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Abstract

Backward Induction is only defined for games with perfect information, but

its logic is also invoked in many equilibrium concepts for games with imperfect

or incomplete information. Yet, the meaning of ‘backward induction reason-

ing’ is unclear in these settings, and we lack a way to apply its simple logic to

general games. We remedy this by introducing a solution concept, Backwards

Rationalizability, that satisfies several properties normally ascribed to backward

induction reasoning, foremost the possibility of being computed via a tractable

backwards procedure. We also show that Backwards Rationalizability charac-

terizes the robust predictions of a ‘perfect equilibrium’ notion that introduces

the backward induction logic and nothing more into equilibrium analysis. We
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discuss a few applications, including a new version of peer-confirming equilib-

rium (Lipnowski and Sadler (2019)) that, thanks to Backwards Rationalizabil-

ity, restores in dynamic games the natural comparative statics that the original

concept only displays in static settings.

Keywords: backward induction, backwards procedure, backwards rationalizabil-

ity, incomplete information, interim perfect equilibrium, perfect bayesian equilibrium

rationalizability, robustness

JEL codes: C72, C73, D82.

1 Introduction

Backward Induction (BI) is one of the fundamental notions of game theory. Strictly

speaking, the BI algorithm is only defined for games with perfect and complete in-

formation and without ‘relevant ties’, but its logic has a much broader scope in the

discipline. For instance, subgame perfect equilibrium is commonly viewed as the nat-

ural extension of BI to games with imperfect information. or with payoff ties. But

there is a sense in which also solution concepts for incomplete information games,

such as sequential equilibrium (Kreps and Wilson (1982)) or trembling-hand perfect

equilibrium (Selten (1975)), are often thought of as having a backward induction

flavor. Yet, it is not even clear what “backward induction” means in games with

incomplete information, which typically cannot be solved “backwards”, nor to what

extent its logic can be separated from equilibrium assumptions. More broadly: What

do we mean by “backward induction reasoning”? Despite the central position in game

theory, there is no comprehensive, formal answer to this question.

In pursuit of an answer, it seems reasonable to inspect the main solution concepts

that are traditionally associated with the idea of BI reasoning, starting from Subgame

Perfect Equilibrium (SPE). An influential argument in support of SPE is provided by

Harsanyi and Selten (1988)’s notion of subgame consistency :

“It is natural to require that a solution function for extensive games is

subgame consistent in the sense that the behavior prescribed on a subgame
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is nothing else than the solution to the subgame”(ibid., p.90).

This property warrants SPE the recursive structure of backward induction, i.e. the

possibility of determining the solution concept’s predictions for a subgame by looking

at it ‘in isolation’. This, in turn, ensures the possibility (in games with finite horizon)

to solve for the SPE starting from the terminal nodes and proceeding backwards. This

is extremely convenient, and certainly one of the main reasons for the prominence of

SPE in applications.

Several solution concepts extend the idea of SPE to games with incomplete infor-

mation, often via the introduction of trembles (cf. Selten (1975), Kreps and Wilson

(1982), etc.). In these solution concepts, trembles are a shortcut to formalize an-

other idea that is typically associated with the logic of backward induction: that off-

equilibrium moves are mistakes, unintended deviations.1 The idea that unexpected

moves are mistakes, which disrupt the implementation of one’s plan of action, also

provides conceptual motivation for the idea that the predictions for the continuation

of the game shall only depend on the continuation game itself. In fact, we view these

two complementary ideas as the building block of backward induction reasoning.

Yet, while the incomplete information counterparts of SPE are typically considered

to share its backward induction flavor, they do lack its recursive structure. Under

Sequential Equilibrium, for instance, the set of predictions from an information set

onwards cannot be computed by just looking at the continuation of the game, and

neither can the game be solved “backwards”. It is thus unclear in what sense, or to

what extent, these concepts really are about backward induction reasoning, or what

this even means in an incomplete information setting.

The objective of this paper is to identify a solution concept for general games that

captures precisely the logic of backward induction reasoning, and nothing more. In

particular, we look for a comprehensive answer that reconciles the following desider-

ata: (i) a recursive structure analogous to that of SPE; (ii) the ability to solve the

1The view of deviations as ‘mistakes’ contrasts with the logic of forward induction, which requires
instead that unexpected moves be rationalized (if possible) as purposeful deviations (e.g., Pearce
(1984), Battigalli (1996)).
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game ‘backwards’; (iii) a clear, ‘non-equilibrium’ formalization of the idea of unex-

pected deviations as mistakes; (iv) a connection with a ‘perfect equilibrium’ concept

that introduces backward induction and nothing more into equilibrium analysis.

To this end, we introduce Backwards Rationalizability (BR for short), a solu-

tion concept for belief-free games with incomplete and imperfect information, which

consists of an iterated deletion procedure for the extensive form. At each round, a

strategy is eliminated if it is not a sequential best response to any conjecture that, at

each point in the game, is concentrated on opponents’ continuation strategies which

are consistent with the previous rounds of deletion. These continuation strategies

need not be part of strategies that reach the current information set. With this, play-

ers may entertain the possibility that the opponents committed mistakes in the past.

Note that, if an unexpected move of an opponent is interpreted as a mistake, it need

not mean anything about her type. Hence, the inferences a player can draw about

others’ types after observing an unexpected move are unrestricted under BR. This

is the key reason why, besides satisfying a convenient order independence property

(Theorem 1), BR also satisfies a property analogous to subgame consistency, which

we call continuation-game consistency : the predictions of BR about the continuation

play from any history onwards coincide with the predictions of BR in the (belief free)

game that starts at that history (Theorem 2).

Continuation-game consistency is suggestive of the possibility that, in finite hori-

zon games, the predictions of BR can also be computed by ‘solving the game back-

wards’. Indeed, as we show (Theorem 3), the predictions of BR in these games

can be computed by a convenient backwards procedure. This procedure consists of

the iterated application of (static) belief-free rationalizability, to the normal form of

the continuation games obtained from each information set considered “in isolation”,

starting from the end of the game and proceeding backwards.

We introduce next an equilibrium concept for dynamic Bayesian games, interim

perfect equilibrium (IPE). Bayesian games are obtained by appending a type space

to the belief-free game. IPE requires that beliefs are updated from one information

set to the next via Bayes’ rule, whenever possible, both on and off the path. After
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unexpected moves, however, a player’s beliefs about the opponents’ types are com-

pletely unrestricted.2 We show that the set of BR strategies in the belief-free game

coincides with the set of all IPE strategies, for some type space (Theorem 4). Hence,

BR characterizes the robust predictions of IPE, i.e. those which do not depend on

assumptions on players’ exogenous beliefs about each other’s types.

At a practical level, these results jointly imply that instead of computing the set

of IPE by solving a large (possibly infinite, in fact) number of fixed point problems,

one can compute the set of all IPE strategies by means of a tractable backwards

procedure. This also shows that a property analogous to subgame consistency holds

for the set of IPE strategies: the robust predictions of IPE are continuation-game

consistent. As we discuss at the end of the paper, this is also useful to overcome

several difficulties that are typically faced in applications, both in complete and in

incomplete information settings (see also Catonini and Penta (2022) Penta (2015)).

Overall, these results reconcile all the main features that are informally associated

with backward induction reasoning, including the recursive structure of the solution,

the backwards solvability, and the idea of deviations as ‘mistakes’. There is thus a

precise sense in which IPE is the incomplete information counterpart of SPE that

introduces the backward induction logic and nothing more into equilibrium, and that

the logic of backward induction in general games is distilled precisely by BR.

Our analysis also uncovers that, somewhat in contrast with the established wis-

dom, absent equilibrium assumptions, BI-reasoning entails an agnostic attitude as to

whether unexpected moves are interpreted as mistakes or deliberate choices. As we

discuss in Section 5.4, the opposite idea of belief persistence, which is natural in an

equilibrium context, should not be associated with mere BI-reasoning. In particular,

absent equilibrium assumptions, belief persistence does not necessarily follow from

making an explicit distinction between plans and moves of the opponents, as in the

2IPE is the weakest equilibrium notion for Bayesian games that is consistent with sequential
rationality and with Bayesian updating, and it coincides with SPE in complete information games.
IPE is weaker, for instance, than Perfect Bayesian Equilibrium recently introduced byWatson (2017).
It can be shown that IPE is also consistent with a ‘trembling-hand’ view of unexpected moves, in
which no restrictions are imposed on the possible correlations between the trembles and the other
elements of uncertainty.
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epistemic justification of BR provided by Battigalli and De Vito (2021) for games

with complete information. We discuss this and the alternative justification of Perea

(2014) in Section 5.1.

Finally, we consider a few applications and extensions of our concepts. First, we

propose a variation of peer-confirming equilibrium (Lipnowski and Sadler (2019)), a

solution concept that combines equilibrium and non-equilibrium reasoning, whereby

players have correct beliefs only regarding their neighbors in an exogenously given

network. In static games, as the network becomes richer, the set of peer-confirming

equilibria naturally shrinks. But this is not true in dynamic games, due to a ten-

sion in the solution concept between backward and forward induction reasoning. We

introduce a variation of peer-confirming equilibrium that is based on Backwards Ra-

tionalizability, and we show (cf. Theorem 5) that the plain logic of backward induction

reasoning it distills, allows to recover, in dynamic settings, the same natural compar-

ative statics that Lipnowski and Sadler (2019)’s original concept exhibits in static

games. Then, we discuss other applications that are part of our published or ongoing

work. Namely, Penta (2015)’s application of Backwards Rationalizability to problems

of robust dynamic implementation and Catonini and Penta (2022)’s extension of BR
to solve a long-lasting puzzle in the industrial organization literature, the two-period

Hotelling model of horizontal differentiation with linear transport costs (cf. Hotelling

(1929), Osborne and Pitchik (1987)).

The rest of the paper is organized as follows. The next subsection discusses the

main connections with the related literature. Section 2 introduces the framework of

belief-free dynamic games. In Section 3 we define and analyze Backwards Rationaliz-

ability and the backwards procedure. Section 4 introduces Bayesian games and IPE.

In Section 5 we discuss some properties and foundational aspects of our construction,

and their significance with respect to the most closely related literature. Section 6

discusses the applications, and Section 7 concludes.
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2 Belief-Free Games

We focus on finite multistage games with observable actions.3 For each player i ∈
N = {1, ..., n}, Ai is the set of actions available to i at some point of the game. Let h0

denote the initial history. At each non-terminal history h, all players i simultaneously

choose an action from the non-empty set Ai(h) ⊆ Ai (player i is actually inactive if

|Ai(h)| = 1), so histories are sequences of action profiles. Let H denote the set

of (publicly observed) non-terminal histories, and Z the set of terminal histories.

The tree of all histories is endowed with the precedence relation ≺ (i.e., given two

histories h, h′, write h ≺ h′ when h is a prefix of h′). Each player i has payoff function

ui : Z × Θ → R, where Θ = Θ0 × ... × Θn, with typical element θ := (θ0, ..., θn).

Payoff types θi are private information of each i; the state of nature θ0 is unobserved.

A belief-free game is thus a tuple Γ = ⟨N,H,Z,Θ0, (Θi, ui)i∈N⟩.4

A strategy is a function si : H → Ai such that, for each h ∈ H, si(h) ∈ Ai(h).

Let Si denote the set of i’s strategies. Any strategy profile s ∈ S = ×i∈NSi induces a

terminal history z(s) ∈ Z. The terminal history induced by strategy profile s, starting

from history h, is denoted z(s|h).5 Strategic-form payoffs are defined from any public

history: for each h ∈ H and each (s, θ) ∈ S × Θ , let Ui(s, θ;h) = ui(z(s|h), θ) (For
the initial history h0, we will write Ui(s, θ)). For each h and i, we let Si(h) denote the

set of i’s strategies that are compatible with h. Thus, upon reaching history h, player

i learns that the behavior of the opponents’ strategies are in S−i(h) = ×j ̸=iSj(h).

Finally, for each h ∈ H, Sh
i denotes the set of strategies in the continuation game

starting from h, and for each si ∈ Si, si|h denotes the continuation of si from h.

3See Fudenberg and Tirole (1991a), chapters 3.2 and 8.2. At the expense of heavier notation, the
analysis can be easily adapted to all finite dynamic games with perfect recall.

4Tuple Γ is not a Bayesian game because it does not include a type space. Type spaces and
Bayesian games are introduced in Section 4.

5Notice that z(s|h) does not coincide with z(s|h0) when h is not along the path induced by s.
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3 Backwards Rationalizability

Backwards Rationalizability is a non-equilibrium solution concept for belief-free games.

Similar to baseline Rationalizability (e.g., Pearce (1984)), it will also be defined by

an iterative deletion procedure, in which players form conjectures about others’ in-

formation and behavior, and play sequential best responses.

Conjectures are modelled as Conditional Probability System: an array of condi-

tional beliefs, one for each history, derived from Bayesian updating whenever possible.

Formally, let Θ−i = ×j ̸=iΘj and S−i = ×j ̸=iSj. A Conditional Probability System

(CPS) over Θ0 ×Θ−i × S−i is an array of conditional distributions µi = (µi(·|h))h∈H:

C.1 For every h ∈ H, µi(Θ0 ×Θ−i × S−i(h)|h) = 1;

C.2 For every h, h′ with h ≺ h′, for every E ⊆ Θ0 ×Θ−i × S−i(h
′),

µi(E|h) = µi(E|h′) · µi(Θ0 ×Θ−i × S−i(h
′)|h). (1)

The set of player i’s CPSs is denoted by ∆H
i .

Strategy si is sequentially rational for θi, given a CPS µi, if at every h ∈ H, it

prescribes optimal behavior in the continuation game given µi(·|h). Formally: for

each h ∈ H and s′i ∈ Si, Ūi (si;µ
i, h, θi) ≥ Ūi (s

′
i;µ

i, h, θi), where

Ūi

(
si;µ

i, h, θi
)
=

∑
(θ0,θ−i,s−i)∈Θ0×Θ−i×S−i(h)

Ui(si, s−i, θ0, θi, θ−i;h)µ
i(θ0, θ−i, s−i|h).

The set of sequentially rational strategies for θi given µi is denoted by ri(µ
i, θi). If

si ∈ ri(µ
i, θi), we also say that µi justifies si for θi.

We can now define Backwards Rationalizability:

Definition 1. For each i ∈ N and θi ∈ Θi, let BR0
i (θi) = Si. Recursively, for

k > 0, let BRk−1
−i := {(θj, sj)j ̸=i ∈ Θ−i × S−i : ∀j ̸= i, sj ∈ BRk−1

j (θj)}, and let

si ∈ BRk
i (θi) if there exists µi ∈ ∆H

i such that:(i) si ∈ ri(µ
i; θi); (ii) for each h ∈ H
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and (θ−i, s−i) ∈ Θ−i × S−i, if µ
i(Θ0 × {(θ−i, s−i)} |h) > 0, then there exists s′−i ∈ S−i

such that s′−i|h = s−i|h and (θ−i, s
′
−i) ∈ BRk−1

−i .

The set of Backwards Rationalizable strategies for type θi is BRi(θi) = ∩k>0BRk
i (θi),

and we let BRi := {(θi, si) ∈ Θi × Si : si ∈ BRi(θi)} and BR := ×i∈NBRi.

In words, BR is an iterated deletion procedure. At each round, strategy si sur-

vives for type θi if it is justified by a CPS concentrated on opponents’ continuation

strategies that are consistent with the previous round of deletion. Note that we do

not ask beliefs to be concentrated on the full strategies that survive the previous

round, i.e., we do not require µi(Θ0 × BRk−1
−i |h) = 1. Such stronger requirement,

combined with the property of a CPS that the beliefs at history h should be concen-

trated on S−i(h), would yield extensive-form rationalizability (and, hence, forward

induction reasoning). Players’ conjectures about Θ0 × Θ−i are instead unrestricted.

This property, which we call unrestricted inference, will play a crucial role for the

interpretation of BR as backward induction reasoning, as we will show in Section 3.3.

Example 1. Ann (i = a) and Bob (i = b) are privately informed of the size θi =

{1, 2} of their indivisible endowment. Ann can choose between a barter economy and a

production economy. In the barter economy, players can commit to exchanging their

endowments or not. Committing to exchange costs ε ∈ (0, 1/2), and the exchange

goes through only if both players commit. Setting up the production process costs

γ ∈ (1/4, 1/2), the total production is 3 (θa + θb) /2, and it is equally shared between

players. The figure displays Ann’s payoffs (Bob’s payoffs are symmetric).

Barter (B):

a\b E N

E θb − ε θa − ε

N θa θa

Production (P ):
1

2
· 3
2
(θa + θb)− γ

At the first round, strategies B.E and P.E are not sequentially rational for θa = 2,

because choosing E at history (B) is not a continuation best reply to any belief. For

type θa = 1, instead, strategy B.N is not sequentially rational, because it is not a best

reply to any belief at the beginning of the game: it yields a sure payoff of 1, whereas

9



strategies P.E and P.N yield a payoff of at least 3/2− γ > 1. So we have

BR1
a(θa = 1) = {B.E, P.E, P.N}

BR1
a(θa = 2) = {B.N, P.N} .

For Bob, at history (B), strategy E is dominated by N for type θb = 2, but not for

type θb = 1. So we have

BR1
b(θb = 1) = {E,N}

BR1
b(θb = 2) = {N} .

At the second round, for type θa = 1, strategies B.E and P.E are not sequential best

replies to any belief µa ∈ ∆H
a such that µa(BR1

b |h0) = 1 (where we recall that BR1
b =

{(1, E), (1, N), (2, N)}), because they are not continuation best replies at history (B):

they yield payoff (1 − ε) with probability 1, whereas choosing N yields a sure payoff

of 1. So we have

BR2
a(θa = 1) = {P.N}

BR2
a(θa = 2) = {P.N,B.N} .

Analogously, for Bob of type θb = 1 at history (B) strategy E is not a best reply to

any belief over BR1
a|(B) = {(1, E), (1, N), (2.N)}. So we have BR2

b(θb) = {N} for

both θb = 1, 2.

All the step-2 type-strategy pairs survive the third step of BR. For both types of

Bob and for type θa = 1 of Ann, we are left with just one strategy, so it cannot be

eliminated. In particular, for each type of Bob, choosing N is optimal for every belief

over BR2
a|(B) = {(1, N), (2.N)}. For Ann of type θa = 2, strategy B.N is a sequential

best reply to every belief µa ∈ ∆H
a such that µa((1, N)|h0) = 1, while strategy P.N

is a sequential best reply to every belief µa ∈ ∆H
a such that µa((2, N)|h0) = 1. In

conclusion, we have that BRa(θa = 1) = {P.N,B.N} and BRa(θa = 2) = {P.N} for

Ann, and BRb(θb) = {N} for both types θb = 1, 2 of Bob. ▲.
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3.1 Algorithmic properties

The following standard properties are easy to check for BR:

Remark 1. There exists K ∈ N such that BRK = BR.

Remark 2. For each i ∈ N and (θi, si) ∈ Θi × Si, we have (θi, si) ∈ BRi if and

only if si ∈ ri(µ
i; θi) for some µi ∈ ∆H

i that satisfies the following property: for each

h ∈ H and (θ−i, s−i) with µi(Θ0×{(θ−i, s−i)} |h) > 0, there exists s′−i ∈ S−i such that

s′−i|h = s−i|h and (θ−i, s
′
−i) ∈ BR−i.

6

BR is also robust to changes in the order of elimination of type-strategy pairs,

which is helpful in practice. To formalize this property, we rewrite BR as a reduction

procedure. Fix Ω̂ = ×i∈N Ω̂i, where each Ω̂i contains at least one element (θi, si) for

each θi ∈ Θi. For each i ∈ N , let ρBRi (Ω̂) be the set of all (θi, si) ∈ Ω̂i such that

si ∈ ri(µ
i; θi) for some µi ∈ ∆H

i that satisfies the following property: for each h ∈ H
and (θ−i, s−i) ∈ Θ−i × S−i, if µ

i(Θ0 × {(θ−i, s−i)} |h) > 0, then there exists s′−i ∈ S−i

such that s′−i|h = s−i|h and (θ−i, s
′
−i) ∈ Ω̂−i. Finally, define ρBR(Ω̂) := ×i∈Nρ

BR
i (Ω̂).

Definition 2. An elimination order for ρBR is a chain Ω = Ω̂0 ⊇ Ω̂1 ⊇ .... ⊇ Ω̂M

such that:

1. for each m = 1, ...,M , Ω̂m ⊇ ρBR(Ω̂m−1);

2. ρBR(Ω̂M) = Ω̂M .

BR is the maximal elimination order for ρBR, that is, for each k = 1, ..., BRk =

ρBR(BRk−1). Any alternative elimination order (Ω̂m)Mm=0 is “slower” than BR, in that

Ω̂m ⊃ ρBR(Ω̂m−1) at some step m. To see that all elimination orders are equivalent,

note that ρBR(Ω̂) ⊆ ρBR(Ω̂′) whenever Ω̂ ⊂ Ω̂′. This monotonicity implies that

“forgetting” to eliminate some type-strategy pair cannot result in a set Ω̂m that does

not contain BR. Moreover, as long as Ω̂m is actually larger than BR, it cannot have

the fixed-point property highlighted in Remark 2: any set with this property would

6Finiteness makes the property obvious, but it also holds in nicely-behaved infinite games.
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clearly survive all steps of BR. Since an order of elimination can stop only when a

fixed point is reached (see point 2 in Def. 2), the final output will coincide with BR.

This proves the following:

Theorem 1. BR is order-independent: for every order of elimination (Ω̂m)Mm=0 for

ρBR, we have Ω̂M = BR.

This is a technical property that is especially convenient when one needs to solve

for an iterated deletion procedure. But, more importantly, this property is also use-

ful for the main results of the next subsections, which provide two of the desider-

ata of backward induction reasoning that we discussed in the introduction; namely,

continuation-game consistency and the backwards solution.

3.2 Continuation-game Consistency

As discussed, a distinctive feature of backward induction reasoning is that the set of

predictions for the whole game, when restricted to a part of the game, coincides with

the set of predictions for that part of the game analyzed in isolation. In incomplete

information games, a history does not define a “subgame”. Thus, instead of “subgame

consistency”, we focus on continuation-game consistency : the predictions of BR from

a history onwards shall coincide with the predictions of BR for a hypothetical game

that starts at that history, under all possible initial beliefs about payoff types.

Formally, let BRh denote BR for the game with root h, and for each i, let

BRi|h = {(θi, shi ) ∈ Θi × Sh
i : ∃si ∈ Si s.t. (θi, si) ∈ BRi and si|h = shi },

and BR|h = ×i∈NBRi|h.

Theorem 2. For each h ∈ H, for each k ≥ 0, BRk|h = BRh,k.

In words, after unexpected moves, players who reason according to BR can focus

on the continuation of the game to predict the opponents’ future behavior. This

is what we call continuation-game consistency. As the next result will show, this
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property also suggests that, when reasoning about the overall game, players can

anticipate the BR-solution of the continuation game that follows some future history,

and hence solve the game backwards, starting from preterminal histories.

3.3 The Backwards Procedure

Continuation-game consistency and order independence provided important clues for

the possibility of computing the predictions of BR by “solving the game backwards”.

But we first need to clarify what it means to solve backwards a game with imperfect

and incomplete information. Absent any equilibrium assumption, we do this with a

recursive use of belief-free rationalizability on the normal form of each continuation

game, starting from preterminal histories and proceeding backwards, at each point

maintaining that players can only believe in type-strategy strategies pairs that are

consistent with the solution of the subsequent continuation games.

We recall briefly the definition of belief-free rationalizability, which is useful to

define also for strategic forms that consist of subsets of type-strategy pairs of the

original game. So, fix a strategic form G = ⟨N,Θ0, (Ω̃i, Ui)i∈N⟩, where each Ω̃i ⊆
Θi × Si is a subset of type-strategy pairs of player i, and Ui : Θ × S → R. For

every i, let R0
i := Ω̃i, and recursively, for every k > 0, Rk

i := {(θi, si) ∈ Ω̃i : ∃ν ∈
∆(Θ0 ×Rk−1

−i ) s.t. si ∈ r̂i(ν; θi)}, where r̂i(ν; θi) denotes the set of strategies that are
a best response for type θi to a conjecture ν ∈ ∆(Θ0 × Θ−i × S−i).

7 Then, for each

i ∈ N , the set of belief-free rationalizable type-strategy pairs is Ri := ∩k>0R
k
i .

Our Backwards Procedure, BP , is formally defined as follows:8

Definition 3. For each preterminal history h, define BPh = ×i∈NBPh
i as the output

of belief-free rationalizability on ×j∈N(Θj × Sh
j ).

Moving backwards, fix now a history h and suppose that BPh′
was defined for

every immediate successor h′ of h. For each player i, let BPh,0
i denote the set of pairs

(θi, s
h
i ) ∈ Θi × Sh

i such that
(
θi, s

h
i |h′) ∈ BPh′

i for every immediate successor h′ of h.

7Formally, r̂i(ν; θi) := {argmaxsi∈Si

∑
Ui(si, s−i, θi, θ−i, θ0) · ν(θ0, θ−i, s−i)}.

8A definition of BP that also includes the steps of belief-free rationalizability is in the Appendix.
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We define BPh as the output of belief-free rationalizability on the strategic form that

consists of the type-strategy pairs (BPh,0
j )j∈N .

Example 2. Consider again the game of Example 1. To apply the backwards pro-

cedure, first we apply belief-free rationalizability to the continuation game with root

h = (B), the preterminal history. The game is symmetric: for each player i = a, b, if

θi = 2, E is dominated by N , so we have

BPh,1
i = {(1, N), (2, N)} .

Next, for every belief over BPh,1
j (j ̸= i) E yields payoff 1 − ε with probability 1,

whereas N yields a sure payoff of 1, so we have

BPh,2
i = {(1, N), (2, N)} = BPh

i .

Going backwards, at h = h0, we initialize belief-free rationalizability with type-

strategy pairs whose continuations are belief-free rationalizable following B. That is:

BP0
a = {(1, B.N), (1, P.N), (2, B.N), (2, P.N)} ,

BP0
b = {(1, N), (2, N)} .

For Ann of type θa = 1, strategy B.N is not a best reply to any belief, because it

yields a sure payoff of 1, whereas strategies P.E and P.N yield a payoff of at least

3/2 − γ > 1. For ann of type θa = 2, strategy B.N is a best reply to a belief that

assigns probability 1 to (1, N), and strategy P.N is a best reply to a belief that assigns

probability 1 to (2, N). No type-strategy pair can be eliminated for Bob, as we are

already left with just one strategy for each type, therefore no further type-strategy pair

can be eliminated for Ann at the second step. In conclusion,

BPa = {(1, P.N), (2, B.N), (2, P.N)} ,

BPb = {(1, N), (2, N)} .
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Note that BPa = BRa and BPb = BRb. ▲

As noted, in this example BP yields exactly the predictions of BR in terms of

behavior of every single player, from every history onwards. The next result shows

that in fact this is a general property. To formalize this, we introduce the notion

of realization-equivalence of continuation strategies: given a continuation strategy

shi , the realization-equivalent class
[
shi
]
is the set of all strategies s̃hi ∈ Sh

i that, for

every sh−i ∈ Sh
−i, yield the same terminal history as shi . We also write

[
(θi, s

h
i )
]
for

{θi} ×
[
shi
]
, and given a subset Ω̃i ⊆ Θi × Sh

i , we let [Ω̃i] = ∪ωi∈Ω̃i
[ωi].

Theorem 3. For each h ∈ H, for each i ∈ N , [BRi|h] =
[
BPh

i

]
.

In words, for every continuation game, the strategies that survive the backwards

procedure for a type are realization-equivalent to the backwards rationalizable ones.

Thus, while BP may include more strategies than BR, the extra strategies would

only differ for the behavior they entail at histories h′ which are prevented from be-

ing reached by the strategies themselves – hence, they are realization-equivalent to

strategies in BR. Furthermore, if one conditions on h′ the entire sets BRi and BP i,

the resulting sets of continuation strategies are still realization-equivalent from h′ on-

wards. Hence, effectively, the possible behavior of each player in each continuation

game is exactly the same under the two solution concepts.9

4 Interim Perfect Equilibrium

This section explores the connection between BR and equilibrium predictions. Follow-

ing the standard approach, we model exogenous belief hierarchies implicitly (Harsanyi

(1967)), by means of type spaces, i.e. T =(Ti, ϑi, τi)i∈N , where for each i, Ti is a finite

set of types, and ϑi : Ti → Θi is an onto function assigning the payoff-type to each

type.10 The belief map τi : Ti → ∆(Θ0 × T−i), where T−i = ×j ̸=iTj, specifies the

9This point is further explained in Section 5.3.
10Because the game is finite, the restriction to finite type spaces is without loss of generality for

our purposes.
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initial belief of each type ti about state of nature and opponents’ types. We write

τi(θ0, t−i|ti) for the probability that type ti assigns to (θ0, t−i). Appending a type

space T to the belief-free game Γ, yields the Bayesian Game ΓT .

In a Bayesian game, we call interim strategies the elements of Si, and interim mixed

strategies the elements of ∆(Si).
11 We call just strategies the functions bi : Ti → ∆(Si)

that assign an interim mixed strategy to each epistemic type. We write bi(si|ti) for
the probability that bi(ti) assigns to the interim strategy si ∈ Si.

In a Bayesian game, an equilibrium is described as a strategy profile coupled

with systems of beliefs about the state of nature and the opponents’ types, which

associates each type of player i with an array of beliefs about the state of nature and

the opponents’ types, one for each history. Formally, pi : Ti→ (∆(Θ0 × T−i))
H, and

we write pi(θ0, t−i|h; ti) for the probability that pi(ti) assigns to (θ0, t−i) at history h.

An assessment consists of a strategy profile b = (bi)i∈N and a profile of belief

systems p = (pi)i∈N . For consistency with the type space, we require the initial beliefs

specified by pi to coincide with the ones specified by τi. For internal consistency, we

require pi to satisfy Bayesian updating under the assessment. For each h0, let π(h)

denote the immediate predecessor of h.

Definition 4. An assessment (b, p) is weakly pre-consistent if, for all i ∈ N and for

all ti ∈ Ti:

1. pi(θ0, t−i|h0; ti) = τi(θ0, t−i|ti) for all (θ0, t−i) ∈ Θ0 × T−i;

2. for each h ≻ h0, pi(·|h; ti) is derived with Bayes rule from pi(·|π(h); ti) given

b−i whenever possible, and it is arbitrary otherwise.

Given an assessment (b, p), for each player i and type ti, one can construct the

CPS µ̂ti
(b,p) over Θ0 × T−i × S−i induced by pi(ti) and b−i, and in turn, the CPS µti

(b,p)

over Θ0 ×Θ−i × S−i induced by µ̂ti
(b,p).

12

11We use mixed strategies instead of behavior strategies for notational convenience. Given a type
space, there could be more IPE in mixed strategies than in behavior strategies. But the equivalence
between BR and IPE across types spaces also holds for IPE in behavior strategies.

12See the proof of Theorem 4 for the formal definitions and Example 3 for a construction.
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Definition 5. An assessment (b, p) is an Interim Perfect Equilibrium of ΓT if:

1. it is weakly pre-consistent;

2. for all i ∈ N , ti ∈ Ti, and si ∈ Si with bi(si|ti) > 0, si is sequentially rational

given µti
(b,p).

Example 3. Append to the game of Example 1 a type space T =(Ti, ϑi, τi)i=a,b where,

for every i = a, b, Ti = {t1i , t2i } and ϑi(t
k
i ) = k for each k = 1, 2. We study the

set of IPE, as the belief maps (τi)i=a,b vary. Let (bi, pi)i=a,b be a candidate IPE.

For type t2a of Ann, at history (B), action N is dominant, therefore we must have

ba(t
2
a) ∈ ∆({B.N, P.N}). Then, for Bob, for each k = 1, 2, we have

µ̂tkb (
{
(t1a, B.E), (t1a, B.N), (t2a, B.N)

}
|h = (B)) = 1.

Thus, the payoff of strategy E is 1− ε, whereas the payoff of strategy N is k. Hence,

we must have bb(t
k
b ) = N . Then, for each k = 1, 2, we have

µ̂tka(
{
(t1b , N), (t2b , N)

}
|h0) = 1.

It follows that, for type t1a of Ann, the only sequential best reply is P.N , thus ba(t
1
a) =

P.N . There only remains to determine ba(t
2
a). This depends on τa(t

2
a). Note indeed

that, by weak preconsistency,

pa(t
k
b |h0; t2a) = τa(t

k
b |t2a), k = 1, 2

and by construction of µ̂t2a,

µ̂t2a({tkb} × Sb|h0) = pa(t
k
b |h0; t2a), k = 1, 2.

Therefore, strategy P.N is optimal for t2a if

3

4

(
2 + (2τa(t

2
b |t2a) + τa(t

1
b |t2a))

)
− γ ≥ 2,
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while strategy B.N is optimal with the opposite weak inequality. Thus, we get
ba(t

2
a) = P.N if τa(t

2
b |t2a) > 4

3
γ − 1

3

ba(t
2
a) = B.N if τa(t

2
b |t2a) < 4

3
γ − 1

3

ba(t
2
a) ∈ ∆({P.N,B.N}) if τa(t

2
b |t2a) = 4

3
γ − 1

3

.

This completes the characterization of the IPE of the game. ▲

IPE can be seen as a dynamic counterpart of interim equilibrium (Bergemann

and Morris (2005)), obtained by imposing two natural conditions: (i) weak pre-

consistency, and (ii) sequential rationality. Weak preconsistency implicitly imposes a

standard equilibrium notion of belief persistence (cf. Section 5.4), in that it requires

the beliefs about strategies to be consistent with the equilibrium strategy profile, b,

both on and off the equilibrium path. Beyond this, however, it imposes no restric-

tions on the beliefs about others’ types that players hold at histories that receive

zero probability at the preceding node. Hence, even if agents’ initial beliefs admit a

common prior, IPE is weaker than the notions of Perfect Bayesian Equilibrium (PBE)

introduced by Fudenberg and Tirole (1991b) and by Watson (2017). However, unlike

other notions of weak PBE (see, e.g., Mas-Colell et al. (1995)), IPE requires players’

beliefs to be consistent with Bayesian updating also off the-equilibrium path. Hence,

in complete information games, IPE does coincide with subgame-perfect equilibrium.

Theorem 4. Fix a belief-free game Γ. For each i ∈ N , (θi, si) ∈ BRi if and only if

there exists a type space T , an IPE (b∗, p∗) of ΓT , and a type ti ∈ Ti s.t. ϑi(ti) = θi

and b∗i (si|ti) > 0.

Thus, BR – which is a non-equilibrium concept for belief-free dynamic games –

characterizes the set of predictions on players’ strategies that are consistent with IPE,

but which do not depend on exogenous restrictions on the type space. In that sense,

BR characterizes the robust predictions of IPE, where the robustness criterion refers

to the predictions across all type spaces, whether or not they admit a common prior.
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5 Discussion

5.1 Epistemic justifications of Backwards Rationalizability

In games with complete information, Perea (2014) justified BR with the epistemic

conditions of ”rationality and common belief of future rationality”. Such epistemic

justification highlights the forward-looking nature of BR: at the every information set,

the behavior of an opponent is predicted based on the continuation of the game, and

not on her past moves (as opposed to strong rationalizability, i.e., forward-induction

reasoning). Also focusing on games with complete information, Battigalli and De Vito

(2021) introduce in their epistemic model a formal separation between a player’s plan

and her actual moves. In this world, sequential rationality is captured by ”opti-

mal planning and consistency”, and BR is justified by the additional conditions of

”common full belief in optimal planning and continuation consistency,” that is, the

correct implementation of the plan from every information set onwards. Under these

epistemic hypotheses, upon observing an unexpected move by the opponent, a player

revises her joint belief about the opponent’s plan and implemented strategy, whereas

keeping the marginal belief on the plan and revising the one on the strategy would

capture the form of belief persistence that we analyze in detail in Section 5.4.

5.2 Complete Information, Redundant Types and IPE

In games with complete and perfect information and no relevant ties, Backwards

Rationalizability coincides with the backward induction solution, hence with SPE.

The next example (borrowed from Perea (2014)) shows that if the game has complete

but imperfect information, the set of SPE strategies may be a strict subset of BR:
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Example 4. Consider the game in the following figure:

Pℓ. 1

Out ↙ ↘ In

4, 0 1\2 f g h

c 2, 3 5, 1 2, 0

d 3, 1 2, 3 2, 0

e 1, 4 1, 3 6, 0

In this game, BR1 = {Out.c, Out.d, In.c} and BR2 = {f, g}. The game, however,

has only one SPE: in the proper subgame, the only Nash equilibrium entails the mixed

(continuation) strategies 1
2
c + 1

2
d and 3

4
f + 1

4
g, yielding a continuation payoff of 11

4

for player 1. Hence, player 1 chooses Out at the first node. ▲

In games with complete information, IPE coincides with SPE, but BR in general

is weaker than SPE. At first glance, this may appear in contradiction with Theorem

4, which says that BR characterizes the set of strategies played in IPE across models

of beliefs. The reason is that IPE is a solution concept for Bayesian games (i.e., for

pairs ⟨Γ, T ⟩), and even if the environment has no payoff uncertainty (i.e., if Θ is

a singleton), the complete information model in which Ti is a singleton for every i

is not the only possible one: models with redundant types may exist, for which the

IPE strategies differ from those played under the complete information. The source

of the discrepancy is analogous to the one between Nash equilibrium and subjective

correlated equilibrium (Aumann (1974); see also Brandenburger and Dekel (1987)),

with the type space playing the role of the correlating device.13 We illustrate the

point by constructing a type space T̂ and an IPE in which In.c is played by some

13For more on the effects that redundant types may have on expanding the set of predictions for
solution concepts that incorporate conditional independence restrictions on agent’s conjectures (such
as Bayes-Nash equilibrium, Interim Independent Rationalizability, etc.), see Ely and Peski (2006)
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type of player 1:Let T̂1 = {tOut.c
1 , tOut.d

1 , tIn.c1 } and T̂2 = {tf2 , t
g
2}, with beliefs:14

τ1(t
f
2 |t1) =


1 if t1 = tOut.d

1

1
2

if t1 = tOut.c
1

0 if t1 = tIn.c1

,

τ2(t
Out.d
1 |tg2) = 1, and τ2(t

Out.c
1 |tf2) = 1.

The equilibrium strategy profile b is such that, for each player i and type tsii , bi (t
si
i ) =

si. The belief systems agree with T at the initial history. At history (In), the belief

of player 1 remains the same by updating, whereas the belief of player 2 must be

revised, but we can maintain the same belief each type had at the beginning of the

game. Then, it is easy to verify that (b, p) is an IPE.

On the other hand, if Θ is a singleton and the game has perfect information (no

stage with simultaneous moves), then BR does coincide with the set of SPE strategies.

Hence, in environments with no payoff uncertainty and with perfect information, only

SPE strategies are played as part of an IPE for any model of beliefs.

5.3 On the BR-BP comparison

To understand the difference between BR and BP in terms of full strategies, note that

compared to BP , BR further eliminates any strategy that is a continuation best reply

to some belief at h, but not a continuation best reply to the same belief at some later

history h′ that is precluded by the strategy itself. Such combinations of continuation

best replies to different beliefs are instead allowed by BP , which uses normal form

best replies in place of sequential rationality. In other words, some strategies in BP
may not be dynamically consistent plans under the beliefs allowed by BR, but these

inconsistencies only occur after a deviation from the own plan and do not introduce

any non-backwards rationalizable continuation plan.15 This is the reason why the

14It is easy to see that such a difference is not merely due to the possibility of zero-probability
types. Also the relaxation of the common prior assumption is not crucial for this particular point.

15In a previous version of this paper, BR allowed players to change their beliefs after a deviation
from their own plan, by using CPSs over strategy profiles instead of just opponents’ strategies. In
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possible behavior of each player in each continuation game is exactly the same under

the two solution concepts. We provide next an example of a game without payoff

uncertainty in which the difference between BR and BP in terms of eliminations of

strategies emerges (and makes BP much easier to compute than BR).

Example 5. Consider the following complete information game:

Pℓ. 2

Out ↙ ↘ In

0, 4 Pℓ. 1

ℓ ↙ ↘ r

3, 5 1\2 w m e

n 2, 3 2, 2 2, 0

c 1, 2 8, 0 8, 1

s 0, 0 9, 2 9, 3

Strategies r.n and ℓ.s are not sequentially rational for player 1: the first is domi-

nated by ℓ at history (In), the second is not a continuation best reply at (In, r) to any

belief that makes ℓ optimal. All the strategies of player 2 are sequentially rational,

therefore at the second step of BR no strategy of player 1 can be eliminated. Thus,

consider the possible beliefs of player 2. There are two cases.

Case 1: player 2 is initially certain that player 1 will play (a strategy that pre-

scribes) ℓ. Then, player 2 will choose In, and upon observing r, player 2 must revise

her belief. Every action of player 1 at history (In, r) is prescribed by some sequentially

rational strategy, therefore player 2 can form any belief about the continuation play.

As a consequence, all the strategies of player 2 that prescribe In survive the second

step of BR.

Case 2: player 2 gives positive initial probability to {r.c, r.s}. If this probability

is large enough, player 2 will plan to choose Out, and if she unintentionally plays

this way, the equality BR = BP was established. Thus, modifying the CPS in the definition of BR
in this way would weaken the solution concept without affecting its predictions in terms of outcomes,
conditional on every history, and would establish the full equivalence with BP.
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In and observes r, she must update her initial belief. Since r.n initially received

zero probability, she still cannot give positive probability to it. Hence, strategy Out.m

does not survive the second step of BR (while strategies Out.w and Out.e do). This

elimination is however immaterial for the beliefs of player 1 at the third step of BR,

therefore all the remaining strategies are backwards rationalizable.

Move now to BP. In the simultaneous-moves subgame with root (In, r), every

action is rationalizable. Consider thus the (non-reduced) subgame with root (In).

Strategies r.c and r.s are normal-form best replies to sufficiently optimistic beliefs

about the action of Player 2 at (In, r). Strategy r.n is instead eliminated, because it

yields a sure payoff of 2, while the strategies ℓ.n, ℓ.c, ℓ.s yield 3. The latter strategies

all survive BP, because they are normal-form best replies to a sufficiently pessimistic

belief about the action of Player 2 at (In, r), including strategy ℓ.s, which is not

backwards rationalizable. Note however that there do exist backwards rationalizable

strategies of Player 1 that prescribe s, namely r.s. Finally, move to the root of the

game and consider the reduced strategic-form obtained after removing r.n. Every

strategy of Player 2 is a strategic-form best reply to some belief: the strategies that

prescribe Out are best replies to beliefs concentrated on the strategies of Player 1

that prescribe r, whereas the stategies that prescribe In are best replies to beliefs

concentrated on the strategies of Player 1 that prescribe ℓ. Hence, all the strategies of

Player 2 survive BP, including strategy Out.m which is not backwards rationalizable,

but again, there do exist backwards rationalizable strategies of Player 2 that prescribe

Out or m. ▲

5.4 Belief persistence

Subgame perfect equilibrium embodies another idea which is commonly associated

with backward induction reasoning, and that is “belief persistence”: the idea that

players never change their belief about the strategies of the opponents, no matter

how many deviations from the expected strategies they have observed.16 A possible

16Also our definition of IPE captures this idea: the beliefs about the behavior of the opponent are
entirely determined by the opponent’s equilibrium strategy b−i.
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way to interpret belief persistence is the following: Upon observing an unexpected

move, players are fully convinced that the move was carried out by mistake, as a

deviation from the optimal plan (they don’t merely entertain such a possibility).

This attitude, we argue, is a consequence of equilibrium play and not of backward

induction reasoning per se. Indeed, some backward rationalizable strategies can only

be justified without imposing the strong form of belief persistence.

Example 6. Consider the game of Example 5. Recall that strategies ℓ.s and r.n are

not sequentially rational for player 1. Introduce now belief persistence: if player 2 is

initially certain of ℓ but then observes r, she remains convinced that player 1 planned

to choose ℓ but executed r by mistake. At the second step of reasoning, player 2 must

give zero probability to {ℓ.s, r.n} at the beginning of the game. Therefore, if she is

initially certain of ℓ, she must give probability 1 to {ℓ.n, ℓ.c}. Under belief persistence,
this means that at history (In, r) she gives probability 1 to {r.n, r.c}. Therefore, she

will not choose m. If she gives positive initial probability to {r.c, r.s}, she must give

probability 1 to {r.c, r.s} at history (In, r), but then again she has no incentive to

play m. Hence, not just Out.m, but also In.m would not survive the second step

of reasoning under belief persistence. However, In.m is backwards rationalizable.

Therefore, imposing belief persistence refines the possible paths. ▲

Backwards Rationalizability thus captures an agnostic attitude as to whether the

unexpected moves of the opponents are mistakes or deliberate choices. Extensive-form

rationalizability (Pearce (1984), Battigalli (1997)) captures instead the view that un-

expected moves are definitely deliberate utility maximizing choices (if possible). By

doing so, it refines BR (cf. Perea (2018), Catonini (2020)). In contrast, belief per-

sistence means that unexpected moves are definitely interpreted as mistakes; hence,

restricting beliefs to satisfy belief persistence at every step of elimination would also

refine BR, albeit differently from EFR.

A natural question arises at this point: Given the lack of belief persistence, how

is it possible that BR captures the robust implications of IPE, which – just like

any standard equilibrium concept for Bayesian games – is based on the very notion

of belief-persistence? To see this, consider a game with no payoff uncertainty (i.e.,
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Θ is a singleton), and let T denote a type space. If T contains only one type for

every player, so that ⟨Γ, T ⟩ is a standard game with complete information, then IPE

boils down to SPE. So, in the example above, In.m cannot be played with positive

probability in any IPE. However, as discussed in Section 5.2, even in a game without

payoff uncertainty there can be many types of an opponent. For instance, similar to

the type space T̂ in Section 5.2, one can think of a type for each of the backwards

rationalizable strategies: while all such types would share the same (degenerate)

belief hierarchies about the (commonly known) payoffs of the game, they would differ

in their belief hierarchies about each others’ strategies in the game. (The proof of

Theorem 4 shows how to construct such a type structure.) Then, after observing

an unexpected move, a player can change her belief about the type of the opponent,

and hence also change her belief about his moves in the continuation game, despite

keeping fixed the (correct) belief about how each type would play in the game.

This point is related to the one we discussed in Section 5.2, but it is distinct in

that it speaks directly to the role that type spaces have in determining the bite of the

belief persistence assumption in Bayesian games. Specifically, from the viewpoint of an

external analyst, belief persistence only has bite insofar as the analyst has information

about the precise set of types that players have in mind (that is, the ‘mental states’

that players may use to index others’ behavior, with the associated beliefs), also when

they revise their beliefs after observing an unexpected move. These are precisely the

restrictions that are captured by the type space in a standard Bayesian game. If,

however, the analyst does not wish to exogenously restrict such universe of conceivable

types, and hence wishes to capture the set of all IPE-predictions across all possible

type spaces, then the richness of the resulting type space voids the belief persistence

of IPE of any bite: the set of all such predictions is captured by a solution concept

for belief-free games (namely, BR) which does not satisfy belief persistence.
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6 Applications and Extensions

In this section we briefly discuss some applications of Backwards Rationalizability to

illustrate its relevance and tractability. First, we apply backwards rationalizability to

develop a variation of a recent work by Lipnowski and Sadler (2019), who put forward

a solution concept that allows for a combination of equilibrium and non-equilibrium

reasoning. In this context, we show that Backwards Rationalizability allows for a

smoother integration of the two approaches, and for a natural extension of important

properties of their solution concept from static to dynamic settings. Then, we discuss

other applications that are part of our published or ongoing work.

6.1 Peer-Confirming Equilibrium with Backward Induction

Reasoning

In a recent paper, Lipnowski and Sadler (2019) define the notion of peer-confirming

equilibrium (PCE) for complete information games in which players are organized

in a network. In a PCE, players have correct beliefs about the strategies of their

neighbours; the beliefs about the other players are consistent with common belief

in rationality and in correctness of beliefs about neighbours’ play. In static games,

PCE spans from Nash equilibrium, when the network is complete, to rationalizability,

when the network is empty, and a nice monotonicity result holds: as the number of

the connections in the network increases, the set of PCE shrinks.

Lipnowski and Sadler (2019) also apply their concept to dynamic games. Players

are assumed to have correct beliefs about their neighbors also off-path, and these

beliefs need not be consistent with forward induction reasoning. Thus, players dis-

play belief persistence towards their neighbors, and when the network is complete,

PCE coincides with subgame perfect equilibrium. In contrast, when there are op-

ponents who are not in a player’s neighbourhood, then this player’s beliefs about

non-neighbors must be consistent, whenever possible and both on- and off-path, with

common belief in rationality and correctness of beliefs about neighbours. Therefore,

forward induction considerations ensue. As a result, when the network is empty, PCE
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coincides with extensive-form rationalizability (Pearce (1984)), and thus the mono-

tonicity result from the static settings is not preserved: as it is well-known, subgame

perfect equilibrium and extensive-form rationalizability yield non-nested predictions.

The reason behind the lack of monotonicity is the tension in PCE between the

backward induction logic that players apply to their neighbors (embedded in sub-

game perfect equilibrium), and the forward induction logic that they apply to the

other players. Without a way to capture the non-equilibrium implications of back-

ward induction reasoning, this tension in Lipnowski and Sadler (2019) was in a way

unavoidable: the key idea of PCE of weakening equilibrium restrictions only for non-

neighbors translates into a hybrid of plain subgame perfect equilibrium and extensive

form rationalizability, thereby mixing backwards and forward induction logic.

Endowed with the tools developed in this paper, we propose a modification of

peer-confirming equilibrium that is entirely based on backward induction reasoning.

As in Lipnowski and Sadler (2019), we maintain that players have correct beliefs

about their neighbors, as well as the equilibrium view that a player never changes

beliefs about their continuation play. Regarding the non-neighbors, instead, we drop

belief persistence – which as argued pertains to an equilibrium logic, not to back-

ward induction per se – but we maintain the view that anyone’s unexpected moves

may be regarded as mistakes, and hence they need not mean anything about their

continuation play. As a result, our version of peer-confirming equilibrium (a solution

concept we formally denote by PC below) spans from subgame perfect equilibrium,

when the network is complete, to backwards rationalizability, when the network is

empty. Thus, the monotonicity result is restored: peer-confirming equilibrium with

backward induction reasoning (i.e., PC) does become more restrictive as the network

becomes richer (Theorem 5).

Formally, for each i ∈ N , let N i ⊆ N denote i’s neighbourhood, which includes

her neighbours and herself. As in Lipnowski and Sadler (2019), we focus on games

without payoff uncertainty, therefore we omit everywhere the sets of types.

Definition 6. Let PC0 = S. For any k > 0, s∗ = (s∗i )i∈N ∈ PCk if and only if,

for each i ∈ N , there exists µi ∈ ∆H
i such that: (i) s∗i ∈ ri(µ

i); and (ii) for each
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h ∈ H and s−i ∈ suppµi(·|h), s−i|h = s′−i|h for some s′ = (s′j)j∈N ∈ PCk−1 such

that (s′j)j∈N i = (s∗j)j∈N i. Then, the set of peer-confirming equilibria with backward

induction reasoning is defined as PC := ∩k>0PCk.

PC is an iterated elimination procedure for strategy profiles, rather than strategies.

This is important because, in the spirit of equilibrium consistency restrictions, the

candidate strategy profile may restrict the viable beliefs of players: at every history,

a player shall assign probability one to continuation strategies that are consistent

with a strategy profile where all the neighbours (and herself) play as in the candidate

profile. Without this restriction (that is, with the empty network), the focus on

profiles becomes immaterial and PC coincides with plain BR.

Remark 3. If N i = {i} for every i ∈ N , then PC = BR.

With the complete network, given a candidate profile s∗, each player i is forced to

believe in s∗−i|h from every history h onwards. Therefore, PC boils down to the set

of pure SPE of the game (which of course can be empty).

Remark 4. If N i = N for every i ∈ N , then PC is the set of pure SPE.

In Lipnowski and Sadler (2019)’s definition of peer-confirming equilibrium, the

requirement on players’ beliefs is split into two. The first requirement concerns the

neighbours: the beliefs about their continuation play must coincide with the candidate

profile. The second requirement concerns the other players: at every history h, the

beliefs about their play must be consistent with strategy profiles of step k − 1 that

coincide after h with the candidate profile in i’s neighbourhood and reach h, if any;

otherwise, these beliefs are unrestricted. A richer network restrains the set of viable

beliefs at the first step of reasoning, so that fewer profiles survive. However, fewer

profiles reach fewer histories, therefore the second-step beliefs with the richer network

need not be a subset of those with a poorer network. This is the source of the

non-monotonicity in the original notion of peer-confirming equilibrium. By contrast,

under backward induction reasoning, a smaller set of possible strategy profiles entails

a smaller set of viable beliefs. This observation was key for the order independence of

BR, and is key here for the monotonicity of PC with respect to the network structure.
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Theorem 5. Suppose that N̂ i⊇N̄ i for every i ∈ N . Let P̂C and P̄C denote, respec-

tively, PC under (N̂i)i∈N and under (N̄i)i∈N . We have P̂C ⊆ P̄C.

Proof. By induction. The basis step, P̂C
0
⊆ P̄C0, is trivial. Fix now k > 0

and suppose that P̂C
k−1

⊆ P̄Ck−1. Fix s∗ ∈ P̂C
k
. We want to show that s∗ ∈ P̄C

k
.

Fix i ∈ N . Fix µi ∈ ∆H
i such that µi and s∗i satisfy requirement (ii) in Definition

6 with PCk−1 = P̂C
k−1

and N i = N̂ i. Requirement (ii) is then satisfied also with

PCk−1 = P̄C
k−1

and N i = N̄ i because N̄ i ⊆ N̂ i and P̄C
k−1 ⊇ P̂C

k−1
by the inductive

hypothesis. Hence, s∗ satisfies the requirements for P̄Ck. ■

6.2 Other Applications

Compared to the earlier literature, Backwards Rationalizability provides the first

well-defined notion of backward induction reasoning in incomplete information set-

tings. An early application with incomplete information is provided by Penta (2015),

who studies the problem of robust implementation in dynamic settings. In that con-

text, Backwards Rationalizability enables two main achievements. First, it provides

a seamless extension of Bergemann and Morris (2009) static analysis to dynamic

environments, in which agents may obtain information over time. Second, it sheds

light on Bergemann and Morris (2007)’s results on the advantages of using dynamic

mechanisms in static environments. In particular, it shows that the intuition that

robustness may be favored by the adoption of dynamic mechanisms, thanks to the

reduction of strategic uncertainty granted by backwards induction, does not extend

to incomplete information settings, at least if no restrictions on beliefs are imposed.17

Importantly, however, the advantages of Backwards Rationalizability can be seen

even in settings with complete information. A notable case in point – which is im-

portant both economically and historically – is provided by the original two-period

Hotelling model of horizontal differentiation. Backward induction is a natural way of

reasoning in this game: before considering the possible positioning, a firm wants to

understand which prices could emerge in the second stage, depending on the locations

17For robust implementation with belief restrictions, see Ollár and Penta (2017, 2023, 2022).
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chosen in the first stage. Yet, in the baseline specification with linear transportation

cost (Hotelling (1929)), SPE fails to provide a tractable and convincing solution.18

Attempts to recover some tractability have explored alternative cost functions, but

have produced insights that often clash with basic economic intuition.19 As a con-

sequence, the literature on the two-period Hotelling model has faded, leaving it as

some kind of puzzle, despite its inherent simplicity. The tools developed in this paper

may be fruitfully applied to think about the two-period Hotelling model afresh. In

Catonini and Penta (2022), we look at subsets of backwards rationalizable strategy

profiles that are “closed under rational behavior” (Basu and Weibull (1991)) along

the induced path. It turns out that the transportation-efficient location pair is the

only location pair that is consistent with this solution concept, which captures the

idea that firms know the path of play, but face strategic uncertainty after a deviation,

and try to reduce it with backward induction reasoning.

Overall, these applications show that Backwards Rationalizability not only is a

tractable and ready-to-use solution concept, but it may also serve as a basis to im-

pose extra desiderata over the simple and compelling logic of backward induction,

separate from other kinds of assumptions that are entangled with it in existing so-

lution concepts, and which do not always prove tractable or plausible. These extra

desiderata may be dictated by the specific economic context, and and super-imposed

on Backwards Rationalizability, which may thus serve as a template solution concept.

Appendix
18A numerical solution was found by Osborne and Pitchik (1987), whereby the chosen locations

induce a complicated mixed pricing equilibrium where firms may engage in a price war, whereas
slightly higher differentiation would induce certain prices and overall higher profits.

19For instance, d’Aspremont et al. (1979) considered quadratic transport costs, and showed the
existence of an easy-to-compute SPE. Such an equilibrium, however, induces maximal differentia-
tion (the two firms position themselves at the opposite extremes of the interval), a result which is
considered at odds with factual observation.
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A Proofs

We introduce some additional terminology that will be used in the proofs. Fix an

elimination procedure of type-strategy pairs ((Ω̂h,k
i )i∈N)k≥0 for the continuation game

with root h.

We say that a CPS µi,h over Θ0×Θ−i×Sh
−i is viable for Ω̂h,k

i when, for every h′ ⪰ h

and (θ−i, s
h
−i) such that µi,h(Θ0×

{
(θ−i, s

h
−i)

}
|h′) > 0, there is (θ̃−i, s̃

h
−i) ∈ Ω̂h,k−1

−i such

that s̃h−i|h′ = sh−i|h′ and θ̃−i = θ−i.

We say that µi,h “justifies (θi, s
h
i ) ∈ Ω̂h,k

i ” when µi,h is viable for Ω̂h,k
i and shi is a

sequential best reply to µi,h for θi.

We will repeatedly use two facts, which we report without a formal proof. Fix

two histories h, h′, a CPS µi,h over Θ0 ×Θ−i × Sh
−i, and a map ς that associates each

(θ̄0, θ̄−i, s
h
−i) ∈ Θ0 × Θ−i × Sh

−i with some (θ̄0, θ̄−i, s
h′
−i) ∈ Θ0 × Θ−i × Sh′

−i such that

sh
′

−i = sh−i|h′ if h′ ⪰ h, sh
′

−i|h = sh−i and sh
′

−i ∈ Sh′
−i(h) otherwise — note that the map

keeps (θ̄0, θ̄−i) fixed, and all the maps we will use will do so. Consider the array of

beliefs (µi,h′
(·|h′′))h′′⪰h,h′ where each µi,h′

(·|h′′) is the pushforward of µi,h(·|h′′) through

ς.

Fact 1: (µi,h′
(·|h′′))h′′⪰h,h′ is (part of) a CPS for the continuation game with root

h′.

Fact 2: µi,h′
(·|h′′) and µi,h(·|h′′) have the same continuation best replies for all

types.20

Proof of Theorem 2.

The statement is an identity for h = h0, so suppose h ̸= h0.

Trivially, BR0|h = BRh,0. Now fix k > 0 and suppose by induction that BRk−1|h =

BRh,k−1.

20Formally, the continuation best replies are elements of Sh
i and Sh′

i , so when h ̸= h′ what we
mean is that the continuation best replies, which only depend on the actions they prescribe from h′′

onwards, coincide from h′′ onwards.
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First we show BRk|h ⊆ BRh,k. Fix i ∈ N , (θi, si) ∈ BRk
i , and a CPS µi that

justifies this. Define the map

ς : (θ0, θ−i, s−i) 7→ (θ0, θ−i, s−i|h) .

Let µi,h =
(
µi,h(·|h′)

)
h′⪰h

be the CPS over Θ0 × Θ−i × Sh
−i where, for each h′ ⪰

h, µi,h(·|h′) is the pushforward of µi(·|h′) through ς. By the induction hypothesis,

BRk−1
−i |h′ = BRh,k−1

−i |h′, so the fact that µi is viable for BRk
i implies that µi,h is

viable for BRh,k
i . Moreover, since µi(·|h′) and µi,h(·|h′) have the same continuation

best replies for all types, the fact that si is a continuation best reply to µi(·|h′) for θi

implies that so is si|h to µi,h(·|h′). Thus, (θi, si|h) ∈ BRh,k
i .

Now we show BRk|h ⊇ BRh,k. Fix i ∈ N . Let h ⪯ h be the shortest history

such that s−i|h ∈ Sh
−i(h) for all (θ−i, s−i) ∈ BRk−1

−i . Thus, if h ̸= h0, there exists

(θ−i, s−i) ∈ BRk−1
−i such that s−i|π(h) ̸∈ S

π(h)
−i (h), but since s−i|h ∈ Sh

−i(h), we must

have s−i|π(h) ̸∈ S
π(h)
−i (h). Let µ̄i be a viable CPS for BRk

i such that, if h ̸= h0, at every

history h′ ≺ h, player i assigns probability 1 to (θ−i, s−i|h′),21 so that µ̄i(Θ0 ×Θ−i ×
S−i(h)|π(h)) = 0. Fix a map ς that associates each (θ̄0, θ̄−i, s

h
−i) ∈ Θ0 × Θ−i × Sh

−i

with some (θ̄0, θ̄−i, s−i) ∈ Θ0 × Θ−i × S−i(h) such that (a) s−i|h = sh−i and (b) if(
θ̄−i, s

h
−i

)
∈ BRh,k−1

−i , then (θ̄−i, s−i|h) ∈ BRk−1
−i |h — requirement (b) is compatible

with (a) and with s−i ∈ S−i(h) because, by the induction hypothesis, sh−i = ŝ−i|h for

some (θ̄−i, ŝ−i) ∈ BRk−1
−i , and by definition of h, ŝ−i|h ∈ Sh

−i(h), so one can choose

any s−i ∈ S−i(h) such that s−i|h = ŝ−i|h.
Now fix (θi, s

h
i ) ∈ BRh,k

i and a CPS µi,h that justifies this. Construct an array of

conditional beliefs µi = (µi(·|h))h∈H as follows:

1. for each h′ ⪰ h, let µi(·|h′) be the pushforward of µi,h(·|h′) through ς;

2. for each h′ ⪰ h with h′ ≺ h, let µi(·|h′) = µi(·|h);
21Since µ̄i(·|h′) is a probability measure over Θ0 × Θ−i × S−i, not Θ0 × Θ−i × Sh′

−i, we refer of
course to the belief induced over the continuation strategies.
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3. for every other h′ ≻ h with µi(Θ0 × Θ−i × S−i(h
′)|h) > 0, derive µi(·|h′) from

µi(·|h) by conditioning;

4. for every other h′, let µi(·|h′) = µ̄i(·|h′).

It is easy to check that µi is a CPS. Now we show that µi is viable for BRk
i . For each

h′ ⪰ h and (θ−i, s−i) with µi(Θ0×{(θ−i, s−i)} |h′) > 0, by 1. and (a) we have µi,h(Θ0×
{(θ−i, s−i|h)} |h′) > 0, so by the fact that µi,h is viable for BRh,k

i , we get (θ−i, s−i|h′) ∈
BRh,k−1

−i |h′, and hence by the induction hypothesis (θ−i, s−i|h′) ∈ BRk−1
−i |h′. For each

h′ ⪰ h with h′ ≺ h and (θ−i, s−i) with µi(Θ0 × {(θ−i, s−i)} |h′) > 0, by 2. we have

µi(Θ0 ×{(θ−i, s−i)} |h) > 0, so as just argued (θ−i, s−i|h) ∈ BRh,k−1
−i , and hence by 1.

and (b) we get
(
θ−i, s−i|h

)
∈ BRk−1

−i |h, which implies (θ−i, s−i|h′) ∈ BRk−1
−i |h′. The

same holds for every other h′ by 3. and 4., so µi is viable for BRk
i . Finally, for each

h′ ⪰ h, by 1. and (a), µi(·|h′) and µi,h(·|h′) have the same continuation best replies,

therefore µi justifies (θi, si) ∈ BRk
i for some si such that si|h = shi . ■

For the proof of Theorem 3, we will refer to the following definition of BP , which

includes the steps of belief-free rationalizability. For each h ∈ H, let ϕ(h) denote the

set of immediate successors of h in H (if any).

Definition 7. Fix h ∈ H and suppose that, for each h′ ≻ h (if any) BPh′
has already

been defined.

Step 0: For each i ∈ N , let

BPh,0
i =

{
(θi, s

h
i ) ∈ Θi × Sh

i : ∀h′ ∈ ϕ(h), (θi, s
h
i |h′) ∈ BPh′

i

}
.

(if h is preterminal, ϕ(h) = ∅, thus BPh,0
i = Θi × Sh

i ).

Step k: For each i ∈ N and (θi, s
h
i ) ∈ Θi × Sh

i , let (θi, s
h
i ) ∈ BPh,k

i if there exists

νh
i ∈ ∆(Θ0 ×Θ−i × Sh

−i) such that:
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BP1h: shi ∈ r̂hi (ν
h
i ; θi).

BP2h: νh
i (Θ0 × BPh,k−1

−i ) = 1.

For each i ∈ N , let BPh
i = ∩k>0BPh,k

i .

Proof of Theorem 3.

We are going to write shi ≃ s̃hi when
[
shi
]
=

[
s̃hi
]
(i.e., shi and s̃hi belong to the

same realization-equivalent class).

By Theorem 2, BR|h = BRh, so we can prove
[
BRh

i

]
=

[
BPh

i

]
for all i ∈ N . The

proof is recursive on the length of histories, starting from preterminal histories and

moving backwards. So, suppose that the result holds for every history longer than

history h.

Define an elimination procedure ((Ω̂h,k
i )i∈N)k≥0 as follows. For each i ∈ N , let

Ω̂h,0
i = Θi × Sh

i . For each k > 0, let
(
θi, s

h
i

)
∈ Ω̂h,k

i if there exists a viable CPS µh
i for

Ω̂h,k
i such that, for each h′ ≻ h, shi is a continuation best reply to µh

i (·|h′) for θi, even if

not at h. Let K be the first step k such that Ω̂h,k = Ω̂h,k+1. Now define an elimination

order of the backwards rationalizability operator in the continuation game with root

h, denoted by BR̂
h
, as follows. For each k = 0, ..., K, let BR̂

h,k
= Ω̂h,k. For each

k > K and i ∈ N , let
(
θi, s

h
i

)
∈ BR̂

h,k

i if there exists a CPS µh
i that justifies this. By

Theorem 1, BR̂
h
= BRh, so we can prove [BR̂

h

i ] =
[
BPh

i

]
.

It is easy to see that, for every i ∈ N , (θi, s
h
i ) ∈ BR̂

h,K

i if and only if (θi, s
h
i |h′) ∈

BRh′

i for all h′ ∈ ϕ(h). (Thus, BR̂
h,K

|h′ = BRh′
= BRh|h′ = BR̂

h
|h′, where the

second equality is by Theorem 2 and the last equality by Theorem 1.) By definition,

(θi, s
h
i ) ∈ BPh,0

i if and only if (θi, s
h
i |h′) ∈ BPh′

i for all h′ ∈ ϕ(h). By the recursive

hypothesis, [BRh′

i ] = [BPh′

i ]. Hence, [BR̂
h,K

i ] = [BPh,0
i ].

Now fix k > 0 and assume by way of induction that [BR̂
h,K+k−1

i ] = [BPh,k−1
i ] for

all i ∈ N .

Fix (θi, s
h
i ) ∈ BR̂

h,K+k

i and µi,h that justifies this. By the induction hypothesis,

we can fix a map ς that associates each (θ̄0, (θ̄j, s
h
j )j ̸=i) ∈ Θ0 ×BR̂

h,K+k−1

−i with some

(θ̄0, (θ̄j, s̃
h
j )j ̸=i) ∈ Θ0 × BPh,k−1

−i such that shj ≃ s̃hj for every j ̸= i. Let νh
i be the
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pushforward of µi,h(·|h) through ς; it satisfies BP2h. Since shi is a continuation best

reply to µi,h(·|h), it satisfies BP1h with νh
i , so (θi, s

h
i ) ∈ BPh,k

i .

Fix (θi, s
h
i ) ∈ BPh,k

i and νh
i that satisfies BP1h and BP2h at step k. By the

induction hypothesis, there exists ŝhi ≃ shi such that (θi, ŝ
h
i ) ∈ BR̂

h,K

i . Thus, there

exists a CPS µ̂i,h such that, for each h′ ≻ h, ŝhi is a continuation best reply to µ̂i,h(·|h′)

for θi, and for each (θ−i, s
h
−i) with µ̂i,h(Θ0 ×

{(
θ−i, s

h
−i

)}
|h′) > 0, (θ−i, s

h
−i|h′) ∈

BR̂
h,K

−i |h′ = BR̂
h

−i|h′, where the equality is given by the argument in brackets above.

By the induction hypothesis, we can fix a map ς that associates each (θ̄0, (θ̄j, s
h
j )j ̸=i) ∈

Θ0×BPh,k−1
−i with some (θ̄0, (θ̄j, s̃

h
j )j ̸=i) ∈ Θ0×BR̂

h,K+k−1

−i such that s̃hj ≃ shj for every

j ̸= i. Construct µi,h as follows: let µi,h(·|h) be the pushforward of νh
i through ς, and

for each h′ ≻ h, derive µi,h(·|h′) from µi,h(·|h) by conditioning if possible, otherwise

let µi,h(·|h′) = µ̂i,h(·|h′). It is easy to see that µi,h justifies (θi, ŝ
h
i ) ∈ BR̂

h,K+k

i . ■

Proof of Theorem 4.

Given an IPE (b, p), for each i ∈ N and ti ∈ Ti, we will formally describe the

equilibrium beliefs of ti as a CPS µ̂ti = (µ̂ti(·|h))h∈H over Θ0 × T−i × S−i, defined by

the following recursive procedure, which uses the notion of replacement plan: given an

interim strategy si and a history h, let ϱi,h(si) denote the interim strategy s′i ∈ Si(h)

such that s′i(h
′) = sh

′
i (h) for every h′ ̸≺ h. 22

For each (θ0, (tj)j ̸=i, (sj)j ̸=i) ∈ Θ0 × T−i × S−i, let

µ̂ti(θ0, (sj, tj)j ̸=i|h0) = pi(θ0, (tj)j ̸=i|h0; ti) ·
∏

j ̸=i
bj(sj|tj). (2)

Now fix h ̸= h0 and suppose that µ̂ti(·|π(h)) was defined. If µ̂ti(Θ0×T−i×S−i(h)|π(h)) >
0, for each ω ∈ Θ0 × T−i × S−i(h), let

µ̂ti(ω|h) = µ̂ti(ω|π(h))
µ̂ti(Θ0 × T−i × S−i(h)|π(h))

, (3)

22In words, the replacement plan of si at h is the strategy that specifies actions consistent with h
on the path to h but coincides with si everywhere else, most importantly at histories that follow h.
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otherwise, for each (θ0, (tj)j ̸=i, (sj)j ̸=i) ∈ Θ0 × T−i × S−i, let

µ̂ti(θ0, t−i, s−i|h) = pi(θ0, (tj)j ̸=i|h; ti) ·
∏

j ̸=i
bj(ϱ

−1
j,h(sj)|tj). (4)

“If” part) For each i ∈ N and ti ∈ Ti, define a CPS µti over the payoff-relevant

uncertainty Θ0×Θ−i×S−i as follows: for each h ∈ H and (θ0, θ−i, s−i) ∈ Θ0×Θ−i×S−i,

let

µti(θ0, θ−i, s−i|h) = µ̂ti({θ0} × ϑ−1
−i (θ−i)× {s−i} |h),

where ϑ−1
−i ((θj)j ̸=i) = ×j ̸=iϑ

−1
j (θj). Thus, for each si ∈ Si such that bi(si|ti) > 0, si

is sequentially rational for ϑi(ti) given µti . At every history h, µti assigns positive

probability only to pairs (θj, s
′
j) where s′j|h = sj|h for some sj that is played with

positive probability in the IPE by some type tj ∈ ϑ−1
j (θj). Hence, a simple inductive

argument shows that all type-interim strategy pairs induced by b survive all steps of

BR.

“Only if” part) Construct a type structure as follows. For each i ∈ N , let

Ti = BRi, and for each ti = (θi, si) ∈ Ti, let ϑi(ti) = θi. Now we construct the belief

map. Fix ti = (θi, si). By the fixed-point property of BR (Remark 2), there is µti

such that (i) si ∈ ri(µ
ti ; θi) and (ii) for each h ∈ H, there is a map ξtih that associates

each (θ̄0, (θ̄j)j ̸=i, (sj)j ̸=i) ∈ Suppµti(·|h) with some (θ̄0, (θ̄j, s
′
j)j ̸=i) ∈ Θ0 × T−i such

that s′j|h = sj|h for every j ̸= i. Let τi(·|ti) be the pushforward of µti(·|h0) through

ξtih0 .

Now we construct an IPE (b, p) where, for every i ∈ N and (θi, si) ∈ BRi, there

exists ti ∈ Ti such that bi(si|ti) = 1 and ϑi(ti) = θi.

For each i ∈ N , define the strategy bi as bi(si|ti) = 1 for each ti = (θi, si). By

construction of the type structure, b satisfies the desired condition.

For each ti ∈ Ti, define pi(·|ti) recursively as follows. First, let pi(·|h0; ti) = τi(·|ti).
So, p satisfies condition 1 of weak preconsistency. From this, derive µ̂ti(·|h0) with

equation 2. Now fix h ≻ h0 and suppose that µ̂ti(·|π(h)) was defined. If µ̂ti(Θ0×T−i×
S−i(h)|π(h)) > 0, derive µ̂ti(·|h) with equation 3 and let pi(·|h; ti) be its marginal on
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Θ0×T−i; otherwise, let pi(·|h; ti) be the pushforward of µti(·|h) through ξtih and derive

µ̂ti(·|h) with equation 4; either way, pi(·|h; ti) satisfies condition 2 of pre-consistency.

Thus, to prove that (b, p) is an IPE, there only remains to show the optimality of b.

Fix i ∈ N and ti = (θi, si). Fix h ∈ H such that h = h0 or µ̂ti(Θ0 × T−i ×
S−i(h)|π(h)) = 0. Then, for each ω = (θ0, (tj)j ̸=i, (sj)j ̸=i), we have

µ̂ti(ω|h) (Eqs 2,4)
= pi(θ0, t−i|h; ti) ·

∏
j ̸=i bj(ϱ

−1
j,h(sj)|tj)

(def. of p)
= µti((ξtih )

−1 (θ0, t−i) |h) ·
∏

j ̸=i bj(ϱ
−1
j,h(sj)|tj)

(def. of b)
=

{
µti((ξtih )

−1 (θ0, t−i) |h) if sj = ϱj,h(bj(tj)) for every j ̸= i

0 otherwise
.

For each ω′ = (θ0, (θj)j ̸=i, (s
′
j)j ̸=i) ∈

(
ξtih

)−1
(θ0, (tj)j ̸=i), for every j ̸= i, we have

θj = ϑj(tj) and s′j|h = bj(tj)|h, therefore if sj = ϱj,h(bj(tj)), s
′
j|h = sj|h. Hence,

µ̂ti(·|h) and µti(·|h) induce the same belief over payoff-relevant types and continuation

strategies. So, since si is a continuation best reply to µti(·|h), it is also optimal under

the (candidate) equilibrium belief µ̂ti(·|h). The same is true at every other history h

as µ̂ti satisfies the chain rule. ■
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