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1 Introduction

Understanding how the design of poverty assistance programs accomplishes stated goals has

gained new importance since the overhaul of the welfare system in the United States in

1996. Currently, under the Temporary Assistance for Needy Families (TANF) program,

states have been given mandates to experiment with programs that reduce poverty and

decrease welfare rolls by promoting work. The issue of how large work requirements should

be and for which individuals they should be required has been central to the debate of the

current reauthorization of the TANF program. Indeed, President George W. Bush issued a

proposal with the claim that “The heart of welfare reform is encouraging work”1.

The TANF program currently requires that 50% of each state’s welfare population be

placed in a work activity that is 30 hours or more per week after a period of two years on

the welfare rolls. In practice, both the percentage of participants who are working2 and the

minimum hour requirement vary substantially from state to state. The types of exemptions

given to workers (e.g. for disability) are numerous but are not standardized across the states.

The majority of states do not permit qualifying participants any grace period at all - benefits

are immediately contingent upon work activity when entering the welfare rolls.

Within the context of this large amount of variation and the debate on work requirements,

the question of how to optimally design a poverty assistance program using work as an

instrument arises. This paper seeks to address this question and take into account the

fact that population characteristics may differ dramatically. We find that the use of work

requirements depends substantially on these characteristics.

The theoretical analysis of welfare programs was recast by Besley and Coate (1992, 1995).

They employ the tools of mechanism design to solve for optimal income maintenance pro-

grams. Such programs incorporate policy goals of reducing poverty and decreasing program

size by ensuring that all participants are above a minimum income level and that the cost of

1http://www.whitehouse.gov/news/releases/2002/02/welfare-book-04.html
2It is often less than 50% due to allowances given for decreases in the welfare population.

2



the program is minimized. Specifically, Besley and Coate characterize such programs when

income generating ability is unobservable and income and workfare are used as instruments.

We investigate the implications of having both income generating ability and disutility of

labor as unobservable characteristics of individuals when the government bases transfers on

hours worked. Disutility of labor is clearly an important factor in individuals’ labor decisions,

especially among welfare populations. It can arise from several factors, such as the need to

care for children, physical handicaps, living far away from work, or strict preference for

leisure. A survey by The Urban Institute of the participants in the TANF program in 1997

indicated that 77% reported at least one obstacle to working3. There is also a growing body

of evidence that as the welfare rolls diminish, the participants remaining have a combination

of low ability, responsibilities at home, and other factors that make them increasingly difficult

to move into employment4. This raises the question of how states should design programs

to address populations with these characteristics.

Disentangling the effects of ability and disutility of labor is very important, as we show

that the optimal program depends substantially on which effect dominates. Consider the

following two populations that a planner could face: the elderly and disabled, and poor

young single mothers. For the first group, it is clear that income generating ability is low

and observable, but actual difficulty of working may be noisy. For the second group, the

burden of working is clear, but actual ability may not be. And even within these groupings,

many would argue that neither characteristic can be observed. Should a program designed

to assist one group look the same as one designed for the other? In what follows, we

examine the solution when each characteristic is unobservable and an environment where

both characteristics are unobservable5.

3For example, in the survey (see Zedlewski (1999)), 35% of participants were found to suffer from poor
mental health, 48% from poor general health, 10% had no car and did not live in a metropolitan area, and
15% had a child under age one.

4For an extreme example, The New York Times (September 15, 1998) describes how Hispanic immigrant
women’s language difficulties, inadequate job training, and traditional values prevent them from being able
to find jobs.

5Beaudry and Blackorby (1998) investigate a utilitarian program where value of market and non-market
time are unobservable using a framework in which consumption and leisure are perfect substitutes.
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The solutions show distinct differences between the environments that have strong policy

implications. These differences arise from the way each characteristic affects the trade-off

between reducing informational rents and maintaining the earned income of workers. We

focus on the use of work requirements, which we define as making benefits contingent on

an agent working for longer hours in the private sector than they would if there were no

program6 (note that this has no relation to requirements to perform unpaid public sector

work (workfare), which is a major focus of Besley and Coate (1992, 1995)7). A program with

work requirements is optimal when disutility of labor is unobservable but not when ability

is unobservable. The optimality of work requirements in the two dimensional screening

model depends on the relative importance of each characteristic. In addition, all of the

programs look like variants of the Negative Income Tax - they have an income guarantee for

those at the bottom of the distribution and a Benefit Reduction Rate (BRR, the implicit

marginal tax rate) which depends on population characteristics. Given the wide variance

in state population characteristics and in state TANF programs8, these solutions provide a

framework for understanding how the incentive effects and institutional design interact with

different populations.

This work provides an application of several advances in mechanism design theory. Vol-

untary participation of agents in the income maintenance program represents an example

of a “countervailing incentive”, introduced by Lewis and Sappington (1989), and further

explored by Maggi and Rodríguez-Clare (1995) and Jullien (1997). With reservation utility

allowed to vary with type, the participants have the incentive to claim that they have a ‘bet-

ter’ type and thus a higher opportunity cost that needs to be compensated, which conflicts

with the usual informational incentive to claim that one has a ‘worse’ type. Multidimen-

6We could also more loosely define work requirements as making benefits contingent on positive amounts
of work in the private sector. This would not change our conclusions.

7Besley and Coate (1992, 1995) discuss workfare as a screening device. Looking at workfare in the two
dimensional environment is an interesting issue, but is beyond the present scope of the paper. Cuff (2000)
examines the issue in a discrete setting.

8Besides the already noted variability in work requirements, in 1997 states’ Benefit Reduction Rates were
anywhere between .33 to 1. For a more detailed comparison of state TANF programs see Gallagher et al.
(1998).
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sional screening problems and their difficulties have been examined since Laffont, Maskin,

and Rochet (1987) solved for a specific parameterization of a non-linear pricing model. We

are able to use a similar methodology (generalized in McAfee and McMillan (1988)) and

reduce the dimensionality of the problem, allowing us to find the optimal control solution.

The paper is organized as follows: In Section 2, the setup for the general model appears.

In Section 3, we look at the case when just ability is unobservable, and Section 4 then finds

the optimal program when just disutility of labor is unobservable. Section 5 solves the model

for when both dimensions are unobservable, and Section 6 concludes.

2 Environment

Income maintenance is a critical element of poverty reduction programs. Policy initiatives

such as the Negative Income Tax, wage subsidies, Earned Income Tax Credit, and conditional

income subsidies all embed the implicit goal of increasing the income of the poor. In this

paper income maintenance represents an explicit goal of the planner and is incorporated as

the constraint that income be greater than or equal to some minimum prescribed level z.

Since z is not defined in terms of other parameters, the program is general enough to solve

for any amount of poverty reduction.

The analysis operates in a static, deterministic environment. Individuals’ types are ex-

ogenous and observable to the individual but not the planner. Income generating ability is

represented by w and is assumed to be perfectly correlated with the real wage. We represent

the disutility of labor by an index θ. The types w and θ have supports of [a, b] and [θa, θb]

respectively9, and are known to be jointly distributed according to the pdf g(w, θ). We make

use of the conditional pdfs, which for notational simplicity are called f(w) and p(θ)10. The

instruments available to the planner are hours of work (l) and transfers (t).

9As opposed to Besley and Coate (1995), the type space is a continuum. This makes the multidimensional
analysis more tractable.

10From our definition f(w) = g1|2(w | θ) = g(w,θ)
∫
b

a
g(w,θ)dw

, and is associated with c.d.f. F (w) =
∫ w

a
f(x)dx.

Also, p(θ) = g2|1(θ | w) = g(w,θ)
∫ θb

θa
g(w,θ)dθ

, and is associated with c.d.f. P (θ) =
∫ θb

θ
p(y)dy..
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There are a few assumptions that are implicitly embedded in the model. First, we assume

that hours of work are observable rather than income. This is not standard in models of

transfer programs but it both facilitates the analysis and highlights the role of work as an

instrument for the government. We discuss extensively how this affects our results in relation

to the work of Besley and Coate (1995) in the text. Second, we assume that the planner

can separate by some visible characteristic the population into two groups, the well off and

the less well off. The planner constructs the income maintenance plan for the less well off

group and funds it from the well off group. An example of such a visible characteristic

would be assets or one’s placement in defined income ranges. This is similar to how most

poverty assistance programs in the U.S. work. It is important to note that the definition of

the less well off group is a construct; not everyone in the group will actually be included in

the program (the program size is determined endogenously)11. The method of funding12 is

not considered in what follows; we just assume that the planner wants to accomplish income

maintenance as cheaply as possible. Lastly, we assume that there is an upper bound on the

minimum ability level a (specifically a <
F (w

′

)
f(a)

, where w
′

is defined as the highest ability

person receiving transfers). This pins down the solution, includes the case where a = 0, and

allows for individuals to not work in the status quo case.

A voluntary participation constraint is included for the program, meaning that the plan-

ner must induce people to participate and does not have the ability to force a program on

the population. An important implication of adding a voluntary participation constraint is

that transfers must be positive, eliminating any taxation aspect of the program.

We assume that an individual’s utility is quasilinear in income, U(w, θ) = wl − h(l, θ),

and that hl () , hθ () , hll () , hlθ () ≥ 0. Two specific functional forms for h(l, θ) are used

throughout the paper, θl2 and (l + θ)2. The solutions are not qualitatively affected by the

use of either one until the two dimensional case is analyzed. In the two dimensional case the

11This implies that the highest ability b and the lowest disutility θa should be thought of as useful measures
for how many people are included in the programs rather than cutoffs.

12Gelbach and Pritchett (2002) point out that targeting populations is more likely when the budget for
redistribution is not a choice variable of the government.
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latter is relied upon for reasons which will be made clear.

If no income maintenance program was constructed, people would choose l∗ to maximize

U(w, θ) and the maximized U(w, θ) is labeled U0(w, θ). We call the absence of the program

the ‘status quo’ and refer to individuals’ choices as ‘status quo’ allocations. A mechanism

consists of (l, t).

3 Income Maintenance When Ability Is Unobservable

3.1 The Full Information Problem

Consider a planner’s problem in constructing an Income Maintenance Program when income

generating ability, w, is known and θ is fixed. In this case, the planner knows if anyone is

above the minimum income level before any program is instituted, and can refrain from giving

them any transfers. For those types that deserve aid, the planner must offer a package that

gets them above the minimum income level and (weakly) induces them to participate. These

two constraints are labelled Income Maintenance and Voluntary Participation. The program

is solved as follows.

min
{l(w),t(w)}

∫ b

a

t(w)f(w)dw

such that

wl + t ≥ z (IM)

wl − h(l, θ) + t ≥ U0(w) (V P )

To find the solution we first define l∗ implicitly from the individual’s maximization prob-

lem: h′(l∗, θ) = w. We also define l̄(w) as the value of l when both IM and V P bind, giving

us h(l̄(w), θ) = z −U0(w). Since l̄(w) is the l that minimizes transfers while satisfying both

constraints, the full information solution can be characterized in the following manner. If

wl∗ ≥ z, l = l∗ and t = 0. If wl∗ < z, then l = l̄(w) and t = z − wl̄(w). In words, those
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who have status quo income above z are not included, and those whose income was less than

z receive an income of z while being made indifferent between the program and the status

quo.

The labor allocation for program participants is larger than their status quo labor choice.

Transfers begin at z and decrease with ability to zero. The labor allocation also decreases

with ability. Since hours worked increase with ability for the population not admitted to

the program, the first best allocation is not incentive compatible. Once ability becomes

unobservable, this part of the population could claim low ability, work the same number of

hours, and receive a positive transfer. We must accordingly focus on a second best world.

3.2 Solving the Income Maintenance Problem (IMPw)

Now we explore the planner’s problem when w is unobservable. We add to the problem

considered above the standard incentive compatibility constraint to induce truth-telling:

wl(w)− h(l(w), θ) + t(w) ≥ wl(ŵ)− h(l(ŵ), θ) + t(ŵ) ∀w, ŵ (IC)

Note that the single crossing property holds and we can express utility as U(w) = U(a)+
∫ w

a
l(x)dx. We require that l(w) be non-decreasing and continuous. We assume that F (w)−1

f(w)
is

increasing in w, as is standard. In addition, we define h(l, θ) = θl2 for notational convenience.

All qualitative results hold for any h(l, θ) that satisfy our assumptions from section 2. With

this functional form, U0(w) = w2

4θ
. Since income (defined as real earnings plus transfers) is

monotonically increasing13 in w, IM must only be satisfied at w = a and can be replaced

with al(a) + t(a) ≥ z.

Using a solution technique suggested by Maggi and Rodríguez-Clare (1995), we redefine

the problem and analyze it in an optimal control setting. Let R(w) represent rent, that

is, type w’s utility above her reservation utility (notationally, R(w) = U(w) − w2

4θ
). The

objective function can now be written as:

13This comes from incentive compatibility: d
dw

(wl + t) = d
dw

(U + θl2) = l + 2θl dl
dw

.
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∫ b

a

{−R(w)−
w2

4θ
+ wl(w)− θl(w)2}f(w)dw (IMPw)

The main constraints are V P (which now takes the formR(w) ≥ 0), IC (Rw = l (w)− w
2θ
),

and IM (R(w) + w2

4θ
+ θl(w)2 − z ≥ 0). Additionally, the implementability constraint ∂l

∂w
≥

0 and a non-negativity constraint l(w) ≥ 0 must be taken into account. We form the

Hamiltonian:

H(R, l, u, λ, α,w) = {−R−
w2

4θ
+ wl − θl2}f(w) + λ(l(w)−

w

2θ
) + αu

whereR(w) and l(w) are the state variables, λ(w) and α(w) their respective costate variables,

and u(w) = ∂l
∂w

is a control. We add the non-negativity constraints to form a Lagrangian.

The V P constraint presents us with a case of “countervailing incentives” (analyzed in

Lewis and Sappington (1989), Maggi and Rodríguez-Clare (1995) and Jullien (2000)). A

potential applicant for IMPw has an incentive to understate his actual income generating

ability, since the program intends to bring individuals with low earnings above a minimum

income level. As seen in the first best solution, this involves higher transfers for lower types.

The voluntary participation constraint, however, shows that higher types have higher reser-

vation utilities, and must be appropriately compensated for participating in the program.

This provides applicants with a conflicting incentive to overstate their types.

It is natural to have participants’ outside options vary with their types. Moreover, since

the program is not mandatory, a planner can’t impose a minimum utility level on applicants.

Participation (take-up) represents an important issue for welfare researchers14. The solution,

which determines how to allocate informational rents, depends on how the incentives interact.

The following lemma lends insight into the problem.

Lemma 1 If V P binds at w′ > 0, it binds for all w > w′.

We first rewrite V P using the envelope theorem to gain some intuition.

14For example, see Moffitt (1992) and Hoynes (1996).
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U(a) +

∫ w

a

l(x)dx ≥ U0(a) +

∫ w

a

l∗(x)dx (V P ′)

Say that V P ′ binds at some w′. Then l(w′ + ε) must equal l∗(w′ + ε). If it were less than

l∗(w′ + ε), V P ′ would be violated. If it were equal to l∗(w′ + ε), the transfer would equal

zero, the best that can be achieved. By continuity of l∗(·), l(w′+) = l∗(w′). The proposition

now follows. We don’t assume continuity of l(·) to get this result, although we will assume

it for the optimal control problem and verify it using the solution. Note that the proposition

doesn’t hold for w′ = a. If V P ′ binds at a, it must bind at l(a) > l∗(a). This is because IM

binds before V P ′ does at w = a for a large interval of l, which can be seen in the analysis

of the first best solution (using the notation of that solution, IM binds first if l(a) < l̄(a)).

With l(a) > l∗(a), there is built in slack in the V P ′ constraint for low types. The incentive

to overstate (actually, to understate less) one’s type increases with ability. The opportunity

cost to workers of joining the program and receiving less working income than they would in

the status quo begins to outweigh the extra transfers received for pretending that they are

low types. This provides help in constructing a solution to the problem.

The solution found satisfies both necessary and sufficient conditions15. An overview of

all solutions can be found in the appendices.

Proposition 1 The solution to IMPw such that IC, V P ′, and IM hold is:

i) for w ∈ [a,w0], l(w) = 0, t(w) = z

ii) for w ∈ [w0, w
′], l(w) = w

2θ
− F (w′)−F (w)

2θf(w)
, t(w) = z +

∫ w

a
l(x)dx− wl(w) + θl(w)2

iii) for w ∈ [w′, b], l(w) = w
2θ
, t(w) = 0

where we define w0 by w0

2θ
− F (w′)−F (w0)

2θf(w0)
= 0 and w′ by R(w′) = 0 (if there is no w′such

that R(w′) = 0, w′ = b).

15Since the IM constraint is convex in l, the standard sufficiency proof (see Seierstad and Sydsaeter (1987)
Theorem 1, p.317) does not directly apply. A proof that applies to this specific case is available from the
author upon request.
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Figure 1: Income Maintenance with θ Fixed: Status Quo, First Best, and IMPw

The results of the above proposition can be seen in Figure 1 (in which the solution is in

bold and labelled as l̃(w)). The status quo allocation l∗ and the first best allocation (l̄ up

until wl∗(w) = z, and l∗ from then on) are placed alongside the results for comparison.

The objective is clearly to allocate transfers to low types. High types value work more

than low types, so by distorting the labor allocation of the low types downward and further

away from the status quo allocation, incentive compatibility can be achieved. Of course, the

trade-off of reaching incentive compatibility is that the reduction in informational rents incur

costs of distorting the allocations away from the full information solution. The allocation

of zero hours to the bottom of the distribution comes from the fact that the l(w) that

maximizes the virtual surplus for low types is negative16. Thus, distorting hours of work

downwards solves the incentive problem, but runs into our non-negativity constraint. The

countervailing incentive to overstate (again, to understate less) one’s ability becomes an issue

as the reservation utility increases more quickly for the high types. Transfers decrease from z

for the bunched interval to 0 at w′. The people at the top end of the distribution are offered

16The virtual surplus is negative due to our earlier assumption that a <
F (w

′

)
f(a) . If this assumption did not

hold, the solution would not involve bunching: l(w) = w
2θ −

F (w′)−F (w)
2θf(w) for w ∈ [a,w′]. This maintains our

qualitative result that work is distorted downward from the status quo amount when ability is unobservable.
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their status quo allocation, so they essentially opt out of the program. Income maintenance

is satisfied for this interval since l is increasing and IM was satisfied at the bottom of the

distribution. This implies that a necessary (but not sufficient) condition for having V P ′ bind

(w′ < b) is that the higher types were earning more than z in the status quo.

Besley and Coate (1995) present a solution to this problem when types are discrete and

income is observable. They find three regions as we do: low types are bunched and have IM

bind, middle types work less than in the status quo and receive transfers that decrease with

ability, and high types receive their status quo allocation. However, they find that low types

work a positive amount that decreases with ability17. This critical difference arises due to the

difference in instruments. By using labor as the instrument of the government, we restrict

it to be non-decreasing and find the trade-off described in the previous paragraph because

of the interactive effect of ability in the income part of agents’ utility function. Besley and

Coate (1995), on the other hand, restrict income to be non-decreasing. The trade-off present

in their solution is due to the interactive effect of ability in the disutility of labor part of

agents’ utility function. We find a similar trade-off when we model unobservable disutility

of labor.

The solution sheds light on how the optimal income maintenance program relates to

actual poverty assistance programs. First, hours worked are distorted downward. While

a standard mechanism design result, this provides a rationale for work disincentives in a

transfer program - to eliminate the adverse selection problem. Second, the transfer schedule is

analogous to a Negative Income Tax. Nonworking participants are guaranteed the minimum

income level. Participants who work receive a transfer that decreases as work increases

(but at a lower rate, as it can be shown that earned income plus transfers is increasing

with work) until the point where transfers equal zero, and earnings revert to the status quo

amount. The Benefit Reduction Rate, the rate at which earnings are taxed, is not constant

and depends on the distribution of the population. It is bounded below one, distinguishing

17I.e. low types are bunched at a positive income level.
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this program from the precursor to TANF, the Aid to Families with Dependent Children

program (AFDC), which had a marginal tax rate of 100% for a substantial length of time. It

is intuitive to make the BRR depend on population characteristics: if there is a large mass

of very low types, providing some incentive to work is beneficial.

4 Income Maintenance When Disutility of Labor Is

Unobservable

One of the main challenges facing welfare reform is how to decrease the long-term dependency

of some program participants. Why are these people so dependent? One answer is that they

lack the skills that employers value. Another answer is that some people find that working

full time is not possible given their personal situation. Individuals may have responsibilities

to their families or disabilities that make it difficult to participate in the labor force. Both

answers make sense and some may argue that they are very closely related; that is, the ability

of an individual is correlated with their disutility of labor. Given our underlying framework

of rational choice by individuals though, it is important for the planner to take into account

all relevant factors on how the participants make decisions. For example, an independent

woman with a high school diploma will make very different choices than a single mother of

similar educational attainment who must take care of family members in poor health.

In practice, we find that under TANF, states do not require that all welfare recipients

work and often target disutility of labor. Adults who have disabilities or care for someone

who is disabled are generally exempted. Adults with infants also often receive temporary

exemptions. Although there are other programs for people with disabilities, such as SSI

(Supplemental Security Income), many disabled people do not qualify for any program except

welfare. The Urban Institute18 estimated that about 28% of families on the AFDC program

had either a mother or child with a “functional limitation”.

We try to capture the effect of heterogeneity in terms of disutility of labor by a single

18The Urban Institute. (1996) “Profile of Disability Among AFDC Families”
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dimensional index, θ. Large disutility corresponds to a large value of θ, and in the status quo

it can be seen that this decreases the hours of work chosen by the individual. The program

IMPθ, in which ability is fixed and disutility of labor is unobservable and allowed to vary

is a construct that will isolate the effect of θ on the planner’s problem. Later in the paper

both unobservables will be allowed to vary, allowing us to understand how a richer program

can be designed. In that case, correlations between unobservables are implicitly taken into

account.

4.1 Full Information

The problem is structured in the same way as IMPw, with w fixed.

min
{l(θ),t(θ)}

∫ θb

θa

t(θ)p(θ)dθ

such that

wl + t ≥ z (IM)

wl − h(l, θ) + t ≥ U0(θ) (V Pθ)

We define l∗ as before and l̄(θ) as the value of l when both IM and V Pθ bind, giving us

h(l̄(θ), θ) = z − U0(θ). The allocation l̄(θ) is the l that minimizes transfers while satisfying

both constraints. This yields the full information solution: if wl∗ ≥ z, l = l∗ and t = 0, and

if wl∗ � z, then l = l̄(θ) and t = z − wl̄(θ). By implicit differentiation, we find that l̄(θ) is

decreasing in θ, which contrasts with the IMPw solution. As in IMPw, the full information

solution can be viewed as a conditional wage or income subsidy.

4.2 The Incentive Problem (IMPθ)

Again the functional form h(l, θ) = θl2 is used. Here, the assumption of a functional form

could possibly make a difference in the solution. We have not generalized the results, but
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the same qualitative solution was found using the functional form h(l, θ) = (l + θ)2. We

present the first formulation as it is somewhat simpler notationally.

We add the incentive constraint to the problem.

wl(θ)− θl(θ)2 + t(θ) ≥ wl(θ̂)− θl(θ̂)2 + t(θ̂) ∀θ, θ̂ (ICθ)

Utility for type θ can be written as U(θ) = U(θb) +
∫ θb

θ
l(x)2dx. Note that in this case,

we find that l(θ) must be decreasing in θ (we assume that it is continuous as well). We

assume that P (θ)
p(θ)

is decreasing in θ. Using monotonicity, we simplify the IM constraint to

be wl(θb) + t(θb) ≥ z. We define the utility rent as R(θ) = U(θ) − U0(θ). We must then

maximize

∫ θb

θa

{−R(θ)−
w2

4θ
+ wl(θ)− θl(θ)2}p(θ)dθ (IMPθ)

subject to IM and V Pθ (R(θ) ≥ 0).

Here the applicant has an incentive to overstate her disutility of labor in order to receive

higher transfers. A conflicting incentive stems from the potential for the applicant to un-

derstate her disutility of labor in order to inflate the price of her outside opportunities. The

value of reservation utility is greatest for low types (those with low disutilities of labor) and

for them we discover that an analogue to lemma 2 is true.

Lemma 2 If V Pθ binds for θ′ < θb, then it binds for all θ < θ′

The solution, however, departs from IMPw in a significant way.

Proposition 2 The solution19 to IMPθ such that ICθ, V Pθ, and IM hold20 is:

i) for θ ∈ [θa, θ
′], l(θ) = w

2θ
, t(θ) = 0

19As with IMPw, we note that the standard sufficiency proof does not hold because of the convexity of
IM in l. For IMPθ our proof of sufficiency is much more restrictive - we need the condition P (θ′)− 2Y > 0
(where Y is defined as in the appendix) to hold.

20Note that this schedule assumes that l∗(θa) > l̄(θb). If otherwise (generally this can occur for low values
of w), the solution is l(θ) = l̄(θb), t(θ) = z − wl̄(θb) for all θ. Both solutions are discussed in Appendix C.
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Figure 2: Income Maintenance With w Fixed: Status Quo, First Best, and IMPθ

ii) for θ ∈ [θ′, θ0], l(θ) =
w

2(
P (θ′)−P (θ)

p(θ)
+θ)

, t(θ) = −θbl̄(θb)
2+ z+

∫ θb

θ
l(x)2dx−wl(θ)+ θl(θ)2

iii) for θ ∈ [θ0, θb], l(θ) = l̄(θb), t(θ) = z − wl̄(θb)

where we define θ0 by w

2(
P (θ′)−P (θ0)

p(θ0)
+θ0)

= l̄(θb) and θ′ by R(θ′) = 0 (if �θ′such that R(θ′) =

0, θ′ = θa).

Figure 2 shows the solution described in the above proposition (it is in bold and labelled as

l̃(θ)). The status quo allocation l∗ and the first best allocation (l̄ for θ such that wl∗(θ) � z,

and l∗ before that) are placed alongside the results for comparison.

We see from the solution that VPθ binds for the lowest type in the distribution as well

as for the highest type. The transfer to the highest type is minimized since both VPθ and

IM bind for it. Notice that for w > 0, both status quo labor choice (l∗) and the program

allocation are bounded away from 0. This moves l above zero and above l∗ to the point where

the planner can make both constraints bind. High disutility of labor types are therefore

bunched at l̄(θb) hours, working more than they would in the absence of a program. We

define this as a work requirement. As θb increases to infinity, l̄(θb) approaches l∗(θb) and both

approach zero. This is reasonable; as disutility of labor becomes extremely high, a person

would not work and couldn’t really be placed in a job without huge transfers. Nevertheless,

16



for finite θb the planner forces high types to work more than in the status quo. Middle types

work less than the status quo. All types are assigned less (or equal amounts of) work than

they would receive in the first best allocation, due to the informational rent that they must

be given. While this is qualitatively the same for IMPw, having the program begin at l = l̄

is impossible in IMPw because monotonicity would conflict with the decreasing first best

allocation (compare Figure 1 and Figure 2). It is also interesting to observe that the usual

“no distortion at the top” result holds, as does no distortion for the “worst” type. This kind

of result has also been found in specific formulations of the optimal income taxation model21.

Both IMPw and IMPθ differ with respect to the status quo in a surprising way. The

program IMPw makes people with low ability lie idle when, in the absence of a program,

they would choose to work. On the other hand, IMPθ makes those with high disutility of

labor work more than they would if there were no program. Low ability people need large

transfers whether they work or not, so IMPw focuses more on decreasing transfers to others

(reducing the incentive problem). High disutility people still earn the same amount as low

disutility people in IMPθ, making it more costly to reduce their labor.

The solution for IMPθ departs from the Negative Income Tax structure of IMPw. There

is no guaranteed amount of transfers for no work. In fact, a guarantee of transfers begins at

a designated minimum amount of work. As labor increases, a Benefit Reduction Rate kicks

in, again dependent on the distribution of the population. This plan therefore combines the

NIT with minimum work requirements.

5 The Two Dimensional Problem

Multidimensional screening models, while presenting large opportunities for understanding

beyond single dimensional models, are scarce due to their general unwieldiness. A uniform

approach has only very recently been suggested and solved (see Armstrong (1996), Rochet

and Choné (1998), and Rochet and Stole (2000)).

21See Mirrlees (1997) for a discussion of such results.
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In our setting, the question of what a two dimensional solution looks like is a natural

one. Welfare programs often discriminate between groups in ways that involve both ability

and disutility of labor. In the AFDC program primary recipients were single mothers. If we

think of poverty assistance in general, the elderly, people with disabilities, and those unable

to get employment are targeted. The programs IMPw and IMPθ can’t completely address

this issue, so we need to expand our scope. One point that can be made is that welfare

programs do distinguish between groups because some characteristics related to ability and

disutility of labor are observable. While this is true to a certain extent, within categories,

it is difficult to observe exact types, and one can think of the following as an approach to

addressing each category. In addition, the framework allows for correlation between types22.

The problem can be stated as:

max
{l,t}

∫ θb

θa

∫ b

a

−t(w, θ)g(w, θ)dwdθ

such that IM holds, as well as:

U(w, θ | w, θ) ≥ U(ŵ, θ̂ | w, θ) ∀w, θ, ŵ, θ̂ (ICwθ)

U(w, θ) ≥ U0(w, θ) (V Pwθ)

This formulation satisfies the Generalized Single Crossing Property defined by McAfee

and McMillan (1988).

Here we must make a few more simplifying assumptions. We assume a functional form

for h(l, θ) of (l + θ)2. This satisfies all previous assumptions on h(l, θ). Note that both the

parameterizations h(l, θ) = (l + θ)2 and h(l, θ) = θl2 yield the same qualitative results in

both single dimensional cases, but that the latter makes the analysis more difficult in the

two dimensional case. Essentially, this results from the fact that the cross partial derivative

22Moreover, we do not confront the issue of the optimality of exclusion present in several multidimensional
screening problems (see Armstrong (1996)) due to the full participation nature of the objective of the
government.

18



(hlθ) varies with l, making the Spence-Mirrlees single crossing condition endogenous. One

can think of θ in the former as a shift parameter, while in the latter θ changes the curvature23.

When solving for l∗ for this functional form, we notice that it will take negative values,

so it is redefined as l∗ = max
[
w
2
− θ, 0

]
. This tells us that some people choose not to work

in the status quo because of some combination of low ability and high disutility of labor.

Within the context of the model, this implies that they earn no income in the status quo.

Since the utilities have been normalized, this does not imply that they have zero resources24.

The upper bound on disutility of labor θb is set equal to b
2
to make the results readable (but

does not affect results qualitatively). This assumption tells us that even the highest ability

person, if they have the highest disutility of labor, will not work in the status quo. We set

θa equal to 0 for added tractability, though this also may be thought of as a normalization

of disutility of labor. Our setup allows us to explore how the dimensionality affects the

solution; as a approaches b, the problem collapses from the two dimensional case to the one

dimensional IMPθ.

Our approach to solving the problem will be to reduce the dimensionality of the problem

from two to one. Given the above formulation of utility we can define a ‘type aggregator’

s, where we define s = w − 2θ. This means s is in the interval [a− 2θb, b] and allows us to

transform variables from (w, θ) to (s, θ). Utility becomes U(s, θ) = sl(s)− l(s)2 − θ2 + t(s);

and since θ does not interact with the allocation we can simplify U(s, θ) to V (s) = sl− l2+t.

The allocation therefore depends only on the relevant s, making it clear that in terms of

incentive compatibility, the planner only cares about the reported s, not the separate w or θ.

There are then a range of types encompassed by a s that receive the same allocation, which

we will denote as an isolabor curve25 in type space. Figure 3 depicts the isolabor curves s

23Another way to think about the difference between the two functional forms is to consider two types θl
and θh (θl < θh). For the functional form (l + θ)2, the difference in disutilities between types is somewhat
similar irrespective of the allocation l, while for θl2, the difference is small for low allocations and large for
high allocations. This implies that a planner should consider carefully the impact of assigning full work
weeks more if utility takes on the second form, making our results potentially sensitive to specification for
the better off types.

24For a study of how single mothers survive without earned income, see Edin and Lein (1997).
25Satisfying the Generalized Single Crossing Property of McAfee and McMillan (1988) makes this approach
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Figure 3: Isolabor curves (indexed by s) in (w, θ) space

in (w, θ) space. The way the model has been constructed, the isolabor curves are exogenous

with respect to allocation choice, simplifying the derivations. Therefore, using the same

arguments from the single dimensional approach26, it must be that ∂
∂s
U(s, θ, l(s), t(s)) = Us

and ∂
∂s
V (s, l(s), t(s)) = Vs = l(s). We also require l(s) to be increasing in s.

The constraints must now be transformed to (s, θ) space. Reservation utility depends on

whether w
2
− θ > 0 (notice that this is equivalent to s > 0). It equals w2

4
− θw when positive

amounts of labor are chosen, −θ2 otherwise. This permits us to transform V Pwθ into two

constraints that depend solely on s:

V (s) > 0 for s ∈ [a− 2θb, 0) (V P1)

V (s) >
1

4
s2 for s ∈ [0, b] (V P2)

The voluntary participation constraints are so simple because status quo isolabor curves

of reducing the problem to solving along isolabor curves possible.
26For example, see Guesnerie and Laffont (1984).
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have the same slope as the incentive compatible isolabor curves.

The Income Maintenance constraint is more difficult to handle. Transformed, it becomes

V (s)+ l2+2θl ≥ z. Its dependence on θ does not conform to our method. However, noticing

that it is satisfied for all points encompassed by a given s when it is satisfied for the minimum

θ along that s provides a way to eliminate θ. For s < a, the minimum θ occurs where w = a.

At these points s = a− 2θ, and the constraint is V (s) + l2 + (a− s)l ≥ z (IM1). For s ≥ a,

the minimum θ is 0, reducing the constraint to V (s) + l2 ≥ z (IM2).

The objective function transforms to (letting T (s, l(s)) = V (s)− sl(s) + l(s)2):

max−

∫ θb

0

∫ b−2θ

a−2θ

T (s, l(s))g(s+ 2θ, θ)dsdθ

θ can be eliminated by first permuting the integrals:

−

∫ 0

a−2θb

∫ θb

a−s
2

T (s, l(s))g(s+ 2θ, θ)dθds−

∫ a

0

∫ b−s
2

a−s
2

T (s, l(s))g(s+ 2θ, θ)dθds−

∫ b

a

∫ b−s
2

0

T (s, l(s))g(s+ 2θ, θ)dθds

and then integrating out θ :

−

∫ 0

a−2θb

T (s, l(s))g1(s)ds−

∫ a

0

T (s, l(s))g2(s)ds−

∫ b

a

T (s, l(s))g3(s)ds (IMPwθ)

where g1(s) =
∫ θb

a−s
2

g(s + 2θ, θ)dθ, g2(s) =
∫ b−s

2

a−s
2

g(s + 2θ, θ)dθ, and g3(s) =
∫ b−s

2

0
g(s +

2θ, θ)dθ.

We must make the following assumption to guarantee a monotone (non-bunched) solu-

tion:

• Assumption: Both G2(s)−G2(s′)
g2(s)

and G3(s)−G3(s′)
g3(s)

are increasing in s (where G2(s) is de-

fined by
∫ s

0
g2(x)dx+

∫ 0

a−2θb
g1(x)dx and G3(s) by

∫ s

a
g3(x)dx+G2(a)).
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This assumption is not easily verified and does not follow from the assumption of the

monotone hazard rate for the conditional probability distribution functions f(w) and p(θ).

It can be shown, however, that s
2
plus either hazard rate is increasing in s for the uniform

distribution. This will be used to examine the solution. The assumption essentially guaran-

tees a separating solution, avoiding the necessity to check where the constraint that hours

must be weakly increasing binds.

We find the optimal program by maximizing IMPwθ subject to V P1 (for s < 0), V P2

(for s ≥ 0), IM1 (for s < a), and IM2 (for s ≥ a) and non-negativity constraints on ∂l
∂s

and

l(s). This type of program, where the objective function and constraints change at some

point (here when s = 0 and s = a), presents a three phase dynamic optimization problem.

Each phase must fulfill the standard necessary conditions with an added requirement that the

costate variables and the Hamiltonians at each junction be aligned. The specific conditions

are listed in the appendix as are explanations of the results. The results that we find are

quite intuitive and complement the one dimensional solutions. We find two solutions, each

of which satisfies the necessary and sufficient conditions for certain ranges of the parameters.

The solution is discussed in the appendix.

Proposition 3 The follow schedules are solutions (for certain parameter values) to IMPwθ:

Schedule 1:

i) for s ∈ [a− 2θb, s0), l(s) = 0, t(s) = z

ii) for s ∈ [s0, s
′), l(s) = s

2
+

Gj(s)−Gi(s
′)

2gj(s)
, t(s) = z +

∫ s

a−2θb
l(x)dx− sl(s) + (l(s))2

iii) for s ∈ [s′, b], l(s) = s
2
, t(s) = 0

where we define s0 by
s0
2
+ Gh(s0)−Gi(s

′)
2gh(s0)

= 0, s′ by V (s′) = 1
4
(s′)2, i as the interval con-

taining s′, j ≤ i, and h as the interval containing s0.

Schedule 2:

i) for s ∈ [a− 2θb, s0), l(s) = l(a− 2θb), t(s) = z − al(a− 2θb)
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ii) for s ∈ [s0, s
′), l(s) = s

2
+

Gj(s)−Gi(s
′)

2gj(s)
, t(s) = −θ2b +

∫ s

a−2θb
l(x)dx− sl(s) + (l(s))2

iii) for s ∈ [s′, b], l(s) = s
2
, t(s) = 0

where we define s0 by
s0
2
+ Gh(s0)−Gi(s

′)
2gh(s0)

= l(a − 2θb), s
′ by V (s′) = 1

4
(s′)2, and i, j, h are

the analogues of their definitions for Schedule 1.

The two schedules reflect the one dimensional solutions. Schedule 1, much like IMPw,

has an allocation of zero work and a transfer of the minimum income level for the lowest

types (where lowest here means individuals with low ability and high disutility of labor) with

transfers decreasing and work increasing as s increases until V P2 binds. Schedule 2, like

IMPθ, has minimum work requirements: the lowest types must work for l̄ hours in order

to receive a transfer. As s increases, the amount of work required increases and transfers

decrease, until V P2 binds.

Clearly, it is important to understand the influence of the parameters in this problem.

The main parameter of interest is a, the lower bound of wages. In the appendix we show:

Lemma 3 For a close to 0, Schedule 1 is the unique solution. As a approaches b, Schedule

2 is the unique solution.

This proves that both one dimensional solutions are robust to increased dimensionality

and directly relates the two dimensional solution to the one dimensional ones. For a close to 0,

i.e. the range of wages is large (but there is still some variation in θ), the solution is similar to

that of IMPw. As a approaches b, the range of wages decreases, collapsing the problem into

the one dimensional problem of IMPθ. It also provides substantial intuition about why the

work requirements will arise - with little variance in ability/wages, distorting work downwards

to save on incentives can be very costly. This leads to the work requirements type solution

of IMPθ. With a large distribution of wages the incentive problem of keeping high ability

people from deviating dominates, leading to the absence of work requirements. This offers a

sense that first, different economies should utilize different poverty assistance programs, and
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Figure 4: IMPwθ: uniform distribution, a = 0 and z = .2

second, that depending on the population targeted within one country, different programs

could and should be constructed in different ways.

Figure 4 plots IMPwθ given a uniform distribution, z = .2, and ranges of w and θ of

[0, 2] and [0, 1] respectively. The program itself resembles a Negative Income Tax, with a

guaranteed amount of income for low types, and a variable BRR that depends on population

characteristics.

6 Conclusion

Large-scale poverty assistance programs in the United States focus on raising the income

of participants. Temporary Assistance to Needy Families (which replaced AFDC), Supple-

mental Security Income, and the Earned Income Tax Credit augment participants’ income,

while Medicaid and Food Stamps decrease the cost of goods that are deemed important to

participants. The push to guarantee some minimum standard of living has been linked to
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purchasing power (utility has been neglected for both philosophical and feasibility reasons)

and therefore income. This paper explores properties of programs with an explicit objective

of income maintenance.

Two main conclusions emerge from the analysis. First of all, program construction should

be sensitive to the environment it is created in. If only disutility of labor can be observed,

guaranteed amounts should be offered to those who don’t work. If only ability can be

observed, then a minimum work requirement may be added in order for a participant to

receive any transfer. If both are unobservable, the solution may use work requirements or may

not, depending on the range of abilities of program participants and the consequent trade-

off between incentive savings and costly distortion of work. Such programs as Temporary

Assistance for Needy Families and Supplemental Security Income operate among populations

where some signals about types are available, making a comparison between them and our

solution informative. With the variance in population characteristics and TANF programs

across states, our results establish a framework for the comparison of incentive effects between

states.

Second of all, the optimal schedules resemble a Negative Income Tax. A strict NIT consists

of a guaranteed amount of income for no work, with low amounts of income taxed at a fixed

Benefit Reduction Rate. The schedules for all three environments designate a BRR that

is endogenous to the problem since it depends on population characteristics and changes

with hours worked. In Figure 5, we draw the budget constraints that an individual of type

w = 1.8 faces under a program with a BRR of 1 (such as the old AFDC) and under IMPwθ,

with a = 0. This emphasizes both the similarities and differences between actual programs

and our solution. It may be that fixed BRRs less than one can approximate the optimal

schedule, a topic that merits further investigation.

We do not address the dynamic elements of poverty assistance programs in this paper.

Such values as building skills or instilling a work ethic can’t be included in a static framework.

However, the argument that work may build skills and independence, allowing participants
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Figure 5: Budget constraint of an individual with type w = 1.8 under different programs: A
NIT program with the BRR=1, and IMPwθ (with a = 0)

to increase their income generating ability and possibly remove themselves from the program,

deserves further exploration. With this argument, it is possible that under-allocating work

could cost more in the long run27.

27The dynamic argument does not hold for disutility of labor - work can’t really change someone’s tolerance
for it. However, other possible instruments and transfers outside of the model (such as subsidized child care
or better access to transportation) could change someone’s disutility of labor over time.
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Appendix

A Conditions for Proposition 1 (IMPw)

The Lagrangian is formed as follows:

L = H + γR+ βu+ µ(R+
w2

4θ
+ θl2 − z) + ωl

The necessary conditions are:

1. λ′(w) = f(w)− γ − µ

2. α′(w) = (−w + 2θl)f(w)− λ− µ2θl − ω

3. α+ β = 0

4. γR = 0; γ ≥ 0; R ≥ 0

5. βu = 0; β ≥ 0; u ≥ 0

6. µ(R+ w2

4θ
+ θl2 − z) = 0; µ ≥ 0; R+ w2

4θ
+ θl2 − z ≥ 0

7. ωl = 0; ω ≥ 0; l ≥ 0

8. λ(a)R(a) = 0; λ(a) � 0; λ(b)R(b) = 0; λ(b) ≥ 0

9. α(a)l(a) = 0; α(a) � 0; α(b)l(b) = 0; α(b) ≥ 0

Conditions 1 and 2 are the costate equations. Condition 3 is the optimality condition.

Conditions 4-7 are the complementary slackness equations. Conditions 8 and 9 are the

transversality conditions. Since we have state constraints that may bind, we must allow for

jumps in the costate variables. The jump conditions are:

1.λ(w−)− λ(w+) = η1 + η2

2. α(w−)− α(w+) = η12θl + η3

where η1, η2, and η3 are non-negative and represent the income maintenance constraint,

the voluntary participation constraint and the l ≥ 0 constraint respectively.

Consider the solution in Proposition 1. If l(a) = 0, then α(a+) can equal a number

Y � 0. If IM binds at w = a (and since we know V P will not bind there), λ(a+) =

−η1. Let η1 = F (w′) and then λ(w) for low types equals F (w) − F (w′). Now denote
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w
2θ

− F (w′)−F (w)
2θf(w)

by l̃(w). l̃(w) makes α′(w) equal 0. Since l̃(w) < 0 for low values of w, the

non-negative labor condition makes α′(w) > 0 for these values. We can now define w0 by

l̃(w0) = 0. In effect w0 is a function of w′. To solve for w′, we must first tie up loose ends.

By integrating the second costate equation and plugging in the endpoint constraint we get

α(w) = −w(F (w)−F (w′))−aF (w′)+Y for w ∈ [a, w0]. There are two unknowns: w′ and Y .

We can solve using the two equations α(w0(w
′)) = 0 and V P ′. Note that l̃(w′) = l∗(w′). If

w′ exists, [w′, b] is the region that lemma 1 addresses. λ(w) = 0 and γ = f(w) on this region.

If w′ satisfying the previous equations doesn’t exist (V P ′ doesn’t bind) we set w′ = b.

B Conditions for Proposition 2 (IMPθ)

The constraints upon the problem are V Pθ, IM , ICθ (which gives us the law of motion

Rθ = −l2 + w2

4θ2
), ∂l

∂θ
= u(θ) � 0, and l ≥ 0. As before, the state variables are R and l, the

associated costate variables are λ and α, and the control is u.

The Hamiltonian is:

H(R, l, u, λ, α, θ) = {−R−
w2

4θ
+ wl − θl2}p(θ) + λ(−l2 +

w2

4θ2
) + αu

The Lagrangian is:

L = H + γR− βu+ µ(R+
w2

4θ
+ θl2 − z) + ωl

The necessary conditions are:

1. λ′(θ) = p(θ)− γ − µ

2. α′(θ) = (−w + 2θl)p(θ) + λ2l − µ2θl − ω

3. α− β = 0

4. γR = 0; γ ≥ 0; R ≥ 0

5. βu = 0; β ≥ 0; u � 0

6. µ(R+ w2

4θ
+ θl2 − z) = 0; µ ≥ 0; R+ w2

4θ
+ θl2 − z ≥ 0

7. ωl = 0; ω ≥ 0; l ≥ 0
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8. λ(θa)R(θa) = 0; λ(θa) � 0; λ(θb)R(θb) = 0; λ(θb) ≥ 0

9. α(θa)l(θa) = 0; α(θa) � 0; α(θb)l(θb) = 0; α(θb) ≥ 0

Conditions 1 and 2 are the costate equations. Condition 3 is the optimality condition.

Conditions 4-7 are the complementary slackness equations. Conditions 8 and 9 are the

transversality conditions. Since we have state constraints that may bind, we must allow for

jumps in the costate variables. The jump conditions are:

1.λ(θ−)− λ(θ+) = η1 + η2

2. α(θ−)− α(θ+) = η12θl + η3

where η1, η2, and η3 are non-negative and represent the income maintenance constraint,

the voluntary participation constraint and the l ≥ 0 constraint respectively.

Assuming that l̄(θb) � l∗(θa) (the opposite case is examined below), we conjecture that

at θ = θb, both V Pθ and IM bind, making l(θb) = l̄(θb). We can say that λ(θ+b ) = 0,

η1 = Y, and η2 = P (θ′) − Y , making λ(θ) = P (θ′) − P (θ) for high types and α(θ−b ) =

Y 2θbl̄(θb). It is clear from the jumps in the costate variables that 0 � Y � P (θ′). Denote

w

2(
P (θ′)−P (θ)

p(θ)
+θ)

by l̃(θ). We can solve for θ0 as a function of θ′ by setting l̃(θ0) = l̄(θb). By

integrating the second costate equation and using an endpoint constraint, we can show that

α(θ) = wP (θ)−2θl(P (θ)−P (θ′))−2θbl̄(θb)(P (θ
′)−Y ). Since l̃(θ) < l̄(θb) for all θ ∈ (θ0, θb],

we know that α′(θ) is positive on that interval. If we solve α(θ0) = 0 and R(θ′) = 0

simultaneously, we will find a solution for Y and θ′. Note that l̃(θ′) = l∗(θ′). If we can’t

find a θ′ where V Pθ binds, we set θ
′ = θb. In a previous version of this paper, we prove that

α(θ0) can equal 0 for the restricted range of Y .

We now consider the case where l∗(θa) < l̄(θb). It is straightforward to show that the

solution is l(θ) = l̄(θb) for all θ, given the structure put on the problem above. θ0 is no longer

a relevant concept, and θ′ is set to θa. Setting Y = 1− ( w
2θb

)/l̄ satisfies the constraints on Y

(namely 0 � Y � 1) and completes the system.
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C Conditions for Proposition 3 (IMPwθ)

With a three phase optimization program, the necessary conditions are simply the necessary

conditions for each phase plus some transition point conditions. These are extended to

include jumps in the costate variables.

We first form the Hamiltonians and append the constraints to construct Lagrangians:

L1 = {−V+sl−l2}g1(s)+λ1(l)+α1u+γ1V+β1u+µ1(V+l2+(a−s)l−z)+ω1l for s ∈ [a−2θb, 0]

L2 = {−V+sl−l2}g2(s)+λ2(l)+α2u +γ2(V−
1

4
s2)+β2u+µ2(V+l2+(a−s)l−z)+ω2l for s ∈ [0, a]

L3 = {−V +sl− l2}g3(s)+λ3(l)+α3u+γ3(V −
1

4
s2)+β3u+µ3(V + l2−z)+ω3l for s ∈ [a, b]

Without jumps in the costate variables, the transition point conditions are λ1(0−) =

λ2(0
+) , α1(0

−) = α2(0
+) and H1(0) = H2(0) for 0 and λ1(a−) = λ2(a

+) , α1(a
−) = α2(a

+)

and H1(a) = H2(a) for a. With jumps, however, (using Leonard and Long (1992) and Amit

(1986)) the new conditions are:
A1. λ1(0−)− λ2(0

+) = ψ1 + ψ2 A2. λ2(a−)− λ3(a
+) = ψ1 + ψ2

B1. α1(0
−)− α2(0

+) = ψ1(2l + a− s) + ψ3 B2. α2(a
−)− α3(a

+) = ψ1(2l) + ψ3

C1. H1(0) = H2(0) C2. H2(a) = H3(a)

where, with slight abuse of notation, ψ1 is associated with the IM constraint, ψ2 is

associated with the V P constraint, and ψ3 is associated with the l ≥ 0 constraint. In

addition, we need jump conditions for the initial point a− 2θb. These conditions are exactly

analogous to A1 and B1.

The other necessary conditions are very similar to the conditions necessary to propositions

1 and 2. We list all conditions except the non-negative ones:

For s ∈ [a− 2θb, 0)

1. λ′1(s) = g1(s)− γ1 − µ1

2. α′

1(s) = (−s+ 2l)g1(s)− λ1 − µ1(2l + a− s)− ω1

3. α1(s) + β1(s) = 0
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For s ∈ (0, a)

1. λ′2(s) = g2(s)− γ2 − µ2

2. α′

2(s) = (−s+ 2l)g2(s)− λ2 − µ2(2l + a− s)− ω2

3. α2(s) + β2(s) = 0

For s ∈ (a, b]

1. λ′3(s) = g3(s)− γ3 − µ3

2. α′

3(s) = (−s+ 2l)g3(s)− λ3 − µ3(2l)− ω3

3. α3(s) + β3(s) = 0

There are two candidate solutions that satisfy the necessary conditions for certain pa-

rameters. We will go through the derivation for each of them.

Schedule 1 : For the first phase [a−2θb, 0], we set α1(a−2θ−b ) = A ≤ 0 since l(a−2θb) = 0.

Since V (0) > 0, λ1(a− 2θ−b ) = 0. Setting ψ1 = Gi(s
′), where i is determined jointly with s′,

makes λ1(s) = G1(s) − Gi(s
′) and α1(a − 2θ+b ) = A − 2θbG(s

′). This makes α′

j(s) > 0 and

αj(s) = s(Gi(s
′)−G2(s))+A−aGi(s

′) (noting that j ≤ i), and we set A so that αj(s0) = 0.

We solve for s0 as a function of s′ using 0 = s0
2
+

Gj(s0)−Gi(s
′)

2gj(s0)
and for s′ using the fact that VP

binds at s′. Since there are no jumps at the transition points, all of the transition conditions

hold. The critical equation necessary for examining optimality is whether there a value of

A such that αj(s0) = 0. The only restriction on A is that it is less than or equal to 0. It is

quick to show that the restriction follows from the equation if a = 0 and does not if a = b.

Through implicit differentiation of the cutoff equations (0 = s0
2
+

Gj(s0)−Gi(s
′)

2gj(s0)
and VP) we

can find the dependence of s0 and s′ on a and show that αj(s0) is monotonely decreasing

in a. This implies that the necessary conditions are satisfied for low values of a. When the

necessary conditions, are satisfied, they are sufficient.

Schedule 2 : Since l(a − 2θb) = l(a − 2θb), α1(a − 2θ−b ) = 0. Since both IM and VP

bind, there can be a jump in the costate variables at a− 2θb. Set ψ1 = Y , ψ2 = Gi(s
′)− Y

(again i is defined as the interval which includes s′ and j ≤ i). Using these endpoint

restrictions and the necessary conditions, we set λj(s) = Gj(s) − Gi(s
′) and for s ≤ s0,
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αj(s) = (−s + 2l)Gj(s) + (s − a + 2θb)Gi(s
′) − Y (2l + 2θb). The points s0 and s′ can be

found from setting l(a− 2θb) =
s0
2
+

Gj(s0)−Gi(s
′)

2gj(s0)
and from VP binding at s′. All of the other

necessary conditions are satisfied. It remains to prove that there can exist a Y such that

α(s0) = 0. From this equation Y =
(−s0+2l)Gj(s0)+(s0−a+2θb)Gi(s

′)

2l+2θb
, and from the conditions for

costate jumps, we place the restrictions 0 ≤ Y ≤ Gi(s
′). It is easy to show that Y ≥ 0 always

holds. Using the fact that s
2
= l∗(s), we can also prove that for a = b, Y < Gi(s

′), which

demonstrates that collapsing the dimensions does indeed yield the IMPθ solution. Since the

inequality is strict and for a close to b the expression Y −Gi(s
′) can be shown to be decreasing

in a, there is a range of wages close to b where Schedule 2 is the solution. Additionally, we

can show that when a = 0, Y > G(s′). As in IMPθ, sufficiency for this solution is restricted.

A sufficient condition for sufficiency is if Gi(s
′)(l

2
− (s0 − a)l)−Gj(s0)(−s0l + 2l

2
) ≥ 0.
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