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1 Introduction

Modern economic theory emphasizes the importance of private information in industrial

organization, principal-agent relationships, bargaining, contract theory, auctions and

financial markets. In those models the private information of players is an exogenous part

of the model. Such models explain what will happen given a certain private information

structure, but do not explain where that information structure comes from.1 For some

economic situations assuming an exogenous private information structure may be more

sensible than for others. For example, in Akerlof’s famous Lemons market it seems to

make good sense to assume that owners of a used car have private information about

the quality of their car, since they are supposed to have used this car in past years.

On the other hand, in a principal-agent model of procurement it is less compelling to

assume that the agent has private information about his cost as this cost would depend

on the requirements of the project imposed by the principal. Hence, the agent will have

to process those requirements and make estimates of input costs, i.e. the agent will have

to acquire information about his cost. The private information structure of the agent

would thus be endogenous. Similar stories apply for bidders in an auction, firms and

entrants in imperfect competition models, and speculators in stock markets.

Now, continuing with the procurement example, one might argue that the information

about cost can be much easier acquired by the agent than by the principal, and that it is

obviously in the interest of the agent to do so at the (relative) small effort it takes him.

This argument would then seem to justify the use of the model with an exogenously

given privately informed agent. Similar arguments would of course then apply in similar

situations.

However, some recent papers have shown that endogenizing the information structure

leads to surprising but not necessarily unintuitive results and, more importantly, to new

insights in varying fields in economic theory. In the case of principal-agent theory Kessler

(1998) has shown that the agent may prefer to stay uninformed, thereby crucially chang-

ing the incentive compatibility and individual rationality constraints of the principal’s

problem. Cremer and Khalil (1992) show that the principal may offer contracts that

induce the agent to stay uninformed and that those contracts will be very different from

1Notable exceptions are Vives (1988), Li et al. (1987), Hwang (1993, 1995), Hauk and Hurkens
(2001), and Ponssard (1979) that consider information acquisition in oligopolies, Lee (1982), Milgrom
(1981), Matthews (1984), and Persico (1997) who consider the incentives for information acquisition in
auctions and Cremer and Khalil (1992, 1994), Cremer et al. (1998), and Kessler (1998) that consider
principal-agent relationships where the agent is initially uninformed but can acquire information, before
or after the principal has offered him a contract. Grossman and Stiglitz (1980) initiated research on
the incentives to acquire costly information on the value of a stock in financial markets. Hurkens and
Vulkan (2001, 2003) considered information acquisition by potential entrants.
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those that a principal would offer in case the uninformed agent would not have the pos-

sibility to gather information. In the context of auctions Persico (2000) shows that the

incentives for bidders to gather information are different in first- and second-price auc-

tions so that the revenue equivalence theorem breaks down. Finally, Hurkens and Vulkan

(2003) show that the number of entrants in a new market with uncertain demand when

firms’ private information about demand is exogenously given need not coincide with

the number of entrants when firms have to decide whether or not to become informed.

Surprisingly, this holds even though the private information structures that arise in the

endogenous model are identical to the ones assumed in the exogenous one.

It is not unlikely that this list of examples can be extended with applications from

other fields. That is however not the main purpose of this paper. The aim of this paper

is to investigate, at an abstract and general level, which type of games are robust and

immune with respect to the endogenization of the private information structure and

which type of games are susceptible to this endogenization. Games from the first class

can thus be analysed using an exogenous private information structure even when they

in fact describe economic situations where information gathering seems a natural part of

players’ strategic options. Games that belong to the second class, however, will have to

be considered with care as they are possibly affected by having endogenous rather than

exogenous information structures.

Our investigation of robustness starts out of two important questions. First, can any

exogenous private information structure arise endogenously? Second, does behaviour in

the game depend on whether the private information structure is exogenously given or is

endogenously determined? In fact, if the answers to these questions were ‘yes’ and ‘no’

respectively, we would be fully justified to use models with exogenous private information

structures. From our examples discussed before we know that in fact the answers will

not always be ‘yes’ and ‘no’, and we need to investigate in which cases the answers may

differ.

At first sight the answer to the first question would seem to be ‘yes’. Namely, it suf-

fices to choose the costs for different information structures such that the one information

structure we want to ‘explain’ has the highest value, net of costs. However, one is not

completely free in the choice of costs: any reasonable information cost function should

be (weakly) increasing, i.e. more information should cost more. A more fundamental

problem is that the notion of ‘value of information’ in a game is rather vague. (See also

Neyman (1991).) How much a player can improve his payoff by obtaining some piece of

information will depend on how the other players in the game will behave and respond.

Hence, the value of information in a game (if we can even speak about such a concept)

must be closely linked to (equilibrium) behaviour in the game. Clearly, existence of mul-
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tiple equilibria and issues of equilibrium refinements will affect and possibly complicate

our task. As a matter of fact, this issue will turn out to be very important.

The answer to the second question would seem to be ‘no’, especially since we will

be interested in equilibrium behaviour. In equilibrium of the game with endogenous

information acquisition each player ‘knows’ how much information other players acquire,

similar to the case of games with exogenous private information structures. There is a

small but important difference though. Namely, a player will have beliefs about how

much information others acquired, and in equilibrium these beliefs must be correct.

However, off the equilibrium path a player may hold incorrect beliefs which may affect

his behaviour off the equilibrium path. Of course, behaviour off the equilibrium path

will in fact determine the behaviour on the equilibrium path. It is therefore not obvious

at all that the answer to this second question is always ‘no’. In fact, the entry example

discussed before constitutes a counterexample. Since beliefs seem to play a role here the

issue of equilibrium refinements (such as sequential equilibrium) again turns up.

We conclude that we cannot answer the above two questions without fully analyzing

and comparing equilibrium behaviour in games with exogenous and endogenous infor-

mation structures. That is what we will do in the paper. We will consider equilibrium

behaviour in the game with endogenous information acquisition and compare that to

equilibrium behaviour in the game with an exogenous information structure, where the

information structure is in fact the one that endogenously arises in the first game. In the

other direction, we will consider equilibrium behaviour in a game with an exogenously

given private information structure and we ask ourselves whether this behaviour and this

information structure can prevail in some equilibrium of the endogenous information ac-

quisition game. We also investigate the importance of equilibrium refinements.

Let us now outline the results obtained in this paper. We will focus on the class

of games where information about fundamentals (i.e. states of Nature that affect the

payoffs but not the strategic options of the players) is acquired before players enter

into a strategic situation. Hence, there is an information gathering stage followed by a

game playing phase.2 Information acquisition is modelled as a choice between different

partitions of the set of states of Nature. Information costs are exogenously specified

but may differ amongst players to reflect the asymmetry in the underlying game. Since

the actions of a player are chosen after information acquisition decisions are taken, they

cannot influence those decisions. To each (pure or mixed) profile of choices of partitions

corresponds a game with an exogenous information structure.

2This excludes the case analyzed by Cremer and Khalil (1992) where the principal offers a contract
before the agent may gather information. It also excludes the case where a player can get information
about unobserved actions chosen by other players. See Perea y Monsuwé (1997) for a setting in which
players buy information about actions chosen by other players.
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Our first result says that any equilibrium of the endogenous game induces an equilib-

rium in the corresponding exogenous game. The result is simple and intuitive but also

important. Namely, it follows that games with exogenous information structures that

have a unique Nash equilibrium are quite robust to endogenization of the information

in the sense that behaviour in the game does not depend on whether the information

structure is exogenously given or endogenously determined. (Of course, as seen in the

principal-agent examples, it might be true that the given information structure could not

have arisen endogenously for any reasonable specification of information costs.) We then

consider equilibrium refinements, and in particular we consider sequential equilibria. We

show that any sequential equilibrium of the endogenous information acquisition game

induces a sequential equilibrium in the corresponding game with exogenous structure if

(i) the information acquisition decisions are perfectly observed, or (ii) the game playing

phase only involves simultaneous moves. A counterexample illustrates that if neither

of these conditions is satisfied a sequential equilibrium of the endogenous information

acquisition game need not induce a sequential equilibrium in the exogenous game. A

consequence of this is that games with exogenous information structures that have a

unique (plausible) sequential equilibrium but multiple Nash equilibria may be affected

by the endogenization of information.

We then turn our attention to equilibrium behaviour in games with exogenous infor-

mation structures and ask ourselves whether this behaviour and information structure

can also arise in the endogenous information acquisition game for some reasonable as-

sumptions on information costs. If we do not exclude that information is available for free

then any Nash equilibrium of a game with an exogenous private information structure

may arise as a Nash equilibrium of the game with endogenous information acquisition.

When information acquisition is unobserved and information is not free of cost then this

holds in case information is used in the equilibrium of the exogenous game under consid-

eration. Hence, pooling in signalling games or bunch-bidding in auctions are excluded in

this case. On the other hand, when information acquisition is observed and we restrict

attention to sequential equilibria then the result holds if information does not ‘hurt’,

that is, if no player is better off (in any equilibrium) with less information.

The rest of the paper is set up as follows. Section 2 models private information and

defines two modes of information acquisition, unobserved and observed. We start the

analysis in section 3 by means of an example to illustrate the difficulties that may arise

in comparing endogenous and exogenous information structures. We then consider equi-

libria of the endogenous games and analyze the behaviour it induces in the corresponding

game with an exogenous information structure. The final part of this section goes in the

other direction, that is, we consider an equilibrium of some exogenous game and inves-

5



tigate when the same information structure and behaviour may arise when information

acquisition is endogenous. Section 4 summarizes the results and hints at some possible

applications for future research.

2 The Model

In this paper we want to compare behaviour in games where players are exogenously

endowed with information about fundamentals of the game with that in games where

players can only become informed about fundamentals if they decide to (costly) search

for this type of information. Obviously, in both types of games players may have (at

some point in the game) information about fundamentals (to which we will refer as

“information structure”) as well as information about what other players have done up

to this point in the game (to which we will refer as “action information sets”). This will

be indicated (as usual) by means of information sets. In order to compare the two types

of games it will be helpful to break up the situation in three parts: In the first part Nature

determines the values of the fundamentals. In the second part the information of players

about fundamentals (either exogenously or endogenously) is determined. Finally, in the

third part the players interact strategically. We will start with the last part since it will

be easier to describe the information sets in the games with endogenous and exogenous

information about fundamentals when we already know how the action information sets

look like.

There are n players involved in a strategic interaction represented by a game form

G, which can be thought of as a tree where nodes represent players who have to choose

actions and where arcs represent the possible actions. This game form describes the

actions that players may take, and the order in which they take them. It includes “action

information sets”, indicating that players may not know which actions have been chosen

before by other players (We will assume perfect recall so that every player recalls the

choices it made before as well as all the information it had about what other players

did before). It is not, however, a fully defined extensive form game because there are no

payoffs associated to the set of end points of the tree, Z. Let Ki denote the set of nodes

at which player i must take an action and let H i denote the partition3 of Ki into sets of

nodes that cannot be distinguished by the player. Each h ∈ H i is an action information

set of player i. A pure (game form) strategy for player i is a mapping si : H i → A

that assigns to each action information set h ∈ H i one of the actions available. We will

denote by A(h) the set of actiones available at h and A denotes the set of all actions.

Alternatively, we can say that a pure strategy for a player is a mapping that assigns to

3X = {X1, ..., Xk} is a partition of Y if ∪jXj = Y and Xj ∩Xl = ∅ if and only if j 6= l.
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each of his decision nodes an available action, with the restriction that this mapping is

measurable with respect to the action information set structure. We denote by Si the

finite set of pure (game form) strategies of player i in G (which does not depend on the

state of Nature) and write S =
∏

i Si as the product set of strategy profiles.

The payoff functions to evaluate outcomes depend on the realized value of the state

of Nature. We denote by Ω = {ω1, ..., ωN} the finite set of states of Nature and will write

ω to denote a generic state. We denote by uω
i (z) the payoff obtained by player i when

end point z is reached and the state of Nature is ω. If the strategy profile s induces

endpoint z to be reached we will also write uω
i (s) instead of uω

i (z). The players initially

hold a common prior about the likelihood of each state of Nature which is represented

by a probability distribution ρ on Ω. However, players can either endogenously improve

their information or will be exogenously endowed with better information.

A pure information structure of player i is given by some partition P i of Ω. We write

P i(ω) for the element of P i that contains ω. The interpretation of the partition is that

with information structure P i player i can distinguish between two states ω and ω′ if

and only if P i(ω) 6= P i(ω′). We say that partition P i is finer (more informative) than

partition P̃ i if P i(ω) ⊂ P̃ i(ω) for all ω ∈ Ω (with strict inclusion for some ω). In the

game with endogenous information acquisition each player i will have to choose among

a set of available pure information structures, which we will denote by ℘i. Not all pure

information structures need to be feasible but we assume that P no = {Ω} ∈ ℘i, that is,

players can always choose not to become informed at all. Since we do not want to rule

out that players randomize between several pure information structures we should not

impose that in games with exogenous information structures, each information structure

is pure, i.e. a partition of Ω. We will therefore allow for random information structures,

represented by moves of Nature: ρ̃i is the probability distribution over ℘i. We only allow

for independent distributions, that is, ρ̃i and ρ̃j are independent whenever i 6= j, and

ρ̃i and ρ are independent. (Because in the endogenous information acquisition game we

will assume that players acquire information independently and we assume that players

start of with no information about Nature.)

Each player i will either be endogenously or exogenously endowed with some informa-

tion structure ρ̃i. Let ρ̃ = (ρ̃1, ..., ρ̃n). We will denote the game with the (random) exoge-

nous information structure ρ̃ by Gρ̃. (In this game each player i will learn the outcome

of the randomization ρi.) Note that in the case of a pure information structure the prob-

ability distribution ρ̃ has a unit mass at a pure information structure P = (P 1, ..., P n).

In this case we denote the game with the exogenous information structure by GP . Both

Gρ̃ and GP are standard games with private information that can be represented by an

extensive form. We will first describe the extensive form of GP . Here first Nature chooses
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one of the N possible states in Ω after which a ”copy” of G is attached (together with

the corresponding payoffs at the end points). It will be useful to label the copy of G at

ω by G(ω). Similarly, for each action information set h in G we will denote by h(ω) the

corresponding action information set in G(ω). Such an action information set would be

a real information set for player i in case this player has perfect information about the

state of Nature, i.e. his information structure is the finest partition of Ω. However, in

general, if his information structure is P i then the true information sets that correspond

to the action information set h are the unions over all indistinguishable states of Nature,

i.e. for each P i
k ∈ P i there is one information set in GP that corresponds to the action

information set h of G, and it is ∪ω∈P i
k
h(ω). We will denote this information set by

P i
k(h).

In case of a random information structure ρ̃i things are slightly more complicated as

this cannot be represented as before with Nature choosing a state, attaching a copy of

G after each state and uniting action information sets appropriately into an information

set. In this case we need Nature also to determine the pure information structure for

each player (according to the probabilities given by ρ̃i). Now we have to attach a copy

of G after each outcome of the moves of Nature, that is, for each combination of state

of Nature ω and pure information structure P ∈ ℘ = ℘1 × ... × ℘n. We will denote the

corresponding copy of G by G(ω, P ) and the corresponding copy of h by h(ω, P ). The

information set for player i that corresponds to an action information set h and each

P i
k ∈ P i is now ∪P−i∪ω∈P i

k
h(ω, (P i, P−i)), where the union over all P−i represents the fact

that player i does not know the exact information structure of other players.4 Observe

that it is possible for a player to have an information structure that is a randomization

between two pure information structures P i and P̃ i where some set X ⊂ Ω is an element

of both partitions. Our modelling choice implies that we assume that this player can

distinguish between the case where his information structure is P i and the one where

it is P̃ i when the true state is in X. This is very natural in the case of endogenous

information acquisiton, when it is the player himself who randomizes. In the case of

exogenous information structures it seems more natural to assume the opposite and

merge the two information sets into one. In terms of strategies it makes a difference

4The case of a pure information structure P can also be modelled as described here, with the
restriction that all other feasible information structures have probability zero (that is, ρ(P ′) = 0 for all
P ′ 6= P .) When we now delete all moves of Nature that have zero probability (as is usually done) we
get again our first description of GP . However, it may be useful to leave the zero probability moves
in, because of its similarity with the case of endogenous information acquisition where players can
choose between all feasible information structures. In particular, the information sets of the game with
exogenous information structures then coincide with the information sets in the case of endogenous
unobserved information acquisition.
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which assumption one adopts since in the first case a player could choose different actions

in the two information sets. However, in terms of equilibrium strategies the difference is

innocuous: if it is optimal for a player to randomize between choosing the information

structure P i and to play action a in case the true state of Nature is in X and choosing

the information structure P̃ i and to play action a′ in case the true state of Nature is in

X, then it must be also optimal to randomize between these information structures and

to randomize between the actions a and a′ in case the true state of Nature is in X.

We will compare the equilibria of Gρ̃ and GP with those of the super-game where

information structures are endogenously determined. This super-game has two stages. In

the first stage all players choose simultaneously one of the feasible information structures

while in the second stage G is played. Without loss of generality we assume that the

extensive form of the endogenous information acquisition games start with the move of

Nature and then players choose their information structure in order of increasing player

index (although no player is informed about previous moves). This means that in this

phase of the game each player has one information set. Information acquisition is costly

and costs are player specific. Player i needs to pay c(i, P ) to acquire partition P , where

c(i, P ) ≥ c(i, P ′) if P is more informative than P ′. When information is not freely

available the inequalities will be strict. For convenience, we assume c(i, P no) = 0.

Information acquisition can either be observed or unobserved. In the super-game

where information acquisition is unobserved, denoted by Γunobs, the choice of partition

P i by player i is not observed by players j 6= i. This means that information sets (in the

second stage) are as in the case of Gρ̃: The information set for player i that corresponds

to an action information set h and each P i
k ∈ P i is ∪P−i ∪ω∈P i

k
h(ω, (P i, P−i)). A pure

super-game strategy for player i is thus a pair (P i, σi), where P i is the partition chosen in

the first stage and σi : Ω → Si maps states of Nature into strategies of G. Of course, the

mapping σi must be measurable with respect to P i, i.e. σ(ω) = σ(ω′) if P i(ω) = P i(ω′).

On the other hand, in the super-game where information acquisition is observed, denoted

by Γobs, the choice of partition P i by player i is observed by all players. In case players

use mixed strategies, we assume that the outcome of the realization is observed, and not

the mixture itself. Hence, a pure super-game strategy for player i is now a pair (P i, τi),

where P i is again the partition chosen by i and where τi(ω, P ) ∈ Si denotes the strategy

chosen in G when the state of Nature is ω and the (total) information structure is P .

Again, the mapping τi must be measurable with respect to P i.

We will be interested in comparing the results of the endogenous information acquisi-

tion games Γunobs and Γobs with those obtained in games with an exogenous information

structure, Gρ̃. Since the strategy spaces in those three types of games are different,

we need to make precise how we will compare the equilibrium results. Because of the
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sequential structure of the information acquisition games we will sometimes want to

restrict attention to sequential equilibria so that our results do not rely on incredible

out of equilibrium threats or beliefs. Recall that a sequential equilibrium is a pair

(µ, σ) where strategy σ is optimal given the beliefs µ, and the beliefs are consistent, i.e.,

(µ, σ) = limn(µn, σn), where σn is a completely mixed strategy profile and µn are beliefs

determined by Bayes’ rule based on σn. Finally, we will compare the strategies induced

in the second stage by the (sequential) equilibria of the information acquisition games

with the (sequential) equilibria of the games with an exogenous information structure,

where this information structure is the one that endogenously emerged in the equilibrium

at hand. Note that in the case of observed information acquisition the strategy of each

player is contingent on the actual pure information structure that arises.

3 Results

3.1 Comparing endogenous and exogenous information struc-

tures

Before we come to our formal results, let us consider an example to illustrate how com-

parisons are made. The example also illustrates the importance of allowing for random

information structures.

Suppose that Nature determines which of the two bimatrix games of Fig. 1 is going

to be played, I or II. Game I is picked with probability 1/2.

L R

T 3,1 6,0

M 0,0 0,1

B 4,4 5,5

L R

T 0,0 0,1

M 3,1 6,0

B 4,4 5,5

I II

Fig. 1.

Suppose that only player 1 can unobservably learn whether game I or II is chosen, at

some cost c ∈ (0, 1). (We could assume that player 2 can also learn this but that his cost

is larger than 5, which would make it a strictly dominated strategy for him to learn the

outcome of the move of Nature.) Note that learning and not using the information is

a strategy strictly dominated by not learning and playing B. Also, learning and playing

MT (i.e. M in game I, T in game II), MB, TB, BM, or BT are dominated. The only

undominated strategies for player 1 are (not learn, play B) and (learn, play TM). Of

course, if player 1 plays B, player 2 prefers to choose R, against which player 1 prefers

10



TM. But if player 1 plays (learn, TM), player 2 prefers to choose L, against which

it is optimal for player 1 to choose (not learn, B). Hence, the game with unobserved

information acquisition has no pure Nash equilibrium and there is a unique mixed Nash

equilibrium: player 1 randomizes equally between (learn, TM) and (not learn, B), while

player 2 chooses L with probability (1− c)/2.

Note that the information structure that endogenously arises is mixed since player 1

can be informed or uninformed.5 This can be interpreted as a game in which three types

of player 1 exist, type I, type II, and a third uninformed type with exogenous probabilities

1/4, 1/4, and 1/2, respectively. Note that these probabilities do not depend on c, (as

long as c ∈ (0, 1)) but on the payoffs of player 2. In the game with three types a unique

equilibrium component exists: player 1 chooses T (if type I), M (if type II) and B (if type

III), while player 2 plays L with probability at most 1/2. We see that the Nash equilibrium

of the game with unobserved information acquisition induces a Nash equilibrium in

the game with the exogenous (mixed) information structure and that each of the Nash

equilibria of the game with the exogenous information structure can be ”explained”

by making the adequate assumption on the cost of information acquisition. Also note

that the model where player 1 is informed with probability p 6= 1
2

cannot be generated

from endogenous and unobserved information acquisition, as long as information cost is

positive but small.6

3.2 Endogenous Information Acquisition Equilibria

In this subsection we consider equilibria of games with endogenous information acquisi-

tion. In particular, we investigate the behaviour induced by such equilibria in the game

playing phase. We will consider both unobserved and observed information acquisition

games and will also discuss the role of equilibrium refinements. We start of with ordinary

Nash equilibria.

Theorem 1 (i) Let (ρ̃, σ) be a Nash equilibrium of the unobserved information acquisi-

tion game Γunobs. Then σ is a Nash equilibrium of Gρ̃.

(ii) Let (ρ̃, τ) be a Nash equilibrium of the observed information acquisition game Γobs.

Then τ(P ) is a Nash equilibrium of GP for all P with ρ(P ) > 0.

5This result is somewhat reminiscent of the principal-agent models by Kessler (1998) and Cremer
and Khalil (1992) where it is shown that the agent will (with positive probability) be uninformed about
his cost.

6For values of c > 1 information acquisition is dominated and we would have support for the model
with an uninformed player 1, whereas if information is costless (c = 0) it is an equilibrium of the
unobserved information acquisition game to acquire information and then use the information with
probability a half, while player 2 uses both strategies with equal probability.
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Proof. (i) Suppose not. Then some player strictly prefers to deviate from σ in Gρ.

But then this same player would also like to deviate in the game playing phase of Γunobs,

contradicting the assumption that (ρ, σ) is a Nash equilibrium of Γunobs.

(ii) Suppose not. Then some player strictly prefers to deviate from τ(P ) in GP for

some P with ρ(P ) > 0. But then this same player would also like to deviate in the game

playing phase of Γobs contradicting the assumption that (ρ, τ) is a Nash equilibrium of

Γobs. �

The result is straightforward but has important consequences. Namely, it follows that

a game with an exogenous information structure that has a unique Nash equilibrium is

at least partly robust with respect to the endogenization of the information structure

in the sense that behaviour in the game playing phase does not depend on whether the

information structure is exogenous or endogenous. What of course remains to be seen

is whether that information structure would arise endogenously. We will come back to

this issue in the next subsection.

The reason that the result is straightforward is that we consider any Nash equilib-

rium. That is, we only ask whether each player’s action is optimal given other players’

actions. Actions off the equilibrium path of play are always optimal, while actions on

the equilibrium path of play are, by definition, optimal. Of course, some actions off the

equilibrium path may seem unreasonable or incredible. Hence, it is natural to consider

subgame perfect or, more generally, sequential equilibria.7 One might guess that The-

orem 1 would break down when replacing ‘Nash’ by ‘sequential’ as players will make

inferences about other players’ informedness in the game with endogenous information

acquisition whereas they do not in a game with exogenous information structure. It

could be that in the former game some action off the proposed path of play can be

‘rationalized’ by some beliefs about informedness while no such rationalization exists in

a game where the information structure is given and common knowledge. As Theorem

2 below shows, it turns out that this argument can only apply in the case of games

with sequential moves and when information acquisition is not observed. Namely, in the

case of observed information acquisition the information structure will become common

knowledge even though it arises endogenously. Furthermore, in the case of unobserved

information acquisition beliefs about informedness only play a role when actions are

taken after beliefs have been revised. In the case of simultaneous move games belief

revision can thus not play any role!

Theorem 2 (i) Let (ρ̃, σ) be part of a sequential equilibrium of the unobserved informa-

tion acquisition game Γunobs. Then σ is part of a sequential equilibrium of Gρ̃ if G is a

simultaneous move game.

7The game with information acquisition may have no or few proper subgames as Nature moves first.
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(ii) Let (ρ̃, τ) be part of a sequential equilibrium of the observed information acquisition

game Γobs. Then τ(P ) is part of a sequential equilibrium of GP for all P ∈ ℘.

Proof. (i) By Theorem 1(i) we know that σ is a Nash equilibrium of Gρ̃. Since Gρ̃

has only simultaneous moves it is sequential as well (where beliefs are determined by

equilibrium strategies and moves of nature).

(ii) Each information set in the game playing phase Γobs coincides with one information

set in GP for exactly one information structure P . We can therefore use exactly the same

beliefs that support the sequential equilibrium of Γobs to support τ(P ) as a sequential

equilibrium of GP : τ(P ) is optimal given these beliefs and the beliefs are the limit of a

sequence of beliefs that are generated from completely mixed strategies in GP . �

In order to see that Theorem 2(i) is, in general, not true for sequential games con-

sider the following situation. Nature chooses between game I and game II with equal

probability. Only player one has the possibility to become informed about Nature’s

move.

b

m

t

l r

2, 0

1, 4

3, 0 5, 5

−4, 0

4, 3

0, 1

6, 1

out in

out in

1

2

Game I

b

m

t

l r

2, 0

1, 4

3, 0 5, 5

4, 3

−4, 0

6, 1

0, 1

out in

out in

1

2

Game II

Fig. 2

We will show that the unobserved information acquisition game has a unique Nash

equilibrium outcome (and therefore also a unique sequential equilibrium outcome) where
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player 1 does not learn and chooses out. By Theorem 1(i) we know that this must also

be a Nash equilibrium outcome in the game where it is common knowledge that player

1 is not informed. However, the only sequential equilibrium in that game is where

players enter the subgame and obtain (5,5). Hence, the sequential equilibrium of the

unobserved information acquisition game does not induce a sequential equilibrium in the

corresponding game. As we will see shortly, the reason is that in order to support the

sequential equilibrium of Γunobs player 2 should believe that player 1 is informed when

player 2 (unexpectedly) gets to move.

Let us now analyse the game. Player 1 can decide to learn the outcome of Nature’s

move at cost c ∈ (0, 1/4). Then he must decide to end the game (yielding gross payoff

vector (2,0)) or give the move to player 2. If given the move, player 2 can decide to end

the game (yielding gross payoff vector (1,4)) or continue the game. If the game continues

both players engage in a 3×2 bimatrix game. The payoffs in this game depend on whether

Nature has chosen I or II. The structure of the payoffs in this ‘subgame’ is such that

if player 1 is informed he has a strictly dominant strategy: play t if Nature chooses I,

choose m if Nature chooses II. Player 2 will then want to play l in this subgame, yielding

him a payoff of 3 (which is less than 4 which he can obtain by choosing ‘out’ if given

the move). If player 1 is not informed his strictly dominant strategy (in the subgame)

is to play b. In that case player 2 will want to play r, yielding him a payoff of 5. Also

note that it is a strictly dominated strategy for player 1 to learn the move of Nature and

then choose ‘out’, since information acquisition is costly. Any Nash equilibrium of the

game with endogenous information acquisition must therefore be a Nash equilibrium of

the game restricted to the undominated strategies of Fig. 3.

out (in, l) (in, r)

(not learn, out) 2 , 0 2 , 0 2 , 0

(not learn, in, b) 1 , 4 3 , 0 5 , 5

(learn, in, tm) 1-c , 4 4-c , 3 6-c , 1

Fig. 3

There is a component of equilibria where player 1 chooses (not learn, out) and player

2 chooses out with sufficiently high probability. There are no equilibria in which player

1 uses any other strategy with positive probability, because against such strategies it is

not optimal to play (in, l) for player 2. Moreover, against the mixture between ‘out’ and

(in, r) needed to make player 1 indifferent between his last two strategies it is optimal

for player 1 to choose his first strategy. We conclude that in the game with costly and

unobserved information acquisition the unique equilibrium outcome is that player 1 does

not learn and chooses out with probability 1.
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Consider now the game where it is common knowledge that player 1 is uninformed.

Of course, also in this game it is a Nash equilibrium for both players to choose ‘out’.

However, the only sequential equilibrium is of course ((in, b),(in, r)). Namely, it is

a dominant strategy for player 1 to choose b in the final stage so in any sequential

equilibrium player 1 must do so. That implies that in any sequential equilibrium player

2 must play r in the final stage and ‘in’ when he is given the move. But that in turn

implies that player 1 must choose ‘in’ as well.

This example is in the same spirit as our8 application to entry in a new market.

We assume there that information acquisition is unobserved and since firms compete in

quantities after having taken entry decisions, that application has a sequential structure

that makes revising beliefs possible and important. There exists a sequential equilibrium

in which firms become perfectly informed about demand but less entry takes place than

in a model where it is common knowledge that firms are perfectly informed. Unexpected

entry is believed to be caused by uninformed entrants which makes the ‘incumbent’ act

more aggressively, thereby deterring entry altogether.

3.3 Exogenous Information Structures

In this subsection we consider games with pure9 exogenous information structures GP and

their (sequential) equilibria s and ask ourselves whether the same information structure

and behaviour could arise with endogenous information acquisition when information is

costly. Of course, the answer will depend on which information structures are available

to the players and how costly the different information structures are. When many

different information structures are assumed to be available then it becomes in principle

more difficult to justify the choice of a particular one. Of course, it is easy to rule

out the choice of partitions finer than P i by assuming that these are very costly. We

can do the same for partitions that are not coarser than P i. We cannot do so for

partitions coarser than P i because they cannot cost more than P i. We will thus assume

throughout that {P no, P i} ⊂ ℘i and that only information structures coarser than P i

are possibly available. If we cannot justify the choice under these assumptions, then it

will be impossible to do so if more information structures are available.

It will be instructive to consider some examples before coming to the formal results.

Nature determines which of the two bimatrix games of Fig. 4 is going to be played, I or

8Hurkens and Vulkan (2003).
9The example of Fig. 1 has shown that equilibrium behaviour in games with random information

structures can be explained by referring to endogenous information acquisition only under very specific
assumptions about the information costs and for very specific probabilities on the information strcutures.
We therefore restrict ourselves in this section to pure information structures.
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II. Game I is picked with probability 2/5. Let us see whether endogenous information

acquisition can explain the information structure where only player 1 is informed, i.e.

P 1 = {{I}, {II}} and P 2 = {{I, II}} = P no. We assume that ℘1 = {P no, P 1} and that

℘2 = {P no}, so that only player 1 has the opportunity to learn the state of Nature.

L R

T 4,2 1,3

B 2,2 0,0

I

L R

T 2,2 0,0

B 4,2 1,3

II

Fig. 4.

If neither player knows which game is played, both players have a dominant strategy

and the outcome will be (B,L), yielding an expected payoff of (16/5,2). However, if

player 1 observes which matrix is chosen, it is a dominant strategy to play T in game

I and B in game II. If player 2 knows that player 1 observes the outcome of the move

of Nature, he will then play R and the resulting payoff vector will be (1,3). Player 1 is

better off in the game where it is common knowledge he does not observe Nature’s move

than in the game where it is common knowledge that he does. This is an example where

information hurts the player possessing it. In the unique sequential equilibrium of the

game with observed information acquisition player 1 will thus choose (commit) not to

obtain information, and the outcome will be (B,L) for any nonnegative cost of acquiring

information. If information cost is small, the observed information game possesses a

Nash equilibrium in which player 1 observes Nature’s move and player 2 threatens to

play R in any case (that is, whether or not player 1 observes Nature’s move or not). We

conclude that in this example the information structure where player 1 is informed can

arise in a Nash equilibrium of the observed information acquisition game but not in a

sequential equilibrium because information hurts.

In the case of unobserved information acquisition, however, player 2 cannot condition

his action on whether player 1 learned or not. He must choose the same (mixed) strategy

in both games (as he cannot distinguish them). Whatever this strategy of player 2 may

be, for low enough information costs c player 1 will choose to acquire information and

choose T in game I and B in game II. Player 2 will foresee this in any equilibrium and

play R and the final payoffs will be (1− c, 3).

We can draw some general conclusions from this example. In the case of unobserved

information acquisition players cannot condition their strategies in the game playing
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phase on the information acquisition decision of any player. Hence, when making the

information acquisition decision a player takes the strategies of others in the game playing

phase as given and can actually calculate the value of information. This value is always

non-negative and if it is strictly positive he will acquire the information for low enough

(positive) information costs. Of course, the value of information will be strictly positive

only if the player will actually use it. That is, there must be some states of Nature

that the player can distinguish only in case he learns and in which he will play distinct

strategies resulting in distinct outcomes.

In the case of observed information acquisition information does not only have an

informational value (as in the case of unobserved information acquisition) but it also has

some strategic value, as it can affect other players’ behaviour. In a sequential equilibrium

it will often affect other players’ behaviour, while in Nash equilibria other players may

(pretend to) ignore the fact that some player has acquired information. As we have

seen, however, such ignorance may very well be incredible. We have also seen that the

strategic value of obtaining a piece of information may be strictly negative and may

more than offset the positive informational value: information may hurt. However, the

information observably acquired in a sequential equilibrium never hurts.

We saw that costly information that is unobservably acquired must be used. Hence,

equilibria in games with exogenous information structure where private information is

not used is not robust to endogenization of the information structure. Examples of such

cases are pooling equilibria in signalling games and bunch-bidding in auctions. However,

if information is acquired observably it is possible that costly information is acquired

but not used.

Consider the example from Fig. 5. Nature chooses with equal probability between

game I and II. Again, assume only player 1 can learn Nature’s move at some small

positive cost c. If given the move by player 2, player 1 has to guess Nature’s move. If

he guesses correctly he is rewarded but if he guesses wrong he is severely punished. In

case player 1 does not know it is optimal to admit that and choose option III.

It is clear that the unique sequential equilibrium of the observed information acqui-

sition game is for player 1 to learn Nature’s move and guess right if given the move

and for player 2 to opt out. Information is not really used as the outcome will be (4,2)

independent of whether nature chooses I or II. Player 1 acquires the costly information

in order to credibly threaten to guess Nature’s move and thereby forcing player 2 to opt

out.
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1
4, 2

1, 0 −10, 2 0, 3

out in

I II III

Game I

2

1
4, 2

−10, 2 1, 0 0, 3

out in

I II III

Game II

Fig. 5

In order to state the observations made in a formal way we need two definitions.

Definition 1 We say that all costly information is used in GP by σ if for no player i

there exists a coarser information structure P̃ i ∈ ℘i with c(i, P i) > c(i, P̃ i) with respect

to which either

(i) σi itself is measurable, or

(ii) some other strategy σ′
i is measurable which yields the same payoff as σi against σ−i.

Definition 2 We say that information hurts player i in the equilibrium σ of GP if all

sequential equilibria of GP̃ yield player i a weakly higher payoff than σ in GP , where P̃

is an information structure obtained from P by replacing i’s information structure P i by

some P̃ i ∈ ℘i.

Theorem 3 Let GP be a generic extensive form game with exogenous information struc-

ture P 6= P no. Assume information costs of P are small. For all players i let ℘i be such

that P i ∈ ℘i and such that for all P̃ i ∈ ℘i , P i is finer than P̃ i or P i = P̃ i.

(i) Let σ be a Nash equilibrium of GP . Then (P, σ) is a Nash equilibrium of the

unobserved information acquisition game Γunobs if all costly information is used in σ.

(ii) Let σ be part of a sequential equilibrium of GP . Then there exist beliefs that support

(P, σ) as a sequential equilibrium of the unobserved information acquisition game Γunobs

if all costly information is used in σ.

(iii) Let σ be a Nash equilibrium of GP and suppose that all costly information is used.

Then there exists a Nash equilibrium (P, τ) of the observed information acquisition game

Γobs with τ(P ) = σ.
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(iv) Let σ be part of a sequential equilibrium of GP . Then there exist beliefs that

support a sequential equilibrium (P, τ) of the observed information acquisition game Γobs

where τ(P ) = σ if information does not hurt any player.

Proof. (i) Since σ is a Nash equilibrium of GP , information acquisition is not observed,

and P i is the finest partition available for each player i, the only unilateral deviation

from (P, σ) that could possibly improve upon a player’s payoff would involve this player

choosing a coarser and cheaper information structure P̃ i. However, since all costly

information is used in σ this implies that this player must then use a strategy σ′
i which

yields a strictly lower payoff against σ−i than σi. In principle this could be compensated

by the lower cost of the coarser information structure P̃ i. However, the cost saving is

bounded by the cost of the finest partition P i, which is assumed to be small. Hence, no

unilateral deviation is profitable.

(ii) This follows from (i) and the fact that the information sets in GP correspond

uniquely to the information sets in the game playing phase of Γunobs. Namely, for each

action information set h and each element P i
k of i’s information structure there is one

information set for player i. The difference is that in GP player i knows the information

structure of other players whereas in Γunobs player i does not know. But we can define

beliefs in the latter information sets as in GP by letting all nodes corresponding to

information structures P̃ j 6= P j have zero probability. That is, each player expects other

players to have acquired P . Finally, these beliefs are consistent as they can be obtained

as limits of beliefs deduced from Bayes’ rule from completely mixed strategy profiles by

having information structures P̃ j 6= P j be played with probability of order εK with K

sufficiently large.

(iii) Let τi(P̃ ) = σi for each player i and all information structures P̃ with P̃ i = P i.

We claim that the strategies (P i, τi) constitute a Nash equilibrium. Obviously, given the

strategies of the other players in the information acquisition stage, it does not matter

what τi specifies in case of information structures different from P . In the case of

information structure P , τi prescribes optimal actions since σ is a Nash equilibrium

in GP . Finally, deviating in the information gathering stage to a coarser information

structure P̃ i is not beneficial since the other players do not change their actions as a

result of that and since all costly information is used and the costs are assumed to be

very small. (See also proof of (i).)

(iv) If information does not hurt any player, we can choose for each ‘subgame’ GP ′

(where P ′ is obtained from P by replacing the information structure of one player with

a coarser one) a sequential equilibrium σ′ that yields the corresponding player a strictly

lower payoff. Then it is clear that by threatening to play σ′ if P ′ is gathered will keep all

players from deviating in the information gathering phase, when information costs are
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sufficiently small. It is also clear that this equilibrium is sequential. �

4 Conclusion

In this paper we investigated the robustness of equilibrium results of game models with

respect to the endogenization of the information structure of the players. It turned

out that only when information acquisition is unobserved and players choose actions

simultaneously in the original game, the results are fully robust as long as all information

is used. When information acquisition is observed, the endogenization process eliminates

the equilibria of the game with an exogenous information structure where information

hurts. On the other hand, when players move sequentially (and information acquisition

is unobserved), the endogenization may generate additional sequential equilibria. In the

latter case endogenous information acquisition may explain, what seemed to be irrational

behaviour in the game with an exogenous information structure, as rational equilibrium

outcomes. The fact that we need unobserved information acquisition to obtain robustness

is somewhat surprising, since in that case the information structure will not become

common knowledge, while in the case of observed information acquisition and games

with an exogenous information structure the latter is always common knowledge.

Our results once again demonstrate the important difference between unobserved and

observed information acquisition.10 When information acquisition is unobserved, infor-

mation is acquired for informational purposes only. That is, it is acquired because it

allows the person who possesses it to make better decisions. When information ac-

quisition is observed, however, it may be acquired (or not) for strategic reasons: By

committing to have (or not have) some piece of information the actions of other players

can be influenced in a way that is favorable to the first player. Since the difference

between unobserved and observed information acquisition is so important, the choice

between the two should be determined by which resembles reality best, and not so much

by analytical convenience.

We have considered information acquisition as refining one’s partition of the state

space. In the literature private information is sometimes modelled by players receiving

an imprecise signal about the true state. Also in this case one can endogenize the

information structure by having players decide on the precision of information they want.

We conjecture that our results also hold in this case: When information acquisition is

unobserved and play is simultaneous, there will be a one-to-one correspondence between

the results of the exogenous and endogenous information models. With sequential moves

10This point was already made, in the context of Cournot competition, by Hauk and Hurkens (2001)
and Hurkens and Vulkan (1997) who focussed on the incentives to gather information.
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(and unobserved information) additional equilibria will appear, while in the case of

observed information acquisition some equilibria may disappear. We can even use the

same examples to prove the latter statements. Just interpret no learning as information

with precision zero, and full learning as information of precision 1 (or infinite). For the

case where precisions can be chosen from a continuum, one would have to look further to

come up with some examples, but we conjecture that there is no fundamental difference

and that such examples can be constructed.

The results obtained in this paper should be useful to come up with more applications

of the type discussed in the introduction where information acquisition may lead to new

insights and surprising results. Assuming that information acquisition is costly and is not

observed by the other players may lead to such conclusions in games with a sequential

structure. A potential application would be to compare Dutch and English auctions.

The Dutch auction is basically a simultaneous move game, whereas the English auction

is sequential as one observes all the bids made. Hence in the English auction there

could be some revision of beliefs about the informedness of competing bidders which

cannot occur in the Dutch auction. Future research in this direction could prove to be

interesting.
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