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Abstract

It is common in econometric applications that several hypothesis tests are carried out

at the same time. The problem then becomes how to decide which hypotheses to reject,

accounting for the multitude of tests. In this paper, we suggest a stepwise multiple testing

procedure which asymptotically controls the familywise error rate at a desired level. Com-

pared to related single-step methods, our procedure is more powerful in the sense that it

often will reject more false hypotheses. In addition, we advocate the use of studentization

when it is feasible. Unlike some stepwise methods, our method implicitly captures the

joint dependence structure of the test statistics, which results in increased ability to detect

alternative hypotheses. We prove our method asymptotically controls the familywise error

rate under minimal assumptions. We present our methodology in the context of comparing

several strategies to a common benchmark and deciding which strategies actually beat the

benchmark. However, our ideas can easily be extended and/or modified to other contexts,

such as making inference for the individual regression coefficients in a multiple regression

framework. Some simulation studies show the improvements of our methods over previous

proposals. We also provide an application to a set of real data.
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“If you can do an experiment in one day, then in 10 days you can test 10 ideas, and maybe

one of the 10 will be right. Then you’ve got it made.”

– Solomon H. Snyder

1 Introduction

Much empirical research in economics and finance inevitably involves data snooping. Unlike the

physical sciences, it is typically impossible to design replicable experiments. As a consequence,

existing data sets are analyzed not once but repeatedly. Often, many strategies are evaluated

on a single data set to determine which strategy is ‘best’ or, more generally, which strategies

are ‘better’ than a certain benchmark. A benchmark can be fixed or random. An example

of a fixed benchmark is the problem of determining whether a certain trading strategy has a

positive CAPM alpha (so the benchmark is zero).1 An example of a random benchmark is the

problem of determining whether a trading strategy beats a specific investment, such as a stock

index. If many strategies are evaluated, some are bound to appear superior to the benchmark

by chance alone, even if in reality they are all equally good or inferior. This effect is known as

data snooping (or data mining).

Economists have long been aware of the dangers of data snooping. For example, see Cowles

(1933), Leamer (1983), Lovell (1983), Lo and MacKinley (1990), and Diebold (2000). However,

in the context of comparing several strategies to a benchmark, little has been suggested on how

to properly account for the effects of data snooping. A notable exception is White (2000). The

aim of this work is to determine whether the strategy that is best in the available sample indeed

beats the benchmark, after accounting for data snooping. White (2000) coins his technique the

Bootstrap Reality Check (BRC). Often one would like to identify further strategies that beat

the benchmark, in case such strategies exist, apart from the one that is best in the sample.

While the specific BRC algorithm of White (2000) does not address this question, it could be

modified to do so. The main contribution of our paper is to provide a method that goes beyond

the BRC: it can identify strategies that beat the benchmark which are not detected by the

BRC. This is achieved by a stepwise multiple testing method, where the modified BRC would

correspond to the first step. But further strategies that beat the benchmark can be detected

in subsequent steps, while maintaining control of the familywise error rate. So the method we

propose is more powerful than the BRC.

To motivate our contribution, consider the example of a large number of actively managed

mutual funds that aim to outperform the S&P 500 index, which plays the role of the benchmark.

In this context, a mutual fund would outperform the S&P 500 index if its returns had at the

same time a higher expected value and an equal (or lower) standard deviation. Certain forms

of the efficient market hypothesis imply that no mutual fund can actually outperform the

S&P 500 index (assuming that the S&P 500 index is taken as a proxy for the ‘market’). A

financial economist interested in the validity of certain forms of the efficient market hypothesis

would therefore ask: “Is there any mutual fund which outperforms the S&P 500 index?”. This

financial economist is served well by the BRC as proposed by White (2000). On the other

1See Example 2.3 for a definition of the CAPM alpha.
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hand, a financial advisor might be looking for mutual funds to recommend to a client. If the

client’s benchmark is the S&P 500 index, the financial advisor will ask: “Which mutual funds

outperform the S&P 500 index?”. In this case, the ‘original’ BRC is not adequate, though the

modified BRC would be. The method we propose would be even more useful to the financial

advisor, since it can detect more outperforming mutual funds than the modified BRC.

As a second contribution, we propose the use of studentization to improve size and power

properties in finite samples. Studentization is not always feasible, but when it is we argue that

it should be incorporated and we give several good reasons for doing so.

We seek to control the chance that even one true hypothesis is incorrectly rejected. Statis-

ticians often refer to this chance as the familywise error rate (FWE); see Westfall and Young

(1993). An alternative approach would be to seek to control the false discovery rate (FDR); see

Benjamini and Hochberg (1995). The FDR is defined as the expected proportion of rejected

hypotheses (i.e., strategies identified as beating the benchmark) that are actually true (i.e.,

do not beat the benchmark). The FDR approach is less strict than the FWE approach and

will, generally, ‘discover’ a greater number of strategies beating the benchmark. But a certain

proportion of these discoveries are, by design, expected to be false ones. Which approach is

more suitable depends on the application and/or the preferences of the researcher. Future

research will be devoted to use of a FDR framework in order to identify strategies that beat a

benchmark.

The remainder of the paper is organized as follows. Section 2 describes the model, the

formal inference problem, and some existing methods. Section 3 presents our stepwise method.

Section 4 discusses modifications when studentization is used. Section 5 lists several possible

extensions. Section 6 proposes how to choose the bootstrap block size in the context of time

series data. Section 7 sheds some light on finite-sample performance via a simulation study.

Section 8 provides an application to real data. Section 9 concludes. An appendix contains

proofs of mathematical results, an overview of the most important bootstrap methods, and

some power considerations for studentization.

2 Notation and Problem Formulation

2.1 Notation and Some Examples

One observes a data matrix xt,k with 1 ≤ t ≤ T and 1 ≤ k ≤ K+1. The data is generated from

some underlying probability mechanism P which is unknown. The row index t corresponds

to distinct observations, and there are T of them. In our asymptotic framework, T will tend

to infinity. The column index k corresponds to strategies, and there is a fixed number K of

them. The final column, K + 1, is reserved for the benchmark. To keep the notation unique,

we include the benchmark in the data matrix even if it is nonstochastic. For compactness, we

introduce the following notation: XT denotes the complete T × (K + 1) data matrix; X
(T )
t,· is

the (K + 1) × 1 vector that corresponds to the t-th row of XT ; and X
(T )
·,k is the T × 1 vector

that corresponds to the k-th column of XT .
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For each strategy k, 1 ≤ k ≤ K, one computes a test statistic wT,k that measures the

‘performance’ of the strategy relative to the benchmark. We assume that wT,k is a (measurable)

function of X
(T )
·,k and X

(T )
·,K+1 only. Each statistic wT,k tests a univariate parameter θk. We

assume that this parameter is defined in such a way that θk ≤ 0 under the null hypothesis that

strategy k does not beat the benchmark. In some instances, we will also consider studentized

test statistics zT,k = wT,k/σ̂T,k, where σ̂T,k estimates the standard deviation of wT,k. In the

sequel, we often call wT,k a ‘basic’ test statistic to distinguish it from the studentized statistic

zT,k. To introduce some compact notation: the K×1 vector θ collects the individual parameters

of interest θk; the K × 1 vector WT collects the individual basic test statistics wT,k; and the

K × 1 vector ZT collects the individual studentized test statistics zT,k.

We proceed by giving some relevant examples where several strategies are compared to a

benchmark, giving rise to data snooping.

Example 2.1 (Absolute Performance of Investment Strategies) Historic returns of in-

vestment strategy k, say a particular mutual fund or a particular trading strategy, are recorded

in X
(T )
·,k . Historic returns of a benchmark, say a stock index or a buy-and-hold strategy, are

recorded in X
(T )
·,K+1. Depending on preference, these can be ‘real’ returns or log returns; also,

returns may be recorded in excess of the risk free rate if desired. Let µk denote the popula-

tion mean of the returns for strategy k. Based on an absolute criterion, strategy k beats the

benchmark if µk > µK+1. Therefore, we define θk = µk − µK+1. Using the notation

x̄T,k =
1

N

T
∑

t=1

xt,k

a natural basic test statistic is

wT,k = x̄T,k − x̄T,K+1 (1)

As we will argue later on, a studentized statistic is preferable and given by

zT,k =
x̄T,k − x̄T,K+1

σ̂T,k
(2)

where σ̂T,k is an estimator of the standard deviation of x̄T,k − x̄T,K+1.

Example 2.2 (Relative Performance of Investment Strategies) The basic setup is as

in the previous example. But now consider a risk-adjusted comparison of the investment

strategies, based on the respective Sharpe ratios. With µk again denoting the mean of the

returns of strategy k and with σk denoting their standard deviation, the corresponding Sharpe

ratio is defined as SRk = µk/σk.
2 An investment strategy is now said to outperform the

benchmark if its Sharpe Ratio is higher than the one of the benchmark. Therefore, we define

θk = SRk − SRK+1. Let

sT,k =

√

√

√

√

1

N − 1

T
∑

t=1

(xt,k − x̄T,k)2

2The definition of a Sharpe ratio is often based on returns in excess of the risk-free rate. But for certain
applications, such as long-short investment strategies, it is more suitable to base it on the nominal returns.
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Then a natural basic test statistic is

wT,k =
x̄T,k

sT,k
− x̄T,K+1

sT,K+1
(3)

Again, a preferred statistic might be obtained by dividing by an estimate of the standard

deviation of this difference.

Example 2.3 (CAPM alpha) Historic returns of investment strategy k, in excess of the

risk-free rate, are recorded in X
(T )
·,k . Historic returns of a market proxy, in excess of the risk-

free rate, are recorded in X
(T )
·,K+1. For each strategy k, a simple time series regression

xt,k = αk + βkxt,K+1 + εt,k

is estimated by ordinary least squares (OLS). If the CAPM model holds, all intercepts αk are

equal to zero.3 So the parameter of interest here is αk instead of the generic θk. Since the

CAPM model may be violated in practice, a financial advisor might attempt to identify the

investment strategies which have a positive αk. Hence, an obvious basic test statistic would be

wT,k = α̂T,k (4)

Again, it can be advantageous to studentize by dividing by an estimated standard deviation

of α̂T,k:

zT,k =
α̂T,k

σ̂T,k
(5)

Note the slight abuse of notation in this example. The vector X
(T )
·,K+1 contains the excess

returns of the market proxy, which are needed to estimate the CAPM regressions. On the

other hand, the benchmark for the αk is simply zero.

Example 2.4 (Value-at-Risk) An investment portfolio is held over time. At a given time t,

the goal is to estimate the λ quantile of the conditional distribution of the portfolio return over

the next period. (Here, conditional means on the past return history of the portfolio.) This

quantile is generally known as the Value-at-Risk (VaR) at level λ. Common numbers for λ in

practice are 1% and 5%. Many strategies to estimate the VaR exist. For a general reference, see

Jorion (2000). An industry standard for VaR estimation is the well known GARCH(1,1) model.

To list only a few alternative strategies: more complex GARCH models (such as GARCH(2,2),

asymmetric GARCH, EGARCH, etc.), stochastic volatility, historic simulation, RiskMetrics,

and extreme value theory. For a description of the various models see Bao et al. (2001) for

example.4 Most evaluation schemes of VaR estimates are simply based on 0-1 variables. In this

sense, xt,k = 0 if the return on the investment portfolio at time t exceeded the corresponding

VaR estimate computed by strategy k. Otherwise xt,k = 1. Sometimes these xt,k are called

3We trust there is no possible confusion between a CAPM alpha αk and the level α of multiple testing
methods discussed later on.

4An exhaustive listing of relevant papers on VaR can be found at
http://www.eco.fundp.ac.be/cerefim/reources fichiers/var.htm.
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‘hit variables’. Obviously, a sensible VaR strategy should produce a ‘hit rate’ x̄T,k that is close

to the nominal level λ. Hence, one possible test statistic would be

wT,k = |x̄T,K+1 − λ| − |x̄T,k − λ| (6)

On the other hand, a sensible VaR strategy aims to produce a hit variable that is uncorrelated

over time. Let LBT,k denote a Ljung-Box statistic measuring autocorrelation, based on a fixed

number of sample autocorrelations, applied to the time series vector X
(T )
·,k . Then an alternative

test statistic would be given by

wT,k = LBT,K+1 − LBT,k (7)

One might even think of combining the two statistics in an appropriate way to simultaneously

examine the hit rates and autocorrelations. For further evaluation schemes of VaR techniques,

see Bao et al. (2001) again.

2.2 Problem Formulation

For a given strategy k, consider the individual testing problem

H0,k : θk ≤ 0 vs. H1,k : θk > 0

Note that the parameters θk are allowed to vary freely of each other.5 A multiple testing

method will yield a decision concerning each testing problem by either rejecting H0,k or not.

In an ideal world, we reject H0,k exactly for those strategies for which θk > 0. In a realistic

world, and given a finite amount of data, this usually cannot be achieved with certainty. In

order to prevent us from declaring true null hypotheses to be false, we seek to control the

familywise error rate (FWE). The FWE is defined as the probability of rejecting at least one

of the true null hypotheses. More specifically, if P is the true probability mechanism, let

I0 = I0(P ) ⊂ {1, . . . ,K} denote the indices of the set of true hypotheses, that is, k ∈ I0 if and

only if θk ≤ 0. The FWE is the probability under P that any H0,k with k ∈ I0 is rejected:

FWE = ProbP {Reject at least one H0,k : k ∈ I0(P )}

In case all the individual null hypotheses are false, the FWE is equal to zero by definition.

We require a method that, for any P , has FWE is no bigger than α, at least asymptotically.

In particular, this constraint must hold for all possible configurations of true and false null

hypotheses, that is, we demand strong control of the FWE. A method that only controls

the FWE when all K null hypotheses are true is said to have weak control of the FWE. As

remarked by Dudoit et al. (2002), this distinction is often ignored. Indeed, White (2000) only

proves weak control of the FWE for his method. The remainder of the paper equates control

of the FWE with strong control of the FWE.

A multiple testing method is said to control the FWE at level α if, for the given sample

5Holm (1979) coins this the free combinations condition.
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size T , FWE ≤ α, for any P . A multiple testing method is said to asymptotically control the

FWE at level α, if lim supT→∞ FWE ≤ α, for any P . Methods that control the FWE in finite

sample can typically only be derived in special circumstances, or they suffer from lack of power

because they do not incorporate the dependence structure of the test statistics. We therefore

seek to control the FWE asymptotically, while trying to achieve high power at the same time.

Several well-known methods that (asymptotically) control the FWE exist. The problem

is that they often have low power. What is the meaning of ‘power’ in a multiple testing

framework? Unfortunately, there is no unique definition as in the context of a single hypothesis

test. Some possible notions of power are:

• ‘Global’ power: the probability of rejecting all false null hypotheses.

• ‘Minimal’ power: the probability of rejecting at least one false null hypothesis.

• ‘Average’ power: the average of the individual probabilities of rejecting each false null

hypothesis.

Of course, one can think of further notions. Once a given notion has been agreed upon, one can

study whether a particular method is more powerful than another method in this specific sense.

In rare instances, a particular method (say method 1) can be ‘universally’ more powerful than

another method (say method 2). This happens, if for any false null hypothesis, the probability

of rejecting is as large or larger for method 1 compared to method 2, and strictly larger for at

least one false null hypothesis.

2.3 Existing Methods

The most familiar multiple testing method for controlling the FWE is the Bonferroni method.

It works as follows. For each null hypothesis H0,k, one computes an individual P -value pT,k.

How this P -value is computed depends on the context. It is assumed that if H0,k is true,

the distribution of pT,k is Uniform (0,1), at least asymptotically.6 The Bonferroni method at

level α rejects H0,k if pT,k < α/K. If the null distribution of each pT,k is (asymptotically)

uniform (0,1), then the Bonferroni method (asymptotically) controls the FWE at level α. The

disadvantage of the Bonferroni method is that it is in general conservative: the FWE is in

general (asymptotically) strictly less than α.7 Indeed, it can be overly conservative, meaning

that the FWE can (asymptotically) be very close to zero, which results in low power.

Actually, there exists a simple method which (asymptotically) controls the FWE at level

α but is ‘universally’ more powerful than the Bonferroni method. This procedure is due to

Holm (1979) and works as follows. The individual P -values are ordered from smallest to

largest: p(1) ≤ p(2) ≤ . . . ≤ p(K) with their corresponding null hypotheses labeled accordingly:

H0,(1),H0,(2), . . . , H0,(K). Then H0,(k) is rejected at level α if p(j) < α/(K − j + 1) for

j = 1, . . . , k. In comparison with the Bonferroni method, the criterion for the smallest P -value

6Actually, the following weaker assumption would be sufficient: If H0,k is true, then ProbP (pT,k ≤ x) ≤ x,
at least asymptotically.

7If we say the FWE is asymptotically less than α, we mean lim supT→∞
FWE < α.
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is equally strict, α/K, but it becomes less and less strict for the larger P -values. This explains

the ‘universal’ improvement in power. While its improvement can be substantial, the Holm

method can also be very conservative.

The reason for the conservativeness of the Bonferroni and the Holm methods is that they do

not take into account the dependence structure of the individual P -values. Loosely speaking,

they achieve control of the FWE by assuming a worst-case dependence structure. If the true

dependence structure could be accounted for, one should be able to (asymptotically) control

the FWE but at the same time increase power. To illustrate, take the extreme case of perfect

dependence, where all P -values are identical. In this case, one should reject H0,k if pT,k < α.

This (asymptotically) controls the FWE but obviously is ‘universally’ more powerful than both

the Bonferroni and Holm methods.

In many economic or financial applications, the individual test statistics are jointly depen-

dent. Often, the dependence is positive. It is therefore important to account for the underlying

dependence structure in order to avoid being overly conservative. A partial solution, for our

purposes, is provided by White (2000) who coins his method the bootstrap reality check (BRC).

The BRC estimates the asymptotic distribution of max1≤k≤K(wT,k − θk), taking into account

the correlation structure of the individual test statistics. Let kmax denote the index of strategy

with the largest statistic wk. The BRC decides whether or not to reject H0,kmax
at level α,

asymptotically controlling the FWE. It therefore answers the question whether the strategy

that appears ‘best’ in the observed data really beats the benchmark. However, it does not

attempt to identify all strategies that do. The method we present in the next section does just

this. In addition, we argue that by studentizing the (individual) test statistics, in situations

where studentization is feasible, one can hope to improve certain size and power properties in

finite sample. This represents a second enhancement of White’s (2000) approach.

To learn about further methods that control the FWE, the reader is referred to Westfall

and Young (1993) as a general reference.

3 Stepwise Multiple Testing Method

Our goal is to identify all strategies for which θk > 0. We do this by considering individual

hypothesis tests

H0,k : θk ≤ 0 vs. H1,k : θk > 0

A decision rule results in acceptance or rejection of each null hypothesis. The individual

decisions are supposed to be taken in a manner that asymptotically controls the FWE at a

given level α. At the same time, we want to reject as many false hypotheses as possible in

finite sample.

We describe our method in the context of using basic test statistics wT,k. The extension

to the studentized case is straightforward and will be discussed later on. The method begins

by relabeling the strategies according to the size of the individual test statistics, from largest

to smallest. Label r1 corresponds to the largest test statistic and label rK to the smallest

one, so that wr1
≥ wr2

≥ . . . ≥ wrK
. Then the individual decisions are taken in a stepwise
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manner.8 In a first step, we construct a rectangular joint confidence region for the vector

θ = (θr1
, . . . , θrK

)T with asymptotic joint coverage probability 1− α. The confidence region is

of the form

[wr1
− c1,∞) × . . . × [wrK

− c1,∞) (8)

where the common value c1 is chosen in such as way as to ensure the proper joint coverage

probability. It is not immediately clear how to achieve this in practice. Part of our contri-

bution is describing a data-dependent way to choose c1 in practice; details are below. If a

particular individual confidence interval [wrk
−c1,∞) does not contain zero, the corresponding

null hypothesis H0,rk
is rejected.

If the above joint confidence region (8) has asymptotic joint coverage probability 1−α, this

method asymptotically controls the FWE at level α. The method of White (2000) corresponds

to computing the confidence interval [wr1
− c1,∞) only, resulting in a decision on H0,r1

alone.

However, his method can be easily modified to be equivalent to our first step. The critical

advantage or our method is that we do not stop after the first step, unless no hypothesis is

rejected. Say we reject the first K1 relabeled hypotheses in this first step. Then K − K1

hypotheses remain, corresponding to the labels rK1+1 until rK . In a second step, we construct

a rectangular joint confidence region for the vector (θrK1+1
, . . . , θrK

)T with, again, asymptotic

joint coverage probability 1 − α. The new confidence region is of the form

[wrK1+1
− cK1+1,∞) × . . . × [wrK

− cK1+1,∞) (9)

where the common constant cK1+1 is chosen in such a way as to ensure the proper joint

coverage probability. Again, if a particular individual confidence interval [wrk
−cK1+1,∞) does

not contain zero, the corresponding null hypothesis H0,rk
is rejected. This stepwise process is

then repeated until no further hypothesis is rejected. Not stopping after the first step will, in

general, reject more null hypotheses.9 The stepwise procedure is therefore more powerful than

the single-step method.10 Nevertheless, the stepwise procedure still asymptotically controls

the FWE at level α. The proof is in Theorem 3.1.

How should the value c1 in the joint confidence region construction (8) be chosen? Ideally,

one would take the 1−α quantile of the sampling distribution of max1≤k≤K(wT,rk
− θrk

). This

is the sampling distribution of the maximum of the individual differences “test statistic minus

true parameter”. Concretely, the corresponding quantile is defined as

c1(1 − α, P ) = inf{x : ProbP { max
1≤k≤K

(wT,rk
− θrk

) ≤ x} ≥ 1 − α}

The ideal choice of cK1+1, cK2+1, and so on in the subsequent steps would be analogous. For

example, the ideal crK1+1
for (9) would be the 1 − α quantile of the sampling distribution of

8Our stepwise method is a step-down method, since we start with the null hypothesis corresponding to
the largest test statistic. The Holm method is also a step-down method. It starts with the null hypothesis
corresponding to the smallest P -value, which in return corresponds to the largest test statistic. Stepwise
methods that start with the null hypothesis corresponding to the smallest test statistics are called step-up

methods; e.g., see Dunnett and Tamhane (1992).
9The reason is that cK1+1 < c1 in general.

10Indeed, its improvement in power is analogous to the improvement in power of the Holm method over the
Bonferroni method.
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maxK1+1≤k≤K(wT,rk
− θrk

) defined as

cK1+1(1 − α, P ) = inf{x : ProbP { max
K1+1≤k≤K

(wT,rk
− θrk

) ≤ x} ≥ 1 − α}

The problem is that P is unknown in practice and therefore the ideal quantiles cannot be

computed. The feasible solution is to replace P by an estimate P̂T . For an estimate P̂T and

any number 1 ≤ K̃ ≤ K, define

cK̃(1 − α, P̂T ) = inf{x : ProbP̂T
{ max

K̃≤k≤K
(w∗

T,rk
− θ∗T,rk

) ≤ x} ≥ 1 − α} (10)

Here, the notation w∗
T,rk

makes clear that we mean the sampling distribution of the test

statistics under P̂T rather than under P ; and the notation θ∗T,rk
makes clear that the true

parameters are those of P̂T rather than those of P .11 We can summarize our stepwise method

by the following algorithm. The algorithm is based on a generic estimate P̂T of P . Specific

choices of this estimate, based on the bootstrap, are discussed below.

Algorithm 3.1 (Basic StepM Method)

1. Relabel the strategies in descending order of the test statistics wT,k: strategy r1 corre-

sponds to the largest test statistic and strategy rK to the smallest one.

2. Set i = 1 and K1 = 0.

3. For Ki + 1 ≤ k ≤ K, if zero is not contained in [wT,rk
− cKi+1(1 − α, P̂T ),∞), reject the

null hypothesis H0,rk
.

4. (a) If no null hypothesis is rejected, stop.

(b) Otherwise, let i = i+1 and denote by Ki the number of all null hypotheses rejected

so far. Then return to step 3.

To present our main theorem in a compact and general fashion, we make use of the following

high-level assumption. Several scenarios where this assumption is satisfied will be detailed

below. Introduce the following notation. JT (P ) denotes the sampling distribution under P of√
T (WT − θ); and JT (P̂T ) denotes the sampling distribution under P̂T of

√
T (W ∗

T − θ∗).

Assumption 3.1 Let P denote the true probability mechanism and let P̂T denote an estimate

of P based on the data XT . Assume that JT (P ) converges in distribution to a nondegenerate

limit distribution J(P ), which is continuous. Further assume that JT (P̂T ) consistently esti-

mates this limit distribution: ρ(JT (P̂T ), J(P )) → 0 in probability for any metric ρ metrizing

weak convergence.

11We implicitly assume here that, with probability one, P̂T will belong to a class of distributions for which
the parameter vector θ is well-defined. This holds in all of the examples in this paper.
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Theorem 3.1 Suppose Assumption 3.1 holds. Then the following statements concerning Al-

gorithm 3.1 are true.

(i) If θk > 0, then the null hypothesis H0,k will be rejected with probability tending to one,

as T → ∞.

(ii) The method asymptotically controls the FWE at level α, that is,

limsupT ProbP {Reject any true null hypothesis} ≤ α.

Theorem 3.1 is related to Algorithm 2.8 of Westfall and Young (1993). Our result is more

flexible in the sense that we do not require their subset pivotality condition (see Section 2.2).

Furthermore, in the context of this paper, our result is easier to apply in practice for two

reasons. First, it is based on the K individual test statistics. In contrast, Algorithm 2.8 of

Westfall and Young (1993) is based on the K individual P -values, which would require an extra

round of computation. Second, the quantiles cKi+1(1 − α, P̂T ) are computed ‘directly’ from

the estimated distribution P̂T . There is no need to impose certain null hypotheses constraints

as in Algorithm 2.8 of Westfall and Young (1993).

We proceed by listing some fairly flexible scenarios where Assumption 3.1 is satisfied and

Theorem 3.1 applies. The list is not meant to be exhaustive.

Scenario 3.1 (Smooth Function Model with I.I.D. Data) Consider the case of indepen-

dent and identically distributed (i.i.d.) data Xt,·. In the general ‘smooth function’ model of

Hall (1992), the test statistic wT,k is a smooth function of certain sample moments of X
(T )
·,k

and X
(T )
·,K+1; and the parameter θk is the same function applied to the corresponding popula-

tion moments. Examples that fit into this framework are given by (1), (3), and (4). If the

smooth function model applies and appropriate moment conditions hold, then
√

T (WT − θ)

converges in distribution to a multivariate normal distribution with mean zero and some co-

variance matrix Ω. As shown by Hall (1992), one can use the i.i.d. bootstrap of Efron (1979)

to consistently estimate this limiting normal distribution, that is, P̂T is simply the empirical

distribution of the observed data.12

Scenario 3.2 (Smooth Function Model with Time Series Data) Consider the case of

strictly stationary time series data Xt,·. The smooth function model is defined as before and

the same examples (1), (3), and (4) apply; an additional example now is (7). Under moment and

mixing conditions on the underlying process,
√

T (WT − θ) again converges in distribution to a

multivariate normal distribution with mean zero and some covariance matrix Ω; e.g., see White

(2001). Obviously, in the time series case, the limiting covariance matrix Ω not only depends

on the distribution of Xt,· but it also depends on the underlying dependence structure. The

consistent estimation of the limiting distribution now requires a time series bootstrap. Künsch

(1989) gives conditions under which the block bootstrap can be used; Politis and Romano

(1992) show that the same conditions guarantee consistency of the circular block bootstrap;

Politis and Romano (1994) give conditions under which the stationary bootstrap can be used.

12Hall (1992) also shows that the bootstrap approximation can be better than a normal approximation of the
type N(0, Ω̂T ) when the limiting covariance matrix Ω can be estimated consistently, which is not always the
case.
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Test statistics not covered immediately by the smooth function model can often be ac-

commodated with some additional effort. For example, consider the test statistic (6) which

involves the non-differentiable absolute value function. It is reasonable to assume that a VaR

method is not quite perfect, so that the true hit rates E(xt,k) are not exactly equal to the

nominal level λ. In this case Scenario 3.2 asymptotically applies. Depending upon whether

E(xt,k)−λ is positive or negative, the absolute value in |x̄T,k−λ| can asymptotically be treated

as multiplying the difference x̄T,k − λ by 1 or by −1, respectively. Hence, the smooth function

model applies and a time series bootstrap can be used to consistently estimate the limiting

distribution of
√

T (WT −θ). On the other hand, a problem arises if one of the E(xt,k) is exactly

equal to λ and hence E(xt,k) − λ is exactly equal to zero. The bootstrap now has difficulties:

the parameter |E(xt,k)−λ| lies on the boundary of its parameter space, the interval [0,∞) and

the absolute value function is nondifferentiable. This results in inconsistency of the bootstrap;

see Shao and Tu (1995, Section 3.6). In this situation the subsampling method could be used

to consistently estimate the limiting distribution of
√

T (WT − θ). Subsampling is known to

work under weaker conditions than the bootstrap and would apply in this particular example;

see Politis et al. (1999).

Scenario 3.3 (Strategies that Depend on Estimated Parameters) Consider the case where

strategy k depends on a parameter vector βk. In case βk is unknown, it is estimated from the

data. Denote the corresponding estimator by β̂T,k. Denote the value of the test statistic for

strategy k, as a function of the estimated parameter vector β̂T,k, by wT,k(β̂T,k). Further, let

WT (β̂T ) denote the K × 1 vector collecting these individual test statistics. White (2000), in

the context of a stationary time series, gives conditions under which
√

T (WT (β̂T ) − θ) con-

verges to a limiting normal distribution with mean zero and some covariance matrix Ω. He also

demonstrates that the stationary bootstrap can be used to consistently estimate this limiting

distribution. Alternatively, the moving blocks bootstrap or the circular blocks bootstrap can

be used. Note that a direct application of our Algorithm 3.1 would use the sampling distri-

bution of
√

T (W ∗
T (β̂∗

T ) − θ∗T ) under P̂T . That is, the βk would be re-estimated based on data

X∗
T generated from P̂T . But White (2000) shows that, under certain regularity conditions, it

is actually sufficient to use the sampling distribution of
√

T (W ∗
T (β̂T ) − θ∗T ) under P̂T . Hence,

in this case it is not really necessary to re-estimate the βk parameters. Details are in White

(2000).

For concreteness, we now describe how to compute the cK1+1(1−α, P̂T ) Algorithm 3.1. In

what follows T×(K+1) pseudo data matrices X∗ are generated by a generic bootstrap method.

In this context, P̂T denotes the bootstrap data generating mechanism. The true parameter

vector corresponding to P̂T is denoted by θ∗T . The specific choice of bootstrap method depends,

of course, on the context. For the reader not completely familiar with the variety of bootstrap

methods that do exist, we describe the most important ones in Appendix B.
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Algorithm 3.2 (Computation of the cKi+1(1 − α, P̂T ) via the Bootstrap)

1. The labels r1, . . . , rK and the numerical values of K1,K2, . . . are from Algorithm 3.1.

2. Generate J bootstrap data matrices X∗,1
T , . . . , X∗,J

T . We recommend to use J ≥ 1, 000 in

practice.

3. From each bootstrap data matrix X∗,j
T , compute the individual test statistics w∗,j

T,1, . . . , w
∗,j
T,K .

4. Set i = 1.

5. (a) For 1 ≤ j ≤ J , compute max∗,j
T,Ki+1 = maxKi+1≤k≤K(w∗,j

T,rk
− θ∗T,rk

).

(b) Compute cKi+1(1−α, P̂T ) as the 1−α empirical quantile of the J values max∗,1
T,Ki+1, . . . ,max∗,J

T,Ki+1.

6. Let i = i + 1 and return to step 5.

Remark 3.1 For convenience, one can typically use wT,rk
in place of θ∗T,rk

in step 5.(a) of the

algorithm. Indeed, the two are the same under the following following conditions: (1) wT,k is a

linear statistic; (2) θk = E(wT,k); and (3) P̂T is based on Efron’s bootstrap, the circular blocks

bootstrap, or the stationary bootstrap. Even if conditions (1) and (2) are met, wT,rk
and

θ∗T,rk
are not the same if P̂T is based on the moving blocks bootstrap due to ‘edge’ effects; see

Appendix B. On the other hand, the substitution of wT,rk
for θ∗T,rk

does in general not effect

the consistency of the bootstrap approximation and Theorem 3.1 continues to hold. Lahiri

(1992) discusses this subtle point for the special case of time series data and wT,rk
being the

sample mean. He shows that centering by θ∗T,rk
provides second-order refinements but is not

necessary for first-order consistency.

4 Studentized Stepwise Multiple Testing Method

This section argues that the use of studentized test statistics, when feasible, is preferred. We

first present the general method and then give three good reasons for its use.

4.1 Description of Method

An individual test statistic is now of the form zT,k = wT,k/σ̂T,k, where σ̂T,k estimates the

standard deviation of wT,k. Typically, one would choose σ̂T,k in such a way that the asymptotic

variance of zT,k is equal to one. But this is actually not required for Theorem 4.1 to hold.

Our stepwise method is analogous to the case of basic test statistics but slightly more complex

due to the studentization. Again, P̂T is an estimate of the underlying probability mechanism

P based on the data XT . Let X∗
T denote data generated from P̂T and let w∗

T,k denote a test

statistic wT,k computed from X∗
T . Then σ̂∗

T,k denotes the estimated standard deviation of w∗
T,k

based on the data X∗
T .13 We need an analog of the quantile (10) for the studentized method.

13Since P̂T is completely specified, one actually knows the true standard deviation of w∗

T,k. However, the
bootstrap mimics the real world, where standard deviation of wT,k is unknown, by estimating this standard
deviation from the data.
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It is given by

dK̃(1 − α, P̂T ) = inf{x : ProbP̂T
{ max

K̃≤k≤K
(w∗

T,rk
− θ∗T,rk

)/σ̂∗
T,rk

≤ x} ≥ 1 − α} (11)

Our stepwise studentized method can now be summarized by the following algorithm.

Algorithm 4.1 (Studentized StepM Method)

1. Relabel the strategies in descending order of the test statistics zT,k: strategy r1 corre-

sponds to the largest test statistic and strategy rK to the smallest one.

2. Set i = 1 and K1 = 0.

3. For Ki +1 ≤ k ≤ K, if zero is not contained in [wT,rk
− σ̂T,rk

dKi+1(1−α, P̂T ),∞), reject

the null hypothesis H0,rk
.

4. (a) If no null hypothesis is rejected, stop.

(b) Otherwise, let i = i+1 and denote by Ki the number of all null hypotheses rejected

so far. Then return to step 3.

A stronger version of Assumption 3.1 is needed to prove the validity of the studentized

method.

Assumption 4.1 In addition to Assumption 3.1, assume the following condition. For each

k, both
√

T σ̂T,k and
√

T σ̂∗
T,k converge to a (common) positive constant σk in probability.

Theorem 4.1 Suppose Assumption 4.1 holds. Then the following statements concerning Al-

gorithm 4.1 are true.

(i) If θk > 0, then the null hypothesis H0,k will be rejected with probability tending to one,

as T → ∞.

(ii) The method asymptotically controls the FWE at level α, that is,

limsupT ProbP {Reject any true null hypothesis} ≤ α.

Assumption 4.1 is stricter than Assumption 3.1. Nevertheless, it covers many interesting

cases. Under certain moment and mixing conditions (for the time series case), Scenarios 3.1 and

3.2 generally apply. Hall (1992) shows that a studentized version of Efron’s (1979) bootstrap

consistently estimates the limiting distribution of studentized statistics in the framework of

Scenario 3.1. Götze and Künsch (1996) demonstrate that a studentized version of the moving

blocks bootstrap consistently estimates the limiting distribution of studentized statistics in

the framework of Scenario 3.2. Note that their arguments immediately apply to the circular

bootstrap as well. By similar techniques the validity of a studentized version of the stationary

bootstrap can be established. Relevant examples of practical interest are given by (2) and (5).

Examples where less obvious studentized test statistics exist are given by (6) and (7).

For concreteness, we now describe how to compute the dK1+1(1− α, P̂T ) in Algorithm 4.1.

Again, T × (K + 1) pseudo data matrices X∗
T are generated by a generic bootstrap method.
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Algorithm 4.2 (Computation of the dKi+1(1 − α, P̂T ) via the Bootstrap)

1. The labels r1, . . . , rK and the numerical values of K1,K2, . . . are from Algorithm 4.1.

2. Generate J bootstrap data matrices X∗,1
T , . . . , X∗,J

T . We recommend to use J ≥ 1, 000 in

practice.

3. From each bootstrap data matrix X∗,j
T , compute the individual test statistics w∗,j

T,1, . . . , w
∗,j
T,K .

Also, compute the corresponding estimated standard deviations σ̂∗,j
T,1, . . . , σ̂

∗,j
T,K .

4. Set i = 1.

5. (a) For 1 ≤ j ≤ J , compute max∗,j
T,Ki+1 = maxKi+1≤k≤K(w∗,j

T,rk
− θ∗T,rk

)/σ̂∗,j
T,rk

.

(b) Compute dKi+1(1−α, P̂T ) as the 1−α empirical quantile of the J values max∗,1
T,Ki+1, . . . ,max∗,J

T,Ki+1.

6. Let i = i + 1 and return to step 5.

Remark 3.1 applies here in spirit.

How to studentize properly depends on the context. In the case of i.i.d. data there is

usually an obvious ‘formula’ for σ̂T,k, which is applied to the data matrix XT . To give an

example, the formula for σ̂T,k corresponding to the test statistic (1) based on i.i.d. data is

given by

σ̂T,k =

√

∑T
t=1(xt,k − xt,K+1 − x̄T,k + x̄T,K+1)2

T − 1
(12)

In the Efron bootstrap world, the value of σ̂∗
T,k is then obtained by applying the same formula

to the bootstrap data matrix X∗
T . Things get more complex in the case of stationary time

series data. There no longer exists a simple formula to compute σ̂T,k from XT . Instead, one

typically uses a kernel variance estimator that can be described by a certain algorithm; e.g.,

see Andrews (1991) and Andrews and Monahan (1992). In principle, σ̂∗
T,k can be obtained by

applying the same algorithm to the bootstrap data matrix X ∗
T . When X∗

T is obtained by the

moving blocks bootstrap or the circular blocks bootstrap, Götze and Künsch (1996) suggest to

use a ‘natural’ variance estimator σ̂∗
T,k. This is due to the two facts that (1) these two methods

generate a bootstrap data sequence by concatenating blocks of data of a fixed size and that

(2) the individual blocks are selected independently of each other. For the sake of space, we

refer the interested reader to Götze and Künsch (1996) and Romano and Wolf (2003) to learn

more about ‘natural’ block bootstrap variance estimators.

4.2 Reasons for Studentization

We now provide three reasons for making the additional effort of studentization.

The first reason is power. The studentized method is not uniformly more powerful than the

basic method. However, it performs better for several reasonable definitions of power. Details

can be found in Appendix C.
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The second reason is level (or size). Consider for the moment the case of a single null

hypothesis H0,k of interest. Under certain regularity conditions, it is well-known that (1) boot-

strap confidence intervals based on studentized statistics provide asymptotic refinements in

terms of coverage level; and that (2) bootstrap tests based on studentized test statistics pro-

vide asymptotic refinements in terms of level. The underlying theory is provided by Hall (1992)

for the case of i.i.d. data and by Götze and Künsch (1996) for the case of stationary data. The

common theme is that one should use asymptotically pivotal (test) statistics in bootstrapping.

This is only partially satisfied for our studentized multiple testing method, since we studentize

the test statistics individually. Hence, the limiting joint distribution is not free of unknown

population parameters. Such a limiting joint distribution could be obtained by a joint studenti-

zation, taking also into account the covariances of the individual test statistics wT,k. However,

this would no longer result in the rectangular joint confidence regions which are the basis for

our stepwise testing method. A joint studentization is not feasible for our purposes. While

individual studentization cannot be proven to result in asymptotic refinements in terms of the

level, there is still hope that it leads to finite sample improvements, which might show up in

simulation studies; see Section 7.

The third reason is individual coverage probabilities. As a by-product, the first step of our

multiple testing method yields a joint confidence region for the parameter vector θ. The basic

method yields the following region

[wT,r1
− c1(1 − α, P̂T ),∞) × . . . × [wT,rK

− c1(1 − α, P̂T ),∞) (13)

The studentized method yields the following region

[wT,r1
− σ̂T,r1

d1(1 − α, P̂T ),∞) × . . . × [wT,rK
− σ̂T,rK

d1(1 − α, P̂T ),∞) (14)

If the sample size T is large, both regions (13) and (14) have joint coverage probability of about

1 − α. But they are distinct as far as the individual coverage probabilities for the θk values

are concerned. Assume that the test statistics wT,k have different standard deviations, which

happens in many applications. Say wr1
has a smaller standard deviation than wr2

. Then the

confidence interval for θr1
derived from (13) will typically have a larger (individual) coverage

probability compared to the confidence interval for θr2
. This is not the case for (14) where,

thanks to studentization, the individual coverage probabilities are comparable and hence the

individual confidence intervals are ‘balanced’. The latter is clearly a desirable property; see

Beran (1988). Indeed, we make a decision concerning H0,rk
by inverting a confidence interval

for θrk
. Balanced confidence intervals result in a balanced power ‘distribution’ among the

individual hypotheses. Unbalanced confidence intervals, obtained from basic test statistics,

distribute the power unevenly among the individual hypotheses.

To sum up, when the standard deviations of the basic test statistics wT,k are different,

the wT,k live on different scales. Comparing one basic test statistic to another is then like

comparing apples to oranges. If one wants to compare apples to apples, one should use the

studentized test statistics zT,k.
14

14Alternatively, one could compare individual P -values. But this becomes more involved in practice.
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5 Possible Extensions

The aim of this paper is to introduce a new multiple testing methodology based on stepwise joint

confidence regions. For sake of brevity and succinctness, we have presented the methodology in

a compact yet rather flexible framework. This section briefly lists several possible extensions.

The details are left for future research.

In our setup, the individual null hypotheses Hk,0 are one-sided. This makes sense because

we want to test whether individual strategies improve upon a benchmark, rather than whether

their performance is just different from the benchmark. Nevertheless, for other multiple testing

problems two-sided tests can be more appropriate; for example, see the multiple regression

example of the next paragraph. If two-sided tests are preferred, our methods can be easily

adapted. Instead of one-sided joint confidence regions, one would construct two-sided joint

confidence regions. To give an example, the first-step region based on simple test statistics

would look as follows

[wT,r1
± c1,|·|(1 − α, P̂T )] × . . . × [wT,rK

± c1,|·|(1 − α, P̂T )]

Here, c1,|·|(1−α, P̂T ) estimates the 1−α quantile of the two-sided sampling distribution under P

of max1≤k≤K |wT,rk
− θrk

|. The corresponding modifications of Algorithms 3.1 and 3.2 are

straightforward. Note that in the modified Algorithm 3.1, the strategies would have to relabeled

in descending order of the |wT,k| values instead of the wT,k values.

Since our focus is on comparing a number of strategies to a common benchmark, we assume

that a test statistic wT,k is a function of the vectors X
(T )
·,k and X

(T )
·,K+1 only, where X

(T )
·,K+1

corresponds to the benchmark. This assumption is not crucial for our multiple testing methods.

Take the example of a multiple regression model with regression parameters θ1, θ2, . . . , θK .

The individual null hypotheses are of the form H0,k: θk = θ0,k for some constants θ0,k. The

alternatives can be (all) one-sided or (all) two-sided. Note that there is no benchmark here,

so the last column of the T × (K + 1) data matrix XT would correspond to the response

variable while the first K columns would respond to the explanatory variables. In this setting,

wT,k = θ̂T,k, where the estimation might be done by OLS say. Obviously, wT,k will be a

function of the entire data matrix now. Still, our multiple testing methods can be applied to

this setting and the modifications are minor: one rejects H0,rk
if θ0,rk

, rather than 0, is not

contained in a confidence interval for θrk
.

We assume the usual
√

T convergence, meaning that
√

T (WT −θ) has a nondegenerate lim-

iting distribution. In nonstandard situations, the rate of convergence can be another function

of T instead of the square root. In these instances, the bootstrap often fails to consistently

estimate the limiting distribution. But if this happens, one can use the subsampling method

instead; see Politis et al. (1999) for a general reference. Our multiple testing methods can

be modified for the use of subsampling instead of the bootstrap. Examples where the rate of

convergence is T 1/3 can be found in Rodŕıguez-Poo et al. (2001).15 An example where the rate

of convergence is T can be found in Gonzalo and Wolf (2003).

15This paper focuses on the use of subsampling for testing purposes. But the modifications for the construction
of confidence intervals are straightforward.
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6 Choice of Block Sizes

If the data sequence is a stationary time series, one needs to use a time series bootstrap. Each

possible choice – the moving blocks bootstrap, the circular blocks bootstrap, or the stationary

bootstrap – involves the problem of choosing the block size b in practice. (When the stationary

bootstrap is used, we denote by b the expected block size.) Asymptotic requirements on b

include b → ∞ and b/T → 0 as T → ∞, which is of practical help. In this section, we give

concrete advice on how to select b in a data-dependent fashion. Note that the block size b

has to be chosen ‘from scratch’ in each step of our stepwise multiple testing methods, and the

individual choices may well be different.

Consider the ith step of a stepwise procedure. The goal is to construct a joint confidence

region for the vector (θrKi+1
, . . . , θrK

)′ with nominal coverage probability of 1−α. The actual

coverage probability in finite sample, denoted by 1−λ, is generally not exactly equal to 1−α.

Moreover, conditional on P and T , we can think of the actual coverage probability as a function

of the block size b. This function g : b → 1 − λ was coined the calibration function by Loh

(1987). The idea is now to adjust the ‘input’ b in order to obtain the actual coverage probability

close to the desired one. If g(·) was known, so would be the optimal adjustment, that is, the

optimal choice of b. Indeed, one should find b̃ that minimizes |g(b)−(1−α)| and use the value b̃

as the block size in practice; note that |g(b) − (1 − α)| = 0 may not always have a solution.

Unfortunately, the function g(·) depends on the underlying probability mechanism P and

is unknown. We therefore propose a method to estimate g(·). The idea is that in principle

we could simulate g(·) if P were known by generating data of size T according to P and by

computing joint confidence regions for (θrKi+1
, . . . , θrK

)′ for a number of different block sizes b.

This process is then repeated many times and for a given b one estimates g(b) as the fraction

of the corresponding intervals that contain the true parameter. The method we propose is

identical except that P is replaced by a semi-parametric estimate P̃T . For compact notation,

define θ
(r)
Ki

= (θrKi+1
, . . . , θrK

)′.

Algorithm 6.1 (Choice of Block Sizes)

1. The labels r1, . . . , rK and the numerical values K1,K2, . . . are from Algorithm 3.1 if the

basic method is used or from Algorithm 4.1 if the studentized method is used, respectively.

2. Fit a semi-parametric model P̃T to the observed data XT .

3. Fix a selection of reasonable block sizes b.

4. Generate M data sets X̃1
T , . . . , X̃M

T according to P̃T .

5. Set i = 1.

6. For each data set X̃m
T , m = 1, . . . ,M , and for each block size b, compute a joint confidence

region CIm,b for θ
(r)
Ki

7. Compute ĝ(b) = #{θ(r)
Ki

(P̃T ) ∈ CIm,b}/M .
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8. Find the value of b̃ that minimizes |ĝ(b)−(1−α)| and use this value b̃ in the construction

of the ith joint confidence region.

9. Let i = i + 1 and return to step 6.

Several remarks concerning this algorithm are in order.

Remark 6.1 The motivation of fitting a semi-parametric model P̃T to P is that such models

do not involve a block size of their own. In general, we suggest to use a low-order vector

autoregressive (VAR) model. While such a model will usually be misspecified, its role can be

compared to the role of a semi-parametric model in the prewhitening process for prewhitened

kernel variance estimation; e.g. see Andrews and Monahan (1992). Even if the model is

misspecified, it should contain some valuable information on the dependence structure of the

true mechanism P that can be exploited to estimate g(·).

Remark 6.2 The method for choosing the block sizes is computationally expensive. To esti-

mate g(b), a total of M joint confidence regions have to be computed, and each joint confidence

region is based on J bootstrap samples. Hence, a total of JM bootstrap samples will have to

be generated and processed.

Remark 6.3 Algorithm 6.1 provides a reasonable method to select the block sizes in a prac-

tical application. We do not claim any asymptotic optimality properties. On the other hand,

in the simpler setting of constructing confidence intervals for a single parameter of interest,

Romano and Wolf (2003) find that this algorithm works very well in a simulation study.

7 Simulation Study

The goal of this section is to shed some light on the finite sample performance of our methods by

means of a simulation study. It should be pointed out that any data generating process (DGP)

has a large number of input variables, including: the number of observations T , the number

of strategies K, the number of false hypotheses, the numerical values of the parameters θk,

the dependence structure across strategies, and the dependence structure over time (in case

of time series data). An exhaustive study is clearly beyond the scope of this paper and our

conclusions will necessarily be limited. The main interest is to see how the multi-step method

compares to the single-step method and to judge the effect of studentization. Performance

criteria are the empirical FWE and the (average) number of false hypotheses that are rejected.

To save space, we only report results for the nominal level α = 0.1.16

To keep the computational burden manageable, we consider the simplest case of comparing

the population mean of a strategy to that of the benchmark, as in Example 2.1. Simulation

results that are not reported show that when the standard deviations of all strategies are the

same, and the data are i.i.d., the basic and the studentized methods perform nearly identically.

Hence, we only report results for scenarios where the standard deviations are not identical.

16The results for α = 0.05 are similar and available from the authors upon request.
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7.1 I.I.D. Data

We start with observations that are i.i.d. over time. The number of observations is T = 100

and there are K = 40 strategies. A basic test statistic is given by (1) and a studentized test

statistic is given by (2). The studentized statistic uses the formula (12). The bootstrap method

is Efron’s bootstrap. The number of bootstrap repetitions is J = 200 due to the computational

expense of the simulation study. The number of DGP repetitions in each scenario is 2,000.

The distribution of the observation Xt,· is jointly normal. There is common correlation

between the individual strategies and also between strategies and the benchmark. This common

correlation is either equal to 0 or equal to 0.5. The mean of the benchmark is always 1. We

consider two scenarios.

In the first class of DGPs, there are four cases as far as the means of the strategies are

concerned: all means are equal to 1; six of the means are equal to 1.4 and the remaining

ones are equal to 1; twenty of the means are equal to 1.4 and the remaining ones are equal

to 1; all forty means are equal to 1.4. The standard deviation of the benchmark is always

equal to 1. As far as the standard deviations of the strategies are concerned, half of them

are equal to 1 and the other half are equal to 2. Note that the strategies that have the same

mean as the benchmark always have half their standard deviations equal to 1 and the other

half equal to 2; the same for the strategies with means greater than that of the benchmark.

The results are reported in Table 1. The (strong) control of the FWE is satisfactory for all

methods (single-step vs. multi-step and basic vs. studentized). When comparing the average

number of false hypotheses rejected, one observes: (i) the multi-step method improves over the

single-step method; (ii) the studentized method improves significantly over the basic method;

(iii) the single-step basic method—that is, the modified White (2000) approach—performs

worst in all scenarios. Finally, the bootstrap successfully captures the dependence structure

across strategies. When the cross correlation is 0.5 as opposed to 0, a larger number of false

hypotheses are rejected on average.

In the second class of DGPs, the strategies that are superior to the benchmark have their

means evenly distributed between 1 and 4. Again there are four cases: all means are equal

to 1; six of the means are bigger than 1 and the remaining ones are equal to 1; twenty of the

means are bigger than 1 and the remaining ones are equal to 1; all forty means are bigger

than 1. For example, when six of the means are bigger than 1, those are 1.5, 2, 2.5, 3.0, 3.5

and 4.0. When twenty of the means are bigger than 1, those are 1.15, 1.30, . . . , 3.85, 4.0.

For any strategy, the standard deviation is 2 times the corresponding mean. For example, the

standard deviation of a strategy with mean 1 is 2; the standard deviation of a strategy with

mean 1.5 is 3; and so on. The results are reported in Table 2. The (strong) control of the

FWE is satisfactory for all methods (single-step vs. multi-step and basic vs. studentized).

When comparing the average number of false hypotheses rejected, one observes: (i) the multi-

step method improves significantly over the single-step method; (ii) the studentized method

improves over the basic method for the single-step approach, however it is somewhat worse

than the basic method for the multi-step approach; (iii) the single-step basic method—that is,

the modified White (2000) approach—performs worst in five out of six scenarios. Finally, the

bootstrap successfully captures the dependence structure across strategies. When the cross
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correlation is 0.5 as opposed to 0, a larger number of false hypotheses are rejected on average.

7.2 Time Series Data

The main modification with respect to the previous DGPs is that now the observations are not

i.i.d. but rather a multivariate normal stationary time series. Marginally, each vector Xk,· is a

AR(1) process with autoregressive coefficient ρ = 0.6. The number of observations is increased

to T = 200 to make up for the dependence over time. A basic test statistic is given by (1)

and a studentized test statistic is given by (2). The studentized statistic uses a prewhitended

kernel variance estimator based on the QS kernel and the corresponding automatic choice

of bandwidth of Andrews and Monahan (1992). The bootstrap method is the circular block

bootstrap. The studentization in the bootstrap world uses the corresponding ‘natural’ variance

estimator; for details, see Götze and Künsch (1996) or Romano and Wolf (2003). The number

of bootstrap repetitions is J = 200 due to the computational expense of the simulation study.

The number of DGP repetitions in each scenario is 2,000.

The choice of the block size is an important practical problem in applying a block boot-

strap. Unfortunately, the data-dependent Algorithm 6.1 is computationally too expensive to

be incorporated in our simulation study. (This would not be a problem in a practical applica-

tion where only one data set has to processed, instead of several thousand as in a simulation

study.) We therefore found the ’reasonable’ block sizes b = 20 for the basic method and b = 15

the studentized method, respectively, by trial and error. Given that a variant of Algorithm 6.1

is seen to perform very well in a less computer intensive simulation study of Romano and Wolf

(2003)17, we are quite confident that would also perform well in the context of multiple testing.

We cannot offer any simulation evidence to this end, however.

The first class of DGPs is similar to the i.i.d. case, except that the strategy means greater

than 1 are equal to 1.6 rather than 1.4. The results are reported in Table 3.

The second class of DGPs is similar to the i.i.d. case, except that the strategy means bigger

than 1 are evenly distributed between 1 and 7 rather than between 1 and 4. The results are

reported in Table 4.

Contrary to the findings for i.i.d. data, the basic method does not provide a satisfactory

control of the FWE in finite sample and is too liberal. (This is not because of the choice of

block size b = 20 but was observed for all other block sizes we tried as well.) On the other

hand, the studentized method does a good job of controlling the FWE. Again, the multi-step

method does in general reject more false hypotheses compared to the single-step method and

the magnitude of the improvement depends on the underlying probability mechanism.

17Their simulation study is for confidence intervals for a single regression coefficient, which is much faster to
implement compared to a multiple testing method.
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8 Empirical Application

This section provides an application to real data, using Example 2.3. It is quite common in

financial econometrics to estimate CAPM alphas based on a time series of the past 120 monthly

return data. We use monthly returns from 12/1992 until 12/2002, provided by DataStream.

The market proxy is the S&P 500 index and the ‘strategies’ are the K = 100 largest stocks, as

measured by their market value in 12/2002, with a complete 10 year return history. The CAPM

model for each stock is estimated via OLS. A basic test statistic is given by (4). A studentized

test statistic is given by (5). Studentization uses a kernel variance estimator based on the

prewhitened QS kernel and the corresponding automatic choice of bandwidth of Andrews and

Monahan (1992). The bootstrap method is the circular block bootstrap. The studentization in

the bootstrap world uses the corresponding ‘natural’ variance estimator; for details, see Götze

and Künsch (1996) or Romano and Wolf (2003). Given the well-known low autocorrelation

of monthly stock returns, we employ a relatively small block size of b = 5. The number of

bootstrap repetitions is J = 1, 000.

Table 5 lists the ten largest basic test statistics together with the corresponding stocks.

Table 6 lists the ten largest studentized test statistics together with the corresponding stocks.

Not surprisingly, the two lists of stocks are quite different. Once the magnitude of the uncer-

tainty about the basic test statistics is taking into account through studentization, the order

of the test statistics changes.

We now use the various multiple testing methods to identify stocks with a positive CAPM

alpha, asymptotically controlling the FWE at level 0.1. The basic single-step method, that is,

the modified version of White (2000), identifies the stocks corresponding to the three largest

basic statistics: AOL Time Warner, Qualcomm, and Dell Computer. The basic multi-step

method further identifies Oracle and Clear Chl. Comms. (both in the second step). On

the other hand, the studentized method identifies the stocks corresponding to the six largest

studentized statistics: Kohls, Citigroup, Clear Chl. Comms., AOL Time Warner, MBNA

Corp., and Fifth Third Bancorp.. All of these are identified in the first step, and no further

stocks are identified in subsequent steps.

9 Conclusion

In this paper, we advocated a stepwise multiple testing method in the context of comparing

several strategies to a common benchmark. To account for the undesirable effects of data

snooping, our method asymptotically controls for the familywise error rate (FWE). Loosely

speaking, the FWE is defined as the probability of falsely rejecting one or more of the true null

hypotheses. Our proposal extends the bootstrap reality check (BCR) of White (2000). The

way it was originally presented, the BCR only addresses whether the strategy that appears

‘best’ in sample actually beats the benchmark, asymptotically controlling for the FWE. But the

BCR can easily be modified to potentially identify several strategies that do so. Our stepwise

method would regard this modified BCR as the first step. The crucial difference is that if some

hypotheses are rejected in this first step, our method does not stop there and potentially will
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reject further hypotheses in subsequent steps. Therefore, our method is more powerful without

sacrificing the asymptotic control of the FWE. To decide which hypotheses to reject in a given

step, we construct a joint confidence region for the set of parameters pertaining to the set of

null hypotheses not rejected in previous steps. This joint confidence region is determined by an

appropriate bootstrap, depending upon whether the observed data are i.i.d. or a time series.

In addition, we proposed the use of studentization in situations when it is feasible. There

are several reasons why we prefer studentization, one of them being that it results in a more

even distribution of power among the individual tests. We also showed that, for several sensible

definitions of power, it is more powerful compared to not studentizing.

It is important to point out that our ideas can be generalized. For example, we focused

on comparing several strategies to a common benchmark. But there are alternative contexts

where multiple testing, and hence data snooping, occurs. One instance is simultaneous infer-

ence for individual regression coefficients in a multiple regression framework. With suitable

modifications, our stepwise testing method can be employed in such alternative contexts. To

give another example, the bootstrap may not result in asymptotic control of the FWE in non-

standard situations, such as when the rate of convergence is different from the square root of

the sample size. In many of such situations one can then use a stepwise method based on

subsampling rather than on the bootstrap.

Some simulation studies investigated finite-sample performance. Of course, stepwise meth-

ods reject more false hypotheses than their single-step counterparts. Our simulations show that

the actual size of the improvement depends on the underlying probability mechanism—for ex-

ample, through the number of false null hypotheses, their respective magnitudes, etc.—and

can range from negligible to dramatic. On the other hand, the studentized stepwise method

can be less powerful or more powerful than the non-studentized (or ‘basic’) stepwise method,

depending on the underlying mechanism. We still advocate the use of studentization: (i) the

underlying mechanism is unknown in practice, so one cannot find whether studentizing is more

powerful or not; (ii) but studentizing always results in a more even (or ‘balanced’) distribu-

tion of power among the individual hypotheses, which is a desirable property. In addition,

the use of studentization appears particularly important in the context of time series data.

Our simulations show that non-studentized (or ‘basic’) method can fail to control the FWE in

finite samples when there is notable dependence over time; the studentized method does much

better.
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A Proofs of Mathematical Results

We begin by stating two lemmas. The first one is quite obvious.

Lemma A.1 Suppose that Assumption 3.1 holds. Let LT denote a random variable with

distribution JT (P ) and let L denote a random variable with distribution J(P ). Let I =

{i1, . . . , im} be a subset of {1, . . . ,K}. Denote by L(I) the corresponding subset of L, that

is, L(I) = (Li1 , . . . , Lim)′. Analogously, denote by LT (I) the corresponding subset of LT , that

is, LT (I) = (LT,i1 , . . . , LT,im)′.

Then for any subset I of {1, . . . ,K}, LT (I) converges in distribution to L(I).

Lemma A.2 Suppose that Assumption 3.1 holds. Let I = {i1, . . . , im} be a subset of {1, . . . ,K}.
Define L(I) and LT (I) as in Lemma A.1 before and use analogous definitions for WT (I) and

θ(I). Also, define

cI(1 − α, P̂T ) = inf{x : ProbP̂T
{max

k∈I
(w∗

T,k − θ∗T,k) ≤ x} ≥ 1 − α} (15)

Then

[wi1 − cI(1 − α, P̂T ),∞) × . . . × [wim − cI(1 − α, P̂T ),∞) (16)

is a joint confidence region (JCR) for (θi1 , . . . , θim)′ with asymptotic coverage probability of

1 − α.

Proof To start out, note that

ProbP {(θi1 , . . . , θim)′ ∈ JCR (16)} = ProbP {max(WT (I) − θ(I)) ≤ cI(1 − α, P̂T )}
= ProbP {max

√
T (WT (I) − θ(I)) ≤

√
TcI(1 − α, P̂T )}

By Assumption 3.1, Lemma A.1, and the continuous mapping theorem, max LT (I) converges

weakly to max L(I), whose distribution is continuous. Our notation implies that the sampling

distribution under P of max
√

T (WT (I) − θ(I)) is identical to the distribution of maxLT (I),

so it converges weakly to max L(I). By similar reasoning, also the sampling distribution under

P̂T of max
√

T (W ∗
T (I) − θ∗(I)) converges weakly to max L(I). The proof that

ProbP{max
√

T (WT (I) − θ(I)) ≤
√

Tc(I)(1 − α, P̂T )} → 1 − α

is now very similar to the proof of Theorem 1 of Beran (1984).

Proof of Theorem 3.1 We start with the proof of (i). Assume that θk > 0. Assumption 3.1

and definition (10) imply that
√

Tc1(1 − α, P̂T ) is stochastically bounded. So c1(1 − α, P̂T )

converges to zero in probability. By Assumption 3.1 and Lemma A.1,
√

T (wT,k−θk), converges

weakly. So wT,k converges to θk in probability. These two convergence results imply that, with

probability tending to one, wT,k − c1(1 − α, P̂T ) will be greater than θk/2, resulting in the

rejection of Hk,0 in the first step.
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We now turn to the proof of (ii). The result trivially holds in case all null hypotheses Hk,0

are false. So assume at least one of them is true. Let I0 = I0(P ) ⊂ {1, . . . ,K} denote the

indices of the set of true hypotheses; that is, k ∈ I0 if and only if θk ≤ 0. Denote the number of

true hypotheses by m and let I0 = {i1, . . . , im}. Part (i) implies that, with probability tending

to one, all false hypotheses will be rejected in the first step. Since cI0(1−α, P̂T ) ≤ c1(1−α, P̂T ),

where cI0(1 − α, P̂T ) is defined analogously to (15), we therefore have

lim sup
T→∞

FWE ≤ lim sup
T→∞

ProbP{0 /∈ [wT,k − cI0(1 − α, P̂T ),∞) for at least one k ∈ I0}

≤ lim sup
T→∞

ProbP{θk /∈ [wT,k − cI0(1 − α, P̂T ),∞) for at least one k ∈ I0}

= 1 − lim inf
T→∞

ProbP {θ(I0) ∈ [wT,i1 − cI0(1 − α, P̂T ),∞) × . . . × [wT,im − cI0(1 − α, P̂T ),∞)}

≤ 1 − (1 − α) (by Lemma A.2)

= α

This proves the control of the FWE at level α.18

Proof of Theorem 4.1 The proof is very similar to the proof of Theorem 3.1 and hence it is

omitted.

B Overview of Bootstrap Methods

For readers not completely familiar with the variety of bootstrap methods that do exist, we

now briefly describe the most important ones. To recall our notation, the observed data matrix

is X, which can be ‘decomposed’ in the observed data sequence X1,·, X2,·, . . . XT,·. When the

data are i.i.d, the order of this sequence is of no importance. When the data is a time series,

the order is crucial.

Bootstrap B.1 (Efron’s Bootstrap)

The bootstrap of Efron (1979) is appropriate when the data are i.i.d.. The method gen-

erates random indices t∗1, t
∗
2, . . . , t

∗
T i.i.d. from the discrete uniform distribution on the set

{1, 2, . . . , T}. The bootstrap sequence is then given by X ∗
1,·, X

∗
2,·, . . . X

∗
T,· = Xt∗

1
,·, Xt∗

2
,·, . . . , Xt∗

T
,·.

The corresponding T ×(K+1) bootstrap data matrix is denoted by X ∗
T . The probability mech-

anism generating a X∗
T is denoted by P̂T .

Bootstrap B.2 (Moving Blocks Bootstrap)

The moving blocks bootstrap of Künsch (1989) is appropriate when the data sequence is a

stationary time series. It generates a bootstrap sequence by concatenating blocks of data

which are resampled from the original series. A particular block Bt,b is defined by its starting

index t and by its length or block size b, that is, Bt,b = {Xt,·, Xt+1,· . . . , Xt+b−1,·}. The

moving blocks bootstrap selects a fixed block size 1 < b < T . It then chooses random starting

18Since the argument does not assume that all K null hypotheses are true, we have indeed proven strong
control of the FWE.
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indices t∗1, t
∗
2, . . . , t

∗
l i.i.d. from the uniform distribution on the set {1, 2, . . . , T − b + 1}, where

l is the smallest integer for which l × b ≥ T . The thus selected blocks are concatenated as

{Bt∗
1
,b, Bt∗

2
,b, . . . , Bt∗

l
,b}. If l × b > T , the sequence is truncated at length T to obtain the

bootstrap sequence X∗
1,·, X

∗
2,·, . . . X

∗
T,·. The corresponding T × (K + 1) bootstrap data matrix

is denoted by X∗
T . The probability mechanism generating a X∗

T is denoted by P̂T .

Bootstrap B.3 (Circular Blocks Bootstrap)

The circular blocks bootstrap of Politis and Romano (1992) is appropriate when the data

sequence is a stationary time series. It generates a bootstrap sequence by concatenating blocks

of data which are resampled from the original series. The difference with respect to the

moving blocks bootstrap is that the original data are ‘wrapped’ into a ‘circle’ in the sense of

XT+1,· = X1,·, XT+2,· = X2,·, . . .. As before, a particular block Bt,b is defined by its starting

index t and by its block size b. The circular blocks bootstrap selects a fixed block size 1 < b < T .

It then chooses random starting indices t∗1, t
∗
2, . . . , t

∗
l i.i.d. from the uniform distribution on the

set {1, 2, . . . , T}, where l is the smallest integer for which l × b ≥ T . The thus selected blocks

are concatenated as {Bt∗
1
,b, Bt∗

2
,b, . . . , Bt∗

l
,b}. If l× b > T , the sequence is truncated at length T

to obtain the bootstrap sequence X∗
1,·, X

∗
2,·, . . . X

∗
T,·. The corresponding T × (K + 1) bootstrap

data matrix is denoted by X∗
T . The probability mechanism generating a X∗

T is denoted by P̂T .

The motivation of this scheme is as follows. The moving blocks bootstrap displays certain

‘edge effects’. For example, the data points X1,· and XT,· of the original series are less likely to

end up in a particular bootstrap sequence than the data points in the middle of the series. This

is because they appear in one of the data blocks only, whereas a ‘middle’ data point appears

in b of the blocks. By wrapping up the data in a circle, each data point appears in b of the

blocks. Hence, the edge effects disappear.

Bootstrap B.4 (Stationary Bootstrap)

The stationary bootstrap of Politis and Romano (1994) is appropriate when the data sequence

is a stationary time series. It generates a bootstrap sequence by concatenating blocks of data

which are resampled from the original series. As does the circular blocks bootstrap, it wraps

the original data into a circle to avoid edge effects. The difference between it and the two

previous methods is that the block sizes are of random lengths. As before, a particular block

Bt,b is defined by its starting index t and by its block size b. The stationary bootstrap chooses

random starting indices t∗1, t
∗
2, t

∗
2, . . . i.i.d. from the discrete uniform distribution on the set

{1, 2, . . . , T}. Independently, it chooses random block sizes b∗1, b
∗
2, . . . i.i.d. from a geometric

distribution with parameter 0 < q < 1/T .19 The thus selected blocks are concatenated as

{Bt∗
1
,b∗

1
, Bt∗

2
,b∗

2
, . . .} until a sequence of length greater than or equal to T is generated. The

sequence is then truncated at length T to obtain the bootstrap sequence X ∗
1,·, X

∗
2,·, . . . X

∗
T,·.

The corresponding T × (K + 1) bootstrap data matrix is denoted by X ∗
T . The probability

mechanism generating a X∗
T is denoted by P̂T .

The motivation of this scheme is as follows. If the underlying data series is stationary, it

might be desirable for the bootstrap series to be stationary as well. This not true, however,

for the moving blocks bootstrap and the circular blocks bootstrap. The intuition is that

19So the average block size is given by 1/q.
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stationarity is ‘lost’ where the blocks of fixed size are pieced together. Politis and Romano

(1994) show that if the blocks have random sizes from a geometric distribution, then the

resulting bootstrap series is indeed stationary (conditional on the observed data). There is

also some evidence to the fact the dependence on the model parameter q is not as pronounced

as the dependence on the model parameter b in the two previous methods.

C Some Power Considerations

We assume a stylized and tractable model which allows us to make exact power calculations.

In particular, we consider the limiting model of Scenarios 3.1 and 3.2.

Our simple setup specifies that K = 2 and that wk ∼ N(θk, σ
2
k), with σk known, for

k = 1, 2.20 (The subscript T in wT,k is suppressed for convenience.) In addition, the setup

specifies a joint normal distribution for (w1, w2)
′. Thus, the results in this section will hold

approximately for quite general models where the limiting distribution is normal. As in the

rest of the paper, an individual null hypothesis is of the form H0,k: θk ≤ 0. We analyze power

for the first step of our stepwise methods. The basic method is equivalent to the following

scheme:

Reject H0,k if wk > c where c satisfies: Prob0,0{max wk > c} = α (17)

Here, the notation Prob0,0 is shorthand for Probθ1=0,θ2=0. The studentized method is equivalent

to the following scheme:

Reject H0,k if wk/σk > d where d satisfies: Prob0,0{max wk/σk > d} = α (18)

To get going, we assume that w1 and w2 are independent of each other. Let Φ(·) the

cumulative distribution function of the standard normal distribution. Then the constant c

in (17) satisfies

Φ

(

c

σ1

)

Φ

(

c

σ2

)

= 1 − α (19)

and the constant d in (18) satisfies

Φ2 (d) = 1 − α so d = Φ−1(
√

1 − α) (20)

The first notion of power we consider is the ‘worst’ power over the set {(θ1, θ2) : θk >

0 for some k}. A proper definition of this worst power is

inf
ε>0

inf
{(θ1,θ2):max θk≥ε}

Power at (θ1, θ2) (21)

Obviously, this infimum is the minimum of the two powers at (−∞, 0) and at (0,−∞).21 The

20The argument generalizes easily for K > 2.
21The power at (−∞, 0) denotes the limit of the power at (0, θ2) as θ2 tends to −∞; and analogously for the

power at (−∞, 0).
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basic method yields

Prob(−∞,0){maxwk > c} = Probθ2=0{w2 > c} = 1 − Φ

(

c

σ2

)

and

Prob(0,−∞){maxwk > c} = Probθ1=0{w1 > c} = 1 − Φ

(

c

σ1

)

The studentized method yields

Prob(−∞,0){max wk/σk > c} = Prob(0,−∞){max wk/σk > c} = 1 − Φ(d) = 1 −
√

1 − α

To demonstrate that the worst power is smaller for the basic method, we are therefore left to

show that

min

(

1 − Φ

(

c

σk

))

≤ 1 −
√

1 − α

or, equivalently, that

max Φ

(

c

σk

)

≥
√

1 − α

But this last inequality follows from (19), and it is strict unless σ1 = σ2. Note that even for

the studentized method the worst power is equal to 1−
√

1 − α and therefore strictly less than

α. Hence, both the basic and the studentized method are biased, but the worst bias is smaller

for the studentized method.

We continue to assume that w1 and w2 are independent. But now we consider the worst

power against alternatives in the class Cδ = {(θ1, θ2) : θk = σkδ for some k}, where δ is a

positive number. Obviously, the worst power is the minimum of the two powers at (−∞, σ2δ)

and at (σ1δ,−∞). The basic method yields

Prob(−∞,σ2δ){max wk > c} = Probθ2=σ2δ{w2 > c} = 1 − Φ

(

c − σ2δ

σ2

)

= 1 − Φ

(

c

σ2
− δ

)

and

Prob(σ1δ,−∞){max wk > c} = Probθ1=σ1δ{w1 > c} = 1 − Φ

(

c − σ1δ

σ1

)

= 1 − Φ

(

c

σ1
− δ

)

The studentized method yields

Prob(−∞,σ2δ){maxwk/σk > c} = Prob(σ1δ,−∞){maxwk/σk > c} = 1 − Φ(d − δ)

To demonstrate that the worst power is smaller for the basic method, we are therefore left to

show that

maxΦ

(

c

σk
− δ

)

≥ Φ(d − δ) (22)

This is true if c/σk ≥ d for some k. But assume the latter relation is false, that is, c/σk < d
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for both k. This would imply that

Φ

(

c

σ1

)

Φ

(

c

σ2

)

< Φ2(d) = 1 − α

resulting in a violation of (19). Hence, inequality (22) holds; and it is strict unless σ1 = σ2.

So, unless σ1 = σ2, the worst power over Cδ of the basic method is strictly smaller than the

worst power of the studentized method.

Next, we consider correlated test statistics, with ρ = Cor(w1, w2). We claim that also in

this case the basic method has a smaller worst power (21) than the studentized method. As

before, the infimum in (21) is the minimum of the two powers at (−∞, 0) and at (0,−∞). For

the basic method, we get

min (Probθ1=0{w1 > c},Probθ2=0{w2 > c}) = min (Prob {σ1z1 > c} ,Prob {σ2z2 > c})

where z1 and z2 are two standard normal variables with correlation ρ. For the studentized

method, we get

min (Probθ1=0{w1/σ1 > d},Probθ2=0{w2/σ2 > d}) = Prob{z1 > d}

We are therefore again left to show that c/σk ≥ d for some k. But assume the latter relation is

false, that is, c/σk < d for both k. Also assume without loss of generality that σ1 ≤ σ2. Then

Prob0,0{max wk > c} = Prob{max σkzk > c}
= Prob{max(σk/σ1)zk > c/σ1}
≥ Prob{max zk > c/σ1}
> Prob{max zk > d}
= Prob0,0{max wk/σk > d}
= α (by (18))

resulting in a violation of (17). Hence, the infimum in (21) for the basic method is smaller than

or equal to the infimum for the studentized method. And again, unless σ1 = σ2, the infimum

for the basic method is strictly smaller.

We have just demonstrated that also in the case of correlated test statistics, c/σk ≥ d for

some k. Hence, by the reasoning leading up to (22), also in the case of correlated test statistics,

the worst power over Cδ of the basic method is smaller than the worst power of the studentized

method. And it is strictly smaller unless σ1 = σ2.
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Götze, F. and Künsch, H. R. (1996). Second order correctness of the blockwise bootstrap for

stationary observations. Annals of Statistics, 24:1914–1933.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal

of Statistics, 6:65–70.

30



Jorion, P. (2000). Value at Risk: The New Benchmark for Managing Financial Risk. McGraw-

Hill, second edition.
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Rodŕıguez-Poo, J., Delgado, M., and Wolf, M. (2001). Subsampling inference in cube root

asymptotics with an application to Manski’s maximum score estimator. Economics Letters,

73:241–250.

Romano, J. P. and Wolf, M. (2003). Improved nonparametric confidence intervals in time

series regressions. Technical report, Department of Economics, Universitat Pompeu Fabra.

Available at http://www.econ.upf.es/∼wolf/preprints.html.

Shao, J. and Tu, D. (1995). The Jackknife and the Bootstrap. Springer, New York.

Westfall, P. H. and Young, S. S. (1993). Resampling-Based Multiple Testing: Examples and

Methods for P-Value Adjustment. John Wiley, New York.

White, H. L. (2000). A reality check for data snooping. Econometrica, 68(5):1097–1126.

White, H. L. (2001). Asymptotic Theory for Econometricians. Academic Press, New York,

second edition.

31



Table 1: Empirical FWEs and average number of false hypotheses rejected. The nominal level
is α = 10%. Observations are i.i.d., the number of observations is T = 100, and the number of
strategies is K = 40. The mean of the benchmark is 1; the strategy means are 1 or 1.4. The
standard deviation of the benchmark is 1; half of the strategy standard deviations are 1, the
other half is 2. The number of repetitions is 2,000 per scenario.

All strategy means = 1, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 10.6 10.6 0.0 0.0
Stud 10.5 10.5 0.0 0.0

All strategy means = 1, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 11.0 11.0 0.0 0.0
Stud 11.1 11.1 0.0 0.0

Six strategy means = 1.4, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 9.4 9.9 1.1 1.2
Stud 10.1 10.7 2.2 2.2

Six strategy means = 1.4, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 9.8 10.1 2.6 2.7
Stud 9.5 10.0 3.8 3.9

Twenty strategy means = 1.4, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 6.0 7.7 3.8 4.2
Stud 6.8 8.3 7.4 7.8

Twenty strategy means = 1.4, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 6.3 8.7 8.6 9.6
Stud 6.6 9.0 12.6 13.2

Forty strategy means = 1.4, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 0.0 7.5 10.0
Stud 0.0 0.0 14.8 17.1

Forty strategy means = 1.4, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 0.0 17.2 23.3
Stud 0.0 0.0 25.2 29.4
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Table 2: Empirical FWEs and average number of false hypotheses rejected. The nominal level
is α = 10%. Observations are i.i.d., the number of observations is T = 100, and the number
of strategies is K = 40. The mean of the benchmark is 1; the strategy means that are bigger
than 1 are equally spaced between 1 and 4. The standard deviation of the benchmark is 2; the
standard deviation of a strategy is 2 times its mean. The number of repetitions is 2,000 per
scenario.

All strategy means = 1, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 11.0 11.0 0.0 0.0
Stud 10.3 10.3 0.0 0.0

All strategy means = 1, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 11.1 11.1 0.0 0.0
Stud 11.1 11.1 0.0 0.0

Six strategy means greater than 1, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 9.0 3.6 4.7
Stud 8.3 9.4 3.3 3.5

Six strategy means greater than 1, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 9.3 4.1 5.3
Stud 8.5 10.0 4.3 4.4

Twenty strategy means greater than 1, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 6.3 9.0 13.7
Stud 4.9 7.8 9.6 10.5

Twenty strategy means greater than 1, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 8.4 11.0 16.3
Stud 5.5 8.8 13.1 13.9

Forty strategy means greater than 1, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 0.0 15.3 24.5
Stud 0.0 0.0 18.1 21.5

Forty strategy means greater than 1, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 0.0 19.7 31.5
Stud 0.0 0.0 25.4 29.0
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Table 3: Empirical FWEs and average number of false hypotheses rejected. The nominal level
is α = 10%. Observations are a multivariate time series, the number of observations is T = 200,
and the number of strategies is K = 40. The mean of the benchmark is 1; the strategy means
are 1 or 1.6. The standard deviation of the benchmark is 1; half of the strategy standard
deviations are 1, the other half is 2. The number of repetitions is 2,000 per scenario.

All strategy means = 1, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 15.7 15.7 0.0 0.0
Stud 5.8 5.8 0.0 0.0

All strategy means = 1, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 16.3 16.3 0.0 0.0
Stud 5.2 5.2 0.0 0.0

Six strategy means = 1.3, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 14.7 15.5 1.8 1.9
Stud 5.0 5.4 1.8 1.8

Six strategy means = 1.3, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 15.6 16.8 3.7 3.8
Stud 6.8 7.5 3.3 3.4

Twenty strategy means = 1.3, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 9.4 12.7 6.1 6.8
Stud 3.7 5.0 5.9 6.3

Twenty strategy means = 1.3, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 11.3 16.0 12.3 13.3
Stud 4.3 6.8 11.2 12.0

Forty strategy means = 1.3, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 0.0 12.5 16.8
Stud 0.0 0.0 11.6 14.3

Forty strategy means = 1.3, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 0.0 24.3 30.2
Stud 0.0 0.0 22.3 27.9
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Table 4: Empirical FWEs and average number of false hypotheses rejected. The nominal level
is α = 10%. Observations are a multivariate time series the number of observations is T = 200,
and the number of strategies is K = 40. The mean of the benchmark is 1; the strategy means
that are bigger than 1 are equally spaced between 1 and 7. The standard deviation of the
benchmark is 2; the standard deviation of a strategy is 2 times its mean. The number of
repetitions is 2,000 per scenario.

All strategy means = 1, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 15.1 15.1 0.0 0.0
Stud 7.4 7.4 0.0 0.0

All strategy means = 1, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 17.9 17.9 0.0 0.0
Stud 7.4 7.4 0.0 0.0

Six strategy means greater than 1, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 12.4 3.4 4.9
Stud 5.5 6.0 2.0 2.1

Six strategy means greater than 1, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 13.0 3.8 5.4
Stud 4.5 5.3 2.5 2.6

Twenty strategy means greater than 1, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 6.1 8.0 13.3
Stud 2.7 3.5 5.2 5.9

Twenty strategy means greater than 1, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 12.0 9.5 15.8
Stud 2.3 4.1 7.5 8.5

Forty strategy means greater than 1, cross correlation = 0

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 0.0 13.0 22.1
Stud 0.0 0.0 9.4 11.5

Forty strategy means greater than 1, cross correlation = 0.5

Method FWE (single) FWE (multi) Rejected (single) Rejected (multi)
Basic 0.0 0.0 16.5 29.4
Stud 0.0 0.0 14.9 19.3
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Table 5: The ten largest basic test statistics α̂T,k and the corresponding stocks in our empirical
application. The return unit is 1 percent.

α̂T,k Stock

4.03 AOL Time Warner
3.80 Qualcomm
3.44 Dell Computer
2.67 Oracle
2.65 Clear Chl. Comms.
2.24 Applied Mats.
2.12 Cisco Systems
2.06 Lowe’s Cos.
2.02 Kohls
1.87 Forest Labs.

Table 6: The ten largest studentized test statistics α̂T,k/σ̂T,k and the corresponding stocks in
our empirical application. The return unit is 1 percent.

α̂T,k/σ̂T,k Stock

3.98 Kohls
3.08 Citigroup
2.96 Clear Chl. Comms.
2.87 AOL Time Warner
2.83 MBNA Corp.
2.77 Fifth Third Bancorp.
2.59 Wells Fargo & Co
2.52 Anheuser-Busch
2.51 Dell Computer
2.51 Amer.Intl.Gp.
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