
rather precisely estimated, with often only the third decimal of the estimators being
subject to sampling variability. We can use these indices to create country rankings,
with a high rank corresponding to a relatively large value of the relevant index.
The tables show these rankings as well, and for each wave we display countries by
their order in the Gini ranking.

Observe that P0 and P0.25 induce very similar rankings. But considerable dif-
ferences arise between P0 and P1, or between P0.25 and P1. For instance, for Wave

14Extensive numerical simulations were made using various values of n ≥ 500 , σ and α = 0.25 to
1. The results are available from the authors upon request.

15See http://lissy.ceps.lu for detailed information on the structure of these data.
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3, the Czech Republic has the lowest Gini index of all countries, but ranks 11 in
terms of P1. Conversely, Canada, Australia and the United States exhibit high Gini
inequality, but relatively low “P1-polarization".

The Pearson and Spearman correlation matrices (showing respectively the cor-
relation across different indices and across different rankings) are shown in Table
4. Both correlation coefficients fall as the distance between the α’s increases. The
lowest correlation of all — 0.6753 — is the rank correlation between the Gini index
and P1 in Wave 3. Clearly, polarization and inequality are naturally correlated, but
they are also empirically distinct in this dataset. Moreover, the extent to which in-
equality comparisons resemble polarization comparisons depend on the parameter
α, which essentially captures the power of the identification effect.

One might respond to this observation as follows: our axiomatics do not rule
out values of α very close to 0.25. Hence, in the strict sense of a partial order we
are unable to (empirically) distinguish adequately between inequality and polar-
ization, at least with the dataset at hand. In our opinion this response would be too
hasty. Our characterization not only implies a partial ordering, it provides a very
clean picture of how that ordering is parameterized, with the parameter α having a
definite interpretation. If substantial variations in ranking occur asα increases, this
warrants a closer look, and certainly shows — empirically — how “large" subsets
of polarization indices work very differently from the Gini inequality index.16

Which countries are more polarized? To answer this question, we implicitly rely
on the decomposition exercise carried out in Section 2.5, in which we obtained (7),
reproduced here for convenience:

Pα = āῑα [1 + ρ]

Tables 5 and 6 summarize the relevant statistics for all Wave 3 and Wave 4 countries,
decomposing polarization as the product of average alienation, average identifica-
tion and (one plus) the normalized covariance between the two. Consider Wave
3 with α = 1. Our first observation is that the bulk of cross-country variation in
polarization stems from significant variation in average identification as well as in
average alienation. In contrast, the covariance between the two does not exhibit
similar variation across countries. Some countries (Finland, Sweden and Denmark)
rank low both in terms in inequality and polarization, the latter despite a relatively
large level of average identification. This is due to low average alienation. Some
countries, most strikingly Russia, Mexico, and the UK rank consistently high both
in terms in inequality and polarization — even though average identification for the
three countries is among the lowest of all. Average alienation is very high in these
countries. Yet other countries show low inequality but relatively high polarization,
while others exhibit the reverse relative rankings. More on this below.

Our second observation is that, as α increases from 0.25 to 1, the cross-country
variation in the value of average α-identification goes up. This is a straightforward
implication of the densities being raised to a higher power in the measurement
of identity, as we have already pointed out in our discussion of the polarization
measure. This increase in cross-country variability produces frequent “crossings"
in the ranking of countries by polarization. Such crossings can occur at very low

16One would expect these distinctions to magnify even further for distributions that are not unimodal
(unfortunately, this exploration is not permitted by our dataset). For instance, one might use our
measures to explore the “twin-peaks" property identified by Quah (1996) for the world distribution of
income. But this is the subject of future research.
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values of α (below 0.25) so that for all α ∈ [0.25, 1] the polarization ranking opposes
the inequality ranking. This is the case (for Wave 3) for Belgium-Sweden, Italy-
Canada and Israel-Australia. Crossings could — and do — occur for intermediate
values of α ∈ [0.25, 1]. To be sure, they may not occur for any α ≤ 1, thus causing
the polarization ordering to coincide with the inequality ordering. This is indeed a
most frequent case for pairwise comparisons in Wave 3. Finally, in Wave 4 we also
observe “double crossings" in the cases of Canada-France and Australia-Poland.
In both cases the first country starts with higher inequality, P0, followed by a lower
value of P0.25, but later returning to higher values for larger values of α.

Tables 7–9 summarize tests of the statistical significance of these cross-country
rankings, so that we know which of the rankings may be reasonably attributed to
true population differences in inequality and polarization. We show the results for
Wave 3 countries, and for α = 0, 0.25 and 1. The tables display p-values for tests
that the countries listed on the rows show more inequality (Table 7) or polarization
(Tables 8 and 9) than countries on the column. Roughly speaking, these p-values
indicate the probability that an error is made when one rejects the null hypotheses
that countries on the first row do not have a larger Pα than countries on the first
column, in favor of the alternative hypotheses that Pα is indeed greater for the
countries on the first row. More formally, such p-values are the maximal test sizes
that will lead to the rejection of the above null hypotheses. Using a conventional
test size of 5%, it can be seen that the majority (all those with a *, around 90%) of
the possible cross-country comparisons are statistically significant. This is true for
all three values of α.

4.2. Discussion. It may be worth drawing out a few specific instances in more
detail. We have chosen the Czech Republic, the UK and the US (Wave 3), because
these countries illustrate well the points we have made so far.

For α = 0.25, the Czech Republic has the lowest average alienation and the
highest average α-identification. For this value of α it is the country with the
lowest degree of polarization. Yet, for α = 1, the Czech Republic ascends to the
eleventh position in the ranking. This is to be contrasted with the US which begins
in the nineteenth position, but then slides down the rankings as α goes up, finally
equaling (and even falling slightly below) the Czech Republic. But perhaps the
most interesting relative behavior is exhibited by the US-UK pair. UK inequality
is very close to US inequality; for all intents and purposes the two have the same
Gini in Wave 3. Indeed, the UK ranks eighteenth and the US nineteenth (this is also
true when α = 0.25). However, as α goes up to 1, the UK retains the nineteenth
position, while the US descends to ninth in the rankings.

In what follows, keep in mind the decomposition (7). Now observe that average
alienation cannot change with α, so the US-UK contrast must stem from very dif-
ferent responses of the identification component of each country to an increase in
α. To be sure, this must mean in turn that the two densities are very different, and
indeed, Figure 6, which superimposes one density on the other, shows that they
are. The US distribution shows a remarkably flat density on the interval [0.25, 1.25]
of normalized incomes and so has thick tails. In contrast, the UK displays a clear
mode at y = 0.4 and thinner tails.
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Can two such distributions exhibit the same inequality as measured by the Gini?
They certainly can, and in the US-UK case, they do.17 Yet, while maintaining the
same average alienation, the UK density exhibits higher variability than its US
counterpart. Because — as already discussed in Section 2.5 — the identification
function fα times the density f is strictly convex in f , the country with the greater
variation in identification will exhibit a higher value of average identification, with
the difference growing more pronounced as α increases. This is as it should be: control-
ling for overall alienation, the country with greater variation in identification will be
singled out as more polarized, and this tendency will be augmented by increases
in α. To be sure, variations in identification find their starkest expression when
distributions are multimodal, but even without such multimodality, variation is
possible.

The Czech-US comparison further supplements this sort of reasoning. Consult
Figure 7 in what follows. Here, the basic inequality comparison is unambiguous
(in contrast to the US-UK example): the Czech Republic has lower inequality than
the US. But the Czech Republic has a spikier density with greater variation in it.
This “shadow of multimodality" kicks in as α is increased, so much so that the
Czech Republic is actually deemed equally or more polarized than the US by the
time α = 1.

One must be careful on the following counts. We should remember that varia-
tion in identification is only one of several factors: in particular, we do not mean
to suggest that the country with the greater variation in identification will invari-
ably exhibit greater polarization as α → 1. For instance, our notion of a squeeze
increases the variability of identification, but polarization must fall, by Axiom 1
(this is because alienation falls too with the squeeze). See footnote 9 for another
illustration of this point.

5. Final Remarks, and a Proposed Extension

In this paper we present and characterize a class of measures for income polar-
ization, based on what we call the identification-alienation structure. Our approach
is fundamentally based on the view that inter-personal alienation fuels a polarized
society, as does inequality. Our departure from inequality measurement lies in the
notion that such alienation must also be complemented by a sense of identification.
This combination of the two forces generates a class of measures that are sensitive
(in the same direction) to both elements of inequality and equality, depending on
where these changes are located in the overall distribution.

Our characterization, and the alternative decomposition presented in (7), permit
us to describe the measure very simply: for any income distribution, polarization is
the product of average alienation, average identification, and (one plus) the mean-
normalized covariance between these two variables.

We discuss estimation issues for our measures in detail, as well as associated
questions of statistical inference.

We wish to close this paper with some remarks on what we see to be the main
conceptual task ahead. Our analysis generates a certain structure for identification
and alienation functions in the special case in which both identification and alienation
are based on the same characteristic. This characteristic can be income or wealth. In

17While the US distribution has flatter tails, the UK distribution exhibits a significant mode lower
than the mean income. The two effects cancel each other as far as the Gini is concerned.
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principle it could be any measurable feature with a well-defined ordering. The
key restriction, however, is that whatever we choose the salient characteristic for
identification to be, inter-group alienation has to be driven by the very same charac-
teristic. This seems obvious in the cases of income or wealth. Yet, for some relevant
social characteristics this might not be a natural assumption. Think of the case of
ethnic polarization. It may or may not seem appropriate here to base inter-ethnic
alienation as only depending on some suitably defined “ethnicity distance". In the
cases of socially based group identification we find it more compelling to adopt
a multi-dimensional approach to polarization, permitting alienation to depend on
characteristics other than the one that defines group identity. In this proposed ex-
tension, we liberally transplant our findings to the case of social polarization, but
with no further axiomatic reasoning. In our opinion, such reasoning is an important
subject of future research.

Suppose, then, that there are M “social groups", based on region, kin, ethnicity,
religion... Let nj be the number of individuals in group j, with overall population
normalized to one. Let Fj describe the distribution of income in group j (with fj

the accompanying density), unnormalized by group population. One may now
entertain a variety of “social polarization measures".

5.1. Pure Social Polarization. Consider, first, the case of “pure social polarization”,
in which income plays no role. Assume that each person is “fully" identified with
every other member of his group. Likewise, the alienation function takes on values
that are specific to group pairs and have no reference to income. Then a natural
transplant of (3) yields the measure

(27) Ps(F) =
M∑

j=1

M∑
k=1

nα
j nk∆jk.

where ∆jk represents intergroup alienation. Even this sort of specification may
be too general in some interesting instances in which individuals are interested
only in the dichotomous perception Us/They. In particular, in these instances,
individuals are not interested in differentiating between the different opposing
groups. Perhaps the simplest instance of this is a pure contest (Esteban and Ray
[1999]), which yields the variant18

(28) P̃s(F) =
M∑

j=1

nα
j (1 − nj).

5.2. Hybrids. Once the two extremes — pure income polarization and pure social
polarization — are identified, we may easily consider several hybrids. As examples,
consider the case in which notions of identification are mediated not just by group
membership but by income similarities as well, while the antagonism equation
remains untouched. [For instance, both low-income and high-income Hindus may
feel antagonistic towards Muslims as a whole while sharing very little in common

18See Reynal-Querol [2002] for a similar analysis. D’Ambrosio and Wolff [2001] also consider a
measure of this type but with income distances across groups explicitly considered.
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with each other.] Then we get what one might call social polarization with income-
mediated identification:

(29) Ps(F) =
M∑

j=1

(1 − nj)
∫

x

fj(x)αdFj(x).

One could expand (or contract) the importance of income further, while still staying
away from the extremes. For instance, suppose that — in addition to the income-
mediation of group identity — alienation is also income-mediated (for alienation,
two individuals must belong to different groups and have different incomes). Now
groups have only a demarcating role — they are necessary (but not sufficient) for
identity, and they are necessary (but not sufficient) for alienation. The resulting
measure would look like this:

(30) P ∗(F) =
M∑

j=1

∑
k �=j

∫
x

∫
y

fj(x)α|x− y|dFj(x)dFk(y).

Note that we do not intend to suggest that other special cases or hybrids are not
possible, or that they are less important. The discussion here is only to show that
social and economic considerations can be profitably combined in the measurement
of polarization. Indeed, it is conceivable that such measures will perform better
than the more commonly used fragmentation measures in the analysis of social
conflict. But a full exploration of this last theme must await a future paper.

6. Proofs

Proof of Theorem 1. In the first half of the proof, we show that axioms 1–4 imply
(3).
Lemma 1. Let g be a continuous real-valued function defined on IR such that for all x > 0
and all δ with 0 < δ < x,

(31) g(x) ≥ 1
2δ

∫ x+δ

x−δ

g(y)dy.

Then g must be a concave function.
Proof. This is a well-known implication of Jensen’s characterization of concave
functions.

In what follows, keep in mind that the basic structure of our measure only
considers income differences across people, and not the incomes per se. Therefore
we may slide any distribution to the left or right as we please, without disturbing the
analysis (even negative incomes may be considered when these are expositionally
convenient).
Lemma 2. The function T must be concave in a for every i > 0.
Proof. Fix x > 0, some i > 0, and some value of δ ∈ (0, x). Consider the following
specialization of the setting of Axiom 2. We take three basic densities as in that
Axiom (see also Figure 1) but specialize as shown in Figure 4; each is a transform of
a uniform basic density. The bases are centered at −x, 0 and x. The side densities
are of width 2δ and height h, and the middle density is of width 2ε and height i.
In the sequel, we shall vary ε and h but to make sure that Axiom 2 applies, we
choose ε > 0 such that δ + ε < x. It is easy to check that a λ-squeeze of the side
densities simply implies that the base of the rectangle is contracted to a width 2λδ
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2ε2δ 2δ

2λδ 2λδ

h h

h/λ h/λ
i

-x x0

Figure 4:

(keeping the centering unchanged), while the height is raised to h/λ. See Figure
4. For each λ, we may decompose the polarization measure (1) into five distinct
components. First, there is the “internal polarization" of the middle rectangle, call
it Pm. This component is unchanged as we change λ so there will be no need to
explicitly calculate it. Next, there is the “internal polarization" of each of the side
rectangles, call itPs. Third, there is the total effective antagonism felt by inhabitants
of the middle towards each side density. Call this Ams. Fourth, there is the total
effective antagonism felt by inhabitants of each side towards the middle. Call this
Asm. Finally, there is the total effective antagonism felt by inhabitants of one side
towards the other side. Call this Ass. Observe that each of these last four terms
appear twice, so that (writing everything as a function of λ),

(32) P (λ) = Pm + 2Ps(λ) + 2Ams(λ) + 2Asm(λ) + 2Ass(λ),

Now we compute the terms on the right hand side of (32). First,

Ps(λ) =
1
λ2

∫ x+λδ

x−λδ

∫ x+λδ

x−λδ

T (h/λ, |b′ − b|)h2db′db,

where (here and in all subsequent cases) b will stand for the “origin" income (to
which the identification is applied) and b′ the “destination income" (towards which
the antagonism is felt). Next,

Ams(λ) =
1
λ

∫ ε

−ε

∫ x+λδ

x−λδ

T (i, b′ − b)ihdb′db.
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Third,

Asm(λ) =
1
λ

∫ x+λδ

x−λδ

∫ ε

−ε

T (h/λ.b− b′)hidb′db,

And finally,

Ass(λ) =
1
λ2

∫ −x+λδ

−x−λδ

∫ x+λδ

x−λδ

T (h/λ, b′ − b)h2db′db.

The axiom requires that P (λ) ≥ P (1). Equivalently, we require that [P (λ) −
P (1)]/2h ≥ 0 for all h, which implies in particular that

(33) lim inf
h→0

P (λ) − P (1)
2h

≥ 0.

If we divide through by h in the individual components calculated above and then
send h to 0, it is easy to see that the only term that remains is Ams. Formally, (33)
and the calculations above must jointly imply that

(34)
1
λ

∫ ε

−ε

∫ x+λδ

x−λδ

T (i, b′ − b)db′db ≥
∫ ε

−ε

∫ x+δ

x−δ

T (i, b′ − b)db′db,

and this must be true for all λ ∈ (0, 1) as well as all ε ∈ (0, x − δ). Therefore we
may insist on the inequality in (34) holding as λ → 0. Performing the necessary
calculations, we may conclude that

(35)
1
ε

∫ ε

−ε

T (i, x− b)db ≥ 1
ε

∫ ε

−ε

∫ x+δ

x−δ

T (i, b′ − b)db′db

for every ε ∈ (0, x− δ). Finally, take ε to zero in (35). This allows us to deduce that

(36) T (i, x) ≥
∫ x+δ

x−δ

T (i, b′)db′.

As (36) must hold for every x > 0 and every δ ∈ (0, x), we may invoke Lemma 1
to conclude that T is concave in x for every i > 0.

Lemma 3. Let g be a concave, continuous function on IR+, with g(0) = 0. Suppose that
for each a and a′ with a > a′ > 0, there exists ∆̄ > 0 such that

(37) g(a+ ∆) − g(a) ≥ g(a′) − g(a′ − ∆)

for all ∆ ∈ (0, ∆̄). Then g must be linear.

Proof. Given the concavity of g, it is easy to see that

g(a+ ∆) − g(a) ≤ g(a′) − g(a′ − ∆)

for all a > a′ ≥ ∆ > 0. Combining this information with (37), we may conclude
that for each a and a′ with a > a′ > 0, there exists ∆̄ > 0 such that

g(a+ ∆) − g(a) = g(a′) − g(a′ − ∆)

for all ∆ ∈ (0, ∆̄). This, coupled with the premises that g is concave and g(0) = 0,
shows that g is linear.

Lemma 4. There is a continuous function φ(i) such that T (i, a) = φ(i)a for all i and a.
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Figure 5:

Proof. Fix numbers a and a′ with a > a′ > 0, and i > 0. Consider the following
specialization of Axiom 3: take four basic densities as in that Axiom (see also
Figure 3) but specialize as shown in Figure 5; each is a transform of a uniform
basic density. The bases are centered at locations −y, −x, x and y, where x ≡
(a − a′)/2 and y ≡ (a + a′)/2. The “inner" densities are of width 2δ and height
h, and the “outer" densities are of width 2ε and height i. In the sequel, we shall
vary δ, ε and h but to make sure that the basic densities have disjoint support,
we restrict ourselves to values of δ and ε such that ε < x and δ + ε < y − x − ∆̄
for some ∆̄ > 0. For convenience, the rectangles have been numbered 1, 2, 3
and 4 for use below. The exercise that we perform is to increase x by the small
amount ∆, where 0 < ∆ < ∆̄, as defined above. Given this configuration, we may
decompose the polarization measure (1) into several distinct components. First,
there is the “internal polarization" of each rectangle j; call it Pj , j = 1, 2, 3, 4. These
components are unchanged as we change x so there will be no need to calculate
them explicitly. Next, there is the total effective antagonism felt by inhabitants of
each rectangle towards another; call this Ajk(x), where j is the “origin" rectangle
and k is the “destination" rectangle. [We emphasize the dependence on x, which is
the parameter to be varied.] Thus total polarization P (x), again written explicitly
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as a function of x, is given by

P (x) =
4∑

j=1

Pj +
∑

j

∑
k �=j

Ajk(x)

=
4∑

j=1

Pj + 2A12(x) + 2A13(x) + 2A21(x) + 2A31(x) + 2A23(x) + 2A14,

where the second equality simply exploits obvious symmetries andA14 is noted to
be independent of x. Let’s compute the terms in this formula that do change with
x. We have

A12(x) =
∫ −y+ε

−y−ε

∫ −x+δ

−x−δ

T (i, b′ − b)ihdb′db,

A13(x) =
∫ −y+ε

−y−ε

∫ x+δ

x−δ

T (i, b′ − b)ihdb′db,

A21(x) =
∫ −x+δ

−x−δ

∫ −y+ε

−y−ε

T (h, b− b′)ihdb′db,

A31(x) =
∫ x+δ

x−δ

∫ −y+ε

−y−ε

T (h, b− b′)ihdb′db,

and

A23(x) =
∫ −x+δ

−x−δ

∫ x+δ

x−δ

T (h, b− b′)h2db′db.

Now, the axiom requires that P (x+ ∆) − P (x) ≥ 0. Equivalently, we require that
[P (x+ ∆) − P (1)]/2ih ≥ 0 for all h, which implies in particular that

lim inf
h→0

P (x+ ∆) − P (x)
2ih

≥ 0.

Using this information along with the computations for P (x) and the various
Ajk(x)’s, we see that∫ −y+ε

−y−ε

∫ x+δ

x−δ

[T (i, b′ − b+ ∆) − T (i, b′ − b)] db′db

≥
∫ −y+ε

−y−ε

∫ −x+δ

−x−δ

[T (i, b′ − b) − T (i, b′ − b− ∆)] db′db,

where in arriving at this inequality, we have carried out some elementary sub-
stitution of variables and transposition of terms. Dividing through by δ in this
expression and then taking δ to zero, we may conclude that∫ −y+ε

−y−ε

[T (i, x− b+ ∆) − T (i, x− b)] db ≥
∫ −y+ε

−y−ε

[T (i,−x− b) − T (i,−x− b− ∆)] db,

and dividing this inequality, in turn, by ε and taking ε to zero, we see that

T (i, a+ ∆) − T (i, a) ≥ T (i, a′) − T (i, a′ − ∆),

where we use the observations that x + y = a and y − x = a′. Therefore the
conditions of Lemma 3 are satisfied, and T (i, .) must be linear for every i > 0
since T (0, a) := 0. But this only means that there is a function φ(i) such that
T (i, a) = φ(i)a for every i and a. Given that T is continuous by assumption, the
same must be true
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of φ.
Lemma 5. φ(i) must be of the form Kiα, for constants (K,α) 	 0.

Proof. As a preliminary step, observe that

(38) φ(i) > 0 whenever i > 0.

[For, if this were false for some i, Axiom 3 would fail for configurations constructed
from rectangular basic densities of equal height i.] Our first objective is to prove
that φ must satisfy the fundamental Cauchy equation

(39) φ(p)φ(p′) = φ(pp′)φ(1)

for every strictly positive p and p′. To this end, fix p and p′ and define r ≡ pp′.
In what follows, we assume that p ≥ r. [If r ≥ p, simply permute p and r in
the argument below.] Consider the following configuration. There are two basic
densities, both of width 2ε, the first centered at 0 and the second centered at 1.
The heights are p and h (where h is any strictly positive number, soon to be made
arbitrarily small). It is easy to see that the polarization of this configuration, P , is
given by

P = ph[φ(p) + φ(h)]{
∫ ε

−ε

∫ 1+ε

1−ε

(b′ − b)db′db}

+[p2φ(p) + h2φ(h)]{
∫ ε

−ε

∫ ε

−ε

|b′ − b|db′db}

= 4ε2ph[φ(p) + φ(h)] +
8ε3

3
[p2φ(p) + h2φ(h)],(40)

where the first equality invokes Lemma 4 and both equalities use routine com-
putations. Now change the height of the first rectangle to r . Using (38) and the
provisional assumption that p ≥ r, it is easy to see that for each ε, there must exist
a (unique) height for the second rectangle — call it h(ε), such that the polarizations
of the two configurations are equated. Invoking (40), we equivalently choose h(ε)
such that

ph[φ(p) + φ(h)] +
2ε
3

[p2φ(p) + h2φ(h)]

= rh(ε)[φ(r) + φ(h(ε))] +
2ε
3

[r2φ(r) + h(ε)2φ(h(ε))].(41)

By Axiom 4, it follows that for all λ > 0,

λ2ph[φ(λp) + φ(λh)] +
2ε
3

[(λp)2φ(λp) + (λh)2φ(λh)]

= λ2rh(ε)[φ(λr) + φ(λh(ε))] +
2ε
3

[(λr)2φ(λr) + [λh(ε)]2φ(λh(ε))].(42)

Notice that as ε ↓ 0, h(ε) lies in some bounded set. We may therefore extract a
convergent subsequence with limit h′ as ε ↓ 0. By the continuity of φ, we may pass
to the limit in (41) and (42) to conclude that

(43) ph[φ(p) + φ(h)] = rh′[φ(r) + φ(h′)]

and

(44) λ2ph[φ(λp) + φ(λh)] = λ2rh′[φ(λr) + φ(λh′)].
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Combining (43) and (44), we see that

(45)
φ(p) + φ(h)
φ(λp) + φ(λh)

=
φ(r) + φ(h′)
φ(λr) + φ(λh′)

.

Taking limits in (45) as h → 0 and noting that h′ → 0 as a result (examine (43) to
confirm this), we have for all λ > 0,

(46)
φ(p)
φ(λp)

=
φ(r)
φ(λr)

.

Put λ = 1/p and recall that r = pp′. Then (46) yields the required Cauchy equation
(39). To complete the proof, recall that φ is continuous and that (38) holds. The
class of solutions to (39) (that satisfy these additional qualifications) is completely
described by φ(p) = Kpα for constants (K,α) 	 0 (see, e.g., Aczél [1966, p. 41,
Theorem 3]).

Lemmas 4 and 5 together establish “necessity", though it still remains to establish
the bounds on α. We shall do so along with our proof of “sufficiency", which we
begin now. First notice that each basic density f with mass p, support [a, b] and
mean µ may be connected to its root — call it f∗ — by means of three numbers.
First, we slide the density so that it begins at 0; this amounts to a slide of a to the
left. The new mean is now m ≡ µ− a . Second, we income-scale the density so as
to change its mean fromm = µ− a to 1. Finally, we population-scale to change the
overall mass of the density from p to unity.
Lemma 6. Let f be a basic density with mass p and meanµ on support [a, b]. Letm ≡ µ−a
and let f∗ denote the root of f . Then, if fλ denotes some λ-squeeze of f ,
(47)

P (Fλ) = 4kp2+α(mλ)1−α

∫ 1

0
f∗(x)1+α

{∫ 1

0
f∗(y)(1 − y)dy +

∫ 1

x

f∗(y)(y − x)dy
}
dx

for some constant k > 0.

Proof. Let f be given as in the statement of the lemma. Recall that a slide of the
entire distribution has no effect on the computations, so we may as well set a = 0
and b = 2m, where m = µ− a is now to be interpreted as the mean. Given (3),

(48) P (F ) = k

∫ ∫
f(x)1+αf(y)|y − x|dydx

for some k > 0. Using the fact that f is symmetric, we can write

P (F ) = 2k
∫ m

0

∫ 2m

0
f(x′)1+αf(y′)|x′ − y′|dy′dx′

= 2k
∫ m

0
f(x′)1+α

{∫ x′

0
f(y′)(x′ − y′)dy′ +

∫ m

x′
f(y′)(y′ − x′)dy′

+
∫ 2m

m

f(y′)(y′ − x′)dy′}dx′
}
.(49)

Examine the very last term in (49). Change variables by setting z ≡ 2m − y′, and
use symmetry to deduce that∫ 2m

m

f(y′)(y′ − x′)dy′ =
∫ m

0
f(z)(2m− x′ − z)dz.
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Substituting this in (49), and manipulating terms, we obtain
(50)

P (F ) = 4k
∫ m

0
f(x′)1+α

{∫ m

0
f(y′)(m− y′)dy′ +

∫ m

x′
f(y′)(y′ − x′)dy′

}
dx′.

Now suppose that fλ is a λ-squeeze of f . Note that ( 50) holds just as readily for
fλ as for f . Therefore, using the expression for f given in (2), we see that

P (Fλ) = 4kλ−(2+α)
∫ m

(1−λ)m
f

(
x′ − (1 − λ)m

λ

)1+α
{∫ m

(1−λ)m
f

(
y′ − (1 − λ)m

λ

)
(m− y′)dy′

+
∫ m

x′
f

(
y′ − (1 − λ)m

λ

)
(y′ − x′)dy′}dx′

}
.

Perform the change of variables x′′ = x′−(1−λ)m
λ and y′′ = y′−(1−λ)m

λ . Then it is
easy to see that

P (Fλ) = 4kλ1−α

∫ m

0
f(x′′)1+α

{∫ m

0
f(y′′)(m− y′′)dy′′ +

∫ m

x′′
f(y′′)(y′′ − x′′)dy′′

}
dx′′.

To complete the proof, we must recover the root f∗ from f . To this end, first
population-scale f to h, where h has mass 1. That is, f(z) = ph(z) for all z. Doing
so, we see that

P (Fλ) = 4kp2+αλ1−α

∫ m

0
h(x′′)1+α

{∫ m

0
h(y′′)(m− y′′)dy′′ +

∫ m

x′′
h(y′′)(y′′ − x′′)dy′′

}
dx′′.

Finally, make the change of variables x = x′′/m and y = y′′/m. Noting that
f∗(z) = mh(mz), we get (47).

Lemma 7. Let f and g be two basic densities with disjoint support, with their means
separated by distance d, and with population masses p and q respectively. Let f have mean
µ on support [a, b]. Letm ≡ µ− a and let f∗ denote the root of f . Then for any λ -squeeze
fλ of f ,

(51) A(fλ, g) = 2kdp1+αq(mλ)−α

∫ 1

0
f∗(x)1+αdx,

whereA(fλ, g) denotes the total effective antagonism felt by members of fλ towards mem-
bers of g.

Proof. To begin with, ignore theλ-squeeze. Notice that there is no loss of generality
in assuming that every income under g dominates every income under f . It also
makes no difference to polarization whether or not we slide the entire configuration
to the left or right. Therefore we may suppose that f has support [0, 2m] (with mean
m ) and g has support [d, d + 2m] (where obviously we must have d ≥ 2m for the
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disjoint support assumption to make sense). Because (48) is true, it must be that

A(f, g) = k

∫ 2m

0
f(x)1+α

[∫ d+2m

d

g(y)(y − x)dy

]
dx

= k

∫ 2m

0
f(x)1+α

[∫ d+m

d

g(y)(y − x)dy +
∫ d+2m

d+m

g(y)(y − x)dy

]
dx

= k

∫ 2m

0
f(x)1+α

[∫ d+m

d

g(y)2(m+ d− x)dy

]
dx

= kq

∫ 2m

0
f(x)1+α(m+ d− x)dx

= 2dkq
∫ m

0
f(x)1+αdx,

where the third equality exploits the symmetry of g,19 the fourth equality uses the
fact that

∫ d+m

d
g(y) = q/2, and the final equality uses the symmetry of f .20 To be

sure, this formula applies to any λ -squeeze of f , so that

A(fλ, g) = 2dkq
∫ m

0
fλ(x′)1+αdx′

= 2dkqλ−(1+α)
∫ m

(1−λ)m
f

(
x′ − (1 − λ)m

λ

)1+α

dx′,

and making the change of variables x′′ = x′−(1−λ)m
λ , we may conclude that

A(fλ, g) = 2dkqλ−α

∫ m

0
f(x′′)1+αdx′′.

To complete the proof, we must recover the root f∗ from f . As in the proof of
Lemma 6, first population-scale f to h, where h has mass 1. That is, f(z) = ph(z)
for all z. Doing so, we see that

A(fλ, g) = 2dkp1+αqλ−α

∫ m

0
h(x′′)1+αdx′′.

Finally, make the change of variables x = x′′/m. Noting that f∗(z) = mh(mz), we
get (51).

Lemma 8. Define, for any root f and α > 0,

(52) ψ(f, α) ≡
∫ 1
0 f(x)1+αdx∫ 1

0 f(x)1+α
{∫ 1

0 f(y)(1 − y)dy +
∫ 1

x
f(y)(y − x)dy

}
dx
.

Then — for any α > 0 — ψ(f, α) attains its minimum value when f is the uniform root,
and this minimum value equals 3.

19That is, for each y ∈ [d, d + m], g(y) = g(d + 2m − (y − d)) = g(2d + 2m − y). Moreover,
[y − x] + [(2d + 2m − y) − x] = 2(d + m − x).

20That is, for each x ∈ [0, m], f(x) = f(2m−x). Moreover, [m+d−x]+ [m+d− (2m−x)] = 2d.
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Proof. It will be useful to work with the inverse function

ζ(f, α) ≡ ψ(f, α)−1 =

∫ 1
0 f(x)1+α

{∫ 1
0 f(y)(1 − y)dy +

∫ 1
x
f(y)(y − x)dy

}
dx∫ 1

0 f(x)1+αdx
.

Note that ζ(f, α) may be viewed as a weighted average of

(53) L(x) ≡
∫ 1

0
f(y)(1 − y)dy +

∫ 1

x

f(y)(y − x)dy

as this expression varies over x ∈ [0, 1], where the “weight" on a particular x is just

f(x)1+α∫ 1
0 f(z)1+αdz

which integrates over x to 1. Now observe that L(x) is decreasing in x. Moreover,
by the unimodality of a root, the weights must be nondecreasing in x. It follows
that

(54) ζ(f, α) ≤
∫ 1

0
L(x)dx.

Now

L(x) =
∫ 1

0
f(y)(1 − y)dy +

∫ 1

x

f(y)(y − x)dy

=
∫ 1

0
f(y)(1 − x)dy +

∫ x

0
f(y)(x− y)dy

=
1 − x

2
+

∫ x

0
f(y)(x− y)dy.(55)

Because f(x) is nondecreasing and integrates to 1/2 on [0, 1], it must be the case
that

∫ x

0 f(y)(x− y)dy ≤ ∫ x

0 (x− y)/2dy for all x ≤ 1. Using this information in (55)
and combining it with ( 54),

ζ(f, α) ≤
∫ 1

0

[
1 − x

2
+

∫ x

0

x− y

2
dy

]
dx

=
∫ 1

0

[∫ 1

0

[
1 − y

2

]
dy +

∫ 1

x

[
y − x

2

]
dy

]
dx

= ζ(u, α),(56)

where u stands for the uniform root taking constant value 1/2 on [0, 2]. Simple
integration reveals that ζ(u, α) = 1/3.
Lemma 9. Given that P (f) is of the form (48), Axiom 1 is satisfied if and only if α ≤ 1.
Proof. Simply inspect (47).
Lemma 10. Given thatP (f) is of the form (48), Axiom 2 is satisfied if and only ifα ≥ 0.25.

Proof. Consider a configuration as given in Axiom 2: a symmetric distribution
made out of three basic densities. By symmetry, the side densities must share
the same root; call this f∗. Let p denote their (common) population mass and
m their (common) difference from their means to their lower support. Likewise,
denote the root of the middle density by g∗, by q its population mass, and by n the
difference between mean and lower support. As in the proof of Lemma 2, we may
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decompose the polarization measure (48) into several components. First, there are
the “internal polarizations" of the middle density (Pm) and of the two side densities
(Ps). Next, there are various subtotals of effective antagonism felt by members of
one of the basic densities towards another basic density. LetAms denote this when
the “origin" density is the middle and the “destination" density one of the sides.
Likewise, Asm is obtained by permuting origin and destination densities. Finally,
denote byAss the total effective antagonism felt by inhabitants of one side towards
the other side. Observe that each of these last four terms appear twice, so that
(writing everything as a function of λ), overall polarization is given by

(57) P (λ) = Pm + 2Ps(λ) + 2Ams(λ) + 2Asm(λ) + 2Ass(λ).

Compute these terms. For brevity, define for any root h,

ψ1(h, α) ≡
∫ 1

0
h(x)1+α

{∫ 1

0
h(y)(1 − y)dy +

∫ 1

x

h(y)(y − x)dy
}
dx

and

ψ2(h, α) ≡
∫ 1

0
h(x)1+αdx.

Now, using Lemmas 6 and 7, we see that

Ps(λ) = 4kp2+α(mλ)1−αψ1(f
∗, α),

while
Ams(λ) = 2kdq1+αpn−αψ2(g

∗, α).

Moreover,
Asm(λ) = 2kdp1+αq(mλ)−αψ2(f

∗, α),

and
Ass(λ) = 4kdp2+α(mλ)−αψ2(f

∗, α),

(where it should be remembered that the distance between the means of the two side
densities is 2d). Observe from these calculations that Ams(λ) is entirely insensitive
to λ. Consequently, feeding all the computed terms into (57), we may conclude
that

P (λ) = C

[
2λ1−α +

d

m
ψ(f∗, α)λ−α{q

p
+ 2}

]
+D,

where C and D are positive constants independent of λ, and

ψ(f∗, α) =
ψ2(f∗, α)
ψ1(f∗, α)

by construction; see (52) in the statement of Lemma 8. It follows from this expres-
sion that for Axiom 2 to hold, it is necessary and sufficient that for every three-
density configuration of the sort described in that axiom,

(58) 2λ1−α +
d

m
ψ(f∗, α)λ−α

[
q

p
+ 2

]
must be nonincreasing in λ over (0, 1]. An examination of the expression in (58)
quickly shows that a situation in which q is arbitrarily close to zero (relative to p)
is a necessary and sufficient test case. By the same logic, one should make d/m
as small as possible. The disjoint-support hypothesis of Axiom 2 tells us that this
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lowest value is 1. So it will be necessary and sufficient to show that for every root
f∗,

(59) λ1−α + ψ(f∗, α)λ−α

is nonincreasing in λ over (0, 1]. For any f∗, it is easy enough to compute the
necessary and sufficient bounds on α. Simple differentiation reveals that

(1 − α)λ−α − αψ(f∗, α)λ−(1+α)

must be nonnegative for every λ ∈ (0, 1]; the necessary and sufficient condition for
this is

(60) α ≥ 1
1 + ψ(f∗, α)

.

Therefore, to find the necessary and sufficient bound on α (uniform over all roots),
we need to minimize ψ(f∗, α) by choice of f∗, subject to the condition that f∗ be
a root. By Lemma 8 , this minimum value is 3. Using this information in (60), we
are done.

Lemma 11. Given that P (f) is of the form (48), Axiom 3 is satisfied.

Proof. Consider a symmetric distribution composed of four basic densities, as in
the statement of Axiom 3. Number the densities 1, 2, 3 and 4, in the same order
displayed in Figure 5. Let x denote the amount of the slide (experienced by the
inner densities) in the axiom. For each such x, let djk(x) denote the (absolute)
difference between the means of basic densities j and k. As we have done several
times before, we may decompose the polarization of this configuration into several
components. First, there is the “internal polarization" of each rectangle j; call it
Pj , j = 1, 2, 3, 4. [These will stay unchanged with x.] Next, there is the total
effective antagonism felt by inhabitants of each basic density towards another; call
thisAjk(x), where j is the “origin" density and k is the “destination" density. Thus
total polarization P (x), again written explicitly as a function of x, is given by

P (x) =
4∑

j=1

Pj +
∑

j

∑
k �=j

Ajk(x)

so that, using symmetry,

(61) P (x) − P (0) = 2{[A12(x) +A13(x)] − [A12(0) +A13(0)]} + [A23(x) −A23(0)]

Now Lemma 7 tells us that for all i and j,

Aij(x) = kijdij(x),

where kij is a positive constant which is independent of distances across the two
basic densities, and in particular is independent of x. Using this information in
(61), it is trivial to see that

P (x) − P (0) = A23(x) −A23(0) = kijx > 0,

so that Axiom 3 is satisfied.

Given (48), Axiom 4 is trivial to verify. Therefore Lemmas 9, 10 and 11 complete
the proof of the theorem.
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Proof of Observation 1. First note that |x− y| = x+ y− 2 min(x, y). Hence, by (3),

Pα(f) =
∫
x

∫
y

f(y)α (x+ y − 2 min(x, y)) dF (y) dF (x).

To prove (8), note that

(62)
∫
x

∫
y

x f(y)α dF (y) dF (x) = µ

∫
y

f(y)α dF (y)

and that ∫
x

∫
y

f(y)α min(x, y) dF (y)dF (x)

=
∫
x

∫ y=x

y=−∞
yf(y)αdF (y)dF (x) +

∫
x

∫ ∞

y=x

xf(y)αdF (y)dF (x).(63)

The first term in (63) can be integrated by parts over x:∫ y=x

y=−∞
yf(y)αdF (y)F (x)

∣∣∣∣∞
−∞

−
∫
xf(x)αF (x)dF (x)

=
∫
yf(y)αdF (y) −

∫
xf(x)αF (x)dF (x)

=
∫
yf(y)α (1 − F (y)) dF (y).(64)

The last term in (63) can also be integrated by parts over x as follows:∫
x

∫ ∞

y=x

xf(y)αdF (y)dF (x) =
∫
x

∫ ∞

y=x

f(y)αdF (y)x dF (x)

= µ∗(x)
∫ ∞

y=x

f(y)αdF (y)
∣∣∣∣x=∞

x=−∞
+

∫
x

µ∗(x)f(x)αdF (x)

=
∫
y

µ∗(y)f(y)αdF (y),(65)

where µ∗(x) =
∫ x

−∞ zdF (z) is a partial mean. Adding terms yields (8), and com-
pletes the proof.

Proof of Observation 2. It will be enough to show that 2ay(yi) = aỹ(ỹ2i−1)+aỹ(ỹ2i)
since we have assumed that fy(yi) = fỹ(ỹ2i−1) = fỹ(ỹ2i) for all i = 1, . . . , n.
Clearly, µy = µỹ. Note also that aỹ(ỹ2i−1) can be expressed as
(66)

aỹ(ỹ2i−1) = µy + yi

(
(2n)−1 (2(2i− 1) − 1) − 1

)
− (2n)−1

2
2i−2∑
j=1

ỹj + ỹ2i−1

 .

Similarly, for aỹ(ỹ2i), we have

(67) aỹ(ỹ2i) = µy + yi

(
(2n)−1 (2(2i) − 1) − 1

)
− (2n)−1

2
2i−1∑
j=1

ỹj + ỹ2i

 .
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Summing (66) and (67), we find

aỹ(ỹ2i−1) + aỹ(ỹ2i) = 2

µy + yi

(
n−1(2i− 1) − 1

) − n−1

2
i−1∑
j=1

yj + yi


= 2ay(yi).(68)

Adding up the product of fy(ỹj)aỹ(ỹj) across j and dividing by 2n shows that
Pα( Fy) = Pα(Fỹ).

Proof of Theorem 2. Consider first (16). Note that∫ (
f̂(y)α − f(y)α

)
a(y)dF (y) ∼=

∫
αf(y)α−1

(
f̂(y) − f(y)

)
a(y)dF (y)

= α

∫
pα−1(y)n−1

n∑
i=1

Kh (y − yi) dF (y) − α

∫
pα(y)dF (y)

= αn−1
n∑

i=1

∫
pα−1(y)Kh (y − yi) dF (y) − α

∫
pα(y)dF (y).(69)

Taking h → 0 as n → ∞, and recalling that
∫
Kh (y − yi) dy = 1, the first term in

(69) tends asymptotically to

αn−1
n∑

i=1

∫
pα−1(y)Kh (y − yi) dF (y) ∼= αn−1

n∑
i=1

pα−1(yi)f(yi) = αn−1
n∑

i=1

pα(yi).

Thus, we can rewrite the term on the right-hand side of (16) as∫ (
f̂(y)α − f(y)α

)
a(y)dF (y) ∼= αn−1

n∑
i=1

(pα(yi) − Pα) = O(n−1/2).

Now turn to (17). Let I be an indicator function that equals 1 if its argument is true
and 0 otherwise. We find:∫

f(y)α (â(y) − a(y)) dF (y)

=
∫
f(y)α

[(
µ̂+ y

(
2F̂ (y) − 1

)
− 2µ̂∗(y)

)
− a(y)

]
dF (y)

∼=
∫
f(y)α

(
n−1

∑n

i=1
{yi + y (2I[yi ≤ y] − 1) − 2yiI[yi ≤ y]} − a(y)

)
dF (y)

= n−1
∑n

i=1

∫
f(y)α (yi [1 − 2I[yi ≤ y]] + 2yI[yi ≤ y]) dF (y)

−
∫
f(y)α (µ+ 2yF (y) − 2µ∗(y)) dF (y)

= n−1
∑n

i=1

(∫
f(y)αdF (y) yi − 2yi

∫ ∞

yi

f(y)αdF (y) + 2
∫ ∞

yi

yf(y)αdF (y)
)

−
∫
f(y)α (µ+ 2yF (y) − 2µ∗(y)) dF (y)

= O(n−1/2).
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Now consider (18):∫
pα(y)d

(
F̂ − F

)
(y) = n−1

∑n

i=1
(f(yi)αa(yi) − Pα) = O(n−1/2).

Collecting and summarizing terms, we obtain:

Pα(F̂ ) − Pα(f) ∼= n−1
∑n

i=1

(
(1 + α)f(yi)αa(yi) +

∫
yif(y)αdF (y) + 2

∫ ∞

yi

(y − yi) f(y)αdF (y)
)

−
(

(1 + α)Pα(f) +
∫
f(y)α (µ+ 2(yF (y) − µ∗(y))) dF (y)

)
.

Applying the law of large numbers toPα(F̂ )−Pα(f), note that limn→∞ IE
[
n0.5

(
Pα(F̂ ) − Pα(f)

)]
=

0.The central limit theorem then leads to the finding thatn0.5
(
Pα(F̂ ) − Pα(f)

)
has

a limiting normal distribution N(0, Vα), with Vα as described in the statement of
the theorem.

Proof of Theorem 3. Using (16)–( 18), we may write biash(F̂α) = IE
[
Pα(F̂ ) − Pα(f)

]
as:

IE
[
Pα(F̂ ) − Pα(f)

] ∼=
∫

IE
[
f̂(y)α − f(y)α

]
a(y)dF (y)

+
∫
f(y)αIE [â(y) − a(y)] dF (y) +

∫
pα(y)dIE

[
F̂ − F

]
(y)

=
∫

IE
[
f̂(y)α − f(y)α

]
a(y)dF (y),(70)

since â(y) and F̂ (y) are unbiased estimators of (y) and F (y) respectively. For

IE
[
f̂(y)α − f(y)α

]
, we may use a first-order Taylor expansion around f(y)α :

IE
[
f̂(y)α − f(y)α

] ∼= αf(y)α−1IE
[
f̂(y) − f(y)

]
.

For symmetric kernel functions, the bias IE
[
f̂(y) − f(y)

]
can be shown to be ap-

proximately equal to (see for instance Silverman (1986, p.39))

(71) 0.5h2σ2
Kf

′′(y),

where f ′′(y) is the second-order derivative of the density function. Hence, the bias

IE
[
Pα(F̂ ) − Pα(f)

]
is approximately equal to

(72) IE
[
Pα(F̂ ) − Pα(f)

] ∼= 0.5ασ2
Kh

2
∫
f ′′(y)pα(y)dy = O(h2).

It follows that the bias will be low if the kernel function has a low variance σ2
K :

it is precisely then that the observations “closer” to y will count more, and those
are also the observations that provide the least biased estimate of the density at y.
But the bias also depends on the curvature of f(y), as weighted by pα(y): in the
absence of such a curvature, the density function is linear and the bias provided by
using observations on the left of y is just (locally) outweighed by the bias provided

by using observations on the right of y. For the variance varh

(
Pα(f̂)

)
, we first



35

reconsider the first term in (69), which is the dominant term through which the

choice of h influences var
(
Pα(f̂)

)
. We may write this as follows:

αn−1
n∑

i=1

∫
pα(y)Kh (y − yi) dy = αn−1

n∑
i=1

∫
pα(yi − ht)K (t) dt

∼= αn−1
n∑

i=1

∫
K (t)

(
pα(yi) − htp′

α(yi) + 0.5h2t2p′′
α(yi)

)
dt

= αn−1
n∑

i=1

(
pα(yi) + 0.5σ2

Kh
2p′′

α(yi)
)
,(73)

where the first equality substitutes t for h−1(yi −y), where the succeeding approxi-
mation is the result of Taylor-expanding pα(yi−ht) around t = 0, and where the last
line follows from the properties of the kernel function K(t). Thus, combining (73)
and (21) to incorporate a finite-sample correction for the role of h in the variance
of f̂α, we can write:

varh

(
Pα(f̂)

)
= n−1 var

f(y)

(
0.5ασ2

Kh
2p′′

α(y) + vα(y)
)

= O(n−1).

For small h, the impact of h on the finite sample variance comes predominantly
from the covariance between vα(y) and p′′

α(y) since var
(
0.5ασ2

Kh
2p′′

α(y)
)

is then
of smaller order h4. This covariance, however, is not easily unravelled. When
the covariance is negative (which we do expect to observe), a larger value of h

will tend to decrease varh

(
Pα(f̂)

)
since this will tend to level the distribution of

0.5ασ2
Kh

2p′′
α(y) + vα(y), which is the random variable whose variance determines

the sampling variance of Pα(f̂). Combining squared-bias and variance into (23),
we obtain:

MSEh(Pα(f̂)) =
(

0.5ασ2
Kh

2
∫
f ′′(y)pα(y)dy

)2

+ n−1 var
f(y)

(
0.5ασ2

Kh
2p′′

α(y) + vα(y)
)
.

h∗(n) is found by minimizing MSEh(Pα(f̂)) with respect to h. The derivative of
MSEh(Pα(f̂)) with respect to h gives:

h3
[
ασ2

K

∫
f ′′(y)pα(y)dy

]2
+ n−1ασ2

Kh

∫ [(
0.5ασ2

Kh
2p′′

α(y) + vα(y)
)

−
(

0.5ασ2
Kh

2
∫
p′′

α(y)dF (y) +
∫
vα(y)dF (y)

)] [
p′′

α(y) −
∫
p′′

α(y)dF (y)
]
dF (y).

Since h∗(n) > 0 in finite samples, we may divide the above expression by h, and
then find h∗(n) by setting the result equal to 0. This yields:

(74) h∗(n)2 = − n−1cov (vα(y), p′′
α(y))

ασ2
K

((∫
f ′′(y)pα(y)dy

)2 − 0.5n−1var (p′′(y)pα(y))
)

For large n (and thus for a small optimal h), h∗(n) is thus given by

(75) h∗(n) =

√
− cov (vα(y), p′′

α(y))

ασ2
K

(∫
f ′′(y)pα(y)dy

)2n
−0.5 +O

(
n−1)

This completes the proof.
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Fajnzylber, P. Lederman, D. and N. Loayza (2000), “Crime and Victimization: An
Economic Perspective," Economia 1, 219–278.

Foster, J.E. and M.C. Wolfson (1992), “Polarization and the Decline of the Middle
Class: Canada and the U.S.," mimeo, Vanderbilt University.

Garcia-Montalvo, J. and M. Reynal-Querol (2002), “Why Ethnic Fractionalization?
Polarization, Ethnic Conflict and Growth," mimeo.

Gradín, C. (2000), “Polarization by Sub-Populations in Spain, 1973–91," Review of
Income and Wealth 46, 457–474.



37

Hall, P. and J.S. Marron (1087), "Estimation of Integrated Squared Density Deriva-
tives", Statistics and Probability Letters 6, 109–115.
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Table 1: LIS country codes

Abbreviations Countries Years Sample Sizes
as Australia 1989 / 1994 16,331 / 7,441
be Belgium 1992 / 1997 3,821 / 4,632
cn Canada 1991 / 1994 21,647 / 40,849
cz Czech Republic 1992 / 1996 16,234 / 28,148
dk Denmark 1992 / 1995 12,895 / 13,124
fi Finland 1991 / 1995 11,749 / 9,263
fr France 1989 / 1994 9,038 / 11,294
ge Germany 1989 / 1994 4,187 / 6,045
hu Hungary 1991 / 1994 2,019 / 1,992
is Israel 1992 / 1997 5,212 / 5,230
it Italy 1991 / 1994 8,188 / 8,135
lx Luxembourg 1991 / 1994 1,957 / 1,813
mx Mexico 1989 / 1996 11,531 / 14,042
nl Netherlands 1991 / 1994 4,378 / 5,187
nw Norway 1991 / 1995 8,073 / 10,127
pl Poland 1992 / 1995 6,602 / 32,009
rc Rep. of China / Taiwan 1991 / 1995 16,434 / 14,706
ru Russia 1992 / 1995 6,361 / 3,518
sw Sweden 1992 / 1995 12,484 / 16,260
uk United Kingdom 1991 / 1995 7,056 / 6,797
us United States 1991 / 1994 16,052 / 66,014
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Table 2: Polarization indices and polarization rankings (Rkg) from LIS’ Wave 3 –
Standard errors appear on the second line

Index Rkg Index Rkg Index Rkg Index Rkg Index Rkg
α= 0 0.25 0.50 0.75 1
Countries
cz92 0.2082 1 0.1767 1 0.1637 2 0.1585 4 0.1575 11

0.0023 0.0014 0.0011 0.0011 0.0012
fi91 0.2086 2 0.1782 2 0.1611 1 0.1505 1 0.1436 1

0.0017 0.0010 0.0007 0.0005 0.0005
be92 0.2236 3 0.1898 4 0.1699 4 0.1571 3 0.1484 3

0.0028 0.0018 0.0012 0.0010 0.0010
sw92 0.2267 4 0.1888 3 0.1674 3 0.1543 2 0.1459 2

0.0019 0.0012 0.0008 0.0006 0.0006
nw91 0.2315 5 0.1919 5 0.1713 5 0.1588 5 0.1505 5

0.0029 0.0017 0.0013 0.0011 0.0011
dk92 0.2367 6 0.1964 6 0.1744 6 0.1603 6 0.1504 4

0.0026 0.0015 0.0011 0.0010 0.0011
lx91 0.2389 7 0.2002 7 0.1787 8 0.1652 8 0.1563 10

0.0051 0.0032 0.0024 0.0022 0.0023
ge89 0.2469 8 0.2019 8 0.1779 7 0.1634 7 0.1540 7

0.0048 0.0028 0.0021 0.0020 0.0021
nl91 0.2633 9 0.2122 9 0.1859 9 0.1700 9 0.1596 16

0.0054 0.0031 0.0024 0.0024 0.0025
rc91 0.2708 10 0.2189 10 0.1902 11 0.1723 14 0.1603 17

0.0019 0.0011 0.0009 0.0008 0.0009
pl92 0.2737 11 0.2193 11 0.1894 10 0.1706 11 0.1577 13

0.0032 0.0019 0.0014 0.0012 0.0013
fr89 0.2815 12 0.2229 12 0.1912 12 0.1715 12 0.1580 14

0.0033 0.0019 0.0014 0.0013 0.0014
hu91 0.2828 13 0.2230 13 0.1913 13 0.1719 13 0.1587 15

0.0066 0.0039 0.0028 0.0026 0.0027
it91 0.2887 14 0.2307 15 0.1968 15 0.1741 15 0.1577 12

0.0028 0.0016 0.0012 0.0011 0.0012
cn91 0.2891 15 0.2301 14 0.1945 14 0.1701 10 0.1523 6

0.0018 0.0011 0.0008 0.0006 0.0006
is92 0.3055 16 0.2421 17 0.2051 17 0.1804 18 0.1626 18

0.0036 0.0021 0.0016 0.0015 0.0015
as89 0.3084 17 0.2421 16 0.2023 16 0.1750 16 0.1549 8

0.0020 0.0012 0.0008 0.0007 0.0008
uk91 0.3381 18 0.2607 18 0.2185 19 0.1911 19 0.1716 19

0.0053 0.0028 0.0023 0.0023 0.0025
us91 0.3394 19 0.2625 19 0.2140 18 0.1802 17 0.1551 9

0.0019 0.0012 0.0008 0.0006 0.0006
ru92 0.4017 20 0.2957 20 0.2400 20 0.2046 20 0.1797 20

0.0066 0.0035 0.0029 0.0029 0.0031
mx89 0.4909 21 0.3462 21 0.2802 21 0.2432 21 0.2202 21

0.0055 0.0034 0.0030 0.0032 0.0036
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Table 3: Polarization indices and polarization rankings (Rkg) from LIS’ Wave 4 –
Standard errors appear on the second line

Index Rkg Index Rkg Index Rkg Index Rkg Index Rkg
α= 0 0.25 0.50 0.75 1
Countries
fi95 0.2174 1 0.1832 1 0.1661 2 0.1564 2 0.1506 6

0.0027 0.0016 0.0012 0.0011 0.0012
sw95 0.2218 2 0.1845 2 0.1652 1 0.1549 1 0.1498 3

0.0019 0.0012 0.0008 0.0007 0.0008
lx94 0.2353 3 0.1978 4 0.1764 4 0.1633 7 0.1549 8

0.0043 0.0028 0.0021 0.0017 0.0019
nw95 0.2403 4 0.1970 3 0.1750 3 0.1616 3 0.1527 7

0.0049 0.0029 0.0024 0.0023 0.0024
be97 0.2496 5 0.2061 5 0.1796 5 0.1616 4 0.1486 1

0.0029 0.0018 0.0012 0.0010 0.0010
dk95 0.2532 6 0.2073 6 0.1808 6 0.1632 6 0.1504 5

0.0026 0.0015 0.0011 0.0011 0.0011
nl94 0.2558 7 0.2094 7 0.1812 7 0.1624 5 0.1491 2

0.0029 0.0018 0.0012 0.0009 0.0010
cz96 0.2589 8 0.2104 8 0.1854 9 0.1709 10 0.1618 13

0.0017 0.0010 0.0008 0.0007 0.0008
ge94 0.2649 9 0.2133 9 0.1846 8 0.1669 8 0.1553 10

0.0048 0.0030 0.0023 0.0021 0.0022
rc95 0.2781 10 0.2234 10 0.1931 10 0.1742 11 0.1614 12

0.0021 0.0013 0.0009 0.0009 0.0010
cn94 0.2859 11 0.2289 12 0.1933 11 0.1687 9 0.1504 4

0.0011 0.0007 0.0005 0.0004 0.0003
fr94 0.2897 12 0.2284 11 0.1963 12 0.1766 13 0.1634 14

0.0031 0.0018 0.0014 0.0013 0.0014
as94 0.3078 13 0.2433 14 0.2033 14 0.1757 12 0.1553 9

0.0028 0.0016 0.0012 0.0010 0.0011
pl95 0.3108 14 0.2389 13 0.2023 13 0.1799 14 0.1645 15

0.0024 0.0014 0.0011 0.0010 0.0011
hu94 0.3248 15 0.2486 15 0.2087 15 0.1852 15 0.1700 18

0.0081 0.0048 0.0037 0.0035 0.0038
is97 0.3371 16 0.2598 17 0.2159 17 0.1871 18 0.1666 17

0.0044 0.0025 0.0019 0.0018 0.0020
it95 0.3406 17 0.2596 16 0.2148 16 0.1856 16 0.1647 16

0.0037 0.0021 0.0016 0.0015 0.0016
uk95 0.3429 18 0.2622 18 0.2193 18 0.1925 19 0.1741 19

0.0041 0.0022 0.0018 0.0018 0.0020
us94 0.3622 19 0.2747 19 0.2223 19 0.1868 17 0.1610 11

0.0010 0.0006 0.0004 0.0004 0.0004
ru95 0.4497 20 0.3222 20 0.2566 20 0.2164 20 0.1889 20

0.0061 0.0035 0.0028 0.0028 0.0030
mx96 0.4953 21 0.3483 21 0.2826 21 0.2464 21 0.2237 21

0.0046 0.0028 0.0025 0.0027 0.0030
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Table 4: Correlation of polarization indices and polarization rankings for LIS Waves
3 and 4

Wave 3
Matrix of Pearson Correlation for Polarization Indices

alpha 0 0.25 0.50 0.75 1.00
0 1.0000 0.9986 0.9979 0.9788 0.8943
0.25 0.9986 1.0000 0.9974 0.9723 0.8780
0.50 0.9979 0.9974 1.0000 0.9862 0.9087
0.75 0.9788 0.9723 0.9862 1.0000 0.9651
1.00 0.8943 0.8780 0.9087 0.9651 1.0000

Wave 3
Matrix of Spearman Rank Correlation for Polarization Indices

alpha 0 0.25 0.50 0.75 1.00
0 1.0000 0.9961 0.9909 0.9558 0.6753
0.25 0.9961 1.0000 0.9948 0.9662 0.6974
0.50 0.9909 0.9948 1.0000 0.9779 0.7325
0.75 0.9558 0.9662 0.9779 1.0000 0.8182
1.00 0.6753 0.6974 0.7325 0.8182 1.0000

Wave 4
Matrix of Pearson Correlation for Polarization Indices

alpha 0 0.25 0.50 0.75 1.00
0 1.0000 0.9987 0.9977 0.9786 0.9041
0.25 0.9987 1.0000 0.9973 0.9729 0.8902
0.50 0.9977 0.9973 1.0000 0.9870 0.9200
0.75 0.9786 0.9729 0.9870 1.0000 0.9709
1.00 0.9041 0.8902 0.9200 0.9709 1.0000

Wave 4
Matrix of Spearman Rank Correlation for Polarization Indices

alpha 0 0.25 0.50 0.75 1.00
0 1.0000 0.9948 0.9935 0.9701 0.8195
0.25 0.9948 1.0000 0.9961 0.9701 0.8013
0.50 0.9935 0.9961 1.0000 0.9792 0.8221
0.75 0.9701 0.9701 0.9792 1.0000 0.9013
1.00 0.8195 0.8013 0.8221 0.9013 1.0000
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Table 5: Alienation and identification – LIS Wave 3

α = 0 0.25 0.50 0.75 1.00

Country Gini ῑ c∗ ῑ · c∗ P ῑ c∗ ῑ · c∗ P ῑ c∗ ῑ · c∗ P ῑ c∗ ῑ · c∗ P

as89 0.3084 0.8508 0.9227 0.7851 0.2421 0.7440 0.8815 0.6559 0.2023 0.6627 0.8562 0.5675 0.1750 0.5984 0.8394 0.5023 0.1549

be92 0.2233 0.9110 0.9327 0.8497 0.1897 0.8518 0.8931 0.7608 0.1699 0.8105 0.8678 0.7034 0.1571 0.7811 0.8506 0.6643 0.1484

cn91 0.2891 0.8634 0.9219 0.7960 0.2301 0.7658 0.8784 0.6727 0.1945 0.6916 0.8509 0.5885 0.1701 0.6332 0.8321 0.5269 0.1523

cz92 0.2081 0.9504 0.8935 0.8492 0.1767 0.9337 0.8423 0.7865 0.1637 0.9364 0.8132 0.7615 0.1585 0.9526 0.7944 0.7567 0.1575

dk92 0.2367 0.9051 0.9169 0.8298 0.1964 0.8415 0.8759 0.7370 0.1744 0.7952 0.8519 0.6774 0.1603 0.7598 0.8361 0.6352 0.1504

fi91 0.2086 0.9227 0.9259 0.8543 0.1782 0.8747 0.8829 0.7723 0.1611 0.8440 0.8547 0.7214 0.1505 0.8248 0.8345 0.6882 0.1435

fr89 0.2815 0.8782 0.9015 0.7917 0.2229 0.7978 0.8514 0.6792 0.1912 0.7406 0.8224 0.6091 0.1715 0.6979 0.8041 0.5612 0.1580

ge89 0.2469 0.9021 0.9066 0.8179 0.2019 0.8398 0.8583 0.7208 0.1779 0.7984 0.8290 0.6618 0.1634 0.7707 0.8094 0.6238 0.1540

hu91 0.2828 0.8797 0.8965 0.7887 0.2230 0.8007 0.8451 0.6767 0.1913 0.7451 0.8157 0.6078 0.1719 0.7042 0.7972 0.5614 0.1587

is92 0.3055 0.8626 0.9188 0.7926 0.2421 0.7663 0.8761 0.6714 0.2051 0.6944 0.8505 0.5906 0.1804 0.6384 0.8337 0.5322 0.1626

it91 0.2887 0.8676 0.9212 0.7993 0.2307 0.7745 0.8802 0.6817 0.1968 0.7046 0.8558 0.6030 0.1741 0.6501 0.8404 0.5463 0.1577

lx91 0.2389 0.9088 0.9222 0.8381 0.2002 0.8490 0.8807 0.7477 0.1787 0.8081 0.8557 0.6915 0.1652 0.7798 0.8392 0.6544 0.1563

mx89 0.4909 0.8343 0.8453 0.7052 0.3462 0.7302 0.7817 0.5707 0.2802 0.6588 0.7520 0.4954 0.2432 0.6090 0.7366 0.4486 0.2202

nl91 0.2633 0.8952 0.9003 0.8059 0.2122 0.8280 0.8526 0.7059 0.1859 0.7822 0.8255 0.6457 0.1700 0.7499 0.8084 0.6062 0.1596

nw91 0.2315 0.9128 0.9082 0.8290 0.1919 0.8581 0.8623 0.7400 0.1713 0.8216 0.8347 0.6859 0.1588 0.7970 0.8158 0.6502 0.1505

pl92 0.2737 0.8837 0.9067 0.8013 0.2193 0.8068 0.8575 0.6919 0.1894 0.7526 0.8278 0.6230 0.1705 0.7129 0.8081 0.5762 0.1577

rc91 0.2708 0.8883 0.9099 0.8083 0.2189 0.8152 0.8616 0.7024 0.1902 0.7645 0.8323 0.6362 0.1723 0.7281 0.8130 0.5919 0.1603

ru92 0.4017 0.8300 0.8868 0.7361 0.2957 0.7138 0.8369 0.5974 0.2400 0.6282 0.8108 0.5094 0.2046 0.5622 0.7960 0.4475 0.1797

sw92 0.2267 0.9077 0.9177 0.8330 0.1888 0.8499 0.8691 0.7387 0.1674 0.8126 0.8376 0.6807 0.1543 0.7889 0.8159 0.6436 0.1459

uk91 0.3381 0.8521 0.9047 0.7709 0.2607 0.7498 0.8618 0.6461 0.2185 0.6737 0.8390 0.5652 0.1911 0.6145 0.8258 0.5074 0.1716

us91 0.3394 0.8298 0.9320 0.7734 0.2625 0.7063 0.8930 0.6307 0.2140 0.6116 0.8685 0.5311 0.1803 0.5364 0.8520 0.4571 0.1551

∗ c = (1 + ρ)
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Table 6: Alienation and identification – LIS Wave 4

α = 0 0.25 0.50 0.75 1.00

Country Gini ῑ c∗ ῑ · c∗ P ῑ c∗ ῑ · c∗ P ῑ c∗ ῑ · c∗ P ῑ c∗ ῑ · c∗ P

as94 0.3078 0.8479 0.9324 0.7906 0.2433 0.7383 0.8949 0.6607 0.2033 0.6550 0.8715 0.5708 0.1757 0.5894 0.8560 0.5046 0.1553

be97 0.2496 0.8872 0.9307 0.8257 0.2061 0.8082 0.8903 0.7196 0.1796 0.7493 0.8643 0.6476 0.1616 0.7032 0.8465 0.5953 0.1486

cn94 0.2859 0.8616 0.9290 0.8004 0.2289 0.7618 0.8876 0.6762 0.1934 0.6855 0.8606 0.5899 0.1687 0.6249 0.8415 0.5258 0.1504

cz96 0.2589 0.9016 0.9013 0.8126 0.2104 0.8410 0.8516 0.7162 0.1854 0.8020 0.8230 0.6600 0.1709 0.7768 0.8048 0.6252 0.1618

dk95 0.2532 0.8881 0.9217 0.8185 0.2073 0.8102 0.8812 0.7140 0.1808 0.7519 0.8571 0.6445 0.1632 0.7061 0.8413 0.5940 0.1504

fi95 0.2174 0.9272 0.9092 0.8430 0.1832 0.8854 0.8631 0.7642 0.1661 0.8614 0.8353 0.7195 0.1564 0.8488 0.8164 0.6930 0.1506

fr94 0.2897 0.8810 0.8949 0.7884 0.2284 0.8035 0.8433 0.6776 0.1963 0.7489 0.8142 0.6098 0.1766 0.7087 0.7958 0.5640 0.1634

ge94 0.2649 0.8889 0.9058 0.8052 0.2133 0.8162 0.8539 0.6970 0.1846 0.7666 0.8219 0.6300 0.1669 0.7322 0.8006 0.5862 0.1553

hu94 0.3248 0.8639 0.8860 0.7653 0.2486 0.7773 0.8267 0.6426 0.2087 0.7191 0.7927 0.5700 0.1852 0.6784 0.7717 0.5235 0.1700

is97 0.3371 0.8462 0.9108 0.7708 0.2598 0.7393 0.8665 0.6406 0.2159 0.6599 0.8412 0.5551 0.1871 0.5986 0.8255 0.4941 0.1666

it95 0.3406 0.8448 0.9022 0.7622 0.2596 0.7374 0.8553 0.6308 0.2148 0.6574 0.8290 0.5450 0.1856 0.5953 0.8124 0.4837 0.1647

lx94 0.2352 0.9093 0.9246 0.8407 0.1978 0.8514 0.8806 0.7497 0.1764 0.8135 0.8531 0.6940 0.1633 0.7888 0.8350 0.6587 0.1549

mx96 0.4952 0.8362 0.8411 0.7033 0.3483 0.7354 0.7760 0.5706 0.2826 0.6668 0.7461 0.4975 0.2464 0.6179 0.7309 0.4517 0.2237

nl94 0.2558 0.8819 0.9282 0.8186 0.2094 0.8004 0.8851 0.7084 0.1812 0.7410 0.8567 0.6348 0.1624 0.6964 0.8368 0.5828 0.1491

nw95 0.2403 0.9101 0.9010 0.8200 0.1970 0.8526 0.8541 0.7282 0.1750 0.8135 0.8268 0.6726 0.1616 0.7863 0.8083 0.6356 0.1527

pl95 0.3108 0.8714 0.8822 0.7688 0.2389 0.7864 0.8277 0.6510 0.2023 0.7254 0.7979 0.5788 0.1799 0.6791 0.7794 0.5293 0.1645

rc95 0.2781 0.8838 0.9089 0.8033 0.2234 0.8072 0.8602 0.6944 0.1931 0.7536 0.8310 0.6262 0.1742 0.7147 0.8119 0.5803 0.1614

ru95 0.4497 0.8160 0.8781 0.7165 0.3222 0.6954 0.8205 0.5706 0.2566 0.6092 0.7899 0.4812 0.2164 0.5442 0.7719 0.4200 0.1889

sw95 0.2218 0.9203 0.9036 0.8315 0.1845 0.8783 0.8481 0.7448 0.1652 0.8595 0.8125 0.6984 0.1549 0.8567 0.7883 0.6754 0.1498

uk95 0.3429 0.8508 0.8987 0.7646 0.2622 0.7511 0.8515 0.6396 0.2193 0.6792 0.8267 0.5615 0.1925 0.6250 0.8126 0.5079 0.1741

us94 0.3622 0.8248 0.9196 0.7585 0.2748 0.7005 0.8761 0.6137 0.2223 0.6067 0.8499 0.5157 0.1868 0.5334 0.8330 0.4444 0.1610

∗ c = (1 + ρ)
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Table 7: p-values for polarization indices, α = 0 (Gini)

Wave 3 data (a * indicates a p-value ≤ 5%)

cz92 fi91 be92 sw92 nw91 dk92 lx91 ge89 nl91 rc91 pl92 fr89 hu91 it91 cn91 is92 as89 uk91 us91 ru92 mx89

cz92 0.50 0.45 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

fi91 0.55 0.50 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

be92 1.00 1.00 0.50 0.18 0.02* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

sw92 1.00 1.00 0.82 0.50 0.09 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

nw91 1.00 1.00 0.98 0.91 0.50 0.09 0.10 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

dk92 1.00 1.00 1.00 1.00 0.91 0.50 0.35 0.03* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

lx91 1.00 1.00 1.00 0.99 0.90 0.65 0.50 0.13 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

ge89 1.00 1.00 1.00 1.00 1.00 0.97 0.87 0.50 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

nl91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.50 0.09 0.05* 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

rc91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.50 0.22 0.00* 0.04* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

pl92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.78 0.50 0.05* 0.11 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

fr89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.50 0.43 0.05* 0.02* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

hu91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.89 0.57 0.50 0.21 0.18 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

it91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.79 0.50 0.45 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

cn91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.82 0.55 0.50 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

is92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.24 0.00* 0.00* 0.00* 0.00*

as89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.76 0.50 0.00* 0.00* 0.00* 0.00*

uk91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.41 0.00* 0.00*

us91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.59 0.50 0.00* 0.00*

ru92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00*

mx89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50
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Table 8: p-values for polarization indices, α = 0.25

Wave 3 data (a * indicates a p-value ≤ 5%)

cz92 fi91 sw92 be92 nw91 dk92 lx91 ge89 nl91 rc91 pl92 fr89 hu91 cn91 it91 as89 is92 uk91 us91 ru92 mx89

cz92 0.50 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

fi91 1.00 0.50 0.02* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

sw92 1.00 0.98 0.50 0.09 0.09 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

be92 1.00 1.00 0.91 0.50 0.46 0.06 0.06 0.00* 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

nw91 1.00 1.00 0.91 0.54 0.50 0.08 0.07 0.00* 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

dk92 1.00 1.00 1.00 0.94 0.92 0.50 0.22 0.00* 0.00* 0.04* 0.00* 0.00* 0.00* 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

lx91 1.00 1.00 0.99 0.94 0.93 0.78 0.50 0.35 0.31 0.23 0.07 0.06 0.07 0.06 0.08 0.04* 0.00* 0.00* 0.00* 0.00* 0.00*

ge89 1.00 1.00 1.00 1.00 1.00 1.00 0.65 0.50 0.41 0.27 0.03* 0.02* 0.03* 0.03* 0.09 0.04* 0.00* 0.00* 0.00* 0.00* 0.00*

nl91 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.59 0.50 0.30 0.04* 0.03* 0.04* 0.03* 0.10 0.04* 0.00* 0.00* 0.00* 0.00* 0.00*

rc91 1.00 1.00 1.00 0.99 0.99 0.96 0.77 0.73 0.70 0.50 0.33 0.30 0.30 0.27 0.25 0.17 0.05* 0.01* 0.00* 0.00* 0.00*

pl92 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.97 0.96 0.67 0.50 0.45 0.45 0.40 0.34 0.22 0.03* 0.00* 0.00* 0.00* 0.00*

fr89 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.98 0.97 0.70 0.55 0.50 0.50 0.44 0.36 0.25 0.04* 0.01* 0.00* 0.00* 0.00*

hu91 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.97 0.96 0.70 0.55 0.50 0.50 0.44 0.37 0.25 0.05* 0.01* 0.00* 0.00* 0.00*

cn91 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.97 0.97 0.73 0.60 0.56 0.56 0.50 0.40 0.29 0.08 0.01* 0.00* 0.00* 0.00*

it91 1.00 1.00 1.00 1.00 1.00 0.99 0.92 0.91 0.90 0.75 0.66 0.64 0.63 0.60 0.50 0.41 0.29 0.11 0.00* 0.00* 0.00*

as89 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 0.96 0.83 0.78 0.75 0.75 0.71 0.59 0.50 0.40 0.16 0.00* 0.00* 0.00*

is92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.97 0.96 0.95 0.92 0.71 0.60 0.50 0.10 0.00* 0.00* 0.00*

uk91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99 0.89 0.84 0.90 0.50 0.00* 0.00* 0.00*

us91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.02* 0.00*

ru92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.50 0.00*

mx89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50
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Table 9: p-values for polarization indices, α = 1

Wave 3 data (a * indicates a p-value ≤ 5%)

fi91 sw92 be92 dk92 nw91 cn91 ge89 as89 us91 lx91 cz92 it91 pl92 fr89 hu91 nl91 rc91 is92 uk91 ru92 mx89

fi91 0.50 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

sw92 1.00 0.50 0.02* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

be92 1.00 0.98 0.50 0.09 0.09 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

dk92 1.00 1.00 0.91 0.50 0.46 0.06 0.06 0.00* 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

nw91 1.00 1.00 0.91 0.54 0.50 0.08 0.07 0.00* 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

cn91 1.00 1.00 1.00 0.94 0.92 0.50 0.22 0.00* 0.00* 0.04* 0.00* 0.00* 0.00* 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

ge89 1.00 1.00 0.99 0.94 0.93 0.78 0.50 0.35 0.31 0.23 0.07 0.06 0.07 0.06 0.08 0.04* 0.00* 0.00* 0.00* 0.00* 0.00*

as89 1.00 1.00 1.00 1.00 1.00 1.00 0.65 0.50 0.41 0.27 0.03* 0.02* 0.03* 0.03* 0.09 0.04* 0.00* 0.00* 0.00* 0.00* 0.00*

us91 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.59 0.50 0.30 0.04* 0.03* 0.04* 0.03* 0.10 0.04* 0.00* 0.00* 0.00* 0.00* 0.00*

lx91 1.00 1.00 1.00 0.99 0.99 0.96 0.77 0.73 0.70 0.50 0.33 0.30 0.30 0.27 0.25 0.17 0.05* 0.01* 0.00* 0.00* 0.00*

cz92 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.97 0.96 0.67 0.50 0.45 0.45 0.40 0.34 0.22 0.03* 0.00* 0.00* 0.00* 0.00*

it91 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.98 0.97 0.70 0.55 0.50 0.50 0.44 0.36 0.25 0.04* 0.01* 0.00* 0.00* 0.00*

pl92 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.97 0.96 0.70 0.55 0.50 0.50 0.44 0.37 0.25 0.05* 0.01* 0.00* 0.00* 0.00*

fr89 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.97 0.97 0.73 0.60 0.56 0.56 0.50 0.40 0.29 0.08 0.01* 0.00* 0.00* 0.00*

hu91 1.00 1.00 1.00 1.00 1.00 0.99 0.92 0.91 0.90 0.75 0.66 0.64 0.63 0.60 0.50 0.41 0.29 0.11 0.00* 0.00* 0.00*

nl91 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 0.96 0.83 0.78 0.75 0.75 0.71 0.59 0.50 0.40 0.16 0.00* 0.00* 0.00*

rc91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.97 0.96 0.95 0.92 0.71 0.60 0.50 0.10 0.00* 0.00* 0.00*

is92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.99 0.89 0.84 0.90 0.50 0.00* 0.00* 0.00*

uk91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.02* 0.00*

ru92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.50 0.00*

mx89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50
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Figure 6: Estimated Densities for the U.S. and U.K., Wave 3
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Figure 7: Estimated Densities for the U.S. and the Czech Republic, Wave 3




