
 

Centre de Referència en Economia Analítica 
 

 
 

Barcelona Economics Working Paper  Series  
 
 

Working Paper nº 14 
 
 
 
 
 
 

Stable Sunspot Equilibria in a  
Cash-in-Advance Economy 

 
George W. Evans, Seppo Honkapohja and Ramon Marimon 

 
 

  February 23, 2004 (first draft: December 2003) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Stable Sunspot Equilibria in a
Cash-in-Advance Economy∗

George W. Evans
University of Oregon

Seppo Honkapohja
University of Cambridge

Ramon Marimon
University of Pompeu Fabra, Barcelona

February 23, 2004; revised

Abstract

We analyze a monetary model with flexible labor supply, cash-in-
advance constraints and seigniorage-financed government deficits. If
the intertemporal elasticity of substitution of labor is greater than
one, there are two steady states, one determinate and the other inde-
terminate. If the elasticity is less than one, there is a unique steady
state, which can be indeterminate. Only in the latter case do there
exist sunspot equilibria that are stable under adaptive learning. A
sufficient reduction in government purchases can in many cases elimi-
nate the sunspot equilibria while raising consumption/labor taxes even
enough to balance the budget may fail to achieve determinacy.
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1 Introduction

There has been considerable interest in the issue of indeterminacy in both
theoretical and applied macroeconomics. The distinctive feature of inde-
terminacy is that there are multiple well-behaved rational expectations (RE)
solutions to the model. These can take various forms, including a dependence
on extraneous random variables (called “sunspots”). Such solutions corre-
spond to self-fulfilling prophecies and have been offered as an explanation of
the business cycle. Much of this recent research has focused on stationary
sunspot equilibria (SSEs) near an indeterminate steady state, a possibility
that has been examined in both extensions of Real Business Cycle (RBC)
models, incorporating externalities, and in a variety of monetary models.1 A
detailed survey of this literature is provided by (Benhabib and Farmer 1999),
which gives extensive references.
A crucial related issue is the learnability of such solutions. Suppose agents

are not assumed to have rational expectations a priori but instead make
forecasts using a perceived law of motion with parameters that they update
over time using an adaptive learning rule, such as least squares. Can such
learning rules lead agents eventually to coordinate on an SSE? That it is
indeed possible for sunspot solutions to be learned by agents was demon-
strated by (Woodford 1990) in the context of the Overlapping Generations
(OG) model of money. (See also (Evans 1989)). Local stability conditions
for Markov SSEs in simple forward looking models were developed in (Evans
and Honkapohja 1994).2 In general it can be shown that the possibility of
such coordination depends on stability conditions for the SSE, as will be
discussed further below. It is also easy to develop examples in which SSEs
are not stable under learning. For an extensive treatment of adaptive learn-

1In nonlinear models SSEs can also exist near multiple distinct steady states or rational
deterministic cycles.

2Examples of learnable SSEs are the “growth cycles” studied in (Evans, Honkapohja,
and Romer 1998) and the “animal spirits” equilibrium provided by (Howitt and McAfee
1992). These SSEs fluctuate between neighborhoods of two distinct steady states, so that
nonlinearity of the model is a crucial element.
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ing in macroeconomics, see (Evans and Honkapohja 2001), who show that
“expectational stability” (E-stability) conditions typically govern the local
learnability of SSEs, as well as other RE solutions.3

Recent work has found that in RBC type models SSEs near an indetermi-
nate steady state fail to be stable under learning; see Chapter 10 of (Evans
and Honkapohja 2001), (Rudanko 2002) and (Evans and McGough 2002).
This raises the question whether stable SSEs under learning could exist in
dynamic representative agent market-clearing models with a unique steady
state. In this paper we demonstrate that this is indeed possible using a
standard infinite-horizon monetary general equilibrium model.4

We study a model where the money demand arises from a cash-in-advance
constraint, as in (Svensson 1985). Svensson’s cash-in-advance timing re-
quires that consumption must be purchased with existing money holdings
and, therefore, any unexpected rise of the price level results in consumption
losses that could have been avoided if agents had the possibility of adjusting
their portfolios within the purchasing period, as in Lucas’s cash-in-advance
timing.5 For this reason, the model studied here is now being widely used in
monetary economics.6 In these models, the price elasticity of money demand
corresponds to the labor supply elasticity of intertemporal substitution. To
assume an elasticity of intertemporal substitution greater than or equal to
one is common in RBC models. However, microeconomic estimates of this
elasticity are typically significantly smaller than one, in the range 0.5 to 0.05;
see (Card 1994) for a survey of the microeconometric literature.
Our paper contributes to the monetary literature by providing a charac-

terization of the set of equilibria in a cash in advance model with seigniorage,
stressing the role played by the elasticity of intertemporal substitution and,
in particular, by studying the stability properties of the different equilibria
under adaptive learning. Our findings are both sharp and somewhat unex-

3In the context of one-step forward-looking univariate models, results showing the
existence of stable SSE in the neigborhood of a steady state are given in (Evans and
Honkapohja 2003b) and (Evans and Honkapohja 2003c).

4Recently, it been shown that stable SSEs can exist in the sticky price New Keynesian
models for specific interest rate rules; see (Honkapohja and Mitra 2001) and (Evans and
McGough 2003).

5See (Woodford 1994) for an extensive discussion of indeterminacy in cash-in-advance
models with Lucas’s timing.

6For example, (Nicolini 1998) shows that, if the monetary authority maximizes the
welfare of the representative agent, and agents have isoelastic preferences, then the Ramsey
policy is time inconsistent unless the price elasticity is one (the log case).
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pected. The model has two regimes and the results depend on the regime. In
the first, characterized by an elasticity of intertemporal substitution greater
than one, there are two steady states and a continuum of rational expecta-
tions equilibria (REE) with a long-run inflation corresponding to the high
inflation steady state. The low inflation steady state is determinate and
stable under learning, while the other is indeterminate but unstable under
learning. In this regime, none of the SSEs near the indeterminate steady
state are learnable.
In contrast, when the elasticity of intertemporal substitution is less than

one, which is consistent with micro evidence, there is a unique steady state
that can be either determinate or indeterminate. When the elasticity is suf-
ficiently low, the steady state is indeterminate and there are nearby Markov
chain sunspot equilibria that are stable under learning. In a neighborhood of
this steady state, there also exist stationary autoregressive (AR) solutions,
depending on extraneous sunspot noise, but these are not stable under learn-
ing. These results show that requiring stability under learning redirects the
focus of analysis to a particular type of indeterminate steady state and to
particular SSEs near that steady state. The results also show that the choice
of the elasticity of intertemporal substitution has important consequences in
terms of the nature of the underlying equilibria.7

When stable SSEs do exist, this raises the issue of whether economic
policy can be used to avoid them, either by eliminating the existence of SSEs
or by rendering them unstable. In our model, where government finances
expenditures through seigniorage, the natural policy variable is the level
of such purchases. We find that for a wide range of parameter values in
which the steady state has nearby stable Markov sunspot equilibria, lowering
government purchases sufficiently can render the steady state determinate,
making the nearby sunspot solutions disappear.
The above results all concern the case where consumption and labor taxes

are ignored. However, in Section 6 we show how the analysis can be extended
to taxes. Most of the results concerning the effects of changing government
spending remain unchanged when tax rates are low; in a wide range of cases
a sufficient reduction in government spending will yield determinacy. We
also consider the possibility of eliminating learnable sunspot equilibria by

7We remark that versions of the OG model with seigniorage can also lead to the two
types of regimes studied here. However, as is well known, the case of a unique indetermi-
nate steady state in the OG model corresponds to a perverse labour supply response.
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increases in consumption and labor taxes. Here the results are more subtle. If
government spending is not too high, raising consumption and labor taxes can
be sufficient to eliminate indeterminacy and learnable sunspots. However, if
government spending is relatively high then even raising taxes sufficiently to
achieve budget balance will fail to eradicate learnable sunspot equilibria.

2 The Model

We consider an infinite-horizon representative agent economy. There are two
types of consumption goods, cash and credit goods. (Cash goods must be
paid for by cash at hand.) There is also a flexible labor supply, one unit of
which produces one unit of either consumption good. The unit endowment
of time is split between leisure and labor. Both consumption goods are
perishable and there are no capital goods.
Let the utility function be

Ut = Et

∞X
s=t

Bs−t
·
(c1s)

1−σ

1− σ
+
(c2s)

1−σ

1− σ
+ α

(1− ns)
1−σ

1− σ

¸
where c1s, c

2
s and ns denote cash goods, credit goods and labor supply, re-

spectively. B is the discount factor and σ > 0 the coefficient of relative risk
aversion. That is, 1/σ is the elasticity of intertemporal substitution. The
(sub-)utilities of cash goods, credit goods and leisure are assumed identical
to facilitate investigation and presentation of the results. α is the relative
weight placed on leisure.
The household budget constraint is

Ms+1 +Bs+1 ≤ ps(ns − c1s − c2s) +Ms + IsBs.

Here Ms+1 and Bs+1 denote the stocks of money and bonds at the beginning
of period s+ 1. Is is the nominal one-period interest rate factor on risk-free
bonds earned during period s and known at the end of period s−1. ps is the
price of goods and labor in period s. The cash-in-advance constraint (CA
constraint) takes the form8

psc
1
s ≤Ms.

8This is the Svensson timing, while Lucas’s timing would had been psc1s ≤Ms+1.
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We will focus on equilibria where bonds are not held. Defining

ms+1 =Ms+1/ps and πs = ps/ps−1,

we can write the first order conditions as

(c2t )
−σ = BE∗t [π

−1
t+1(c

1
t+1)

−σ]

(c2t )
−σ = BE∗t [It+1π

−1
t+1(c

2
t+1)

−σ]
(c2t )

−σ = α(1− nt)
−σ.

Here E∗t denotes the expectations of the household, conditional on time t
information, where we use the notation E∗t to indicate that the expectations
are not necessarily assumed to be fully rational, due to adaptive learning.
When RE are assumed we will use the notation Et. With the CA constraint
holding with equality, it can be written as

c1t = mt/πt. (1)

The market clearing condition is

nt = c1t + c2t + gt,

where gt denotes government spending on goods. We assume that gt is an iid
random variable with small bounded support around the mean g > 0. There
is also a government finance constraint taking the form

Bt+1 +Mt+1 = ptgt + ItBt +Mt.

Note that for simplicity we are ignoring taxes at this stage. We generalize
the model to include consumption and labor taxes in Section 6. If bonds are
not held in positive net amount in equilibrium, then this constraint yields
the familiar seigniorage equation

πt =
mt

mt+1 − gt
. (2)

Household optimization, market clearing and the CA constraint lead to
the equations

nt = 1− α1/σB−1/σ{E∗t [π−1t+1(c1t+1)−σ]}−1/σ (3)

mt+1 = (1 + α−1/σ)nt − α−1/σ (4)

c1t = mt+1 − gt (5)

c2t = nt − c1t − gt, (6)

It+1 = (c2t )
−σB−1{E∗t [π−1t+1(c1t+1)−σ]}−1 (7)
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Note that mt+1 =Mt+1/pt, the real money stock carried forward from period
t to period t+ 1, is determined at time t. Similarly, It+1 is determined and
known in period t. Equations (3)-(7), together with (2), give the temporary
equilibrium equations determining πt, nt,mt+1, c

1
t , c

2
t and It+1 as functions of

time t expectations, the exogenous government spending shock gt, and the
previous period’s real money stock mt.
We note that the labor supply response in this model is entirely stan-

dard. It can be shown that, under perfect foresight, dynamic labor supply is
characterized by

1− nt
1− nt+1

= BR
−1/σ
t+1 ,

where Rt+1 = It+1/πt+1. Thus increases in the real interest rate factor Rt+1

lead to increases in current labor supply nt for any value of σ.

3 Linearized Model

Our first step is to determine the possible steady states and then to log-
linearize the model around the steady states.9 This will enable us to ex-
amine determinacy and stability under learning through an extension of the
procedure developed in (Evans and Honkapohja 2003c).

3.1 Nonstochastic Steady States

We begin by determining the non-stochastic perfect foresight steady states
that are possible when gt = g is constant and nonstochastic. Denoting steady
state values by bars over the variables, (3)-(5) and (2) imply

n̄ = 1− α1/σB−1/σπ̄1/σ c̄1

m̄ = (1 + α−1/σ)n̄− α−1/σ

c̄1 = m̄− g

π̄ = m̄/(m̄− g).

These equations can be reduced to a single equation in the steady state
inflation rate π̄,

(1− g)π̄ = 1 + gAπ̄1/σ, (8)

9When the shocks are sufficiently small, determinacy and stability under learning of
stochastic equilibria can be examined through linearization. See Chapters 11-12 of (Evans
and Honkapohja 2001) for this methodology in basic nonlinear forward-looking models.
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π

π)1( g−
σπ /11 gA+

Figure 1: σ < 1

where A = (1 + α1/σ)B−1/σ > 1 since α > 0 and B < 1.
For g = 0 there is a unique steady state π = 1. For g > 0, it can be

seen that the model has two regimes, depending on σ. If σ < 1, then the
right-hand side of (8) is a convex function, while the left-hand side defines
a straight line and there are two cases. If g > 0 is below a threshold value,
depending on α, σ and B, there are two distinct steady states, 1 < π̄L < π̄H ,
while if g exceeds this threshold there are no perfect foresight steady states.
Below this threshold value, increases in g raise π̄L and lower π̄H . The σ < 1
regime is standard in seigniorage models. However, this model also has a
less familiar regime that arises when σ > 1. In this case the right hand side
of (8) is concave, and provided 0 < g < 1 (which we assume throughout the
paper), there is a unique steady state π̄. In this regime increases in g raise
π̄. Figures 1 and 2 illustrate the two cases σ < 1 and σ > 1.

3.2 Linearization

We begin by remarking that, in the stochastic economy, agents are assumed to
make forecasts E∗t [π

−1
t+1(c

1
t+1)

−σ] about a nonlinear function of future inflation
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π

π)1( g−

σπ /11 gA+

Figure 2: σ > 1

and consumption of the cash good, see equation (3). When the model is log-
linearized for analysis of indeterminacy and learning, we must decide on the
formulation that will be used and there are two natural possibilities. First,
agents might forecast separately the two variables in the linearization of the
composite quantity π−1t+1(c

1
t+1)

−σ. Under this assumption the model can be
reduced to a bivariate system in inflation and consumption of the cash good
(or equivalently employment). Second, it is possible to derive a univariate
reduced form from (2)-(7) and conduct the analysis with the univariate form.
In what follows, we adopt the latter formulation for theoretical simplicity.
Not surprisingly, both formulations deliver identical results.10

Using (1), (2), (4) and (5) we can write (3) in the form

c1t = 1− A

½
E∗t

·
(c1t+1)

1−σ

c1t + gt

¸¾−1/σ
− gt, (9)

where A = (1 + α1/σ)B−1/σ is as in equation (8). To obtain this equation,
we have in effect assumed that agents understand, and when forecasting

10The results for the bivariate formulation are available on request.
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make use of, the CA and seigniorage relations (1)-(2).11 (9) is the univariate
formulation that we will employ. Let gt = g + ût, where ût is now assumed
to be white noise with mean zero.
The log-linearization of (9) is

zt = β0E
∗
t zt + β1E

∗
t zt+1 + ut, (10)

where we have introduced the notation zt = log c
1
t − log c̄1 and

β0 = −A
σ
(π̄)(1−σ)/σ,

β1 =
A(1− σ)

σ
(π̄)1/σ and

ut = − g

c̄1
ût.

Note that β0 < 0 while β1 ≷ 0⇔ σ ≶ 1. We make the regularity assumptions
that β0 6= 1, β1 6= 0 and β0 + β1 6= 1. In deriving (10) we have made the
assumption that current exogenous, but not current endogenous variables,
are known when expectations are formed.12 This strikes us as the most
natural assumption within the univariate framework, but we will comment
on an alternative assumption below. (Under RE, knowledge of the exogenous
and predetermined variables is equivalent to knowledge of all endogenous
variables, but this equivalence does not hold under learning.)
We next assess the determinacy of the steady state and consider the

different types of REE using the linearized model (10).

3.3 Noisy Steady State and AR Solutions

The method of undetermined coefficients can be used to show that the log-
linearized reduced form (10) has RE solutions taking the form of “noisy
steady states,”

zt = (1− β0)
−1ut. (11)

These solutions are often called minimal state variable (MSV) solutions in
the terminology of (McCallum 1983) and are the solutions most typically
adopted in applied work.

11Again, these assumptions are made for theoretical simplicity. They are not imposed
in our later numerical simulations of the multivariate nonlinear model under learning.
12Knowledge of aggregate c1t is equivalent to knowlege of the current price level and

inflation rate.
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If the steady state, around which we have linearized the model, is deter-
minate then, as is well known, this is the unique stationary solution near the
steady state. See, for example, (Blanchard and Kahn 1980), (Farmer 1999)
and (Evans and Honkapohja 2001). On the other hand, if the steady state
is indeterminate there exist SSEs in a neighborhood of that steady state.13

The possibility of modeling business cycle fluctuations as SSEs has been
emphasized by (Cass and Shell 1983), (Azariadis 1981), (Farmer 1999) and
(Guesnerie and Woodford 1992). The following result is easily verified:

Proposition 1 The general linear model (10) is indeterminate if and only
if ¯̄̄̄

β1
1− β0

¯̄̄̄
> 1.

This follows since, under RE, (10) is equivalent to the standard one-step
forward-looking model zt = β1(1−β0)−1(Etzt+1+ut) studied e.g. in (Farmer
1999). Some intuition for the indeterminacy condition in the Proposition is
provided by noting that it requires strong feedback from expectations to the
current value of the endogenous variable. As is well known, strong expecta-
tional feedbacks are needed for the existence of self-fulfilling prophecies.
A familiar feature of the seigniorage model is that in the case of two

steady states the high inflation equilibrium is indeterminate. As we will see
in Section 4.2, this result also holds in our model. In addition, it can be
shown that for some parameter values we have indeterminacy in the regime
σ > 1 when there is a single steady state. In fact we have:

Corollary 2 In the case σ > 1 the steady state in the monetary model is
indeterminate when σ is sufficiently large.

This result can be seen as follows. First note from (8) that limσ→∞ π̄ =
(1 + 2g)/(1 − g), implying that limσ→∞ c̄1 = (1 − g)/3. Second, we have
limσ→∞ β0 = 0 and limσ→∞ β1 = −2. With these values the condition in
Proposition 1 is satisfied.
In the case of Figure 1, the two steady states π̄H and π̄L have the following

determinacy properties:

13The terminology “regular” and “irregular” is often used synonymously with “deter-
minate” and “indeterminate.”
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Corollary 3 In the case σ < 1 the high inflation steady state π̄H is indeter-
minate and the low inflation steady state π̄L is determinate.

The result is proved in the Appendix.
We next consider the form of SSEs in cases of indeterminate steady states.

Using the method of undetermined coefficients one can show that there exist
stochastically stationary solutions of the form

zt = a+ bzt−1 + d0ut + d1ut−1 + kηt, (12)

where ηt, the sunspot variable, is an arbitrary (observable) exogenous variable
satisfying Etηt+1 = 0. Computing conditional expectations under (12) and
substituting into (10), it is seen that the REE of the form (12) consist of the
steady state (with a = b = d1 = k = 0 and d0 = (1− β0)

−1) or a continuum
with a = 0, b = (1 − β0)/β1, d1 = −β−11 and d0, k free. For convenience we
will refer to the latter as autoregressive (AR) SSEs, though they also include
moving average dependencies on the intrinsic disturbance. This is the type of
solution that is emphasized by much of the applied indeterminacy literature,
see e.g. (Benhabib and Farmer 1999). For the case at hand, when the steady
state is indeterminate, there are stationary AR SSEs. Stationarity stipulates
that |b| = |(1− β0)/β1| < 1, which holds precisely when the steady state is
indeterminate, see Proposition 1.
Although the AR solutions are the form of SSEs that have recently re-

ceived the most attention, the literature has also drawn attention to the
existence of solutions generated by finite state Markov solutions. We next
show that this type of solution can exist in our monetary model.

3.4 Markov Sunspot Solutions

When a steady state is indeterminate it follows from the theoretical literature
that there will also exist SSEs around the steady state for which the sunspot
process is a Markov chain with a finite number of states; see (Chiappori,
Geoffard, and Guesnerie 1992) for the case without intrinsic shocks. We will
call such solutions Markov SSEs to distinguish them from the AR SSEs dis-
cussed above. (Evans and Honkapohja 2003c) examine the relation between
these two types of SSEs in the basic one-step forward looking model without
intrinsic shocks.
For simplicity, we focus on SSEs driven by a 2-state Markov chain. Thus

assume that st is a two state exogenous process, taking values st = 1 or
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st = 2. The transition probabilities are pij , j = 1, 2, so that p12 = 1 − p11
and p21 = 1− p22. Let P = (pij). We look for solutions of the form:

zt = z(j) +Kut if st = j.

To satisfy (10) under RE the values of z(j) must satisfy

z(j) =
β1

1− β0
[pj1z(1) + pj2z(2)], and K = (1− β0)

−1,

of which the first equation can be rewritten in the vector form

θ = T θ, where θ0 = (z(1), z(2)), T (θ) = β1
1− β0

P. (13)

A Markov SSE θ exists if there exist 0 < p11 < 1 and 0 < p22 < 1 and
θ 6= 0 for which θ satisfies the equation (13). Note that if an SSE exists then,
in our linearized model, kθ is also an SSE for any real k for the same transition
probabilities, so that the “size” of the sunspot fluctuations is indeterminate.
Formally, SSEs exist if and only if T −I is singular for some 0 < p11, p22 < 1.
Noting that T depends on p11 and p22, we can solve the equation

det(T (p11, p22)) = 0

and make use of the fact that P is a 2−dimensional transition probability
matrix. In linearized models such as the current one, SSEs exist only for
very particular transition probabilities, namely those for which β1

1−β0 is the
inverse of an eigenvalue of P . Since P has one eigenvalue equal to 1 and

the other in the open interval (−1, 1), when
¯̄̄

β1
1−β0

¯̄̄
> 1, i.e. the steady state

is indeterminate, we always have existence of Markov SSEs. The required
condition on P can be thought of as a resonant frequency condition that
makes possible the excitation of the SSE.14

4 Stability Under Learning

We now take up the question of stability of the RE solutions under adaptive
learning rules. In the case of indeterminate steady states we separately assess

14For other transition probabilities the matrix T is nonsingular and the equation θ = T θ
has only the trivial solution θ = 0, which corresponds to the steady state.
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each of the three types of solution for their stability under learning. Least
squares and related learning dynamics have been widely studied and shown to
converge to the usually employed REE in many standard models. This is true
of the stationary solutions of, for example, the Cagan model of inflation, the
Sargent-Wallace IS-LM-PC model, the Samuelson overlapping generations
model and the real business cycle model. A recent overview of the literature
is provided in (Evans and Honkapohja 2001).
The starting point for analysis of learning is the temporary equilibrium

in the model, given by equation (9) or its linearization (10). To complete the
description of the agents’ behavior we must supplement this equation with a
rule for forecasting the required state variables next period. The agents are
assumed to have perceptions about the (in general stochastic) equilibrium
process of the economy. This is usually called the perceived law of motion
(PLM) and depends on parameters that are updated as new data become
available over time. At each period t, agents form expectations by making
forecasts using the estimated PLM. This leads to a temporary equilibrium,
called the actual law of motion (ALM), which provides the agents a new data
point of the key variables. Estimated parameters are updated in each period
according to least squares and the new data. The issue of interest is the
stability under learning of some rational expectations solution, i.e. whether
the estimated parameters of the PLM converge to REE values over time.
It is well known that, for a wide range of models, stability under least

squares learning is governed by E-stability conditions. See the (Evans and
Honkapohja 2001) book for an extensive discussion of these concepts and
analytical techniques. The E-stability conditions are developed as follows.
For given values of the parameters of the PLM one computes the resulting
ALM, and E-stability is then determined by a differential equation in notional
time in which the parameters adjust in the direction of the ALM parameter
values.
We provide E-stability conditions for the different REE in the general

linear model (10). These results extend (Evans and Honkapohja 2003c) to
models with intrinsic shocks and by including the E∗t zt term, which arises
under our information assumptions. We remark that the stability results
in our linearized monetary model are unaffected if instead full t−dating of
expectations is assumed.
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4.1 Steady State and AR Solutions

Consider the noisy steady state solutions (11). These solutions exist whether
or not a steady state is indeterminate. We outline the technique for deter-
mining stability under learning for this simple case. For other cases details
are relegated to the Appendix.
Agents have a PLM of the form

zt = a+Kut.

Note that, like the steady state REE, the PLM is a linear function of the shock
and it naturally incorporates an intercept since log-linearization around the
steady state was done only for analytical purposes. Under adaptive learning
agents are assumed to estimate a and K by recursive least squares.
Given estimates at and Kt in period t, the temporary equilibrium is then

given by (10) with E∗t zt = at+Ktut and E
∗
t zt+1 = at. The question of interest

is whether at → ā, Kt → K̄ as t → ∞, where ā = 0, K̄ = (1− β0)
−1 is the

REE. The answer is that convergence is governed by E-stability.
To determine E-stability one assumes expectations E

∗
t zt = a + Kut,

E∗t zt+1 = a, based on the above PLM, for an arbitrary a andK (intuitively, at
and Kt evolve asymptotically slowly under adaptive learning). Substituting
these into (10) the implied ALM takes the form

zt = (β0 + β1)a+ (β0K + 1)ut.

This gives rise to a mapping T (a,K) = ((β0+β1)a, 1+β0K), and E-stability
is defined as the local asymptotic stability of the fixed point (ā, K̄) of the
differential equations

da

dτ
= (β0 + β1)a− a,

dK

dτ
= 1 + β0K −K (14)

where τ is virtual or notional time. (Note that this is simply a partial adjust-
ment formula in the virtual time.) Clearly, the general stability conditions
for (14) are β0 + β1 < 1 and β0 < 1.
Consider next the AR SSEs. Agents are assumed to have the PLM (12)

and to make forecasts based on the estimated PLM. E-stability conditions
are derived in the Appendix. Collecting the results together, we have:
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Proposition 4 For the general linear model (10) we have:
(i) the E-stability condition for the noisy steady state is

β0 + β1 < 1 and β0 < 1;

(ii) necessary conditions for E-stability of the AR SSEs are

β1 < 0 and β0 > 1.

Intuition for the steady-state E-stability condition (i) is fairly straight-
forward. Under this PLM, agents are estimated the mean of the process.
If β0 + β1 > 1 then estimates of the mean that are higher than the steady
state value will be revised upward, i.e. away from the equilibrium value. In
essence too much positive feedback from expectations to current endogenous
data destabilizes the system. The additional requirement β0 < 1 is needed
because the PLM also depends on the exogenous shock ut. We omit the more
elaborate intuition that could be developed for (ii).
We remark that the E-stability condition in (i) is not the same as the

determinacy condition. The condition in (i) of Proposition 4 can be examined
numerically for different values of the parameters in the monetary model.
Recalling that β0 < 0 and that σ > 1 implies β1 < 0, we have:

Corollary 5 For the linearized monetary model if σ > 1 the unique steady
state is E-stable irrespective of its determinacy/indeterminacy.

When σ < 1 and there are two steady states we have:

Corollary 6 For the linearized monetary model if σ < 1 the steady state π̄L
is E-stable and the steady state π̄H is not E-stable.

This result follows directly from the observation that β0 + β1 > 1 at π̄H
and β0 + β1 < 1 at π̄L, which is shown in the proof of Corollary 3 in the
Appendix.
Using part (ii) of Proposition 4, we get:

Corollary 7 The AR SSEs are not E-stable in the linearized monetary model.

We remark that in related models, the AR paths can in some cases be E-
stable. See, for example, the monetary OG model of (Duffy 1994).
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4.2 Markov Solutions

Finally, we consider the Markov SSEs. Suppose that in addition to the shock
ut, agents observe a sunspot st satisfying the resonant frequency condition
and that they consider also conditioning their actions on the values of the
sunspot. A simple learning rule is that agents run least squares regressions on
the sunspot state and ut. Agents then make forecasts using these estimates
and the transition probabilities for the observed sunspot (these probabilities
can also be estimated if they are unknown).15 The stability of SSEs under
adaptive learning depends upon the corresponding E-stability condition and
we now examine E-stability of the Markov SSEs. In the Appendix we discuss
the definition of E-stability for this set-up. The results are:

Proposition 8 The E-stability conditions for Markov SSEs in the general
linear model (10) are β0 < 1 and β0 + β1 < 1.

We remark that the E-stability conditions for the Markov SSEs are iden-
tical to those for steady states and the intuition is analogous. The key
feature of E-stable Markov SSEs is that they arise in the neighborhood of a
indeterminate steady state that is stable under steady state learning. The
phenomenon of SSEs inheriting E-stability properties of nearby steady-state
solutions arises more generally, see (Evans and Honkapohja 1994) and Chap-
ter 12 of (Evans and Honkapohja 2001).

Corollary 9 In the linearized monetary model we have: (i) if σ ≥ 1 and
the single steady state π̄ is indeterminate, the Markov SSEs are E-stable and
(ii) if σ < 1 the Markov SSEs near an indeterminate steady state are not
E-stable.

Part (i) of Corollary 9 follows at once by noting that σ ≥ 1 implies β1 ≤ 0
while always β0 < 0. Part (ii) follows from noting that σ < 1 implies
β1 > 0 and then indeterminacy requires β0 + β1 > 1, which contradicts the
E-stability condition in Proposition 8.

15In terms of the original nonlinear model, an alternative learning procedure would be
for agents to directly estimate the mean of π−1t+1(c

1
t+1)

−σ conditional on the current sunspot
state st. In the simulations below we adopt this alternative scheme when examining the
nonlinear model numerically. The stability properties of the two approaches appear to be
identical.
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We now give a numerical example of a Markov SSE satisfying the resonant
frequency condition in the linearized model.

Example of a Markov SSE: Suppose that B = 0.95, α = 1, σ = 3.5 and
g = .19.16 The steady state is indeterminate: β1/(1− β0) = −1.2408. There
are Markov SSEs with, for example, p11 = 0.1041 and p22 = 0.09, and these
SSEs are stable under learning.

Two important remarks must be made at this point. First, it is possible
for a steady state to be stable under learning and at the same time for nearby
SSEs to be stable under learning. When this occurs, the solution to which
the economy converges depends on the form of the PLM, i.e. on whether or
not agents in their learning allow for a possible dependence on sunspots.
Second, the results of this section are subject to the qualification that

our linearized monetary model has been derived from an underlying non-
linear model. Therefore, we investigate the existence and stability of SSEs
directly for the original nonlinear model using numerical computations and
simulations when σ ≥ 1.
There are several important differences between the nonlinear system (2)-

(5) and the linearized system (10) with respect to the Markov SSEs. In the
linearized system the resonant frequency condition (equation (21) in the Ap-
pendix) must be satisfied exactly and the “size” of the SSE is indeterminate,
as earlier discussed. In the exact nonlinear system there are Markov SSEs
for transition probabilities close to the resonant frequency condition and the
value of equilibrium is in part determined by these probabilities. This is-
sue is fully analyzed for the univariate forward looking model in (Evans and
Honkapohja 2003b). Thus, although the linearized model is convenient for
obtaining existence and stability conditions for Markov SSEs, it is important
to establish further details using the nonlinear model.17

Consider, therefore, the learning dynamics in the original nonlinear model
(2)-(5). The key variable that agents must forecast is Xt+1 = π−1t+1(c

1
t+1)

−σ.

16We have not tried to obtain the parameter values by calibrating the model to data,
since our main goal is to provide numerical illustrations.
17We remark that, with σ > 1, indeterminacy of the steady state does not imply the

existence of deterministic cycles, which is in contrast to the monetary OG models analysed
e.g. by (Grandmont 1985) and (Azariadis and Guesnerie 1986). The numerical example
above does not have 2−cycles. Thus these SSEs are not local to pure cycles. However,
pure cycles exist for some other parameter configurations (details are available on request).
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Because the sunspot variable is assumed to be first-order Markov, the con-
ditional expectation of this variable depends only on the current state. A
simple learning rule is thus to estimate the mean value of Xt+1 conditional
on the current sunspot state at t, e.g. by state contingent averaging:

X̂i,t = (#Ni(t))
−1 X

1≤c≤t,
st−c−1=i

Xt−c,

i = 1, 2, where #Ni(t) denotes the number of data points in which st−c−1 = i
for 1 ≤ c ≤ t. Thus agents at time t estimate the mean value that Xt+1 will
take, next period, as X̂i,t, when the sunspot in period t is in state st = i,

i = 1, 2.18 Accordingly they form expectations at t as E∗tXt+1 = X̂i,t. Over

time the estimates X̂i,t are revised in accordance with observed values of Xt

following each of the two different states.
Under adaptive learning the model consists of these learning dynamics

together with the equations (2)-(7). We remark that under this formulation
the realized value of Xt depends on both E∗tXt+1 and E∗t−1Xt because πt
depends on both mt+1 and mt. From the numerical results for the linearized
model, we anticipate convergence to a stationary sunspot solution, for tran-
sition probabilities close to satisfying the resonant frequency condition, when
σ > 1 and the steady state is indeterminate.
We have simulated the nonlinear system and the corresponding E-stability

differential equation using the parameter values from the above example.
Figure 3 illustrates convergence to the sunspot equilibrium for the choice of
transition probabilities p11 = 0.07 and p22 = 0.05 and initial conditions near
the steady state. (The vertical axis shows deviations of X̂1 and X̂2 from
the steady state value of X̄ and the initial deviations were X̂1 = X̄ + 0.01
and X̂2 = X̄ − 0.01). The simulation clearly shows convergence to a Markov
SSE. In this SSE the ratio of output in the two states is n1/n2 = 1.11 and
expected inflation E∗t πt+1 in the two states are 1.20 and 2.86.
The results of this section show that, in the case in which σ > 1 and the

steady state is indeterminate, endogenous fluctuations due to expectational
indeterminacy are a real concern. For exogenous sunspots near the resonant
frequency, rational expectation SSEs exist and are stable under simple learn-
ing rules. These considerations raise the question of whether policy is able
to avoid such expectational volatility.

18Because in the nonlinear model agents at time t make only one-step ahead forecasts
of Xt+1, it is unnecessary to directly estimate the dependence of Xt on gt.
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Figure 3: Convergence of adaptive learning to sunspot solution

5 Changes in Policy

We have seen that in this model there are two steady states, π̄L and π̄H when
σ < 1 and g > 0. There has been much discussion of the issue of whether
the economy might converge to the indeterminate steady state π̄H in related
seigniorage models. While we do take seriously the potential economic in-
stability of the economy due to the multiplicity of equilibria in this case,
we believe that the primary concern in this case is divergent paths (with πt
increasing beyond π̄H to unsustainable levels) if for some reason πt escapes
from the basin of attraction of π̄L. Reductions in g tend to stabilize the econ-
omy in this case, making convergence to π̄L more likely. Fiscal constraints
on deficits and debt can also play an important role. The stability results
of this and other papers suggest that π̄H and SSEs near π̄H are not locally
stable under learning, though divergent paths are a concern.19

However, a new case appears in our model of seigniorage finance. In the
case σ > 1 there is a unique steady state that can be determinate or indeter-
minate and for σ sufficiently large it will necessarily be indeterminate. For
values of σ > 1 the (noisy) steady state is stable under steady state learn-
ing. Furthermore, if the steady state is indeterminate and agents condition
their actions on an exogenous sunspot near the resonant frequency, then they

19The standard seigniorage model under learning was first studied by (Marcet and
Sargent 1989). The role of fiscal constraints is discussed in (Evans, Honkapohja, and
Marimon 2001).
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will converge to a noisy Markov SSE. Can policy help avoid the endogenous
fluctuations which can arise in this case?20

That this is indeed possible is shown by the following result (see the
Appendix for a proof):21

Proposition 10 Assume that σ > 1 and consider the determinacy of the
unique steady state π̄ for different values of g.
(i) If σ < 2, there exists a critical value ḡ > 0 such that the steady state π̄ is
determinate if g < ḡ and indeterminate if g > ḡ.
(ii) If (1+α1/σ)B−1/σ(σ− 2) > σ, the steady state π̄ is indeterminate for all
g > 0.

By Corollary 9, part (i) of Proposition 10 also implies that E-stable Markov
SSEs are eliminated by sufficient reductions in government spending g. Note
that if α ≥ 1 then for σ ≥ 4 all positive values of g are consistent with stable
Markov SSEs.
The results of Proposition 10 are illustrated in Table 1. We set α = 1 and

fix the discount rate at B = 0.95. For each value of σ we examine the impli-
cations of different choices of g. Table 1 shows that for a substantial range
of values for σ, endogenous fluctuations depending on extraneous sunspot
variables can be avoided by decreasing government purchases g sufficiently.

TABLE 1: Critical values of g for α = 1.

σ 1.1 1.5 2.0 2.5 3.0 3.5 3.7 3.9 ≥ 4
g 0.359 0.341 0.267 0.190 0.118 0.053 0.029 0.006 0
π̄ 16.89 4.39 2.56 1.84 1.44 1.175 1.091 1.018 1

For each value of σ reported in Table 1, a critical value of g is reported,
together with the associated value of the steady state inflation rate. At the
stated or larger values of g the steady state is indeterminate, there exist
Markov SSEs, and these SSEs are stable under adaptive learning. For lower
values of g the steady state becomes determinate and SSEs near the steady

20Avoidance of endogenous fluctuations is a major concern in the design of interest-rate
rules for monetary policy; see (Evans and Honkapohja 2003a) for a survey.
21These results are similar in spirit, but different in detail, from those obtained for the

monetary OG model by (Grandmont 1986). The latter emphasizes policy to eliminate
cycles, and thus the SSEs that are associated with cycles in the OG model.
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state no longer exist. For any σ in the range 1 < σ < 4 stable Markov SSEs
exist for high values of g but not for sufficiently low values. In this region
a reduction in g can bring about a double benefit by both reducing steady
state inflation and eliminating SSEs.22

In the model of this paper we have focussed on the seigniorage case
in which government purchases are financed entirely by printing money.
Seigniorage models have been used most commonly as a potential expla-
nation of hyperinflation, and our numerical example indeed emphasized the
possibility of endogenous fluctuations arising at high levels of inflation when
the level of seigniorage is large. It is immediate from Table 1, however, that
stable Markov SSEs near indeterminate steady states can also arise at low
levels of inflation. We have made no attempt to calibrate the model to ac-
tual economies, and this would only be more appropriate with more elaborate
versions of the model. However, the theoretical results of this paper show
that monetary models of this type indeed have the power to explain business
cycle fluctuations.

6 Extension: The Model with Taxes

In this section we show that the introduction of consumption and labor taxes,
while it raises revenues to finance government expenditures, does not change
the qualitative features of the previous analysis, although it introduces non
trivial effects of fiscal policy changes to the stability and learnability of equi-
libria.
Let τ cs and τns be the consumption and labor tax rates in period s. The

household budget constraint becomes

Ms+1 +Bs+1 ≤Ms + IsBs + ps(1− τns )ns − ps(1 + τ cs)(c
1
s + c2s)

and the cash-in-advance constraint (CA constraint) takes the form

ps(1 + τ cs)c
1
s ≤Ms.

The effective marginal tax rate on labor income, τ , is the relevant tax
for our analysis. This is the fraction of additional labor income taken away,

22These results are quantitatively, but not qualitatively, sensitive to the choice of α. For
example, for α < 1 determinacy can be obtained, with sufficiently low g, for values of σ
less than an upper limit that now exceeds 4.
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through taxes —in terms of effective consumption— holding savings fixed, and
is given by

τ t =
τnt + τ ct
1 + τ ct

; i.e., (1− τ t) =
1− τnt
1 + τ ct

Keeping the same notation as before, let

ms+1 = Ms+1/ps(1 + τ cs), bs+1 = Bs+1/ps(1 + τ cs),

πs = ps/ps−1, and υs = (1 + τ cs)/(1 + τ cs−1)

We can now rewrite the household budget constraint as

ms+1 + bs+1 ≤ msπ
−1
s υ−1s + Isbsπ

−1
s υ−1s + (1− τ s)ns − (c1s + c2s)

and the Cash-in-Advance constraint as

c1s = mtπ
−1
s υ−1s (15)

The first order conditions of the household’s maximization problem become

(c2t )
−σ = BE∗t [π

−1
t+1υ

−1
t+1(c

1
t+1)

−σ]
(c2t )

−σ = BE∗t [It+1π
−1
t+1υ

−1
t+1(c

2
t+1)

−σ]
(c2t )

−σ = α(1− τ t)
−1(1− nt)

−σ.

Similarly, the government finance constraint is

Ms+1 +Bs+1 ≥Ms + IsBs + psgs − psτ
n
sns − psτ

c
s(c

1
s + c2s).

Using c1s + c2s + gs = ns, this can be expressed as

ms+1 + bs+1 ≥ msπ
−1
s υ−1s + Isbsπ

−1
s υ−1s + ds,

where
ds = gs − τ sns (16)

is the period s fiscal deficit. As before, if bonds are not held in positive
net amount in equilibrium, then this constraint yields the following modified
seigniorage equation

πt =
mt

mt+1 − dt
υ−1t . (17)
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Household optimization, market clearing and the CA constraint lead now
to the equations

nt = 1− α1/σ(1− τ t)
−1/σB−1/σ{E∗t [π−1t+1υ−1t+1(c1t+1)−σ]}−1/σ

mt+1 = [(1− τ t) + α−1/σ(1− τ t)
1/σ]nt − α−1/σ(1− τ t)

1/σ

c1t = mt+1 − dt (18)

c2t = nt − c1t − gt,

It+1 = (c2t )
−σB−1{E∗t [π−1t+1υ−1t+1(c1t+1)−σ]}−1

6.1 Analysis

The non-stochastic perfect foresight steady states are a generalization of the
model without taxes. We set expenditures and tax rates to be deterministic
constants, i.e., gt = g, υt = 1 and τ t = τ . Steady states are determined by
the following equations,

n̄ = 1− α1/σ(1− τ )−1/σB−1/σπ̄1/σc̄1

m̄ = [(1− τ ) + α−1/σ(1− τ)1/σ]n̄− α−1/σ(1− τ)1/σ

d = g − τn

c̄1 = m̄− d

π̄ = m̄/(m̄− d).

These equations can be reduced to a single equation in the steady state
inflation rate π̄,

(1− g)π̄ = 1− τ + [(g − τ) + gα1/σ(1− τ )(σ−1)/σ]B−1/σπ̄1/σ. (19)

The earlier analysis clearly applies when τ is sufficiently small.
More generally, it is seen that there are two steady states when σ < 1

and τ < g. In contrast, for σ > 1 there is always a unique steady state for all
values of τ . This follows from (19) since then the right-hand side is a concave
function of π̄ if the quantity in square brackets is positive and a decreasing
function of π̄ otherwise. The comparative statics with respect to g are as
before. For changes in the tax rate τ , the comparative statics are clear-cut
when σ > 1: increases in τ will reduce the unique steady state inflation rate.
However, for σ < 1 the comparative statics are in general ambiguous.
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To analyze determinacy and stability under learning, we require the full
dynamic system. Assuming that tax rates are constant over time at rate
τ s = τ , the equations (18), together with (15), (16) and (17) can be combined
to yield a univariate reduced form c1t = G(E∗tH(c1t , c1t+1, gt, gt+1), gt), which
has a linearization taking the same form (10) as before, but with coefficients
β0 and β1 that now also depend on τ . Details are given in the Appendix.
The methods developed earlier can be applied to consider different types

of questions concerning setting of taxes τ . We focus on the case unique steady
state (σ > 1), for which we earlier demonstrated that stable Markov sunspot
equilibria can arise. When also σ < 2 it was shown above that sufficient
reductions in g will eliminate these sunspot solutions. This raises the natural
question whether the same strong result can be obtained by sufficiently big
increases in taxes. In particular, will determinacy of the steady state obtain
when taxes are set to achieve budgetary balance in the mean?
Before addressing this issue we must check that it is feasible to balance

the budget by increases in τ . This is indeed true when σ > 1 and there is
a unique choice of τ which achieves budget balance. Setting d = 0 implies
π̄ = 1 and substituting this value in (19) we obtain that the required tax
rate τ b satisfies

τ (B1/σ + 1) = g
£
B1/σ + 1 + α1/σ(1− τ)(σ−1)/σ

¤
,

which clearly has a unique solution 0 < τ b < 1 since 0 < g < 1. The
Appendix gives the values of β0 and β1 when τ = τ b and we study the
question numerically.

TABLE 2: Critical values of g in balanced budget case for α = 1.

σ 1.1 1.5 2.0 2.5 3.0 3.5 3.7 3.9 4
g 0.712 0.735 0.678 0.564 0.400 0.198 0.111 0.022 0

It turns out that the balanced budget requirement is insufficient to guarantee
determinacy and avoidance of learnable sunspot solutions. For this balanced-
budget case Table 2 gives the critical values ḡ such that indeterminacy and
existence of learnable sunspots occurs for g > ḡ. Comparing to Table 1, it is
seen that the balanced-budget requirement does, however, raise the level of
g that is possible before running into indeterminacy with learnable sunspots.
The finding that imposing budget balance using distortionary taxes does

not eliminate indeterminacy is in itself not new: (Schmitt-Grohe and Uribe
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1997) showed a similar result in the context of the standard Real Business
Cycle model. However, sunspot solutions in the RBC model with taxes are
almost never stable under learning, as shown by (Evans and McGough 2002)
and (Rudanko 2002). Our novel and intriguing result is that stable sunspot
equilibria under learning can emerge when the budget is balanced through
distortionary taxes instead of a reduction in government spending.

7 Conclusions

Indeterminacy of equilibria has been a major issue in both business cycle
analysis and monetary economics. Most of the applied research has examined
the question of the existence of self-fulfilling fluctuations in a neighborhood
of an indeterminate steady state. This paper has imposed the additional
discipline of asking whether there exist RE solutions, of this type, that are
stable under adaptive learning dynamics. If solutions are not learnable, they
may well be just theoretical artifacts. On the other hand, if they are sta-
ble under learning dynamics, then agents could plausibly coordinate on such
solutions. We remark that, in experiments, agents appear able to condition
their expectations on sunspots if, as a group, they have previously experi-
enced fluctuations driven by fundamentals. In such case, it is possible that
even once the ‘fundamental uncertainty’ vanishes, belief driven fluctuations
persist (see (Marimon, Spear, and Sunder 1993)).
We have examined these issues in the context of a standard infinite hori-

zon representative agent framework in which money demand is generated by
cash in advance constraints and exogenous government spending is financed
by a mixture of taxes and seigniorage. The model allows for both cash and
credit goods as well as for a flexible labor supply for which the response to in-
creased interest rates is always positive irrespective of the degree of curvature
of the utility functions.
We have shown that, for some regions of the parameter space, there do ex-

ist learnable sunspot equilibria in a neighborhood of an indeterminate steady
state. The learnable SSEs take a particular form, driven by a sunspot process
taking the form of a finite state Markov chain with transition probabilities
close to the resonant frequency property. The other types of SSEs examined
are not learnable. In our model, the case of learnable SSEs arises for the
regime in which there is a single steady state.
In many cases an appropriate change in fiscal policy can eliminate stable
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sunspot equilibria by rendering the steady state determinate. Achieving this
goal requires some care in the choice and magnitude of the fiscal instruments.
In some cases simply eliminating the government deficit will be enough to
eradicate sunspot solutions. In other cases balancing the budget is in itself
inadequate and reductions in the level of government spending are required.

A Appendix: Technical Details

Proof of Corollary 3: By Proposition 1 we need to show that β0+ β1 > 1
at π̄H and β0 + β1 < 1 at π̄L when σ < 1.
Using (8), we have at a steady state π̄

β0 + β1 − 1 =
[(1− g)π̄ − 1] [(1− σ)π̄ − 1]

σgπ̄
− 1.

Thus, we consider the quadratic function

f(π) = [(1− g)π − 1] [(1− σ)π − 1]− σgπ.

The equation f(π) = 0 has two roots π = 1 and π̃ = (1 − σ)−1(1 − g)−1.
Clearly, β0 + β1 ≷ 1 when π̄ ≷ π̃.
On the other hand, consider the value π̆ at which the graph of the function

1 + gAπ1/σ has the tangent parallel to the straight line (1− g)π. (Note that
the two functions are the right- and left-hand sides of (8), respectively.) π̆
solves the equation

gA

σ
π1/σ−1 = 1− g.

If we require π̆ to be also a steady state, we get π̆ = π̃ and g is at a maximal
value for which steady states exist under the restriction σ < 1. When g
is reduced from the maximal level, the comparative static properties of π̄H
and π̄L imply that π̄L < π̃ and π̄H > π̃ and thus β0 + β1 > 1 at π̄H and
β0 + β1 < 1 at π̄L.

Proof of Proposition 4: Part (i) was derived in the text. For part
(ii) concerning the AR solutions one starts with PLM of the form (12) and
computes that, under the PLM

E∗t zt = a+ bzt−1 + d0ut + d1ut−1 + kηt
E∗t zt+1 = a+ bE∗t zt + d1ut,
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where it is assumed that the current values ut, ηt of the exogenous shocks,
but not the endogenous variable zt are in the information set for period t.
Substituting these into the linear model (10) we have

zt = (β0 + β1b)(a+ bzt−1 + d0ut + d1ut−1 + kηt)

+β1a+ β1d1ut + ut.

This yields the mapping from PLM to ALM, which, component by compo-
nent, is given by

a → β1a+ (β0 + β1b)a ≡ Ta(a, b)

b → (β0 + β1b)b ≡ Tb(b)

d0 → (β0 + β1b)d0 + β1d1 + 1 ≡ Td0(b, d0, d1)

d1 → (β0 + β1b)d1 ≡ Td1(b, d1)

k → (β0 + β1b)k ≡ Tk(b, k).

Looking first at possible fixed points we see that b = 0 or b = (1−β0)/β1.
If b = 0, we have k = d1 = 0, a = 0 and d0 = (1− β0)

−1. This corresponds
to the noisy steady state and in the determinate case this is the unique
stationary solution. If b = (1− β0)/β1 we get d1 = β−11 , a = 0 while k and
d0 can take any values, which is the indeterminate case. This latter class of
solutions will be stationary if |(1− β0)/β1| < 1.
Introducing the notation T (a, b, d0, d1, k) = (Ta, Tb, Td0, Td1, Tk), for E-

stability one examines the local stability of

d(a, b, d0, d1, k)

dτ
= T (a, b, d0, d1, k)− (a, b, d0, d1, k)

at the REE of interest. In the indeterminate case we say that the solution
class is E-stable if the dynamics of the E-stability differential equations con-
verge to some member of the class from each nearby initial condition. For
the indeterminate case the E-stability conditions are easily seen to be β1 < 0
and β0 > 1.

Proof of Proposition 8: The PLM of the agents is equivalent to

zt = z(j) +Kut if st = j.

Given the informational assumptions the ALM is

z(j)∗ = β0z(j) + β1[pj1z(1) + pj2z(2)], j = 1, 2,

K∗ = β0K + 1.
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where z(j)∗ is the actual mean of zt and K∗ is the actual ut coefficient,
under this PLM, if st = j. The T map for K is the same as in the case
of steady state learning and the corresponding condition for E-stability is
satisfied when β0 < 1. The equations for z(j) can be written in the matrix
form

θ∗ = Tθ, where θ∗ =
µ

z(1)∗

z(2)∗

¶
, T = β0I + β1P and θ =

µ
z(1)
z(2)

¶
. (20)

We remark that the T map in (20) is different from T in (13), due to our
information assumption for the system under learning. However, they have
the same fixed points and thus a Markov SSE exists if and only if there are
transition probabilities 0 < pjj < 1, j = 1, 2, that satisfy

1− β0
β1

= p11 + p22 − 1. (21)

The mapping from the PLM to the corresponding ALM is here linear and
given by the matrix in (20). E-stability is determined by the stability of the
differential equation

dθ/dτ = Tθ − θ.

We need to compute the eigenvalues of T − I = (β0 − 1)I + β1P . If λ is
an eigenvalue of T − I then we must have

0 = det((β0 − 1)I + β1P − λI) = β21 det(P −
λ+ 1− β0

β1
I)

so that
λ + 1− β0

β1
= 1 or p11 + p22 − 1.

In the latter case we get λ = 0 while the former yields λ = β0 + β1 − 1
implying the requirement β0 + β1 < 1. We remark that T − I always has
a zero eigenvalue as a result of the resonant frequency condition (21) and
there being a continuum of Markov due to the linearity of the model. The
E-stability differential equation

dθ

dτ
= (T − I)θ

has a zero eigenvalue and negative eigenvalue if β0 + β1 < 1 holds and
(21) is satisfied. Stability of the set of Markov SSEs then follows from the
mathematical Lemma in the Appendix of (Honkapohja and Mitra 2001).
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Proof of Proposition 10: If σ > 1, we have β1 < 0 while always
β0 < 0. Indeterminacy of the steady state requires β0 − β1 > 1. In general,
we have

β0 − β1 = −
A

σ
(π̄)(1−σ)/σ − A(1− σ)

σ
(π̄)1/σ

and, defining H(π̄) ≡ β0 − β1, we note that H(π̄) is strictly increasing in π̄
with

lim
π̄→∞

H(π̄) = ∞

lim
π̄→1

H(π̄) =
A(2− σ)

σ
.

We couple these limits with the observations (a) π̄ → ∞ as g → 1 and (b)
π̄ → 1 as g → 0, which follow from (8).
To prove part (i), we note that limπ̄→1H(π̄) < 1 if σ < 2, which by

continuity and limπ̄→∞H(π̄) = ∞ imply the existence of ḡ > 0 as required.
Part (ii) follows by noting that limπ̄→1H(π̄) > 1 when (1 + α1/σ)B−1/σ(σ −
2) > σ since A = (1 + α1/σ)B−1/σ; see the definition after equation (8).

Details on the Model with Taxes: We first set τ t = τ . The equilib-
rium equations (18), combined with (15) and (16), yield a univariate reduced
form, which can be expressed either in terms of c1t or mt+1 since

(c1t + gt)(1− τ +B(τ )) = mt+1(1 +B(τ)) + τB(τ).

where B(τ) = α−1/σ(1 − τ)1/σ. In the case of taxes it is somewhat more
convenient to express the reduced form in terms of mt+1. Letting Ã(τ ) =
(1 + α1/σ(1− τ )(σ−1)/σ)B−1/σ, we obtain

mt+1 = (1− τ ) + Ã(τ)× (22)(
E∗t

"
1

mt+1

µ
mt+2(1 +B(τ )) + τB(τ )

1− τ +B(τ )
− gt+1

¶1−σ#)−1/σ
.

The log-linearized form (22) is

m̃t+1 = β0E
∗
t m̃t+1 + β1E

∗
t m̃t+2 + γgt+1,

where

β0 = σ−1[1− (1− τ )/m̄],

β1 = − (1− σ)(m̄− (1− τ ))(1 +B(τ ))

σ [−ḡ(1− τ +B(τ )) + (m̄(1 +B(τ)) + τB(τ))]
.
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We remark that, for the reduced form c1t = G(E∗tH(c1t , c1t+1, gt, gt+1), gt), the
log-linearized equations for c1t would have the same coefficients β0 and β1 on
the expectation terms E∗t c

1
t and E

∗
t c
1
t+1. Using the steady state relationships

of Section 3.1, it can be verified the these reduce to our earlier results when
τ = 0.
For non-stochastic steady states with budget balance, i.e. d̄ = 0, it can

be shown that

β0 = −
Ã(τ )

σ
, β1 =

Ã(τ)

σ

·
(1− σ)

1 +B(τ )

1− τ +B(τ)

¸
and the condition for indeterminacy and existence of stable sunspots is as
above, i.e. β0 − β1 > 1 when σ > 1.
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