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Abstract

We study a simple model of assigning indivisible objects (e.g.,
houses, jobs, offices, etc.) to agents. Each agent receives at most one
object and monetary compensations are not possible. We completely
describe all rules satisfying efficiency, independence of irrelevant ob-
jects, and resource-monotonicity. The characterized rules assign the
objects in a sequence of steps such that at each step there is either a
dictator or two agents “trade” objects from their hierarchically speci-
fied “endowments.”
JEL Classification: D63, D70
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1 Introduction

We study the problem of allocating heterogeneous indivisible objects among
a group of agents (for instance, houses, jobs, or offices) when monetary com-
pensations are not possible. Agents have strict preferences over objects and
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Barcelona, 08193 Bellaterra (Barcelona), Spain; e-mail: bettina.klaus@uab.es.
B. Klaus’s research is supported by a Ramón y Cajal contract of the Spanish Minis-
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remaining unassigned. An assignment is an allocation of the objects to the
agents such that every agent receives at most one object. A rule associates
an assignment to each preference profile. This problem is known as “house
allocation” and it is the subject of recent papers by Abdulkadiroğlu and
Sönmez (1998,1999), Bogomolnaia and Moulin (2001), Ehlers (2002), Ehlers
and Klaus (2002a,b), Ehlers, Klaus, and Pápai (2002), Ergin (2000,2002),
Kesten (2003a,b), Pápai (2000,2001), and Svensson (1999).1

We consider situations where resources may change. When the change
of the environment is exogenous, it would be unfair if the agents who were
not responsible for this change were treated unequally. We apply this idea
of solidarity and require that if additional resources become available, then
either all agents (weakly) gain or they all (weakly) lose. This requirement is
called resource-monotonicity (Chun and Thomson, 1988). Two recent stud-
ies of resource-monotonicity for economic environments with indivisibilities
are Ehlers and Klaus (2003) for multiple assignment problems and Thom-
son (2003a) for the assignment of indivisible objects with money.2 Ehlers
and Klaus (2003) show that the only rules satisfying resource-monotonicity
in combination with other desirable properties (efficiency and coalitional
strategy-proofness) are serial dictatorships. Thomson (2003a) demonstrates
that resource-monotonicity is not compatible with other desirable proper-
ties (efficiency and weak identical preferences lower bound).3 Both results
can be seen as part of a larger program devoted to the study of the pos-
sibility and the structure of solutions for resource allocation problems that
satisfy appealing properties (for results and further references concerning
other properties see Ehlers and Klaus (2003) and Thomson (2003a,b)).

We contribute to this line of research by applying resource-monotonicity
to house allocation problems. Our main result is a characterization of a class
of rules, called mixed dictator-pairwise-exchange rules, by efficiency, inde-
pendence of irrelevant objects,4 and resource-monotonicity. Mixed dictator-
pairwise-exchange rules are essentially hierarchical since they allow “trad-
ing” of the objects by at most two agents at a time. Therefore, our result
implies that efficiency and resource-monotonicity are essentially only feasi-

1This list is not exhaustive.
2For the assignment of indivisible objects with money, Alkan, Demange, and

Gale (1991) and Alkan (1994) consider resource-monotonicity properties in relation with
no-envy.

3However, Moulin (1992) shows that an application of the Shapley value yields a rule
satisfying the properties of Thomson’s incompatibility result when preferences are quasi-
linear, all objects are desirable (meaning each agent’s monetary value is nonnegative for
each object), and the monetary transfers sum up to zero.

4The rule only depends on preferences over the set of available objects.

2



ble either in the absence of initial individual ownership or in the absence of
more than two owners at a time.

In Section 2 we introduce the house allocation problem with variable re-
sources and define our main properties for rules. In Section 3 we first present
the class of mixed dictator-pairwise-exchange rules. We state and discuss
our characterization of this class of rules by efficiency, independence of ir-
relevant objects, and resource-monotonicity in the second part of Section 3.
We prove our main result in Section 4.

2 House Allocation with Variable Resources

Let N denote a finite set of agents, |N | ≥ 2. Let K denote a set of potential
real objects. Not receiving any real object is called “receiving the null ob-
ject.” Let 0 represent the null object. Each agent i ∈ N is equipped with a
preference relation Ri over all objects K ∪{0}. Given x, y ∈ K ∪{0}, xRi y
means that agent i weakly prefers x to y, and x Pi y means that agent i
strictly prefers x to y. We assume that Ri is strict, i.e., Ri is a linear order
over K ∪ {0}. Let R denote the class of all linear orders over K ∪ {0}, and
RN the set of (preference) profiles R = (Ri)i∈N such that for all i ∈ N ,
Ri ∈ R. Given K ′ ⊆ K ∪ {0}, let Ri|K′ denote the restriction of Ri to K ′

and R|K′ = (Ri|K′)i∈N . Let R0  R denote the class of preference relations
where the null object is the worst object. That is, if Ri ∈ R0, then all real
objects are “goods”: for all x ∈ K, x Pi 0.

An allocation is a list a = (ai)i∈N such that for all i ∈ N , ai ∈ K ∪ {0},
and none of the real objects in K is assigned to more than one agent. Note
that 0, the null object, can be assigned to any number of agents and that not
all real objects have to be assigned. Let A denote the set of all allocations.
Let H denote the set of all non-empty subsets H of K. A (house allocation)
problem consists of a preference profile R ∈ RN and a set of real objects
H ∈ H. Note that the associated set of available objects H ∪ {0} includes
the null object which is available in any economy. An (allocation) rule is
a function ϕ : RN ×H → A such that for all problems (R,H) ∈ RN ×H,
ϕ(R, H) ∈ A is feasible, i.e., for all i ∈ N , ϕi(R, H) ∈ H∪{0}. By feasibility,
each agent receives an available object. Given i ∈ N , we call ϕi(R, H) the
allotment of agent i at ϕ(R, H).

A natural requirement for a rule is that the chosen allocation depends
only on preferences over the set of available objects.

Independent of Irrelevant Objects: For all (R,H) ∈ RN × H and all
R′ ∈ RN such that R|H∪{0} = R′|H∪{0}, ϕ(R, H) = ϕ(R′,H).
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Next, a rule chooses only (Pareto) efficient allocations.

Efficiency: For all (R, H) ∈ RN ×H, there is no feasible allocation a ∈ A
such that for all i ∈ N , ai Ri ϕi(R,H), with strict preference holding for
some j ∈ N .

When the set of objects varies, another natural requirement is resource-
monotonicity. It describes the effect of a change in the available resource
on the welfare of the agents. A rule satisfies resource-monotonicity, if after
such a change, either all agents (weakly) lose or all (weakly) gain.

It is easy to see that in combination with efficiency, resource-
monotonicity means that if for some fixed preference profile and some fixed
set of objects, additional objects are available, then – this being good news
– all agents (weakly) gain. Since we study resource-monotonicity together
with efficiency we use the latter notion to formalize resource-monotonicity.

Resource-Monotonicity: For all R ∈ RN and all H, H ′ ∈ H, if H ⊆ H ′,
then for all i ∈ N , ϕi(R,H ′) Ri ϕi(R, H).

3 Mixed Dictator-Pairwise-Exchange Rules

Our aim is to describe the class of rules that are efficient, independent of
irrelevant objects, and resource-monotonic. We show that each such rule
allocates the available objects in a sequence of steps as follows: At the
first step there is either an agent who receives for all problems his most
preferred object from the set of available objects—we call such an agent a
dictator—or there are exactly two agents who partition the set of available
real objects among themselves and for all problems their allotments result
from a pairwise exchange using this partition as endowments. At the second
step there is again either a dictator or a pairwise exchange (restricted to
the remaining available objects); and so on. Here, we call such a rule a
mixed dictator-pairwise-exchange rule (Ehlers, 2002). In Ehlers, Klaus, and
Pápai (2002) we discuss essentially the same class of rules under the name
“restricted endowment inheritance rules.” After formally defining mixed
dictator-pairwise-exchange rules, we briefly discuss another interpretation
of these rules as so-called efficient priority rules.

For the formal description we use “(endowment) inheritance tables”
(Pápai, 2000). For each real object x ∈ K, a one-to-one function πx :
{1, . . . , |N |} → N specifies the inheritance of object x. Here agent πx(1)
is initially endowed with x. If x is still available after πx(1) received an
object, then agent πx(2) inherits x; and so on. Let ΠN denote the set of
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all one-to-one functions from {1, . . . , |N |} to N . An inheritance table is a
profile π = (πx)x∈K specifying the inheritance of each real object. We call
an inheritance table π a mixed dictator-pairwise-exchange inheritance table
with respect to S = (S1, S2, . . . , Sm) if

(i) (S1, S2, . . . , Sm) is a partition of N into singletons and pairs, i.e., for
all t ∈ {1, . . . , m}, 2 ≥ |St| ≥ 1,

(ii) row 1 and row |S1| of the inheritance table contain exactly S1, i.e.,
{πx(1) |x ∈ K} = S1 and {πx(|S1|) |x ∈ K} = S1, and

(iii) row (1 +
∑t−1

l=1 |Sl|) and row (
∑t

l=1 |Sl|) contain exactly St, i.e.,
for all t ∈ {2, . . . , m}, {πx(1 +

∑t−1
l=1 |Sl|) |x ∈ K} = St and

{πx(
∑t

l=1 |Sl|) |x ∈ K} = St.

Given i ∈ N and H ∈ H, let top(Ri,H) denote agent i’s most preferred
object under Ri in H ∪ {0}.
Mixed Dictator-Pairwise-Exchange Rules, ϕ(π,S): Given a mixed
dictator-pairwise-exchange inheritance table π with respect to S =
(S1, S2, . . . , Sm), for all (R, H) ∈ RN × H the allocation ϕ(π,S)(R, H) is
inductively determined as follows:

Step 1:

(a) If S1 = {i}, then ϕ
(π,S)
i (R, H) = top(Ri,H).

(b) Let S1 = {i, j} (i 6= j). If top(Ri,H) = top(Rj ,H) ≡ h1 ∈ H and
πh1(1) = i, then ϕ

(π,S)
i (R, H) = h1 and ϕ

(π,S)
j (R, H) = top(Rj ,H\{h1}).

Otherwise, ϕ
(π,S)
i (R, H) = top(Ri,H) and ϕ

(π,S)
j (R, H) = top(Rj , H).

Step t: Let Ht−1 =
⋃

i∈ (∪t−1
l=1Sl){ϕ

(π,S)
i (R, H)} denote the set of objects

that are assigned up to Step t.

(a) If St = {i}, then ϕ
(π,S)
i (R, H) = top(Ri, H\Ht−1).

(b) Let St = {i, j} (i 6= j). If top(Ri,H\Ht−1) = top(Rj ,H\Ht−1) ≡
ht ∈ H\Ht−1 and πht(1 +

∑t−1
l=1 |Sl|) = i, then ϕ

(π,S)
i (R,H) = ht and

ϕ
(π,S)
j (R,H) = top(Rj ,H\(Ht−1 ∪ {ht})). Otherwise, ϕ

(π,S)
i (R, H) =

top(Ri,H\Ht−1) and ϕ
(π,S)
j (R,H) = top(Rj ,H\Ht−1).

Mixed dictator-pairwise-exchange rules are a subclass of endowment in-
heritance rules discussed in Ehlers, Klaus, and Pápai (2002).5

5Endowment inheritance rules are based on Gale’s top trading cycle algorithm. We
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As already mentioned, instead of interpreting a mixed dictator-pairwise-
exchange rule as an endowment inheritance rule, one can equivalently inter-
pret it as a priority rule. Take the underlying inheritance table and use it
as follows for each real object x: π−1

x (i) < π−1
x (j) means “agent i has higher

priority for object x than agent j.” A rule violates the priority of agent i for
object x if there is a preference profile under which i envies another agent j
who obtains x even though i has a higher priority for x than j. A rule is a
priority rule if it never violates the specified priorities. In an earlier version
of his article, Ergin (2002) shows that efficient priority rules can be described
through the so-called serial-bidictatorship algorithm, which for house allo-
cation problems turns out to be equivalent to the algorithm underlying the
corresponding mixed dictator-pairwise-exchange rules. For a further dis-
cussion of efficient priority rules we refer to Ehlers and Klaus (2002b) and
Ergin (2002).6

Our main result also applies to the domain RN
0 where all real objects

are “goods”.

Theorem 1. Let |K| > |N |. On the domain RN (RN
0 ), mixed dictator-

pairwise-exchange rules are the only rules satisfying efficiency, independence
of irrelevant objects, and resource-monotonicity.

We present the proof of this characterization in Section 4. Note that Theo-
rem 1 requires that there are more potential real objects than agents, i.e.,
|K| > |N |. If |K| = ∞, then |K| > |N | is trivially satisfied. We explain how
to adjust the results if |K| ≤ |N | at the end of the section.

Theorem 1 is a characterization based on three relatively mild require-
ments. However, there is only a small class of rules satisfying all three
axioms. Furthermore, Theorem 1 is one of the few characterizations in
house allocation problems that does not require strategy-proofness:7 no
agent can ever benefit from misrepresenting his preferences. We use the
notation R−i = RN\{i}. For example, (R̄i, R−i) denotes the profile obtained
from R by replacing Ri by R̄i.

Strategy-Proofness: For all (R, H) ∈ RN ×H, all i ∈ N , and all R̄i ∈ R,
ϕi(R, H) Ri ϕi((R̄i, R−i),H).

omit their somewhat tedious definition and refer the interested reader to Pápai (2000). It
is interesting to note that on the domain RN

0 some inheritance tables that do not satisfy
the conditions of a mixed dictator-pairwise-exchange inheritance table may still generate
an endowment inheritance rule that equals a mixed dictator-pairwise-exchange rule.

6For a more detailed discussion and comparison of endowment inheritance and priority
rules see Kesten (2003a).

7Another characterization without strategy-proofness in house allocation problems can
be found in Ergin (2000).
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Next we demonstrate that in fact all mixed dictator-pairwise-exchange
rules satisfy the stronger non-manipulability property of coalitional strategy-
proofness: no group of agents can ever benefit by misrepresenting their
preferences.

Given R ∈ RN and M ⊆ N , let RM denote the profile (Ri)i∈M . It is the
restriction of R to the subset M of agents.

Coalitional Strategy-Proofness: For all (R, H) ∈ RN ×H and all M ⊆
N , there exists no R̄M ∈ RM such that for all i ∈ M , ϕi((R̄M , R−M ),H)Ri

ϕi(R, H), with strict preference holding for some j ∈ M.

Note that coalitional strategy-proofness implies strategy-proofness (for
i ∈ N choose M = {i}).
Lemma 1. Coalitional strategy-proofness implies independence of irrele-
vant objects.

Proof. Let R, R′ ∈ RN be such that R|H∪{0} = R′|H∪{0}. Without loss of
generality assume that N = {1, . . . , n}. Then, let R0 ≡ R and for all i ∈ N ,
Ri ≡ (R′

i, R
i−1
−i ). Thus, Rn = R′.

Assume that ϕ(R, H) 6= ϕ(R1,H). If ϕ1(R, H) 6= ϕ1(R1,H), then either
(i) ϕ1(R1,H)P1ϕ1(R, H) or (ii) ϕ1(R, H)P1ϕ1(R1,H). (i) immediately con-
tradicts strategy-proofness. Since R1|H∪{0} = R′

1|H∪{0}, (ii) and feasibility
imply ϕ1(R,H)P ′

1ϕ1(R1,H) contradicting strategy-proofness. Thus assume
that ϕ1(R, H) = ϕ1(R1,H). Since ϕ(R, H) 6= ϕ(R1,H), there exists j 6= 1
such that ϕj(R, H) 6= ϕj(R1, H). Then either (i) ϕj(R1,H) Pj ϕj(R,H) or
(ii) ϕj(R, H)Pj ϕj(R1,H). (i) immediately contradicts coalitional strategy-
proofness for M = {1, j}. Since Rj |H∪{0} = R′

j |H∪{0}, (ii) and feasibility
imply ϕj(R, H)P ′

j ϕj(R1,H) contradicting coalitional strategy-proofness for
M = {1, j}. Thus, ϕ(R, H) = ϕ(R1, H).

Similarly, we conclude that for all i ∈ N , ϕ(Ri−1,H) = ϕ(Ri,H) and
finally, ϕ(R, H) = ϕ(R′,H). ¤

Note that no direct logical relation exists between strategy-proofness
and independence of irrelevant objects. In order to show this, we use two
“dictatorial rules.” For simplicity, assume that N = {1, . . . , n}.

The following dictatorial rule satisfies strategy-proofness, but not inde-
pendence of irrelevant objects: Fix a real object x ∈ K. Given (R,H) ∈
RN × H, let agent 1 choose his most preferred available object. If x P1 0,
then the second dictator who chooses his most preferred object among the
remaining available objects is agent 2. If 0 P1 x, then the second dictator
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is agent n. All further dictators are determined by choosing the agent with
the lowest index.8

Next we describe a dictatorial rule satisfying independence of irrelevant
objects, but not strategy-proofness. Given (R,H) ∈ RN × H, let agent
1 be the first dictator if he finds exactly one of the available objects in K
acceptable. Otherwise, let agent n be the first dictator. All further dictators
are determined by choosing the agent with the lowest index.

In an earlier version of this article we characterized the class of mixed
dictator-pairwise-exchange rules by efficiency, resource-monotonicity, and
coalitional strategy-proofness. Using Lemma 1, this result is now a corollary
of Theorem 1.9

Corollary 1. Let |K| > |N |. On the domain RN (RN
0 ), mixed dictator-

pairwise-exchange rules are the only rules satisfying efficiency, coalitional
strategy-proofness, and resource-monotonicity.

The following corollary of Theorem 1 is implied by the fact that any
mixed dictator-pairwise-exchange rule is an endowment inheritance rule
and such rules are coalitionally strategy-proof (Pápai, 2000). Alternatively,
Corollary 2 follows from Theorem 1 and the fact that any efficient priority
rule is coalitionally strategy-proof (Ergin, 2002).

Corollary 2. Let |K| > |N |. On the domain RN (RN
0 ), if a rule satisfies

efficiency, independence of irrelevant objects, and resource-monotonicity,
then it is coalitionally strategy-proof.

In Ehlers, Klaus, and Pápai (2002) we consider house allocation with
variable sets of agents instead of variable resources. Mixed dictator-pairwise
exchange rules can be naturally extended to accommodate changes in the
sets of agents and the resources (see Ehlers and Klaus, 2002a). When keep-
ing resources fixed, but allowing for changes in the sets of agents, Ehlers,
Klaus, and Pápai (2002) characterize mixed dictator-pairwise exchange rules
by efficiency, strategy-proofness, and the solidarity property population-
monotonicity10. Similarly as in Ehlers, Klaus, and Pápai (2002) we conclude

8Note that this rule satisfies efficiency and resource-monotonicity.
9The use of coalitional strategy-proofness greatly simplifies the proof, which then is very

similar to the proof of the characterization presented in Ehlers, Klaus, and Pápai (2002).
Kesten (2003b), using a result from Ergin (2002), presents a short proof for the general
preference domain R.

10If some agents leave the economy, then as a result either all remaining agents (weakly)
gain or they all (weakly) lose.
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that guaranteeing solidarity comes with a price. Whereas without the soli-
darity property agents can “trade” objects arbitrarily, resource-monotonicity
restricts the assignment of individual property rights, and therefore, “trad-
ing” to two agents at a time.

For multiple assignment problems where agents can consume sets of ob-
jects, Ehlers and Klaus (2003) show that the only rules satisfying efficiency,
resource-monotonicity, and coalitional strategy-proofness are serial dictator-
ship rules. In light of this result, our characterization is a bit more positive
since some of the rules we identify are non-dictatorial. In spite of the hi-
erarchical nature of mixed dictator-pairwise exchange rules, they are not
unappealing, and they offer flexibility in selecting the hierarchy itself and
choosing the splitting of the endowments in the case of “twin-dictators.”

It is easy to see that efficiency, independence of irrelevant objects, and
resource-monotonicity are logically independent. Below we discuss how our
results change if |K| ≤ |N |.

Adjustments for |K| ≤ |N|
For our main result (Theorem 1) we require |K| > |N | for technical conve-
nience. Now suppose |K| ≤ |N | and denote k ≡ |K| and n ≡ |N |. For the
larger domain R, all our results remain true. However, if n ≥ k, then on the
domain R0, where the null object is always ranked last, we derive a slightly
larger set of rules. They are essentially mixed dictator-pairwise-exchange
rules except that, loosely speaking, the last two objects may be arbitrarily
inherited.

These allocation rules still require that the inheritance table reflects that
at most two agents trade. However, since every agent who leaves the market
receives a real object, given the preference domain R0, only the first k rows
of the inheritance table are relevant if n > k. In fact, inheritance of an object
by an agent in row (k − 1) implies that there are no more than two objects
left, given that (k− 2) agents have already received their allotments. Thus,
independently of the structure of the inheritance table after row k, these
rules still do not allow trading by more than two agents. This is illustrated
by the following example.

Example 1. Let N ≡ {1, 2, 3, 4} and K ≡ {x, y, z}. Consider the inheri-

9



tance table π specified below.

πx πy πz

1 1 1
2 3 4
3 4 2
4 2 3

Note that when preferences are restricted to R0, ϕπ satisfies efficiency,
resource-monotonicity, and coalitional strategy-proofness. Furthermore,
even though the second and third rows contain three different agents each,
an agent in the second row inherits an object only if agent 1 has already
received a real object. Thus, exactly two agents inherit objects in the second
row, and trading by three agents is excluded. ♦

There are two difficulties regarding the specification of mixed dictator-
pairwise-exchange inheritance tables when n ≥ k. The first one has to
do with the uniqueness of the inheritance tables. When agents may rank
the null object first (for preferences in R), each mixed dictator-pairwise-
exchange inheritance table π uniquely defines a mixed dictator-pairwise-
exchange rule, in the sense that for two different mixed dictator-pairwise-
exchange inheritance tables there always exists at least one preference profile
at which the resulting allocations differ. This follows since, in situations
where agents want to consume the null object and thus can leave the market
without any real object, each entry in a mixed dictator-pairwise-exchange
inheritance table π matters, given that the potential inheritance indicated
by each entry is realized in certain cases. By contrast, if agents always rank
the null object last (the case we examined here), a mixed dictator-pairwise-
exchange inheritance table may not uniquely define a rule.11 Note that in
Example 1, the entire last two rows are redundant: since 2, 3, and 4 (in fact,
only two of these agents) inherit one object each from 1, given the second
row of the table, further inheritances will not occur at any preference profile.

The second difficulty is that when inheritances indicated by entries in
the last (k-th) row of the table are not redundant, they may depend on the
allocation of the objects to agents who have already received their assign-
ments. For example, if agents 1 and 2 share exclusively the first two rows
of an inheritance table, given the same setup as in Example 1, then we may
specify the inheritance of object z (which is not redundant in this case) as
follows: let 3 inherit z if 1 receives x and 2 receives y, and let 4 inherit z

11This possibility of non-uniqueness is reflected in the definition of the more general class
of endowment inheritance rules. For a further discussion of uniqueness see Pápai (2000).
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if 1 receives y and 2 receives x. This “history-dependent” specification of
inheritance, unlike in any other case, does not violate resource-monotonicity
in the current case, since on the preference domain R0 agents 3 or 4 never
inherit from 1 or 2 if there is less than the full set of three objects to allo-
cate. Note that this type of conditional inheritance cannot be described by
an inheritance table, and that in fact these rules do not form a subclass of
the endowment inheritance rules.12

Both of the above difficulties are avoided if n < k, that is, if the full
set of real objects contains more objects than there are agents. The reason
for this is that in this case, resource-monotonicity has implications for the
last two rows of the inheritance table as well. This is even true on the
smaller preference domainR0, which precludes agents who have endowments
from leaving the market without a real object. Note, furthermore, that the
rules satisfying the required properties when n ≥ k are not significantly
different from the mixed dictator-pairwise-exchange rules: the differences
only concern the allocation of the last two objects, and these rules only
offer more flexibility in choosing the last two recipients, while trade is still
restricted to at most two agents. It follows from the proof of Theorem 1 that
the first (k−1) rows of the inheritance table are still uniquely defined13 and
up to row (k−2), there is always a dictator or a pairwise exchange. In order
to avoid tedious details, we state and prove our theorem on the preference
domain R0 for the case n < k. Finally, note that we do not compromise
much with this assumption, since it is a very reasonable assumption in the
context of variable resources: it simply says that we have more potentially
available real objects than the fixed number of agents, but, since resources
may vary, it may be the case that the set of actually available real objects
contains fewer objects than there are agents.

4 Proof of Theorem 1

It is easy to verify that mixed dictator-pairwise-exchange rules satisfy effi-
ciency, independence of irrelevant objects, and resource-monotonicity since
no more than two agents “trade” at any step. In proving the converse, let
|K| > |N | and let ϕ be a rule satisfying efficiency, independence of irrelevant

12The hierarchical exchange rules defined in Pápai (2000) include “history-dependent”
inheritances and thus further explanations may be found there.

13The (k − 1)th row is defined by taking (k − 1) objects and assigning (k − 2) objects
to the first (k − 2) agents. Since there are k objects, there is one real object which is not
available in the economy. This object can then be used to show that the definition of the
(k − 1)th row is independent of the (k − 2) objects assigned to the first (k − 2) agents.
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objects, and resource-monotonicity. We give all proofs for the domain R0,
since the proofs for the larger domain R are completely analogous.

Since all agents always rank the null object last, for all H ∈ H and all
R,R′ ∈ RN

0 such that R|H = R′|H we have

ϕ(R,H) = ϕ(R′,H). (1)

Equation (1) reflects independence of irrelevant objects on R0, denoted by
IIO in the sequel.

We prove that we can calculate the allocations assigned by ϕ in a se-
quence of steps that correspond to the algorithm for a unique mixed dictator-
pairwise-exchange rule.
1. At most two agents trade in Step 1

Let R ∈ RN
0 . For all h ∈ K, we define fh(1) ≡ i if and only if

ϕi(R, {h}) = h. By efficiency, fh(1) is well-defined. Note that (1) and
the fact that the null object is ranked last imply that the definition of fh(1)
is independent of the choice of R. We call agent fh(1) the dictator over
object h and define πh(1) ≡ fh(1).

The first lemma proves that the first row of the inheritance table contains
at most two agents.

Lemma 2.
∣∣{fh(1) | h ∈ K}∣∣ ≤ 2.

Proof. Suppose that
∣∣{fh(1) | h ∈ K}∣∣ ≥ 3. Let 1, 2, 3 ∈ N , a, b, c ∈ K,

and

ϕ1(R, {a}) = a,

ϕ2(R, {b}) = b,

ϕ3(R, {c}) = c.

Let R′ ∈ RN
0 be such that

b P ′
1 c P ′

1 a,
a P ′

2 b P ′
2 c,

a P ′
3 c P ′

3 b.

Since R|{a} = R′|{a}, ϕ1(R′, {a}) = a. Similarly, ϕ2(R′, {b}) = b and
ϕ3(R′, {c}) = c. Hence, by efficiency and resource-monotonicity,

ϕ1(R′, {a, b}) = b,

ϕ2(R′, {a, b}) = a,

ϕ1(R′, {a, c}) = c,

ϕ3(R′, {a, c}) = a.

12



Now, resource-monotonicity yields the desired contradiction
ϕ2(R′, {a, b, c}) = a and ϕ3(R′, {a, b, c}) = a. ¤

Let a, b ∈ K be such that a 6= b. Let R̄ ∈ RN
0 be such that a P̄fa(1) b

and for all i ∈ N\{fa(1)}, b P̄i a. We define fa
b (2) ≡ i if and only if

ϕi(R̄, {a, b}) = b.
The following argument shows that fa

b (2) ∈ N\{fa(1)}. By IIO,
ϕfa(1)(R̄, {a}) = a. Thus, by a P̄fa(1) b and resource-monotonicity,
ϕfa(1)(R̄, {a, b}) = a. Then efficiency implies that fa

b (2) ∈ N\{fa(1)}.
Similarly as in Lemma 2 the following holds.

Lemma 3. |{fa
b (2) | b ∈ K\{a}}| ≤ 2.

Assume that agent i is the dictator over objects a and b, i.e., i = fa(1) =
f b(1). Then, a second dictator over a third object does not depend on which
of the first two objects agent i picks.

Lemma 4. Let a, b ∈ K be such that fa(1) = f b(1). Then for all c ∈
K\{a, b} we have fa

c (2) = f b
c (2).

Proof. Without loss of generality, let fa(1) = f b(1) = 1 and fa
c (2) = 2.

Let R ∈ RN
0 be such that b P1 a P1 c and for all i ∈ N\{1}, top(Ri, K) =

c. By fa(1) = 1, IIO, and resource-monotonicity, ϕ1(R, {a, c}) = a.
By fa

c (2) = 2 and R|{a,c} = R̄|{a,c}, ϕ2(R, {a, c}) = c. By resource-

monotonicity, ϕ2(R, {a, b, c}) = c (otherwise 2 would lose). Since f b(1) = 1,
ϕ1(R, {b, c}) = b. Thus, by resource-monotonicity, ϕ2(R, {b, c}) = c (other-
wise, some agent j 6∈ {1, 2} gains when object a is removed from the economy
(R, {a, b, c})). Thus, by IIO, f b

c (2) = 2 = fa
c (2). ¤

By Lemma 2, there are two cases. In Case 1 we can derive the allotment for
one agent by a “dictator step” in the first step of the definition of a mixed
dictator-pairwise-exchange rule. Case 2 deals with a pairwise exchange step.

Case 1: Step 1 is a dictator step, i.e., without loss of generality, for all
h ∈ K, fh(1) = 1. Thus, for all h ∈ K, πh(1) = 1 and S1 = {1}.
Note that resource-monotonicity implies that agent 1 receives for all
economies his most preferred object. First, we show that the definition
of fa

c (2) is independent of RN\{1}. Let fa
c (2) = 2.

Lemma 5. For all R ∈ RN
0 , if a P1 c, then ϕ2(R, {a, c}) = c.

13



Proof. Let b ∈ K\{a, c}. Let R̄ ∈ RN
0 be such that a P̄1 b P̄1 c and for all

i ∈ N\{1}, R̄i|{a,c} = Ri|{a,c} and cP̄ib. By Lemma 4 and fa(1) = f b(1) = 1,
we have fa

c (2) = f b
c (2) = 2. By IIO,

ϕ(R̄, {a, c}) = ϕ(R, {a, c}). (2)

By IIO and the construction of R̄, ϕ1(R̄, {b, c}) = b and ϕ2(R̄, {b, c}) = c.
By resource-monotonicity and fa(1) = 1, ϕ1(R̄, {a, b, c}) = a, and therefore,
ϕ2(R̄, {a, b, c}) = c. Since fa(1) = 1, ϕ1(R̄, {a, c}) = a. Thus, by resource-
monotonicity, ϕ2(R̄, {a, c}) = c (otherwise, some agent in N\{1, 2} gains
when object b is removed from (R̄, {a, b, c})). Hence, by (2), ϕ2(R, {a, c}) =
2. ¤

The next lemma is the important step for Case 1 in proving that the
next row of the inheritance table contains at most two agents.

Lemma 6. |{fa
c (2) | a, c ∈ K and a 6= c}| ≤ 2.

Proof. Suppose that |{fa
c (2) | a, c ∈ K and a 6= c}| ≥ 3. Hence, |N | ≥ 4.

By Lemmas 3 and 4, for some a ∈ K we have |{fa
x (2) | x ∈ K\{a}}| = 2

and for some h ∈ K\{a}, fh
a (2) /∈ {fa

x (2) | x ∈ K\{a}}. Let
∣∣∣{fh

a (2), fa
b (2), fa

c (2)}
∣∣∣ = 3. (3)

Without loss of generality, suppose h 6= b. By Lemma 4, f b
a(2) = fh

a (2).
Since |N | ≥ 4 and |K| > |N |, there exists d ∈ K\{a, b, c}. By Lemma 4,
we have fd

a (2) = f b
a(2), fd

b (2) = fa
b (2), and fd

c (2) = fa
c (2). Thus, by (3),∣∣{fd

h(2) | h ∈ K\{d}}∣∣ ≥ 3, which contradicts Lemma 4. ¤

Case 2: Step 1 is a pairwise exchange step, i.e., without loss of gen-
erality, {fh(1) | h ∈ K} = {1, 2}. Thus, for all h ∈ K, πh(1) ∈ {1, 2} and
S1 = {1, 2}.14

First note the following feature of mixed dictator-pairwise-exchange rules.
Suppose that fa(1) = 1 and for all h ∈ K\{a}, fh(1) = 2, i.e., 1 owns object
a only. Then, 1 either receives a, or he inherits another object from 2, or he
exchanges a for another object. In particular, 2 never “physically” inherits
object a.

The following lemma shows that if agent 1 owns at least two objects,
then agent 2 inherits agent 1’s objects.

14If πh(1) = 1, define πh(2) = 2 and if πh(1) = 2, define πh(2) = 1.
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Lemma 7. If fa(1) = f b(1) = 1, then fa
b (2) = 2.

Proof. By Case 2, there is c ∈ K\{a, b} such that f c(1) = 2. Let
R ∈ RN

0 be such that a P1 c P1 b and for all i ∈ N\{1}, b Pi c Pi a.
By efficiency, resource-monotonicity, f b(1) = 1, and f c(1) = 2, we have
ϕ1(R, {b, c}) = c and ϕ2(R, {b, c}) = b. By resource-monotonicity and
fa(1) = 1, ϕ1(R, {a, b, c}) = a and ϕ2(R, {a, b, c}) = b. Since fa(1) = 1,
ϕ1(R, {a, b}) = a. Thus, by resource-monotonicity, ϕ2(R, {a, b}) = b
(otherwise, some agent in N\{1, 2} gains when object c is removed from
(R, {a, b, c})). Thus, by IIO, fa

b (2) = 2, the desired conclusion. ¤

Lemma 7 implies that whenever there are only two objects, then agents 1
and 2 receive them and the other agents receive null objects. By efficiency
and resource-monotonicity in Case 2 the first step is a pairwise exchange.

Next we define fab
c (3). Let R̄ ∈ RN

0 be such that a P̄1 b P̄1 c, b P̄2 a P̄2 c,
and for all i ∈ N\{1, 2}, c P̄i a P̄i b. Notice that at R̄, since the first step is
a pairwise exchange, whenever a and b are present, agent 1 receives object
a and agent 2 object b. Thus, ϕ1(R̄, {a, b, c}) = a and ϕ2(R̄, {a, b, c}) = b.
We define fab

c (3) ≡ j if and only if ϕj(R̄, {a, b, c}) = c. By efficiency, fab
c (3)

is well-defined.
Next, we show that the definition of fab

c (3) is independent of object b
that agent 2 picks. Let d ∈ K\{a, b, c}.
Lemma 8. fab

c (3) = fad
c (3).

Proof. Let R ∈ RN
0 be such that a P1 b P1 d P1 c, d P2 b P2 a P2 c, and for

all i ∈ N\{1, 2}, c Pi a Pi b Pi d. By definition and IIO, ϕ1(R, {a, c, d}) = a,
ϕ2(R, {a, c, d}) = d, and ϕfad

c (3)(R, {a, c, d}) = c. By resource-monotonicity,
ϕ1(R, {a, b, c, d}) = a, ϕ2(R, {a, b, c, d}) = d, and ϕfad

c (3)(R, {a, b, c, d}) =
c. Since the first step is a pairwise exchange, ϕ1(R, {a, b, c}) = a and
ϕ2(R, {a, b, c}) = b. Thus, by resource-monotonicity, ϕfad

c (3)(R, {a, b, c}) =
c (otherwise, some agent in N\{1, 2, fad

c (3)} gains when object d is re-
moved from (R, {a, b, c, d})). Hence, by definition of fab

c (3) and IIO,
fab

c (3) = fad
c (3), the desired conclusion. ¤

The proofs of the following lemma and of Lemma 8 are similar.

Lemma 9. fab
c (3) = fdb

c (3).

Lemmas 8 and 9 together with IIO imply that fab
c (3) = f ba

c (3),15 i.e.,
the definition of the third agent is independent of whether agent 1 picks

15We have fab
c (3) = fad

c (3) = fbd
c (3) = fba

c (3).
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object a and agent 2 object b or vice versa. Furthermore, Lemmas 8 and 9
imply ∣∣∣{fhh′

a (3) | h, h′ ∈ K\{a} and h 6= h′}
∣∣∣ = 1. (4)

Next we show that if agent 1 owns object a, then the definition of fab
c (3)

is independent of whether agent 2 prefers object a to b or object b to a.

Lemma 10. Let fa(1) = 1 and R ∈ RN
0 be such that a P1 b P1 c, a P2 b P2 c,

and for all i ∈ N\{1, 2}, c Pi a Pi b. Then ϕfab
c (3)(R, {a, b, c}) = c.

Proof. Let d ∈ K\{a, b, c}. Let R′ ∈ R be such that a P ′
1 b P ′

1 d P ′
1 c,

d P ′
2 a P ′

2 b P ′
2 c, and for all i ∈ N\{1, 2}, c P ′

i a P ′
i d P ′

i b.
By Lemma 8, fad

c (3) = fab
c (3). Thus, by definition of R′ and IIO,

we have ϕfad
c (3)(R′, {a, c, d}) = ϕfab

c (3)(R′, {a, c, d}) = c. By resource-
monotonicity, ϕfab

c (3)(R′, {a, b, c, d}) = c. Since the first step is a pair-
wise exchange, ϕ1(R′, {a, b, c}) = a and ϕ2(R′, {a, b, c}) = b. Thus, by
resource-monotonicity, ϕfab

c (3)(R′, {a, b, c}) = c (otherwise, some agent in
N\{1, 2, fab

c (3)} gains when object d is removed from (R′, {a, b, c, d})).
By construction, R′|{a,b,c} = R|{a,b,c}, and by IIO, ϕ(R′, {a, b, c}) =
ϕ(R, {a, b, c}), the desired conclusion. ¤

Similarly to the proof of Lemma 10, we can show that whenever agents 1
and 2 receive objects a and b, always the same agent receives object c if
H = {a, b, c}, even if agent 1 or agent 2 rank object c as their second
best object among the objects in H (and not as their worst, as assumed in
Lemma 10). This fact and Lemma 10 imply that the definition of fab

c (3) is
independent of the preferences of agents 1 and 2 (given that they strictly
prefer both objects to c).

The following lemma is similar to Lemma 3.

Lemma 11.
∣∣{fab

h (3) | h ∈ K\{a, b}}∣∣ ≤ 2.

The next lemma is similar to Lemma 6. We prove that the third row of
the inheritance table contains at most two agents.

Lemma 12.
∣∣∣{fhh′

h̄
(3) | h, h′, h̄ ∈ K and |{h, h′, h̄}| = 3}

∣∣∣ ≤ 2.

Proof. Suppose that
∣∣∣{fhh′

h̄
(3) | h, h′, h̄ ∈ K and |{h, h′, h̄}| = 3}

∣∣∣ ≥ 3.
Hence, |N | ≥ 5 and |K| > 5. By (4) there exist a, b, c ∈ K such that∣∣{f bc

a (3), fac
b (3), fab

c (3)}∣∣ = 3 and |{a, b, c}| = 3. Let d, e ∈ K\{a, b, c}. By
(4), we have fde

a (3) = f bc
a (3), fde

b (3) = fac
b (3), and fde

c (3) = fab
c (3). But

then,
∣∣{fde

h (3) | h ∈ K\{d, e}}∣∣ ≥ 3, which contradicts Lemma 11. ¤
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We already proved that whenever agents 1 and 2 receive objects a and
b, always the same agent receives object c if H = {a, b, c} and for all agents
i ∈ N\{1, 2}, cPi aPi b. Finally, we show that the agent who receives object
c does not depend on the preferences of agents in N\{1, 2}.
Lemma 13. Let R ∈ RN

0 be such that ϕ1(R, {a, b, c}) = a and
ϕ2(R, {a, b, c}) = b. Then ϕfab

c (3)(R, {a, b, c}) = c.

Proof. Since |K| > |N | we assume that |K| ≥ 5 (otherwise |N | = 3 and
the conclusion of Lemma 13 is trivial). Let d, e ∈ K\{a, b, c}. By IIO, we
may suppose that c is ranked worst in {c, d, e} for agents 1 and 2, 1 prefers
a to both d and e, and 2 prefers b to both d and e. By (4),

fde
c (3) = fab

c (3). (5)

Let R′ ∈ RN
0 be such that R′

{1,2} = R{1,2} and for all i ∈ N\{1, 2},
R′

i|{a,b,c} = Ri|{a,b,c} and c P ′
i d P ′

i e. By IIO,

ϕ(R′, {a, b, c}) = ϕ(R, {a, b, c}). (6)

By definition and (5), ϕfab
c (3)(R′, {c, d, e}) = c. By resource-

monotonicity, ϕ1(R′, {a, b, c, d, e}) = a and ϕ2(R′, {a, b, c, d, e}) = b.
Thus, by resource-monotonicity, ϕfab

c (3)(R′, {a, b, c, d, e}) = c. Again,
by resource-monotonicity, ϕfab

c (3)(R′, {a, b, c}) = c (otherwise, some
agent in N\{1, 2, fab

c (3)} gains when objects d and e are removed from
(R′, {a, b, c, d, e})). Hence, by (6), ϕfab

c (3)(R, {a, b, c}) = c. ¤

Cases 1 and 2 imply that at Step 2 at most two agents trade (Lemmas 6
and 12) independently of the preference profile and the allotments of the
dictator(s) at Step 1 (Lemmas 5, 10, and 13). Similarly as for Step 1, we
can now prove that Step 2 is either a dictator step or a pairwise exchange
step and that again at Step 3, if there is one, at most two agents trade
independently of the preference profile and the allotments of the dictator(s)
at Steps 1 and 2, etc.

2. General Induction Step: In the first part of the proof, we have shown
that ϕ allocates the objects through a dictatorship or a pairwise exchange in
both Steps 1 and 2. As already indicated, in proving the general induction
step we use the arguments of the first part of the proof (they give much
insight into how the axioms work) and the following definitions.

Suppose that we have defined the mixed dictator-pairwise exchange rule
up to Step t. Let S1, S2, . . . , St be the members of the ordered partition up
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to Step t, where each member is a singleton or a pair. Let s ≡ ∑t
l=1 |Sl| (so,

the first s rows of the mixed dictator-pairwise-exchange inheritance table
are defined). Without loss of generality, let

⋃t
l=1 Sl = {1, 2, . . . , s}.

We define the (s + 1)st row as follows. For all Hs ⊆ K such that
|Hs| = s and all c ∈ K\Hs, order Hs in an arbitrary manner, say Hs =
{h1, h2, . . . , hs}, and let R ∈ RN

0 be such that

h1 P1 h2 P1 h3 P1 · · · P1 hs P1 c,
h2 P2 h1 P2 h3 P2 · · · P2 hs P2 c,
h3 P3 h1 P3 h2 P3 · · · P3 hs P3 c,
h4 P4 h1 P4 h2 P4 · · · P4 hs P4 c,

...
...

hs Ps h1 Ps h2 Ps · · · Ps hs−1 Ps c,

and for all i ∈ N\{1, . . . , s},

c Pi h1 Pi h2 Pi . . . Pi hs.

Note that for all is ∈ {1, . . . , s}, ϕis(R, Hs ∪ {c}) = hs. We define16

f (h1,...,hs)
c (s + 1) ≡ j ⇔ ϕj(R, Hs ∪ {c}) = c.

Let d ∈ K\(Hs ∪ {c}). Similarly to Lemma 8 we can show the following.

Lemma 14. f
(d,h2,...,hs)
c (s + 1) = f

(h1,h2,...,hs)
c (s + 1).

Using Lemma 14, it follows that f
(h1,h2,...,hs)
c (s + 1) does not depend on

the order of Hs. For example, f
(h2,h1,h3,...,hs)
c (s + 1) = f

(h1,h2,...,hs)
c (s + 1).

Then fHs

c (s + 1) = f
(h1,h2,...,hs)
c (s + 1) is well-defined. Similarly to (4) we

have then
∣∣{fHs

c (s + 1) |Hs ⊆ K\{c} and |Hs| = s}∣∣ = 1.

Then, similarly to Lemmas 10 and 12 in Case 2 of the first part of the proof,
we can show that the (s+1)st row of the inheritance table contains at most
two agents (Lemma 15), independently of the order of Hs and of the set of
s objects Hs.

Lemma 15.
∣∣{fHs

h (s + 1) | Hs ∪ {h} ⊆ K and |Hs ∪ {h}| = s + 1}∣∣ ≤ 2.

16Note that before we wrote fab
c (3) instead of f

(a,b)
c (3).
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Then, similarly to Lemma 13 it follows that fHs

c (s+1) receives c at any
profile where agents {1, . . . , s} receive Hs in the first t steps.

Lemma 16. Let Hs ⊆ K be such that |Hs| = s, c ∈ K\Hs, and
R ∈ RN

0 be such that {ϕ1(R, Hs ∪ {c}), . . . , ϕs(R,Hs ∪ {c})} = Hs. Then
ϕfHs

c (s+1)(R, Hs ∪ {c}) = c.

Finally, from resource-monotonicity it follows that Step s+1 is a dictator
step or a pairwise exchange step.
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Abdulkadiroğlu, A., and T. Sönmez (1998): Random Serial Dictatorship
and the Core from Random Endowments in House Allocation Prob-
lems, Econometrica 66, 689–701.
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