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Abstract

We propose a new econometric estimation method for analyzing the probability of leaving un-
employment using uncompleted spells from repeated cross-section data, which can be especially
useful when panel data are not available. The proposed method-of-moments-based estimator
has two important features: (1) it estimates the exit probability at the individual level and (2)
it does not rely on the stationarity assumption of the in‡ow composition. We illustrate and
gauge the performance of the proposed estimator using the Spanish Labor Force Survey data,
and analyze the changes in distribution of unemployment between the 1980s and 1990s during
a period of labor market reform. We …nd that the relative probability of leaving unemployment
of the short-term unemployed versus the long-term unemployed becomes signi…cantly higher in
the 1990s.
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1 Introduction

Since the mid-1970s, European labor markets have su¤ered from high unemployment rates as well

as a high fraction of workers who have been in unemployment for more than 1 year, i.e. the long-

term unemployed (see Machin and Manning, 1999).1 European labor markets have typically been

characterized by a wide use of permanent contracts with high regulated …ring costs. In the mid-

1980s, many European countries introduced …xed-term contracts in order to increase ‡exibility in

the labor market by allowing employers the option of hiring workers under shorter contracts with

much lower requirements in terms of …ring indemnities.2 In this paper, we will analyze the Spanish

labor market, which is a striking case in this context. In the mid-80s, Spanish unemployment was

around 20% of the labor force, the highest among OECD countries. Moreover, as many as 52%

of the unemployed were long-term unemployed, also among the highest in the OECD (see …gure

1). In 1984, Spain introduced …xed-term contracts in an extreme way compared to other European

countries. In particular, while in some countries …xed-term contracts are restricted to some type

of workers or sectors, there are no such restrictions in Spain. Firms can use …xed-term contracts

repeatedly up to three years. Finally, these new contracts have negligeable …ring costs. This implies

a very important reduction in labor costs since, among OECD countries, Spain ranks second in

terms of strictness of employment protection legislation (see OECD, 1999).3

Since their introduction, …xed-term contracts have been widely used and an increasing number

of new jobs are …xed-term.4 The Spanish labor markets has become more dynamic both in terms of

out‡ows from unemployment to employment,5 as well as in‡ows back to unemployment, partly due

to the low rates of renewal of …xed-term contracts into permanent contracts.6 During this period of

time, there have also been changes regarding participation rates in the labor market. In particular,

1To give an idea of the magnitude of the problem, in Europe, between 1983 and 1994, almost half of all the

unemployed were long-term unemployed, while in the US this proportion was only 9%.
2See Grubb and Wells (1993) for a detailed description of …xed-term contracts regulations in Europe.
3In Spain, …ring a worker for economic reasons costs 20 days’ wages per year worked and zero if the worker is …red

for disciplinary reasons. However if a case is taken to court and it is declared unfair, it costs 45 days’ wages per year

worked. As many as 70 % of the cases taken to court are declared unfair (Galdón-Sánchez and Güell, 2000).
4Between 1985 and 1994, on average, as many as 94% of new contracts were temporary contracts.
5Out‡ow rates from unemployment to employment rose from around 6% in 1984 to around 19% in 1994.
6In‡ow rates from employment to unemployment rose from around 1.5% in 1984 to around 4.5% in 1994. Between

1987 and 1994, on average, only 8% of temporary contracts were transformed into permanent contracts. Also, in

this period, more than 60% of unemployed workers reported that they were unemployed because their temporary

contracts had …nished.
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female labor force participation has risen steadily.7 Despite all these changes, a decade after this

reform, the unemployment rate remained very much unchanged. However, the share of long-term

unemployed has decreased between the mid-80s and early 90s (see …gure 1). In this paper, we

investigate how this new labor market context could have changed the distribution of unemployment

duration for di¤erent population groups. The pervasiveness of long-term unemployment has further

implications regarding wage, inequality and persistence of unemployment (see Machin and Manning,

1999). From a policy point of view it is also important to understand these changes in order to

design more targeted policies.

As pointed out by Machin and Manning (1999), when out‡ow rates increase at any duration of

unemployment, the incidence of long-term unemployment tends to decrease. As explained above,

the introduction of …xed-term contracts increased the average out‡ow rates and this can partly

explain the decrease in the share for long-term unemployed, for a given level of unemployment. Also,

for a given unemployment rate, to the extend that the increased labor force participation implies

an increase in in‡ows into unemployment, the share of short-term unemployed increases. However,

this does not provide a full picture of the changes in the duration distribution of unemployment. In

particular, this fact is not informative about how the increased employment chances were distributed

among the unemployed workers. This is important since previous studies …nd strong negative

duration dependence in the probability of leaving unemployment.8 In this paper, we estimate the

probability of leaving unemployment by duration and analyze the relative exit probability between

the short-term unemployed and long-term unemployed in order to fully understand the changes in

the duration distribution of unemployment.

As with many other countries, panel data are not always available. Panel data from the Spanish

Labor Force Survey are available only after 1987. Therefore, to analyze the changes in the prob-

ability of leaving unemployment before and after the introduction of …xed-term contracts, we will

use the cross-section data drawn from the same survey which is available since 1976. We propose

an econometric method that allows us to estimate the probability of leaving unemployment using

repeated cross-section data. The most important features of the method are that it estimates the

exit probability at the individual level and therefore does not have the small cell problem asso-

ciated with the grouping approach in the existing previous methods using repeated cross-section

7Female labor force participation was around 28% in 1978 and went up to 37% in 1994. This increase is concen-

trated among females between 20 and 55 years old. For males, labor force participation decreased from 76 % in 1978

to 66% in 1996.
8See, for instance, Bover, Arellano and Bentolila (2002).
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data (e.g. Sider (1985) and Baker (1992)). Moreover, unlike other methods (e.g. Nickell, 1979), we

relax the stationarity assumption on the composition of in‡ows into unemployment being constant

over time. This could be a very strong assumption, specially for some groups of the population

such as females. Thus we can use our method to estimate the probability of leaving unemployment

for any group of the population.

Our method can be generalized to many empirical applications where either panel data are not

available9, or the spell of the panel is too short, or attrition in panel data is severe, or in other

cases, such as those in which panel data have fewer variables or observations than do cross-section

data.10 For instance, the Spanish Labor Force Survey releases family characteristics only in the

cross-section, but not in the panel format. For this reason, most previous studies of unemployment

have focused on men. Our method can therefore be potentially very useful if we are interested

in studying female’s labor market performances. Lastly, but not the least, the proposed method

can also be applied to studies other than unemployment. In fact, the method is applicable for any

duration analysis whenever cross section instead of panel data are available, or more suitable (e.g.

welfare dependence, employment tenure, etc.).

The rest of the paper is organized as follows. In Section 2, we provide a review of the related

econometric literature and then propose an econometric method for estimating the probability of

leaving unemployment using repeated cross-section data. Section 3 discusses some extensions of

the estimation method. Section 4 presents the data. In section 5, we illustrate and gauge the

performance of the proposed estimator by conducting two experiments. In section 6, we discuss

theoretically the possible e¤ects of more dynamic labor markets on the unemployment duration

distribution, review the related empirical literature and …nally apply the method to the Spanish data

to analyze the change in the distribution of unemployment spells before and after the introduction

of …xed-term contracts in the mid-80s. Section 7 concludes.
9For instance, the Labor Force Survey in Italy, Portugal and the US, among others.

10See Heckman and Robb (1985) for a discussion of the trade-o¤ of using panel versus repeated cross-sectional

data.
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2 Econometric Method

2.1 Related Econometrics Literature

Existing studies that analyze the probability of leaving unemployment typically use two types of

data: micro survey data or macro (aggregate) time series data. Studies using micro longitudinal

data typically take the standard duration model estimation (see the surveys by Lancaster (1990),

van den Berg (2001) and references therein). Micro data have the advantage of providing detailed

information on individual characteristics (in particular, the time-varying variables), but also have

some drawbacks, for example, they often only cover recent (and thus a relatively short) time span,

thus making them inadequate for analyses of historical or cyclical issues. Macro aggregate data, on

the other hand, cover a long time span, have no attrition and cover the population, which are more

suitable for the latter goal, but they often come at the expense of little or no individual information.

Analyses using macro data can, at best, be implemented by some very coarsely de…ned demographic

groups according to the availability of the level of disaggregation in the data (most often, only by

gender. See e.g. van den Berg and van Ours (1994, 1996), Abbring, van den Berg and van Ours

(2002)).11

A notable exception is a recent paper by van den Berg and van der Klaauw (2001). They propose

a method of combining macro (aggregate) administrative data and micro survey longitudinal data

to estimate a model of unemployment dynamics. This is an ambitious attempt, but the data

requirement is quite stringent, and thus not always feasible (especially when longitudinal micro

data are not always available).

Nickell (1979) proposes a method for estimating a duration model that does not require panel

data. His model can be estimated simply with a single cross-sectional survey data and historical

series on in‡ows into unemployment. Since the in‡ow data are often only available at the aggregate

level, this method relies on a stationarity assumption that the composition of in‡ows is constant

over time. This could be a very strong assumption, specially for analyzing some economic questions

for certain groups of the population.

In this paper, we propose a method that relaxes this strong assumption. This implies that

we can study historical questions (as long as some cross-section data are available) as the studies

11This strand of literature partially deals with this problem by making some functional form assumptions (such

as Mixed Proportional Hazard (MPH)) at the individual level but with a calendar time replacing the role of the

observed explanatory variables in the traditional micro duration model.
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with aggregate data and, moreover, we have individual information. Our method explores multiple

(repeated) cross-section data and is based on a synthetic cohort analysis. Some previous studies

of unemployment have used these type of data (e.g. Sider (1985) and Baker (1992)).12 The main

disadvantage with these studies is that the analyses are conducted at the aggregate level, or at best,

by some coarsely de…ned groups (cells). Instead, our method allows us to estimate the probability

of leaving unemployment at the individual level. This is not any di¤erent from an estimation with

panel data in the absence of time-varying covariates and unobserved heterogeneity. Therefore, we

avoid the “small cell” problem often encountered in those studies.13 For example, the “grouping”

method does not work well if there are many explanatory variables, or even with a few explanatory

variables, but each has many values (e.g. continuous explanatory variables). When the cell is small,

sampling errors can lead to inconsistent estimate of exit probabilities (e.g. greater than one).14

Finally, our model, unlike the proportional hazard model, the e¤ect of covariates on the unem-

ployment continuation probability is not proportional.15 We will therefore investigate the possibly

di¤erent changes in duration distributions for di¤erent reference workers.

We note that some drawbacks come with repeated cross-section data when compared to the

panel. For example, it is harder to deal with unobserved heterogeneity, time-varying regressors

and multi-destination problems. We will brie‡y address some of these issues later in the extension

section.

The next subsection presents the estimation method. We start with reviewing some basics of

the discrete choice model, and use them to motivate our new estimator in the second subsection.

12Time series of repeated cross section data have also been used in some other contexts. For example, studies of

life cycle consumption and labor supply often use the synthetic cohort approach in which the cohort is constructed

by some exogenous characteristics such as the birth year (e.g. Browning, Deaton and Irish (1985), Deaton (1985) and

Blundell, Meghir and Neves (1993)). Mo¢tt (1993) provides a general discussion of estimating a class of dynamic

models using repeated cross section. He proposes a regression-based grouping strategy that allows for some general

grouping criteria. This paper di¤ers in that our grouping is only by duration, which is an endogenous outcome

(staying unemployed). In this sense, our approach is also related to the choice based sampling problem (see, e.g.

Manski and Lerman (1977), and Manksi and McFadden (1981)). More discussion on this can be found below.
13A related estimator (and an alternative to the standard MLE), is the Minimum Chi-square (MCS) estimator

(Cockx (1997)). It is also based on the idea of “grouping”, but is designed for panel data where individuals are

followed over time.
14We do need to group duration classes depending on the frequency of the data (see discussion in section 3).
15See Machin and Manning (1999) for a discussion on the proportional hazard speci…cation.
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2.2 Panel Data and Logit Estimator

When panel data are available, we can follow individuals over time. Depending on the speci…c

problem, a duration model or a discrete choice model can be used.16

To …x ideas, consider two time periods, t and t + 1. Let yi = 1 if an unemployed individual

i at time t stays unemployed at t + 1 (or “survives”), and 0 otherwise. Traditionally, we model

yi = 1fXi¯ + "i > 0g where Xi is a vector of demographic characteristics and ¯ is the unknown

parameter of interest. Assuming the error term " follows a logistic distribution, we have the

probability of individual i surviving as P(yi = 1) = ¤(Xi¯) where ¤(:) = exp(:)=(1 + exp(:)):

Maximum likelihood estimator is the solution to

max
b

L(b) =
X

i
yi log ¤ (Xib) + (1 ¡ yi) log (1 ¡ ¤(Xib))

The …rst order condition is
P
i (yi ¡ ¤(Xi¯))Xi = 0, or

X

i
yiXi =

X

i
Xi¤(Xi¯) : (1)

2.3 Cross-sectional Data and Method of Moment Estimator

2.3.1 Basic Idea: Method of Moments

Without panel data, we cannot track individuals over time. Thus we cannot directly use the logit

estimation since for individual i, we do not observe his/her outcome yi: The key insight of this paper

is based on the synthetic cohort analysis: if the two cross-sectional samples are representative of

the underlying population, then the unemployed individuals with duration s + 1 at time t +1 are

drawn “from” the same population as those unemployed individuals with duration s at time t.

Thus although we do not have equation (1) at the individual level, we can mimic this equation

by constructing the moment condition from two representative cross-sectional data sets. More

speci…cally, we can construct

X

dur=s+1
t+1

Xi =
X

dur=s
t

Xi¤(Xi¯) (2)

16The focus of this paper is to model the hazard rate of exiting unemployment, not the transitions between states

of employment and unemployment. Mo¢tt (1993) considers the latter case and discusses how to estimate the Markov

model using repeated cross section data.
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where the left-hand-side (LHS) is sum over the sample of individuals with duration s + 1 at time

t+1 (the “survivors”) and the right-hand-side (RHS) is over the sample of individuals with duration

s at time t. This moment condition de…nes an estimator of ¯.

Consider the simplest example when X includes only a constant and this moment condition

de…nes an estimator of the single coe¢cient ¯: In this case, the LHS of (2) is just the number of

the individuals at time t +1 who have duration s+1; and the RHS is the number of the individuals

at time t who have duration s multiplied by the probability of surviving, ¤ (¯). Thus the ratio of

the two total counts gives the fraction of people who have survived (i.e. stay unemployed) from

time t to t + 1, which is an estimate of the survival probability, ¤ (¯) : From this we can recover

the estimate b̄. Similar argument leads to estimation of ¯ with general explanatory variables X .

Another way to motivate this moment condition, again based on the assumption that each

cross-sectional data set is a representative sample randomly drawn from the same population, is by

the law of iterated expectation:

E [X ¢ 1 (survive)] = E [X ¢ E [1 (survive) jX]] = E [X ¢ [P (survive) jX]]

When normalized by the sample size, the LHS of (2) is the sample analogue of E [X ¢ 1 (survive)] ;

and the RHS of (2) is the sample analogue of E [X ¢ [P (survive) jX ]], where the probability of

survival given X is modeled as a Logit.

The method-of-moment estimator based on (2) is somewhat non-standard in that the moments

are constructed from two di¤erent samples.17 To derive the asymptotic variance of the estimator,

we can rewrite the moment (2) as

X

t+1

1(di = s + 1)Xi =
X

t
1(di = s)Xi¤ (Xi¯) : (3)

Then by the standard GMM argument (see, for example, Hansen (1982) and Newey and McFadden

17Relevant to the current problem is the recent literature on combining data sets (see, for example, Arellano

and Meghir (1992), Angrist and Krueger (1992), Lusardi (1996), and Imbens and Lancaster (1994)). These papers

typically use data from di¤erent (often independent) sources to identify and estimate structural parameters (Arellano

and Meghir (1992)), or obtain instrumental variables estimator (Angrist and Krueger (1992) and Lusardi (1996)), or,

in the presence of identi…cation from one data source alone, to improve estimation e¢ciency (Imbens and Lancaster

(1994)). Our work is di¤erent in that we reply on the same data set, but use samples from di¤erent times for

identi…cation and estimation. It is thus more in the vein of the synthetic cohort analysis.
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(1994)), We have18

p
n1

³
b̄ ¡ ¯

´
'

"
1
n1

X

t
1 (di = s)¤(Xi¯) (1 ¡¤ (Xi¯))XiX 0

i

#¡1

¢
"r

n2
n1

1pn2

X

t+1
1(di = s + 1)Xi ¡

1pn1

X

t
1 (di = s) Xi¤ (Xi¯)

#

where n1 and n2 are the number of observations of the two samples from time t and t+1, respectively.

Let n2 be a function of n1, i.e. n2 = n2 (n1), and let ® = limn1!1 n2n1 :

The …rst term in the bracket on the righthand side converges to E [1(di = s)¤ (Xi¯) (1 ¡ ¤(Xi¯))XiX0
i]

and the second term is asymptotically normally distributed with mean zero and variance-covariance

® ¢ V ar [1(di = s +1)Xi] + V ar [1(di = s)Xi¤(Xi¯)] :19 That is,

p
n1

³
b̄ ¡ ¯

´
! N

¡
0; A¡1BA¡1¢

where

A = E
£
1 (di = s)¤ (Xi¯) (1 ¡ ¤(Xi¯))XiX0

i
¤

B = ® ¢ V ar [1 (di = s + 1)Xi] +V ar [1 (di = s)Xi¤ (Xi¯)] :

The asymptotic variance of b̄ is then given by Avar
³

b̄
´

= 1
n1A

¡1BA¡1, and it can be estimated

by plugging in a consistent estimate b̄ in the sample analogues of A and B.

Note that the moment in (2) looks very similar to the FOC of logit in (1). This suggests

integrating the moment up with respect to ¯ in order to obtain a concave objective function.20

More speci…cally, an objective function is given by

f(b) = (
X

dur=s+1
t+1

Xi)b +
X

dur=s
t

log (1 ¡ ¤(Xib)) (4)

It can be easily veri…ed that21 the FOC of the maximization of (4) corresponds to the moment

conditions in (2). Thus the estimator based on the sample moments (2) can be interpreted as an

18We use the fact that @¤(a)@a = ¤(a) (1¡¤ (a)) :
19Here we assume that the two samples are random draws from the same population and thus have same population

mean and are independent of each other.
20The logit approximation to the probability in the moment conditions makes it easy to recover an objective

function. This is not the case for probit since the objective function involves the integral of a normal cdf. Linear

probability is not appropriate because there is no guarantee that the predicted probability is between 0 and 1.
21Note d¤(a)da = ¤ (a) (1¡¤(a)) ) d log ¤(a)

da = (1¡¤ (a))) d(1¡log¤(a))
da = ¡¤ (a) :
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M-estimator obtained by maximizing f(b) over b.22 The advantage of the M-estimator is that it is

often computationally easier (See Appendix B for more detailed discussion).

2.3.2 Combining Moments and Optimal GMM

The preceding discussion, based on the transition from duration s to s + 1; focuses on estimating

the e¤ect of the explanatory variables X on the probability of exit unemployment at time t. In

many cases, we also want to know how this transition probability di¤ers by duration (duration

dependence). In fact, the latter is often the primary interest in the traditional duration analysis.

This can be easily accommodated in the current framework. Since we do not control for unobserved

heterogeneity with the available data, the term duration dependence is used in its loose sense, it can

be thought of as a reduced form duration dependence after integrating out unobserved heterogeneity.

One way to implement this is to pool all the data together and add a set of dummy variables,

each for a di¤erent duration class. In this case, the preceding discussion carries through without

modi…cation. The estimates of the parameters associated with the duration dummies can paint a

picture of duration dependence, if any.

However, this approach is not e¢cient. To improve e¢ciency, we can construct one set of

moments like (3) for each of the duration class, s = 1;2; :::S, and optimally combine these moments.

We can allow for the intercept to vary by duration class, but restrict the parameters on the rest of

X to be the same; the di¤erent intercept terms by duration re‡ect duration dependence.

More speci…cally, let

g(b) =
£
g1(b)0; g2(b)0:::gS(b)0

¤0

where

gs(b) =
X

t+1

1 (di = s +1)Xi¡
X

t
1 (di = s)Xi¤(Xib)

22Alternatively, we can start with the expected likelihood of the standard logit estimator:

E [y log¤ (X¯) + (1¡ y) log (1¡¤ (X¯))]

= E [log (1¡¤(X¯))] +E
·
y log ¤(X¯)

1¡¤ (X¯)

¸

= E [log (1¡¤(X¯))] +E
·
y log exp (X¯) = (1 + exp (X¯))

1= (1 + exp (X¯))

¸

= E [log (1¡¤(X¯))] +E [y ¢X¯ ] :

In the absence of panel data, we can construct sample analogues of the two terms from two cross section samples.
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and

b =
¡
b11; b

2
1; :::b

S
1 ; b2; :::bk

¢

with k = dim(X): The GMM estimator b̄
gmm is de…ned as the solution to

min
b

g(b)0 ¢ W ¢ g(b)

where W is a weighting matrix.

The optimal weighting matrix is given by the inverse of the variance-covariance matrix of the

moments V (g(b)) evaluated at the true parameter value ¯, namely, V (g(¯)) where

V (g(¯)) =

0
BBBB@

V1 (¯) 0 ¢ ¢ ¢ 0
0 V2 (¯) ¢ ¢ ¢ 0

0 0 . .. 0
0 0 ¢ ¢ ¢ VS (¯)

1
CCCCA

with

Vs (¯) = ® ¢ V ar [1(di = s +1) Xi] + V ar [1(di = s)Xi¤ (Xi¯)]

Therefore by choosing W = V (g(¯))¡1, we obtain the optimal GMM estimator,

b̄
optgmm = arg min

b
g(b)0 ¢ bV ¡1 ¢ g(b)

where bV is a sample analogue of V
³
g(b̄)

´
with b̄ being a consistent estimator, e.g. b̄

gmm:

It is straightforward to show that

p
n1

³
b̄
optgmm ¡ ¯

´
! N

³
0;

¡
¡0V ¡1¡

¢¡1´ :

The asymptotic variance-covariance matrix of the optimal GMM estimator is then given by

Avar
³
b̄
optgmm

´
= 1

n1

¡
¡0V¡1¡

¢¡1

where

¡ (¯) =
³

¡1 (¯) ; ¡2 (¯) ; ¢ ¢ ¢ ¡S (¯)
0́

with

¡s (¯) = E
£
1(di = s)¤ (Xi¯) (1 ¡ ¤(Xi¯))XiX0

i
¤
:
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Again, Vs (¯) and ¡s (¯) can be consistently estimated by their sample analogues. For example,

b¡s (¯) =
1
n1

X

t
1(di = s)¤

³
Xib̄gmm

´ ³
1 ¡¤

³
Xib̄gmm

´´
XiX0

i

and

bVs (¯) =
n2
n1

¢ dV ar [1 (di = s + 1)Xi] + dV ar
h
1 (di = s)Xi¤

³
Xib̄gmm

´i

In order to illustrate this method, in section (5.1) we perform an experiment in which we will

compare an estimator from the discrete choice logit model exploring information from panel data

and the proposed GMM estimator using two cross-sectional data sets.

2.4 Alternative Estimation Method

The method of moment estimator considered above relies on cohort (grouping) by duration, which

is an endogenous outcome. To the extent that among the unemployed (with duration s) at time

t, we only observe the survivors who “choose” to stay unemployed (i.e. those with duration s +

1) at time t + 1, we can think of this situation as a choice based sampling problem (see, e.g.

Manski and Lerman (1977), Manski and McFadden (1981)). Essentially, we have information on

the marginal distribution of the individual characteristics X in the unemployed sample at time t

and the conditional distribution of Xjy = 1 where y is the indicator for staying unemployed at

t + 1. This suggests an alternative estimation strategy using maximum likelihood. For example,

we can pool the two unemployed samples (i.e. the sample of unemployed individuals with duration

s at time t and the sample of those with duration s + 1 at t + 1) and write down the probability

(conditional on X) that an observation belongs to the second sample.

Speci…cally, let m1 and m2 be the number of observations of the …rst and second sample,

respectively. Let ey be an indicator that takes value 1 if an observation belongs to the second

sample and 0 if it belongs to the …rst one. Then the joint distribution of (X; ey) from the second

sample is

P (X = x; ey = 1) = m2
m1 +m2

P (X = xjy = 1)

=
m2

m1 +m2

P (y = 1jX = x)P (X = x)
P (y = 1)

and the joint distribution of (X; ey) from the …rst sample is

P (X = x; ey = 0) =
m1

m1 + m2
P (X = x) :
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Applying Bayes’ rule, we have

P (ey = 1jX = x) =
P (X = x; ey = 1)

P (X = x)
=

P (X = x; ey = 1)
P (X = x; ey = 0) + P (X = x; ey = 1)

=
1

1 + m1
m2

P (y=1)
P (y=1jX=x)

=
1

1 + ® 1
P(y=1jX=x)

where ® = m1
m2

P (y = 1) : If P (y = 1) is known or can be estimated, m1
m2

P (y = 1) can be used to

essentially re-weight the data. Otherwise, we can treat it as a parameter to be estimated. Assuming

a logit speci…cation for P (y = 1jX = x), we have

P (ey = 1jX = x) =
1

1 + ®1+exp(x¯)
exp(x¯)

=
exp (x¯)

®+ (1 +®) exp(x¯)
: (5)

Maximum likelihood estimation based on (5) yield an estimator of (®; ¯) :

In our case, we could construct 2 samples: the …rst consisting of all unemployed workers with

duration 1 to 8+ quarters at time t, and the second one consisting of all unemployed workers with

duration 2 to 9+quarters at time t + 1. Following (5), the probability of staying unemployed as

a function of duration and other explanatory variables could be estimated. However, as will be

discussed below, when duration categories are grouped it is more di¢cult to proceed with this

method. Therefore in the remaining analysis, we only focus on the method of moments approach.

In the next section we consider some extensions of our method, starting by the presence of grouped

duration data.

3 Extensions

3.1 Grouped Duration Data

Our method is based on matching di¤erent duration categories across di¤erent cross sections. There-

fore it is important that the frequency of the data matches the grouping of the duration categories.

If the grouping of the data coincides with the frequency of the data (say, quarterly duration and

quarterly cross sections), then two consecutive cross sections are su¢cient to estimate the model.

Unfortunately, this is not always the case in practice. For example, in our data, prior to 1987, the

reported duration spells can be converted into quarters only in the following way: 1, 2, 3-4, 5-8 and

9 and above (see table A in the Appendix A). For these data, the moment conditions constructed
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above will not work. For example, we would like to match the unemployed with duration 2 quarters

at time t¡1 to those with duration 3 quarters at time t; but this is not possible in this case because

we cannot separately identify the latter (they are grouped with those with duration 4 quarters).

However, our method can be modi…ed to deal with this problem by using more than two cross

sections. The main idea is that duration groups at a given cross section can be matched with

more disaggregated duration groups from earlier cross sections. For example, in our case, durations

of 3 and 4 quarters are lumped together in the data at time t. This can be matched with those

unemployed with duration of 2 quarters at time t ¡ 1 and those unemployed with duration of 2

quarters at time t ¡ 2. Assuming that the transition probability between duration 2 and 3 is the

same as that between duration 3 and 4, the moment conditions can be modi…ed accordingly. For

example,

X

i;t
1 fdi = 3;4g Xi =

X

i;t¡1
1 fdi = 2gXi¤(Xi¯)+

X

i;t¡2
1 fdi = 2gXi¤(Xi¯)2

The same insight can be used to construct moment conditions for estimating the unemployment

continuation probability as functions of duration dummies and demographic characteristics X using

more than two cross section samples.23 Speci…cally, we can identify four duration dummies from the

grouped data structure mentioned above.24 More speci…cally, let µ = (±; b) where ± = (±1; :::; ±4)

are the parameters on the four duration dummy variables, and ¯ is a vector of the (common)

parameters associated with the demographic variables X. Denote eXi ´
h

1 Xi
i
: Then we can

23See Table B in Appendix A for an illustration of this matching.
24For the example considered above, an alternative is to match the unemployed individuals with duration 1 and

2 quarters at time t ¡ 2 with the group of duration 3 and 4 quarters at time t. However, to use this matching, we

have to impose that the transition probability from 1 to 2 quarters is the same as the transition from 2 to 3 quarters

as well as that from 3 to 4 quarters (since we cannot separately identify those with duration 3 and 4 at any given

time). Thus this matching is not useful if we are interested in learning about duration dependence. For the same

reason, we cannot use the matching of the unemployed with duration 3 and 4 quarters at time t¡ 3 and t¡ 2 with

those with duration 5-8 quarters at time t: Instead, we have to use the group with duration 2 quarters from several

previous cross sections in order to allow for the transition probabilities to di¤er between duration categories.
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construct a set of moment conditions g(µ) = [g1(µ)0; g2(µ)0:::g4(µ)0]0 where

g1(µ) =
X

i;t

1 fdi = 2g eXi ¡
X

i;t¡1
1fdi = 1g eXi¤(±1 + Xib)

g2(µ) =
X

i;t
1 fdi = 3;4g eXi ¡

X

i;t¡1
1 fdi = 2g eXi¤ (±2 + Xib) ¡

X

i;t¡2
1fdi = 2g eXi¤(±2 + Xib)2

g3(µ) =
X

i;t

1 fdi = 5;6; 7; 8g eXi¡
X

i;t¡3
1fdi = 2g eXi¤(±2 +Xib)2¤ (±3 + Xib)

¡
X

i;t¡4
1 fdi = 2g eXi¤ (±2 +Xib)2 ¤(±3 + Xib)2

¡
X

i;t¡5
1 fdi = 2g eXi¤ (±2 +Xib)2 ¤(±3 + Xib)3

+
X

i;t¡6
1 fdi = 2g eXi¤ (±2 +Xib)2 ¤(±3 + Xib)4

g4(µ) =
X

i;t

1 fdi = 9+g eXi¡
X

i;t¡1
1 fdi = 9+g eXi¤ (±4 +Xib)

¡
X

i;t¡7
1 fdi = 2g eXi¤ (±2 +Xib)2 ¤(±3 + Xib)4 ¤ (±4 +Xib) :

The asymptotic variance of the estimator of ¯ and ± can be derived in a fashion similar to that

in the previous discussion. Denote the sample size of the cross sections as nt; nt¡1; :::nt¡7, where

nt is the number of observations of the sample of time t; and nt¡1 is the number of observations of

the sample of time t ¡ 1, etc. Consider each nt¡j as a function of nt; for j = 1; :::;7, and consider

asymptotics with nt ! 1. Denote limnt!1
nt¡j
nt = ®j for j = 1; :::7: We can implement the optimal

GMM by using the inverse of the variance of the moments as the weighting matrix. Again, the

variance matrix is diagonal. As an example, we calculate the variance of the …rst element. The

moment condition, after normalized by the sample size nt; becomes

g1(µ) =
1
nt

X

i;t
1 fdi = 2g eXi ¡

nt¡1
nt

1
nt¡1

X

i;t¡1
1fdi = 1g eXi¤(±1 + Xi¯)

Then we have

p
ntg1(µ) =

1p
nt

X

i;t
1fdi = 2g eXi ¡

r
nt¡1
nt

1pnt¡1

X

i;t¡1
1fdi = 1g eXi¤(±1 + Xi¯)

! N (0;Vt +®1Vt¡1)

where Vt ´ Var
³
1 fdi = 2g eXi

´
and Vt¡1 ´ V ar

³
1 fdi = 1g eXi¤ (±1 + Xi¯)

´
:

To investigate whether the multi-cross section matching using grouped duration data gener-

ates reliable estimates, in section (5.2) we conduct another experiment in which we compare the

estimation from 2 cross sections and multiple-cross sections.
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3.2 Time varying covariates

The model considered so far includes only time invariant covariates.25 We can extend the method

to estimate models with individual time-varying regressors. That is, we can estimate the e¤ect of

regressors at time t which do not necessarily take the same value at t ¡ 1.26 Examples of time-

varying regressors include the local unemployment rates or the receipt of unemployment insurance

(UI).

Some of these variables can create problems because they are often endogenous to the duration

variable. For example, assume the probability of leaving unemployment from duration s in time

t depends on X = (X1; X2) where X1 is a vector of time-invariant regressors (such as education,

marital status, etc.) and X2 is a time-varying regressor (e.g. whether receiving UI at duration s).27

Since the receipt of UI depends on duration, we cannot use it to construct the moment conditions

as in (2) and the model is under-identi…ed. If there exists an exogenous time-invariant instrument,

Z, the moment conditions can be easily modi…ed:

X

t+1

"
1 (di = s +1)X1i

1 (di = s +1)Zi

#
=

X

t

"
1 (di = s)X1i¤ (Xi¯)
1 (di = s)Zi¤ (Xi¯)

#

Of course, in practice, this kind of instruments can be hard to come by.28 However, even in the

absence of such instruments, we can explore the multiple duration classes for identi…cation. For

example, we can construct a set of moments g(b) = [g1(b)0; g2(b)0:::gS(b)0]
0 where

gs(b) =
X

t+1
1(di = s + 1)X1i ¡

X

t
1 (di = s) X1i¤(Xi¯) :

If we restrict some of the parameters on X to be the same across duration classes, we will have a

system where the number of moments is greater than the number of parameters to be estimated.

25Age is time varying; however, the model estimated above includes only a set of 10-year age interval dummies. To

the extent that there is little change in those variables between two consecutive quarters, these age dummies can be

thought of time-invariant.
26Note that this is not considering time-varying regressors in the traditional sense from the duration models where

the entire path of these regressors can be incorporated in the likelihood function.
27For ease of discussion, here we assume that the duration data are not grouped.
28In the case of X2 being the local unemployment rate, Z can be the province the unemployed is searching for work.

To the extend that workers do not change province over time, then this is a valid time-invariant instrument.
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4 Data

The data we use is the Spanish Labor Force Survey (Encuesta de la Población Activa, EPA), which

is carried out quarterly on a sample of some 60,000 households.29 It is designed to be representative

of the total Spanish population and contains very detailed information about the labor force status

of individuals. Available data starts in the third quarter of 1976 and from the second quarter of

1987 it was redesigned to follow individuals for six consecutive quarters (a rotating panel).30 The

cross-sectional data contains more information than the released rotating panel, such as household

variables.

All the unemployed people in the survey are asked how long they have been looking for a job.

This search time will be used as the individual’s uncompleted duration of unemployment. Our

sample contains data of all unemployed who answered this search question. We exclude those

aged 65 or older because transitions to non-employment are more likely for this group. We also

exclude those younger than 20 years old to concentrate on workers that have completed full-time

education.31. We exclude those unemployed that report being retired and disabled workers. This

gives us our basic sample of all the unemployed workers.

We will analyze the probability of staying unemployed in the second quarter of every year. We

will estimate separate models for the years before and after the 1984 reform. The sample before

the reform covers the years 1978 to 1984 and the sample after the reform covers the years 1985 to

1994.32 Tables 1a, 1b and 1c provide summary statistics for pooled sample as well as the sample of

unemployed workers with previous experience and …rst job seekers, respectively. The left panel in

each table corresponds to the years before the reform and the right corresponds to the years after

the reform. Within each panel the two columns correspond to the second quarter and previous

quarters. The explanatory variables include age, marital status, education, number of kids in the

29For a more detailed description, see: http://www.ine.es/dacoin/dacoinme/inotepa.htm
30One implication of the rotating panel structure is that in each quarter one sixth of the sample was replaced by

new individuals and the rest (5/6) of the sample are repeated observations. Thus the cross-sections after 1987 are

not strictly independent. However, with only cross section data, we cannot identify those individuals with repeated

observations and thus cannot compute the covariance between the variables from the two di¤erent sample. The

standard error of the GMM estimator calculated under the independent assumption will therefore be overestimated.
31Before 1987 there is not enough information to identify full-time students. For both men and women, labor force

participation decreases for workers less than 20 years old over the period of time analyzed.
32In 1994 a second reform took e¤ect that restricted the use of …xed-term contracts. We focus on the period before

1994 in order to capture the e¤ects of increased out‡ows from 1984.
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household (aged less than 16 years old) and number of working adults in the household.33

5 Experiments

5.1 First Experiment

We …rst illustrate the proposed estimation method and examine its performance by an experiment

comparing our method with panel data estimates for a recent year for which both data are available.

We conduct the following experiment. We take a sample of unemployed individuals in t and follow

them to the next quarter t +1. So we have a genuine panel. We then arti…cially generate two cross-

sectional data sets from this panel. De…ne a binary variable survive which equals 1 if an unemployed

individual who had unemployment spell s in t remains unemployed and reported duration s + 1

in t + 1, and 0 otherwise. We then estimate the probability of leaving unemployment using two

methods: a discrete choice logit model using the panel on the one hand, and the proposed GMM

estimator using the two cross-sectional data sets on the other. Given the same data source and the

same model, we would expect the two methods to yield similar estimates.

We chose the sample of unemployed men from the …rst quarter of 1988. Table 2 reports the

summary statistics. We consider a very simple model speci…cation. The explanatory variables

include 3 age dummies (the omitted category is age 20-24), an education dummy for secondary

education and above, and a dummy for married. For the year 1988, given that the frequency of

the data is quarterly, we have to group the duration by quarter. This generates 9 classes with the

last one including 9 quarters and above (top-coded). To avoid small sample size in some duration

categories (mainly due to “heaping” in reporting), we further group durations into 5 categories.34

Table 3 reports the results for the experiment. Logit estimates are reported in the left panel of

the table and the GMM estimates using the two cross-sections are reported in the right panel of the

table. Logit estimation using the panel is straightforward, and we therefore focus our discussion on

the GMM estimates from the two cross-section data. First of all, the GMM estimates are similar to

the panel logit estimates. They have the same signs and the magnitude is comparable. Secondly,

33Unfortunately, the Spanish LFS does not have data on recipients of unemployment insurance (UI) until 1987.

For this reason we do not consider it in the analysis.. The important thing for our goal is there were only minor

changes in the UI during the period of time analyzed (see Güell, 2001, for more details).
34These 5 categories have di¤erent length so that each group has roughly similar number of observations. The

top-coded category can be dealt with by linking the group of duration 8 quarters and above in 1988:1 to the group

with 9 quarters and above in 1988:2.
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the standard errors of the GMM estimates are larger than those of the panel estimates. This is

not completely surprising since panel logit (MLE) is the e¢cient estimator for the same model.

Overall, the experiment suggests that our estimator performs reasonably well.

As for the interpretation of the results, there is some evidence suggesting negative duration

dependence. Note that what is modelled here is the unemployment continuation probability, so

the fact that the estimates on the duration dummies are monotonically increasing implies that

the longer an individual is unemployed, the less likely he or she will leave unemployment, which

corresponds to the negative duration dependence in the traditional micro duration model.

It is worth noting that in our method, the grouping of the duration variable should match with

the frequency of the data.35 During the period of study, the duration variable is grouped and the

grouping changes over time (see table A in the Appendix A for details). Before 1987, most of the

durations groups include more than one quarter. After 1987, duration in the survey is reported in

months if it is less than 2 years and in years if beyond that. This implies that if we estimate the

same model speci…cation for the entire sample period using 2 consecutive cross-sections every year,

then only 2 duration categories can be distinguished. In the next section, we illustrate how we can

modify the method to estimate …ner duration categories by using more cross-sections, as discussed

in section 3.1.

5.2 Second experiment

We use data from years in which duration is not grouped and estimate the same model using two

approaches: one uses two consecutive quarters of ungrouped duration, and the other uses multi-

cross sections of arti…cially grouped duration data (the grouping is made in the same way as in the

real data prior to 1987). The results are reported in Table 4. Overall, the two sets of estimates are

very similar, which demonstrates that our estimation method works well even with the grouped

duration data. This proves especially useful for our subsequent empirical analysis when the duration

data were grouped in some years.

35Similarly, when estimating the model proposed in Nickell (1979), the frequency of the in‡ow is crucial in order

to estimate the model semi-parametrically (see Güell (2001)).
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6 Empirical Application

In this section, we apply the proposed method to the full set of cross-sectional data over the period

1978-94 to analyze the changes in the duration distribution of unemployment between the 1980s

and 1990s. We take the year 1984 as reference since the introduction of …xed-term or temporary

contracts (TC) implies a big change in the dynamics in and out of unemployment and can potentially

have a big impact on the duration distribution of unemployment. This reform was the most

important reform during this time period. Unfortunately, a natural experiment approach cannot

be taken in order to assess the e¤ect of the introduction of TC on the duration distribution of

unemployment. The reason is that all the workers were eligible for these new contracts and there

was no group excluded and thus no control group. However, as explained above, TC played an

important role in the changes in the ‡ows of the labor market and therefore it is reasonable to

expect that most of the changes we …nd in the duration distribution of unemployment should be

related to it. We estimate the model distinguishing between the period before and after the 1984

labor market reform in Spain.36 Before we estimate the model, in the next two subsections, we

discuss the results we expect to obtain from a theoretical point of view, and also provide a very

brief review of the related empirical literature.

6.1 Theoretical considerations

As mentioned in the introduction, the observed changes in the share of long-term unemployed

(LTU) only tell us that the average probability of leaving unemployment has increased. However,

this fact does not tell us if the increased changes of leaving unemployment are equally shared among

all the unemployed or, if instead, there are some unemployed workers that bene…t more than others.

This is a crucial question in order to fully understand the changes in the duration distribution of

unemployment.

Consider that …rms can either choose randomly among the pool of unemployed workers or,

alternatively, …rms can rank applicants by their spells of unemployment, hiring …rst those workers

with shortest duration of unemployment (see Blanchard and Diamond, 1994). Consider then the

introduction of TCs. This increases out‡ows from unemployment since these contracts are less

costly than permanent contracts. To the extent that …rms do not hire randomly, then are strong

36We use all available data (starting in 1976:3). Since duration is grouped until 1987, it implies that the …rst

quarter that we can estimate our model is 1978:2 (see Table B in the Appendix A).

20



arguments for the fact that duration dependence might have increased with the introduction of

TCs. As Blanchard and Diamond (1994) show, if …rms rank unemployed workers and hire those

with the shortest spells of unemployment, then the exit rate from unemployment is a decreasing

function of duration. In the extreme model where all unemployed workers were homogeneous

and only duration of unemployment in‡uenced workers’ chances to leave unemployment, then the

short-term unemployed (STU) would exit …rst after the introduction of TCs. And when their TC

would …nish, they would go back to unemployment and they would again be the unemployed with

shortest spell and with higher chances of being re-employed than the others. Note that before

the introduction of TC, the STU would also be the …rst ones to leave unemployment whenever

there was a job o¤er. However, the fact that they were less likely to go back to unemployment

because they were hired under a permanent contract implied that the LTU would move up in their

ranking position, increasing their chances to leave unemployment. The same argument applies

if there are some key demographics that make workers more employable than others, as long as

workers maintain these key characteristics. So, after the introduction of TC, workers without such

characteristics would tend to experience longer spells of unemployment than the others. The fact

that workers that get jobs go back to unemployment implies that these characteristics would be

even more unevenly distributed among unemployment spells (i.e. clustered among the shortest

spells), implying again lower chances for the other unemployed workers to exit.

Consider now the increased female labor force participation. In this case, the new participants

have the shortest duration of unemployment and therefore, ceteris paribus, higher chances to leave

unemployment in the ranking model explained above. However, the overall e¤ect depends on

the employability characteristics of these new participants. If despite having short duration of

unemployment their demographics are not favorable for leaving unemployed compared to the other

unemployed workers, then they would tend to accumulate into longer spells of unemployment.

Therefore the e¤ects for females are ambiguous.37

37See also Abraham and Shimer (2002) for a discussion on the di¤erent e¤ects of increased female labor force

participation on unemployment duration.
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6.2 Related Empirical Literature

Most existing studies that analyze unemployment duration and the exit rates to employment in

Spain concentrate on male unemployed.38 These papers …nd that there is a very strong duration

dependence. Bover, Arellano and Bentolila (2002) and García-Pérez (1997) also …nd that …xed-term

contracts increase the employment chances of the unemployed in Spain (for recent periods).

These studies typically use the Spanish Labor Force Survey in its panel format or other data sets

which are also longitudinal. An exception is Güell (2001). She analyses the employment chances

for male unemployed for the period 1980 to 1994 and uses single cross-section data of the Spanish

Labor Force Survey by applying the method in Nickell (1979) and assuming the composition of

in‡ow is constant over time. Her main …nding is that duration dependence has increased in the

early 1990s and explains how the introduction of …xed-term contracts may have caused this. Her

results depend on the stationarity assumption.

The contribution of our paper to this empirical literature is therefore to analyze the evolution

of the chances of leaving unemployment for both males and females over a long period of time.

This is potentially important because females have a higher incidence of …xed-term contracts.39

Therefore, our analysis can help assess the overall e¤ect of the reform. We estimate the probability

of leaving unemployment using repeated cross-section data by applying the proposed econometric

method, which does not impose any stationarity assumption.

There is also a growing literature that analyses di¤erent aspects of …xed-term contracts and the

labor market performance. This literature has emphasized the segmentation among employed work-

ers despite the ambiguous e¤ects on aggregate employment.40 Our contribution to this literature

is the analysis of the possible segmentation to the unemployed pool of workers.

38See, for instance, Alba (1999), Bover, Arellano and Bentolila (2002), García-Pérez (1997) and Jenkins and García-

Serrano (2000).
39For the period 1987-1994, on average, 29% of employees were on a TC. For male workers, the fraction is 27%

while for females is 34%.
40See, for example, Alba (1994 and 1998), Aguirregabiria and Alonso-Borrego (1999), Alonso-Borrego, Fernandez-

Villaverde and Galdón-Sánchez (2002), Bentolila and Dolado (1994), Bentolila and Saint-Paul (1992), Blanchard and

Landier (2002), Booth, Francesconi and Frank (2002), Cabrales and Hopenhayn (1997), Cahuc and Postel-Vinay

(2002), Jimeno and Toharia (1993 and 1996), Saint-Paul (1996) and Wasmer (1999).
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6.3 Empirical results

We …rst investigate the changes in the relative probability of leaving unemployment for the STU

versus LTU for the pooled sample in order to get an idea of the possible changes for a typical

worker. We then analyze these issues separately for di¤erent groups of unemployed workers (males,

females, …rst job seekers and workers with previous job experience) in order to understand if there

are important di¤erences among these two duration groups.41

Table 5 reports the estimates for the pooled sample. We …rst concentrate on columns 1 and 2

which correspond to the estimates for all the years before the reform and for all the years after the

reform, respectively. Given our goal is to investigate the changes in “duration dependence” over

time, the main parameters of interest here are the coe¢cients on the set of the duration dummy

variables.42 To aid the inspection, in Figure 2 we plot the estimated unemployment continuation

probabilities functions of duration for a typical worker (see table 1a).43 Several patterns emerge

from these results. First, as expected from the observed increase in out‡ow rates, the average

probability of staying unemployed is lower in the post-reform period. Second, in both pre- and

post-reform periods, the unemployment continuation probability monotonically increases over du-

ration (except for the group with the shortest duration).44 This suggests, as previous studies have

also encountered, that there has been negative “duration dependence” in unemployment. For our

purpose, we will focus on the monotonic part of this function. Thirdly, after the reform, the STU

have higher chances of exiting unemployment while the LTU stay the same.45 This results suggest

that “duration dependence” has increased over this period of time. The e¤ects of the di¤erent

covariates are fairly standard. We highlight that females and …rst job seekers have lower chances of

41The model speci…cation used here is the same as that of Table 4. Since the cross-sectional data provide additional

information on family characteristics, we have, in both cases, added two more variables, namely, the number of kids

and number of working adults in the household.
42Bover, Arellano and Bentolila (2002), using the panel version of Spanish Labor Force, control for unobserved

heterogeneity but their results do not change qualitatively. In this sense, although we do not control for any form of

unobserved heterogeneity, we are more con…dent about the “duration dependence” we …nd in our estimates.
43In this case, the typical worker is a man who has worked before with no children, 1 working adult in the household,

has primary education or below, unmarried, age 20-24 years.
44A similar non-monotonic duration dependence has also been found in previous studies (see, for instance, Bover,

Arellano and Bentolila, 2002).
45The t-statistics of the di¤erence between the predicted probability before and after the reform are respectively:

-2.511 (duration 1 quarter), -9.111 (duration 2-3 quarters), -0.174 (duration 4-7 quarters) and 0.536 (duration 8+

quarters).
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leaving unemployment. The coe¢cient on education suggests unemployed workers with secondary

education and above have higher probabilities of staying unemployed, although this e¤ect gets

reduced in the post-reform period.46

While the sample period before the reform (1980-84) is a recession, the period after the reform

includes some years of expansion (from 1985 to 1991) and some years of recession (from 1992 to

1994). As …gure 1 shows, the LTU typically displays anti-clockwise loops over the cycle, that is,

it lags behind the unemployment rate (see Machin and Manning, 1999). When unemployment

starts to rise there is an increase in in‡ows into unemployment, implying at …rst an increase in

the share of STU which then falls. Similarly, when unemployment starts falling the share of LTU

increases …rst but then it falls. The consequence of this is that for given a level of unemployment,

the incidence of LTU is generally higher in an expansion period than in a recession. This can

imply that the “duration dependence” is higher in expansion years because the proportion of LTU

is higher. In order to isolate the possible business cycle e¤ect we re-estimate the model only for

years 1983 and 1992, which are the most comparable in terms of unemployment rates (see …gure

1). Columns (3) and (4) of table 5 report these estimates and in Figure 3 the estimated probability

of staying unemployed is plotted. As can be seen, the duration pattern before and after the reform

is comparable to the estimates with all the years.47 So we conclude that the increased “duration

dependence” is not entirely due to a business cycle e¤ect.48

As mentioned earlier, our model does not impose a proportional duration pattern among di¤er-

ent population groups. Figure 4 illustrates this. The probability of staying unemployed at di¤erent

durations is plotted for two di¤erent groups for the pre-reform (left hand graph) and post-reform

46Güell (2001) …nds the same results for the years 1980-1984. Similarly, Bover, Arellano and Bentolila (2002) …nd

that a university degree increases the hazard of leaving unemployment only during the …rst 3 months; afterwards the

hazard reduces to levels below those of less educated workers. These …ndings are consistent with the higher incidence

of LTU among higher educated unemployed individuals (Machin and Manning (1999), table 3).
47The only qualitative di¤erence is with respect to the …rst duration dummy. When considering all the years,

there is no di¤erence. However when considering the single year estimates, the probability of staying unemployed is

higher in 1992 than 1983. This has to do with the fact that, although these two years are comparable in terms of

the unemployment rate, the …rst duration dummy is higher in 1992 than in 1983. Moreover, 1992 is the …rst year for

which the unemployment rate increases after a period of decreasing unemployment rates. When the unemployment

rate starts increasing, the …rst e¤ect is that the STU increase very much (see Machin and Manning, 1999).
48The t-statistics of the di¤erence between the predicted probability before and after the reform are respectively:

3.608 (duration 1 quarter), -1.590 (duration 2-3 quarters), -1.091(duration 4-7 quarters) and 0.905 (duration 8+

quarters).
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period (right hand graph). As can be seen, in the pre-reform period, the probability of staying

unemployed for group 2 is higher than for group 1 but the di¤erence is not the same for every

duration category. This is more evident in the post-reform period. Had we imposed a proportional

duration model, then we would observe the same distance for every duration category between the

two groups in the two graphs. These results show that the changes in the chances of leaving un-

employment after the reform for the di¤erent duration categories can be very di¤erent for di¤erent

population groups. This is very important from a policy point of view. In this particular example,

the probability of leaving unemployment of group 2 is even lower in the post-reform period. This

can be explained by the change in the magnitude of some coe¢cientsbefore and after the reform

(see table 5).

We now turn to the analysis for di¤erent population groups, by gender and previous work

experience. We …rst analyzed the di¤erences between the typical men and typical women in the

sample both with and without previous job experience. We found very similar pattern across

genders for these two groups. We then analyzed the di¤erences between unemployed workers

with previous experience and …rst job seekers. A substantial part of the increase in labor force

participation can be analyzed through …rst job seekers.49 Table 6 reports the estimates for these

two groups before and after the reform. In Figure 5, the estimated unemployment continuation

probability function is plotted for a typical worker who has worked before as well as the typical

…rst job seeker (see tables 1b and 1c).

For workers with previous experience, we …nd very similar duration patterns as in the pooled

sample.50 This is in part due to the large fraction of males who have worked before in the pooled

sample. That is, “duration dependence” has increased over this period of time partly due to the

increased chances of leaving unemployment of the STU. However, for …rst job seekers the picture is

more di¤erent. First, the probability of staying unemployed is very high for any duration category.

Secondly, in the pre-reform period there was no clear “duration dependence” pattern, while after

the reform we do …nd negative “duration dependence”. However, in this case it is due to the fact

49Estimates of yearly transitions using the panel version of the Spanish LFS show that for the period 1984-94, on

average, among workers who were …rst job seekers, 60% were …rst job seekers one year ago and 32% were out of the

labor force.
50The t-statistics of the di¤erence between the predicted probability before and after the reform are respectively:

-0.874 (duration 1 quarter), -4.956 (duration 2-3 quarters), 0.563 (duration 4-7 quarters) and 1.365 (duration 8+

quarters).
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that the LTU experienced a much higher chance of staying unemployed than previously.51 First job

seekers are mostly unmarried females with secondary education or more. As table 6 shows, these

characteristics a¤ect adversely the chances of leaving unemployment.

Overall, we conclude that the changes between the mid-80s and mid-90s for a typical male

worker (e.g. with previous work experience) were concentrated among the STU who experienced

higher chances of leaving unemployment. For females, since the composition of workers with and

without experience is about half each, the e¤ects of …rst job seekers are more important. That is,

there are also some changes concentrated among the LTU who experienced lower chances of leaving

unemployment.

7 Conclusion

The goal of this paper is to analyze the changes in the probability of leaving unemployment in Spain

for di¤erent groups of unemployed workers during the 1980s and 1990s when …xed-term contracts

were introduced. Panel data is not available for all this period of time so we have to rely on

cross-sectional data from the Labor Force Survey. This leads us to construct a new method based

on the method of moments that uses repeated cross-section data on unemployed individuals. The

most important features of the method are that it estimates the exit probability at the individual

level and thus avoids the small cell problem encountered in previous studies; and that it relaxes

any stationarity assumption on the composition of in‡ows into unemployment (Nickell, 1979).

Furthermore, the estimation method can be easily modi…ed to take into account grouped duration

data and time-varying covariates. Experiments comparing, on the one hand, the GMM estimates

using two cross-sections to the logit estimates using the panel and, on the other hand, the GMM

estimates using two and multiple cross-sections (with grouped durations) indicate that our method

performs reasonably well. This suggests that in the absence of panel data, our method can be used

to analyze the probability of leaving unemployment by combining cross-sections.

The proposed method can have other applications beyond the one analyzed here. The method

is applicable for any duration analysis whenever cross section instead of panel data are available,

or more suitable (e.g. welfare dependence, employment tenure, etc.).

We have analyzed the changes in the duration distribution for both men and females with and

51The t-statistics of the di¤erence between the predicted probability before and after the reform are respectively:

1.618 (duration 1 quarter), -2.295 (duration 2-3 quarters), 4.211 (duration 4-7 quarters) and -0.188 (duration 8+

quarters).
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without previous work experience. To our knowledge, this is the …rst study that undertakes this

analysis for females using the Spanish Labor Force Survey (owing to the richer information of family

background in the cross section data!). Our results suggest that the unemployed pool becomes more

segmented in the 1990s. Speci…cally, the relative probability of leaving unemployment of the short-

term unemployed versus the long-term unemployed becomes signi…cantly higher in 1990s. In this

sense, our results would indicate that more targeted policies towards the long-term unemployed

can be bene…cial in reducing unemployment.

We have pointed out the most obvious candidates for the changes in the ‡ows of the labor

market, that is, the introduction of temporary contracts in 1984 as well as the increase in female

labor force participation. Obviously, it is possible that during the period of time analyzed there

were also some underlying structural changes in the Spanish economy. As discussed, the important

thing is that, at least in the labor market, the changes have mostly materialized through temporary

contracts.
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Table 1a: Summary Statistics (Pooled sample)¤

(1) (2) (3) (4)
1978-84 (I) 1978-84 (II) 1985-94 (I) 1985-94 (II)

Age 20-24 0.376 0.382 0.311 0.328
(0.484) (0.486) (0.463) (0.469)

Age 25-34 0.283 0.273 0.348 0.340
(0.450) (0.445) (0.476) (0.473)

Age 35-49 0.200 0.203 0.219 0.208
(0.400) (0.402) (0.414) (0.405)

Age 50+ 0.141 0.142 0.121 0.124
(0.348) (0.349) (0.326) (0.329)

Married 0.450 0.450 0.457 0.449
(0.497) (0.497) (0.498) (0.497)

Secondary edu. &above 0.367 0.352 0.536 0.519
(0.481) (0.477) (0.499) (0.499)

N.of kids 1.012 1.037 0.826 0.846
(1.319) (1.357) (1.074) (1.106)

N. of working adults 0.843 0.873 0.858 0.859
(0.894) (0.912) (0.865) (0.871)

First job seeker 0.290 0.291 0.242 0.262
(0.453) (0.454) (0.428) (0.439)

Female 0.300 0.299 0.458 0.442
(0.458) (0.458) (0.498) (0.496)

No. obs 45,628 269,181 120,765 793,448
Note: (¤)(I) refers to second quarters of each year and (II) refers to the previous quarters;

(1) Standard deviations in parenthesis; (2) Source: EPA;
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Table 1b: Summary Statistics (Worked before sample)¤

(1) (2) (3) (4)
1978-84 (I) 1978-84 (II) 1985-94 (I) 1985-94 (II)

Age 20-24 0.259 0.265 0.224 0.231
(0.438) (0.441) (0.417) (0.421)

Age 25-34 0.299 0.288 0.354 0.350
(0.458) (0.453) (0.478) (0.477)

Age 35-49 0.255 0.259 0.266 0.257
(0.436) (0.438) (0.442) (0.437)

Age 50+ 0.187 0.188 0.155 0.162
(0.390) (0.391) (0.362) (0.369)

Married 0.564 0.563 0.543 0.545
(0.496) (0.496) (0.498) (0.498)

Secondary edu. &above 0.225 0.205 0.450 0.421
(0.417) (0.404) (0.497) (0.494)

N.of kids 1.148 1.177 0.905 0.937
(1.382) (1.425) (1.111) (1.149)

N. of working adults 0.731 0.761 0.791 0.781
(0.874) (0.896) (0.853) (0.859)

Female 0.210 0.207 0.401 0.379
(0.407) (0.405) (0.490) (0.485)

No. obs 32,409 190,918 91,559 585,584
Note: (¤)(I) refers to second quarters of each year and (II) refers to the previous quarters;

(1) Standard deviations in parenthesis; (2) Source: EPA.
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Table 1c: Summary Statistics (First Job Seekers)¤

(1) (2) (3) (4)
1978-84 (I) 1978-84 (II) 1985-94 (I) 1985-94 (II)

Age 20-24 0.662 0.668 0.583 0.602
(0.473) (0.471) (0.493) (0.489)

Age 25+ 0.337 0.332 0.417’ 0.397
(0.473) (0.471) -0.493 (0.489)

Married 0.169 0.173 0.186 0.178
(0.375) (0.378) (0.389) (0.383)

Secondary 0.715 0.708 0.805 0.797
(0.452) (0.455) (0.396) (0.402)

N.of kids 0.68 0.697 0.578 0.589
(1.082) (1.103) (0.907) (0.929)

N. of working adults 1.118 1.148 1.071 1.078
(0.884) (0.893) (0.868) (0.870)

Female 0.52 0.524 0.639 0.621
(0.500) (0.499) (0.480) (0.485)

No. obs 13,219 78,263 29,206 207,864
Note: (¤)(I) refers to second quarters of each year and (II) refers to the previous quarters;

(1) Standard deviations in parenthesis; (2) Source: EPA
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Table 2: Summary Statistics for the experiment data

cross-section panel
1988:1 1988:2

Age25-34 0.300 0.303 0.300
(0.458) (0.460) (0.458)

Age35-49 0.256 0.259 0.256
(0.437) (0.438) (0.437)

Age 50+ 0.220 0.225 0.220
(0.414) (0.417) (0.414)

Married 0.546 0.547 0.546
(0.498) (0.498) (0.498)

Secondary edu. & above 0.357 0.357 0.357
(0.479) (0.479) (0.479)

Survival in unemployment 0.669
(0.471)

No. of obs. 3,639 3,639 3,639
Note: (1) Standard deviations in parenthesis; (2) Source: EPA.

Table 3: Panel and Cross-section Estimates (1988 Male Sample)

Explanatory Variables Panel Logit Cross-section GMM
Coe¤ S.E. Coe¤ S.E.

Duration quarter 1 -0.056 0.113 -0.074 0.220
Duration quarter 2 0.140 0.119 0.116 0.233
Duration quarters 3-4 0.504 0.130 0.493 0.272
Duration quarters 5-7 0.913 0.137 0.919 0.322
Duration quarters 8+ 0.944 0.114 0.937 0.247
Age 25-34 0.190 0.105 0.148 0.225
Age 35-49 0.340 0.126 0.293 0.274
Age 50+ 0.567 0.137 0.554 0.310
Married -0.219 0.091 -0.210 0.203
Secondary edu. & above 0.140 0.087 0.223 0.192

No. of obs. 3,639 3,639

Source: EPA.
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Table 4: GMM Estimates Using Two vs. Multi-cross section
(1988-94 Male Sample)

Explanatory Variables 2 cross sections multi-cross sections
ungrouped duration grouped duration
Coe¤ S.E. Coe¤ S.E.

Duration quarter 1 0.862 0.154 0.838 0.104
Duration quarter 2-3 0.457 0.141 0.474 0.067
Duration quarters 4-7 0.984 0.163 0.991 0.089
Duration quarters 8+ 2.114 0.268 1.804 0.196
No. of kids -0.056 0.049 -0.078 0.019
No. working adults -0.024 0.056 0.012 0.021
Secondary edu. & above 0.395 0.116 0.272 0.044
Married -0.064 0.140 -0.096 0.051
Age 25-34 0.174 0.136 0.412 0.050
Age 35-49 0.443 0.172 0.654 0.063
Age 50+ 0.764 0.225 0.718 0.074
No. of obs. 18,711 18,711
Source: EPA.
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Table 5: Estimation Results from Cross Section Data 1978-94

(1) (2) (3) (4)
1978-84 1985-94 1983 1992

Duration quarter 1 1.038 0.784 0.894 2.237
(0.069) (0.052) (0.193) (0.496)

Duration quarter 2-3 0.82 0.301 0.733 0.262
(0.047) (0.033) (0.124) (0.104)

Duration quarter 4-7 1.057 1.001 1.168 0.773
(0.056) (0.046) (0.156) (0.139)

Duration quarter 8+ 2.003 2.059 1.684 1.633
(0.163) (0.085) (0.295) (0.261)

N.of kids -0.043 -0.042 -0.031 -0.042
(0.01) (0.009) (0.027) (0.029)

N. of working adults -0.011 0.032 0.003 0.021
(0.015) (0.011) (0.042) (0.031)

Secondary edu.& above 0.417 0.314 0.391 0.196
(0.038) (0.022) (0.094) (0.07)

Married -0.138 -0.01 -0.252 0.012
(0.036) (0.024) (0.094) (0.075)

Age 25-34 0.404 0.412 0.546 0.465
(0.041) (0.026) (0.109) (0.078)

Age 35-49 0.311 0.595 0.495 0.655
(0.044) (0.032) (0.114) (0.1)

Age 50+ 0.492 0.58 0.833 0.658
(0.051) (0.037) (0.138) (0.128)

First job seeker 0.377 0.835 0.786 0.928
(0.04 (0.037 (0.119 (0.136

Female 0.35 0.44 0.287 0.421
(0.035) (0.02) (0.091) (0.059)

No. obs 45,628 120,765 8,467 11,797
Notes: (1) Standard errors in parenthesis; (2) Source: EPA.
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Table 6. Estimation Results from Cross Section Data 1978-94

First job seekers Worked before
(1) (2) (3) (4)

1978-84 1985-94 1978-84 1985-94
Duration quarter 1 1.382 1.77 1.006 0.778

(0.217) (0.406) (0.075) (0.055)
Duration quarter 2-3 1.568 0.867 0.749 0.33

(0.149) (0.132) ( 0.05) (0.034)
Duration quarter 4-7 1.142 1.66 1.125 1.023

(0.134) ( 0.19) (0.063) (0.048)
Duration quarter 8+ 2.615 2.241 1.971 2.172

(0.461) (0.226) (0.192) (0.132)
N.of kids -0.1 - 0.025 - 0.032 - 0.042

( 0.03) ( 0.04) ( 0.01) (0.009)
N. of working adults - 0.075 0.012 0.015 0.041

( 0.04) (0.041) (0.016) ( 0.01)
Secondary edu. & above 0.36 0.382 0.43 0.311

(0.086) (0.093) (0.042) (0.022)
Married - 0.536 - 0.551 - 0.115 0.015

(0.116) ( 0.14) (0.037) (0.024)
Age 25+, Age 25-34¤ 0.468 0.711 0.362 0.362

(0.107) (0.117) (0.041) (0.024)
Age 35-49 0.301 0.578

(0.044) (0.031)
Age 50+ 0.537 0.567

(0.052) (0.036)
Female 0.746 0.919 0.195 0.377

(0.077) (0.08) (0.039) (0.02)
No. obs 13,219 29,206 32,409 91,559
Notes: (¤) Age 25+ for …rst job seekers; Age 25-34 for worked before;
(1) Standard errors in parenthesis; (2) Source: EPA.

38



Figure 1: The incidence of LTU and the unemployment rate, 1978-1996. Source: EPA.
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Figure 2: Estimated Unemployment Continuation Probability by Duration.

duration in quarters

 1978-84  1985-94
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Ref. category: male, worked before, no child, 1 working adult, primary
edu. or below, not married, age 20-24 (table 5, col. 1-2).
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Figure 3: Estimated Unemployment Continuation Probability by Duration.

duration in quarters

 1983  1992

1 2 3 4 5 6 7 8 9 10 11 12
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Ref. category: male, worked before, no child, 1 working adult, primary
edu. or below, not married, age 20-24 (table 5, col. 3-4).

Figure 4: Estimated Unemployment Continuation Probability by Duration.

duration in quarters

group 1 group 2

1978-1984

1 2 3 4 5 6 7 8 9 10 11 12
0.60

0.95
1985-1994

1 2 3 4 5 6 7 8 9 10 11 12

0.60

0.95

duration in quarters

Group 1: male, worked before, no child, 1 working adult, primary edu. or below, not married, age 20-24.
Group 2: male, …rst job seeker, 1 child, 1 working adult, primary edu. or below, married, age 35-49 (table

5, col. 1-2).
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Figure 5: Estimated Unemployment Continuation Probability by Duration.

duration in quarters

1978-1984 1985-1994

first job seekers
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worked before
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0.65

0.95

duration in quarters

First job seekers: female, no child, 1 working adult, secondary edu. and above, not married, age 20-24.
Worked before: male, 1 child, 1 working adult, primary edu. or below, married, age 25-34 (table 6).
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Appendix A

Table A. The duration of the unemployment in the EPA
until 1987 (I) 1987 (II) - 1991(VI) from 1992 (I)

How long have you How long have you Which day did you
been looking for a job? been looking for a job? start looking for a job?

Less than 1 month If less than 2 years, Month
1 to 3 months number of months
3 to 6 months

6 months to 1 year If 2 years or more, Year
1 to 2 years number of years

2 years or more

Table B: Illustration of Matching Grouped Duration from Multi-Cross Sections
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Appendix B: Some Computational Issues

The sample objective function f(b) considered in (4) consists of 2 parts– a linear and a concave
function of b. The key question is whether there exists an interior (unique) maximizer. The
following proposition provides conditions that guarantee that there will be an interior, and thus
unique, solution for each element of b, holding other elements constant.

Proposition 1 Let b¡j = [b1; :::; bj¡1; bj+1; :::bk] where k = dim(X): Holding b¡jconstant, there is
a unique solution bjto maxb f(b) provided the following condition holds

X

dur=s
t

Xji>0

Xji >
X

dur=s+1
t+1

Xji >
X

dur=s
t

Xji<0

X ji (6)

for each j = 1; :::; k.

Proof. Let a =
P
dur=s+1
t+1

Xi and use
P

as the short-hand for
P
dur=s
t

.

Holding b¡j constant and take the limit of (4)as bj ! 1, the second term is approximately
X

log (1 ¡ ¤(Xib))

=
X

¡ log (1 + exp(Xib))

= ¡
X

Xji<0

log
³
1 + exp

³
X¡j
i b¡j +Xji bj

´´
¡

X

X ji=0

log
³
1 + exp

³
X¡j
i b¡j + Xji bj

´´

¡
X

Xji>0

log
³
1 + exp

³
X¡j
i b¡j +Xji bj

´´

¼ 0 ¡
X

X ji=0

log (cons tan t)¡
X

Xji>0

³
Xji bj

´
:

This suggests that as bj ! 1; (4) ! ¡1 if aj ¡P
X ji>0

Xji < 0; for j = 1; :::k:

By similar argument, as bj ! ¡1; (4) ! ¡1 if aj ¡P
Xji<0

X ji > 0; for j = 1; :::k:
An important thing about these conditions is that they can be veri…ed directly from data (by

each covariate Xj). In practice, violation of these conditions could lead to insensible estimates.
Note, however, in principle, the fact that the condition (6) is satis…ed for each element of the
parameter bj, j = 1; :::k, does not necessarily imply that there exists an interior (unique) vector of
b that maximizes f (b).
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