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Abstract

We formalize, under the name of games of addition, the strategic inter-
action between agents that can play non-simultaneously by adding payoff
relevant actions to those that any other players or themselves have already
taken previously, but may also agree unanimously to stop adding them
and collect the payoffs associated with the truncated sequence of moves.
Our formalization differs from that of extensive form games in that the
order of the agents’ moves is not predetermined but emerges endogenously
when applying an adapted version of a solution concept proposed by Dutta,
Jackson and Le Breton (2004). We provide results regarding the properties
of solutions to games of addition, and we also compare their corresponding
equilibria with those we would obtain if using extensive form games and
subgame perfection as alternative tools of analysis.
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1 Introduction

In some sequential games the order of play is naturally suggested by the nature

of the phenomena under study. In other cases, this order may be imposed by a
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designer, maybe seeking some additional objectives. For example, in cases where

the order of play may provide some players with an advantageous position, fixing

a given order may reflect the designer’s view that it is desirable to attribute the

advantage to a specific player. However, we think that in many other cases the

use of specific protocols imposes an unrealistic and not innocuous restriction in

the analysis of interactions between agents who interact sequentially, because in

fact an important part of their strategic behavior may consist in determining the

order in which they decide to act. Examples abound. They include oligopolistic

competition, agenda setting, nomination of candidates for some office, electoral

competition, political debates.

In this paper we offer a framework for the analysis of strategic games played

by individuals who must take decisions in a sequence of non-simultaneous actions,

and whose opportunities to use their available actions, or not, after any history

of the game, are not limited by any protocol establishing the order in which they

must play, or forcing them to continue adding further actions to those that they

have already used. We refer to the games that respond to our description as

games of addition, and we study their equilibria following an adapted version

of a solution concept proposed by Dutta, Jackson, and Le Breton (2004) for

the specific class of agenda formation games, where individuals’ preferences over

agendas are determined by a voting rule that selects an alternative from each

agenda.

The description of the strategic possibilities arising in our context is simpler

than the one required to define extensive form games, because these must be very

specific about the shape of game trees and the assignment of rights to move at

any point in the history of the game. In our case, the definitional elements of

the game are simply given by the set of players, the actions that are available for

each player after each history of play which we call a “state”, and the preferences

of the players over all states.

The description is very flexible and allows to cover rather different appli-

cations. In some cases, actions are strictly personalized, like in private good

economies (for example, actions may be the decision whether to address a given

issue in a debate). In others, some or all actions may be undertaken by different

players (for example, any agent may be able to nominate a candidate for election
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to a club). By contrast with our simple description of the basic game structure,

the notion of equilibrium that we propose to use is more involved than subgame

perfection, as it is required to endogenously determine the timing of the order of

play by the different agents involved.

Sequential play by different agents can always be interpreted as a decision-

making process during which the characteristics of the end-result are determined

by the accumulation of actions taken by the agents involved. Yet, an important

characteristic of those that we call games of addition is that the accumulation

process can be stopped at any point if all players agree to, either implicitly or

explicitly. Given this important characteristic, the payoffs at each possible state

of development along the game become relevant: any of them may influence the

decision to stop or to continue adding actions. Because of this, the equilibrium

concept that we use involves a global view of the overall possibilities that are

open to the players, including the consequences and the reasons for calling the

addition process to a stop.

There is a related literature in industrial organization that studies the timing

of actions in duopoly games (see, e.g., Hamilton and Slutsky (1990), Deneckere

and Kovenock (1992), van Damme and Hurkens (2004)). Yet, different from our

games of addition in these timing games either firms can also move simultaneously

or they are forced to move sequentially by allowing one firm to take her action

only in even time intervals and the other only in odd intervals. The latter is

an extensive form that endogenizes the timing of actions but it still assumes

an exogenous order of moves which may be a too strong assumption in many

applications. Moreover, we will see that the equilibrium predictions for such

extensive form games where players can decide to defer taking an action can be

quite different from the equilibria in our games of addition.

There is also a small literature on endogenizing the order of moves in agenda

setting and in electoral campaigns. We have already mentioned the seminal paper

on agenda setting by Dutta, Jackson, and Le Breton (2004). Barberà and Gerber

(2022) have studied a two-stage process, where in the first stage agents put issues

on the agenda and in the second stage they take decisions on those issues. The

agenda-setting stage is a special case of the class of games of addition we study

in this paper. Kamada and Sugaya (2020) study an electoral campaign where
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candidates strategically decide when to announce their policies. Yet, different

from the games studied in this paper candidates are not free to choose the time

for their announcement. They have to wait for an opportunity which arrives

stochastically according to a Poisson process. By contrast, Barberà and Gerber

(2023) consider an electoral campaign with two candidates who can freely decide

which issues to address and in what order. Again this model is a special case of

the class of games we study in this paper.

An important general conclusion of our analysis is that our solution concept

determines endogenously the order in which players will be interested to act at

equilibrium, and the ensuing consequences on the games’ equilibrium outcome.

In many cases this order cannot be inferred from the specific application. Hence,

modelling the strategic interaction as an extensive form game where the order

of moves is fixed exogenously is not a reasonable alternative. This is one of

the reasons why we expect that games of addition and their study through a

generalization of the solution concept proposed by Dutta, Jackson, and Le Breton

(2004) may become a welcome tool.

The paper is organized as follows. In Section 2 we introduce our general

model of games of addition and our adapted version of equilibrium. In Section 3

we present some simple but clarifying examples and a general existence result for

games with common sets of actions. Section 4 describes the connection between

situations that are modelled by means of games of addition and a class of extensive

form games that could be thought of as an alternative model of how the same

players could interact. This also allows us to argue that, in general, the equilibria

associated with these two different tools need not coincide. Section 5 provides

some initial shots toward a better understanding of the games we are proposing.

In particular, we provide a general existence result for the class of two-person

zero-sum games and we prove that all equilibria are outcome equivalent under

additional assumptions on the preferences of the players. This opens the way

toward further extensions of the model and generalizations of results. Section 6

concludes. All proofs are in the appendix.
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2 The Model

We consider the following class of games:

Definition 2.1 A (finite) game of addition is defined by a four-tuple

(N,A,Σ, (≿i)i∈N) that satisfies the following conditions:

(i) N = {1, . . . , n} with n ≥ 2 is the set of players.

(ii) A is a nonempty finite set of actions.

(iii) Σ is a set of states with the following property. There is a number M ≥ 1

such that each state σ ∈ Σ is either empty (σ = ∅) or is a sequence

σ = (s1, . . . , sm) with m ≤ M where sk = (ik, ak) with ik ∈ N and ak ∈ A

for all k = 1, . . . ,m.1

(iv) ≿i is a complete and transitive preference relation on Σ for all i = 1, . . . , n.

For a given state σ = (s1, . . . , sm) ∈ Σ we write, for short, (i, a) ∈ σ whenever

(i, a) = sk for some k ∈ {1, . . . ,m}, and (i, a) /∈ σ whenever (i, a) ̸= sk for

all k = 1, . . . ,m. For σ = (s1, . . . , sm) ∈ Σ, where 0 ≤ m ≤ M − 1, and

(i, a) ∈ N × A, let σ′ = (σ, (i, a)) = (s1, . . . , sm, (i, a)).

Notice that Σ includes information about what actions, if any, are available

for each of the agents at each state σ ∈ Σ. Specifically, for each game of addition

(N,A,Σ, (≿i)i∈N) and σ ∈ Σ let Ai(σ) be the set of feasible actions for player

i ∈ N at state σ ∈ Σ which is given by

Ai(σ) = {a| (σ, (i, a)) ∈ Σ}.

Note that (iii) implies that Ai(σ) = ∅ for all σ of length M . That is, the game

ends after at most M actions have been taken by the players. But it may end

earlier, i.e. at a state with less than M actions, if either the sets of available

actions for all players are empty or if no player wants to add a further action

1If sk = (ik, ak), then ik indicates the player who added action ak at state (s1, . . . , sk−1)

which is defined to be the empty state ∅ if k = 1.
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at the given state. If σ ∈ Σ is such that Ai(σ) = ∅ for all i ∈ N , σ is called a

terminal state. In particular, any state σ of length M is a terminal state.

The above framework allows for a flexible specification of the characteristics of

the actions available to players in different contexts. In that of agenda formation

Dutta, Jackson, and Le Breton (2004) and Barberà and Gerber (2022) have

considered the special case where for all i,

Ai(∅) = A and Ai(σ) = A \ {a| (j, a) ∈ σ for some player j} for all σ ̸= ∅. (1)

In this case there exists a common set of actions for all players and each action

in the set can be taken at most once.

By contrast, in a model of electoral campaigns Barberà and Gerber (2023)

have considered the special case with

Ai(∅) = Ai and Ai(σ) = Ai \ {a| (i, a) ∈ σ} for all σ ̸= ∅, (2)

where Ai ⊆ A is a set of possible actions of player i for all i. In this case each

player has an individual set of actions and again any action can be taken at most

once.

Our model has some limitations as a modelling tool. It does not allow for

simultaneous moves by different players. Nor do we allow single players to take

more than one action at a time, though we do not exclude their playing several

times in a row. Yet, we think that these technical limitations do not detract from

the wide applicability of our model.

We are now ready to introduce definitions and conditions that will lead us to

define our proposed equilibrium concept. Let σ ∈ Σ. We say that σ′ ∈ Σ is a

continuation state at σ if σ = ∅ or σ = (s1 . . . , sm) ∈ Σ for some m ≥ 1 and

σ′ = (σ, . . .). Note that by definition σ is a continuation state at σ. By C(σ) we

denote the set of continuation states at σ ∈ Σ. We now define our equilibrium

concept which is an adaptation of the concept introduced by Dutta, Jackson, and

Le Breton (2004).

A collection of sets of continuation states is a family of subsets of C(σ) for each

σ ∈ Σ. A collection of sets of continuation states (CE(σ))σ∈Σ is an equilibrium
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collection of sets of continuation states if the following three conditions (E1)-(E3)

are satisfied:

(E1) For all σ ∈ Σ, CE(σ) is a nonempty subset of
n⋃

i=1

⋃
a∈Ai(σ)

CE(σ, (i, a)) ∪ {σ}.

(E2) For all σ ∈ Σ, σ ∈ CE(σ) if and only if for all i = 1, . . . , n,

σ ≿i σ
′ for all σ′ ∈

⋃
a∈Ai(σ)

CE(σ, (i, a)).

Condition (E1) demands that any equilibrium continuation at a given state σ

involves either stopping at σ or taking some action and then follow an equilibrium

path from there. The latter can be interpreted as a consistency requirement: If a

state is considered an equilibrium continuation at σ and it involves some player

taking an action at σ, then it must still be an equilibrium continuation at the

state reached after the player’s action.

Condition (E2) demands that stopping at a state σ is an equilibrium if and

only if no player can improve by taking an action at σ if the subsequent actions

are taken according to some equilibrium continuation. Hence, for stopping not

to be an equilibrium continuation at σ it is already sufficient that one player has

an action that leads to some equilibrium continuation which the player strictly

prefers over σ. Note that this implies some degree of optimism on the part of

players because there could also be other equilibrium continuations resulting from

a player’s initial move that are worse than stopping at σ.

For the third condition, we first define a rationalizable state.2

Definition 2.2 For σ ∈ Σ the state σ′ = (σ, (i, a′), . . .) ∈ Σ is rationalizable

(relative to σ) if σ′ ∈ CE(σ, (i, a′)) and the following conditions are satisfied:

(i) If CE(σ) ∩ CE(σ, (j, a′′)) ̸= ∅ for some (j, a′′) with j ̸= i, then there exists

some σ′′ ∈ CE(σ) with σ′′ = (σ, (k, a′′), . . .) for some k ̸= i such that

σ′ ≿i σ
′′.3

2Rationalizability corresponds to strong rationalizability in Dutta, Jackson, and Le Breton

(2004).
3k may but need not be equal to j.
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(ii) For all a′′ ̸= a′ with (σ, (i, a′′)) ∈ Σ there exists some σ′′ ∈ CE(σ, (i, a′′))

such that σ′ ≿i σ
′′.

(iii) If σ ∈ CE(σ) then also σ′ ≿i σ.

Accordingly, a continuation σ′ at σ that is initiated by player i is rationalizable

if it is an equilibrium continuation at the state reached after i’s action and if

three conditions are satisfied: (i) i weakly prefers σ′ over some other equilibrium

continuation at σ which is initiated by an action of some other player (if any).

(ii) i does not prefer all equilibrium continuations that result from some other

action taken by i at σ to σ′. (iii) If stopping at σ is an equilibrium continuation,

then i weakly prefers σ′ over stopping at σ. If any of the conditions (i)-(iii) were

violated it would be better for i not to take the respective action.

The third condition on an equilibrium collection of sets of continuation states

then is as follows:

(E3) Let σ ∈ Σ and let σ′ ∈ CE(σ, (i, a)) for some i and a such that (σ, (i, a)) ∈
Σ. If σ′ is rationalizable, then σ′ ∈ CE(σ). Conversely, if σ′ = (σ, (i, a′), . . .) ∈
CE(σ) and either σ ∈ CE(σ) or σ′′ = (σ, (j, a′′), . . .) ∈ CE(σ) for some (j, a′′) ̸=
(i, a′), then σ′ is rationalizable. If σ′ = (σ, (i, a′), . . .) ∈ CE(σ) and ∄j ̸= i such

that σ′′ = (σ, (j, a′′), . . .) ∈ CE(σ) for some a′′ ∈ Aj(σ), then σ′ ≿i σ.

(E3) imposes three requirements on equilibrium continuations at any state σ:

First, all rationalizable states must be equilibrium continuations at σ. Second,

all equilibrium continuations σ′ ̸= σ must be rationalizable except for the case

where there is a unique equilibrium continuation at σ. Third, if an equilibrium

continuation σ′ at σ is initiated by an action of player i and there exists no equi-

librium continuation initiated by an action of some other player j, then i must

weakly prefer σ′ over σ. This third condition rules out the case where a player

continues from a state even though the continuation leads to a worse outcome

than stopping at the current state and where the player’s move cannot be justi-

fied by preventing any potentially worse outcomes resulting from continuations

initiated by other players.
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We focus attention on equilibrium continuations of the initial state:

Definition 2.3 σ∗ is an equilibrium state if there exists an equilibrium col-

lection of sets of continuation states (CE(σ))σ∈Σ with σ∗ ∈ CE(∅).

3 Examples and a General Existence Result

3.1 Examples

We now present some simple examples that already allow us to illustrate different

features that we may find when analyzing different games of addition through

the use of our equilibrium concept. In Example 3.1 there is a unique equilibrium

state. In Example 3.2 there are multiple equilibrium states and in Example 3.3

there are multiple equilibrium collections. Finally, there are also games for which

there does not exist any equilibrium collection as we demonstrate in Example 3.4.

In all examples there are two players and the sets of actions satisfy (2) with

A1 = {a} and A2 = {b}. Since each player has only one action we shortly write

(a), (b), (a, b), (b, a) for the states where player 1 takes action a, player 2 takes

action b, first 1 takes action a and then 2 takes action b, and first 2 takes action

b and then 1 takes action a.

Example 3.1 Let players’ preferences over states be given by

(a) ≻1 (b) ≻1 (a, b) ∼1 (b, a) ≻1 ∅,

∅ ≻2 (a, b) ∼2 (b, a) ≻2 (b) ≻2 (a).

Then (E2) and (E3) imply that CE(a) = {(a, b)} and CE(b) = {(b)}.
Moreover, since (a, b) ≻1 ∅ (E2) implies that ∅ /∈ CE(∅). Hence, CE(∅) ⊆
{(a, b), (b)}.

CE(∅) = {(b)} is ruled out by (E3) because ∅ ≻2 (b). CE(∅) = {(a, b), (b)}
is ruled out by (E3) because (b) is not rationalizable if (a, b) ∈ CE(∅) since

(a, b) ≻2 (b). Hence, CE(∅) = {(a, b)} which satisfies (E3).

We conclude that there exists a unique equilibrium collection and a unique

equilibrium state (see Figure 1). ⋄
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Figures for Examples

April 9, 2024

Example 3.1

∅

(a) (b)

(a,b) (b,a)

CE(a) = {(a, b)} CE(b) = {(b)}

CE(∅) = {(a, b)}

1

Figure 1: Equilibrium collection for the game in Example 3.1. Player 1 moves

along the dotted lines and player 2 moves along the solid lines. Arrows denote the

equilibrium path. The bordered node corresponds to the equilibrium continuation

at ∅.

Example 3.2 Let players’ preferences over states be given by

(a) ≻1 (b) ≻1 ∅ ≻1 (a, b) ∼1 (b, a),

(b) ≻2 (a) ≻2 ∅ ≻2 (a, b) ∼2 (b, a).

Then (E2) and (E3) imply that CE(a) = {(a)} and CE(b) = {(b)}. Moreover,

(E2) implies that ∅ /∈ CE(∅). Hence, CE(∅) ⊆ {(a), (b)}.
CE(∅) = {(a)} is ruled out by (E3) because (b) is rationalizable if (a) ∈

CE(∅) since (b) ≻2 (a). CE(∅) = {(b)} is ruled out by (E3) because (a) is

rationalizable if (b) ∈ CE(∅) since (a) ≻1 (b). Hence, CE(∅) = {(a), (b)} which

satisfies (E3).

We conclude that there exists a unique equilibrium collection with multiple

equilibrium continuations at ∅ (see Figure 2). ⋄

Example 3.3 Let players’ preferences over states be given by

(b) ≻1 (a) ≻1 ∅ ≻1 (a, b) ∼1 (b, a),

(a) ≻2 (b) ≻2 ∅ ≻2 (a, b) ∼2 (b, a).

Then (E2) and (E3) imply that CE(a) = {(a)} and CE(b) = {(b)}. Moreover,

(E2) implies that ∅ /∈ CE(∅). Hence, CE(∅) ⊆ {(a), (b)}.
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Example 3.1

∅

(a) (b)

(a,b) (b,a)

CE(a) = {(a, b)} CE(b) = {(b)}

CE(∅) = {(a, b)}

Example 3.2

∅

(a) (b)

(a,b) (b,a)

CE(a) = {(a)} CE(b) = {(b)}

CE(∅) = {(a), (b)}

1

Figure 2: Equilibrium collection for the game in Example 3.2. Player 1 moves

along the dotted lines and player 2 moves along the solid lines. Arrows denote

the equilibrium path. The bordered nodes correspond to the equilibrium contin-

uations at ∅.

CE(∅) = {(a), (b)} is ruled out by (E3) because (a) is not rationalizable if

(b) ∈ CE(∅) since (b) ≻1 (a). Hence, CE(∅) = {(a)} or CE(∅) = {(b)} which

both satisfy (E3).

We conclude that there exist multiple equilibrium collections that differ with

respect to the unique equilibrium continuation at ∅ (see Figure 3). ⋄

Example 3.4 Let players’ preferences over states be given by

∅ ≻1 (a) ≻1 (b) ≻1 (a, b) ∼1 (b, a),

(a) ≻2 (b) ≻2 ∅ ≻2 (a, b) ∼2 (b, a).

Then (E2) and (E3) imply that CE(a) = {(a)} and CE(b) = {(b)}. Moreover,

(E2) implies that ∅ /∈ CE(∅). Hence, CE(∅) ⊆ {(a), (b)}.
CE(∅) = {(a)} is ruled out by (E3) because ∅ ≻1 (a). CE(∅) = {(b)} is

ruled out by (E3) because (a) is rationalizable if (b) ∈ CE(∅) since (a) ≻1 (b).

Finally, CE(∅) = {(a), (b)} is ruled out by (E3) because (b) is not rationalizable

if (a) ∈ CE(∅) since (a) ≻2 (b).

Hence, CE(∅) = ∅ which contradicts (E1). Therefore, there does not exist

an equilibrium collection in this example. ⋄
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Example 3.3

∅

(a) (b)

(a,b) (b,a)

CE(a) = {(a)} CE(b) = {(b)}

CE(∅) = {(a)} or CE(∅) = {(b)}

2

Figure 3: Equilibrium collections for the game in Example 3.3. Player 1 moves

along the dotted lines and player 2 moves along the solid lines. Arrows denote

the equilibrium path. Each bordered node corresponds to the unique equilibrium

continuation at ∅ in one equilibrium collection.

3.2 Common sets of actions

We now provide a general existence result for an important class of games of

addition. In these games, at all states the set of available actions is the same for

all players. Moreover, players only care about the actions that are being taken

and not about the identity of a player who takes a particular action. A prominent

example is agenda setting.

Consider the following conditions on a game of addition (N,A,Σ, (≿i)i∈N).

(C1) For all i ∈ N ,

Ai(∅) = A

and

Ai(σ) = A \ {a| (j, a) ∈ σ for some player j} for all σ ∈ Σ \∅.

Under (C1) all players have the same feasible set of actions A(σ) = Ai(σ) for

all σ ∈ Σ and each action can only be taken once. For σ = ((i1, a1), . . . , (im, am)) ∈
Σ with m ≥ 1 let

σ|A = (a1, . . . , am)
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be the restriction of σ to actions in A. For σ = ∅ let σ|A = ∅.

(C2) If σ, σ′ ∈ Σ are such that σ|A = σ′|A, then

σ ∼i σ
′ for all i ∈ N.

Under (C2) preferences over states only depend on the sequence of actions

that have been taken but not on the identities of the players who have taken the

actions.

Theorem 3.1 Let (N,A,Σ, (≿i)i∈N) be a game of addition such that that (C1)

and (C2) are satisfied. Then there exists an equilibrium collection of sets of

continuation states (CE(σ))σ∈Σ.

4 Games of addition vs. extensive form games

In this section we demonstrate that the equilibrium predictions from the sug-

gested analysis of games of addition will often differ substantially from those one

can expect from the analysis of extensive forms where the order of play is given

exogenously. Obviously, one cannot expect an extensive form game to deliver the

same results than our suggested analysis unless one restricts attention to exten-

sive form games that endow agents with the possibility of collectively stopping

the play, by passing, at histories of any length.

We proceed in two steps. In the first step we argue that if we associate

several extensive forms to each game of addition, there is no guarantee that all of

them will lead to the same equilibrium outcomes that obtain for the given game

of addition. In the second step we identify a very special and restricted set of

games of addition that allow for the construction of a unique extensive form game

such that the equivalence of equilibrium outcomes is guaranteed. The narrowness

of this class leads us to argue that, in general, the analysis of games of addition

is well differentiated from that of extensive form games.
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Definition 4.1 A (finite) extensive form game with perfect informa-

tion is given by (N,A,H, P, (≿i)i∈N) that satisfies the following conditions:4

(i) N = {1, . . . , n} with n ≥ 2 is the set of players.

(ii) A is a nonempty finite set of actions.

(iii) H is a set of histories that has the property that there exists some M ≥ 1

such that each history h ∈ H is either empty (h = ∅) or is a sequence

h = (a1, . . . , am) with m ≤ M where ak ∈ A for all k = 1, . . . ,m. A

history h = (a1, . . . , am) is terminal if there exist no am+1 such that

(a1, . . . , am, am+1) ∈ H.

(iv) P is a player function that assigns a player P (h) ∈ N to every nonterminal

history h, i.e. P (h) is the player who takes an action after the history h.

(v) ≿i is a complete and transitive preference relation on the set of terminal

histories for all i = 1, . . . , n.

For any nonterminal history h the set of feasible actions of player P (h) is

given by

A(h) = {a| (h, a) ∈ H}.

Note that any history h = (a1, . . . , am) defines a unique state

s = ((i1, a1), . . . , (im, am))

with i1 = P (∅) and ik = P (a1, . . . , ak−1) for k = 2, . . . ,m.

A strategy of player i ∈ N in an extensive form game is a function αi that

assigns an action αi(h) ∈ A(h) to each nonterminal history h ∈ H for which

P (h) = i.

The main difference between a game of addition and an extensive form game

is that the latter specifies an order of moves while the former does not. Hence,

any game of addition can be associated with several extensive form games, one

for each possible order of moves. In the following we will describe this class of

extensive form games and we will study the relation between equilibrium states

4See, for example, Osborne and Rubinstein (1994).
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of a game of addition and subgame perfect Nash equilibria of the extensive form

games associated with the game of addition.

4.1 Extensive form games with an option to pass

In view of our remarks at the beginning of the section, we propose to make

an association between each given game of addition and a class of games in

extensive form that allow agents to end the game at a truncated history if they

unanimously prefer to do so, rather than continuing to play along undesirable

paths. We do so by extending the players’ sets of actions to always contain a

“passing option”. Informally, the consequences of a player’s use of its passing

option at a given history is that the action sets of all players remain the same

at the continuation state that follows this pass action. In this subsection we

formally analyze whether the introduction of this qualification may induce the

equivalence between the equilibrium predictions of the given game of addition

and those of the associated extensive form games. The answer is that, in general,

including the pass option is not enough, since there will typically be orders of

play for which the equilibrium outcomes of the associated extensive form will be

different than those associated with the game of addition we start with.

Let us develop the reasoning formally. To this end let G = (N,A,Σ, (≿i)i∈N)

be a game of addition. Consider an extensive form game with a set of players N

and a set of actions A′ = A ∪ {pass}. Then inductively define a set of histories

Hm, states σ(hm) for all hm ∈ Hm and a player function P ′ as follows.

Let H0 = {∅}, σ(∅) = ∅ and let P ′(∅) be some player i whose feasible set

of actions at state ∅ is nonempty, i.e. Ai(∅) ̸= ∅.
Then assume that Hk, σ(hk) and P ′(hk) have been defined for all hk ∈ Hk and

for all 1 ≤ k ≤ m. Let Hm+1 be the set of all histories hm+1 = (hm, am), where

am ∈ A′ is an action taken by player P ′(hm). That is, am is a feasible action of

i = P ′(hm) at hm, i.e. am ∈ Ai(σ(hm)) ∪ {pass}. Then define state σ(hm+1) as

σ(hm+1) =

{
σ(hm) , if hm+1 = (hm, pass)

(σ(hm), (i, am)), otherwise
.

Moreover, let P ′(hm+1) be a player whose feasible set of actions at σ(hm+1) is

nonempty and who has not played “pass” in hm such that this pass action was
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only followed by pass actions of other players. Formally, P ′(hm+1) is a player i

such that the following two conditions are satisfied:

(i) Ai(σ(hm+1)) ̸= ∅.

(ii) If hm+1 = (a1, . . . , ak, . . . , am+1) is such that P (a1, . . . , ak−1) = i and ak =

pass, then k < m+ 1 and al ̸= pass for some l with k < l ≤ m+ 1.5

If there exists no such player i, hm+1 is a terminal history. Continue in this

manner and let M be the maximal k such that all histories in Hk are terminal.

Then define H ′ =
⋃M

m=0H
m and define players’ preferences ≿′

i on terminal

histories in H ′ by

h ≿′
i ĥ ⇐⇒ σ(h) ≿i σ(ĥ).

This defines an extensive form game Γ = (N,A′, H ′, P ′, (≿′
i)i∈N) which we call

extensive form game with an option to pass associated to G. Notice that our

construction may allow us to choose different players at the same history, and

because of that we may construct different extensive form games with an option

to pass associated to the same game of addition, each one with a specific player

function.

The following example illustrates that the subgame perfect Nash equilibrium

outcome may differ from the outcome in the equilibrium of the game of addition

that we started with.

Example 4.1 Consider the game of addition with two players, 1 and 2, and set

of actions A = {a, b, c, o}, where a and b are actions that can only be taken by

player 1 and c and o are actions that can only be taken by player 2. Let the set

of states be given by

Σ = {∅, (a), (o), (a, b), (a, c)}

where we have again simplified the notation for states since each action corre-

sponds to a unique player. The feasible sets of actions at the four states then

5Note that in particular this condition rules out that P (hm+1) = P (hm) = i if am+1 = pass,

i.e. no player is selected again right after the player has chosen pass.
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are

A1(∅) = {a}, A2(∅) = {o}, A1(a) = {b}, A2(a) = {c},
Ai(o) = Ai(a, b) = Ai(a, c) = ∅ for i = 1, 2.

Let players’ preferences on Σ be given by

(a, b) ≻1 (a) ≻1 ∅ ≻1 (o) ≻1 (a, c),

(a, c) ≻2 (a) ≻2 ∅ ≻2 (o) ≻2 (a, b).

The game and its continuation equilibria are illustrated in Figure 4. Consider

state (a). Since (a, b) ≻1 (a), (E2) implies that (a) /∈ CE(a). Hence, CE(a) ⊆
{(a, b), (a, c)}. Suppose (a, b) ∈ CE(a). Then (a, c) is rationalizable: To see this

note that for (a, c) condition (i) in Definition 2 is satisfied since since (a, c) ≻2

(a, b). Moreover, (ii) is satisfied since c is the only available action for player 2 at

state (a), and (iii) is satisfied since (a) /∈ CE(a). Hence, (a, c) is rationalizable

and (E3) implies that (a, c) ∈ CE(a). Similarly, (a, c) ∈ CE(a) implies that

(a, b) is rationalizable and hence (a, b) ∈ CE(a) by (E3). Hence, CE(a) =

{(a, b), (a, c)} which satisfies (E1)-(E3).

Consider the initial state ∅. Since (a, b) ∈ CE(a) and (a, b) ≻1 ∅ (E2)

implies that ∅ /∈ CE(∅). Hence, CE(∅) ⊆ {(o), (a, b), (a, c)}. Suppose by way

of contradiction that (a, b) /∈ CE(∅). Then either (o) or (a, c) is in CE(∅). If

(o) ∈ CE(∅), then (a, b) satisfies condition (i) in Definition 2 since (a, b) ≻1 (o).

Moreover, (ii) is satisfied since a is the only available action for player 1 at state

∅, and (iii) is satisfied since ∅ /∈ CE(∅). Hence, (a, b) is rationalizable and (E3)

implies that (a, b) ∈ CE(∅) which is a contradiction. If CE(∅) = {(a, c)}, then
(a, b) satisfies condition (i) in Definition 2 since there exists no continuation in

CE(∅) that is initiated by player 2. Moreover, (ii) is satisfied since a is the only

available action for player 1 at state ∅, and (iii) is satisfied since ∅ /∈ CE(∅).

Hence, also in this case (a, b) is rationalizable and and (E3) implies that (a, b) ∈
CE(∅) which is a contradiction.

We therefore conclude that (a, b) ∈ CE(∅). In that case (o) is rationalizable:

To see this note that (o) satisfies condition (i) in Definition 2 since (o) ≻2 (a, b).

Moreover, (ii) is satisfied since o is the only available action for player 2 at state

∅, and (iii) is satisfied since ∅ /∈ CE(∅). Hence, (o) is rationalizable and and
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(E3) implies that (o) ∈ CE(∅). Suppose by way of contradiction that also

(a, c) ∈ CE(∅). Then (E3) implies that (a, c) is rationalizable which is not

true: To see this not that (o) ∈ CE(∅) and (o) is the unique continuation in

CE(∅) initiated by player 2. Therefore, condition (i) in Definition 2 requires

that (a, c) ≿1 (o) which is not true.

We conclude that CE(∅) = {(o), (a, b)} which satisfies (E1)-(E3).

Example 3.3

∅

(a) (b)

(a,b) (b,a)

CE(a) = {(a)} CE(b) = {(b)}

CE(∅) = {(a)} or CE(∅) = {(b)}

Example 4.1

∅(o)

(a)

(a,b) (a,c)

CE(a) = {(a, b), (a, c)}

CE(∅) = {(o), (a, b)}

2

Figure 4: Equilibrium collection for the game in Example 4.1. Player 1 moves

along the dotted lines and player 2 moves along the solid lines. Arrows denote

the equilibrium path. The bordered nodes correspond to the equilibrium contin-

uations at ∅.

Consider now all possible extensive form games with an option to pass asso-

ciated to the given game of addition. If players take turns, then independent of

the identity of the first mover this extensive form game has a unique subgame

perfect Nash equilibrium with outcome ∅, i.e. in equilibrium no player takes an

action. Figure 5 illustrates the subgame perfect Nash equilibrium for the case

where player 1 is the first mover and players take turns. If instead the extensive

form game is such that player 1 moves again after taking action a, then there is

a unique subgame perfect Nash equilibrium with outcome (a, b) if player 1 is the

first mover, and outcome (o) if player 2 is the first mover. Figure 6 illustrates the

subgame perfect Nash equilibrium for the case where player 1 is the first mover

and player 1 moves again after taking action a.
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1

2 2

∅(a,c)

(a,b) (a)

(o)1

a pass

c pass o pass

b pass

1

1 2

∅(a,b)

(a,c) (a)

(o)2

a pass

b pass o pass

c pass

3

Figure 5: The game tree shows the subgame perfect Nash equilibrium for the

extensive form games with an option to pass associated to the game in Example

4.1 if player 1 is the first mover and players take turns. Player 1 moves along

the dotted lines and player 2 moves along the solid lines. Arrows denote the

equilibrium path.

The example demonstrates that depending on the specification of the order

of moves, the equilibrium predictions for extensive form games and games of

addition can be very different. Moreover, the apparently natural order of moves

where players take turns can produce equilibrium outcomes that never obtain in

the underlying game of addition. ⋄

4.2 Equivalence for a special case

In this section we identify a specific and narrow subclass of games of addition

for which the associated extensive form game and the then unique associated

extensive game with a passing option become equivalent formalizations and share

the same equilibrium outcomes. This result and another equivalence result for

two-player zero-sum games that we will present in section 5 indicate that only in

extremely rare cases can we expect to identify a priori an extensive form game

that will faithfully represent the strategic possibilities of players when the order

of play in not directly constrained by additional information about the situations
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1

2 2

∅(a,c)

(a,b) (a)

(o)1

a pass

c pass o pass

b pass

1

1 2

∅(a,b)

(a,c) (a)

(o)2

a pass

b pass o pass

c pass

3

Figure 6: The game tree shows the subgame perfect Nash equilibrium for the

extensive form games with an option to pass associated to the game in Example

4.1 if player 1 is the first mover and player 1 moves again after taking action a.

Player 1 moves along the dotted lines and player 2 moves along the solid lines.

Arrows denote the equilibrium path.

we want to model.

The subclass of games of addition has the property that all players have strict

preferences on the set of states and for each state there is at most one player

with a nonempty set of feasible actions. Formally, let GU be the set of games of

addition G = (N,A,Σ, (≿i)i∈N) such that the following conditions are satisfied:

(i) For all σ ∈ Σ, either there exists a unique i ∈ N with Ai(σ) ̸= ∅ or

Aj(σ) = ∅ for all j ∈ N .

(ii) Players’ preferences on Σ are strict, i.e. for all i, and for all σ, σ′ ∈ Σ with

σ ̸= σ′, it is true that σ ≻i σ
′ or σ′ ≻i σ.

It is then straightforward to show that for allG ∈ GU there exists a unique equilib-

rium collection of sets of continuation states (CE(σ))σ∈Σ. Moreover, (CE(σ))σ∈Σ

has the property that for all σ ∈ Σ, there is a unique equilibrium continuation

at σ, i.e. CE(σ) = {σ′} for some σ′ ∈ Σ. To see this first note that equilibrium
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conditions (E2) and (E3) imply that for all σ ∈ Σ,

CE(σ) = {σ} ⇐⇒ Aj(σ) = ∅ for all j ∈ N, or ∃ i ∈ N with Ai(σ) ̸= ∅
and σ ≻i σ

′ for all σ′ ∈
⋃

a∈Ai(σ)

CE(σ, (i, a)).

Hence, in equilibrium the player i whose set of feasible actions is nonempty uni-

laterally ends the game if and only if any further action by i would yield a state

that is worse for i than stopping at σ.

Suppose now that there exists some i ∈ N , some a ∈ Ai(σ) and some σ′ ∈
CE(σ, (i, a)) such that σ′ ≻i σ. Then equilibrium condition (E1) implies that

CE(σ) ⊆
⋃

a∈Ai(σ)

CE(σ, (i, a)).

Moreover, (E3) implies that CE(σ) = {σ′}, where σ′ ∈ ⋃
a∈Ai(σ) CE(σ, (i, a)) is

such that

σ′ ≻i σ
′′ for all σ′′ ∈

⋃
a∈Ai(σ)

CE(σ, (i, a)).

We conclude that for all σ ∈ Σ, the equilibrium continuation at σ is unique. If σ

is a nonterminal state, i.e. Ai(σ) ̸= ∅ for some i, then CE(σ) = {σ′}, where

σ′ ≻i σ
′′ for all σ′′ ∈

⋃
a∈Ai(σ)

CE(σ, (i, a)) ∪ {σ} with σ′′ ̸= σ′.

Let G = (N,A,Σ, (≿i)i∈N) ∈ GU and let Γ = (N,A′, H ′, P ′, (≿′
i)i∈N) be the

associated extensive form game with an option to pass defined in Section 4.1.

Note that the player function P ′ in this case is uniquely determined since at each

state there is at most one player with a nonempty feasible set of actions. Hence,

for all G ∈ GU there exists a unique extensive form game with an option to pass.

For any G ∈ GU there exists a one-to-one correspondence between the set of

states Σ in G and the set of histories H ′ in the associated extensive form game

with an option to pass Γ. To see this, let h = (a1, . . . , am) ∈ H ′ with ak ∈ A for

k = 1, . . . ,m− 1, and am ∈ A′ = A ∪ {pass}.6 Then

6Note that in Γ there is no history h = (a1, . . . , am) with ak = pass for some k < m since a

pass by some player immediately terminates the game.
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σ(h) =

{
((i1, a1), . . . , (im−1, am−1)), if am = pass

((i1, a1), . . . , (im, am)) , if am ̸= pass

is the corresponding state in G, where i1 = P ′(∅) and ik = P ′(a1, . . . , ak−1) for

k = 2, . . . ,m,.

The next theorem shows that for anyG ∈ GU the unique equilibrium collection

of sets of continuation states is outcome equivalent to the unique subgame perfect

Nash of the associated extensive form game Γ, i.e. both equilibrium concepts

predict the same sequence of actions.

Theorem 4.1 Let G = (N,A,Σ, (≿i)i∈N) ∈ GU and let Γ = (N,A′, H ′, P ′, (≿′
i)i∈N)

be the associated unique extensive form game with an option to pass. Then Γ has

a unique subgame perfect Nash equilibrium α∗ that is outcome equivalent to the

unique equilibrium collection of sets of continuation states (CE(σ))σ∈Σ of G.

That is, for all nonterminal histories h ∈ H ′, if Oh ∈ H ′ is the outcome of α∗ in

the subgame that follows h, then CE(σ(h)) = {σ(Oh)}.

5 Two-Player Zero-Sum Games

In this section we study the special case of two-player zero-sum games of addition.

That is, we consider the case where n = 2 and players’ preferences satisfy the

zero-sum condition that,

for all σ, σ′ ∈ Σ, σ ≿1 σ
′ ⇐⇒ σ′ ≿2 σ. (3)

We first provide a general existence result for games of addition that have this

form.7

Theorem 5.1 Let n = 2 and let players’ preferences be zero-sum. Then there

exists an equilibrium collection of sets of continuation states (CE(σ))σ∈Σ.

In the rest of the section we will finesse the analysis by characterizing the

equilibria when the zero-sum games of addition satisfy additional hypotheses. In

7Notice that the game in Example 3.1 is a zero-sum game while the games in Examples

3.2-3.4 are not. For the games in Examples 3.2 and 3.3 equilibria still exist, but not for the

game in Example 3.4.
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subsection 5.1 we study the case where players’ preferences are order-independent

and strict. There we first provide a characterization of the equilibrium collections

of continuation states and prove that all of them share the same equilibrium

outcomes. Then, we show that, unlike in the general case, in this particular one

there exists an associated extensive form game whose subgame perfect equilibria

are outcome equivalent to the equilibria of the game of addition. In subsection

5.2 we will consider the case where preferences over states also depend on the

order in which actions have been taken.

5.1 Order independent preferences

Let n = 2 and let the sets of actions satisfy (2) with

Ai = {ai1, . . . , aiKi} for i = 1, 2,

where Ki ≥ 1 is the number of actions for player i ∈ {1, 2}. For each σ ∈ Σ and

i = 1, 2, let zi(σ) ∈ {0, 1}Ki
be given by

zik(σ) =

{
1, if (i, aik) ∈ σ

0, if (i, aik) /∈ σ

for k = 1, . . . , Ki. Players’ preferences are zero-sum and order independent if

there exists some p : {0, 1}K1 × {0, 1}K2 → R such that for all σ, σ′ ∈ Σ,

σ ≿1 σ
′ ⇐⇒ p(z1(σ), z2(σ)) ≥ p(z1(σ′), z2(σ′)) (4)

and

σ ≿2 σ
′ ⇐⇒ p(z1(σ), z2(σ)) ≤ p(z1(σ′), z2(σ′)). (5)

For the remainder of this subsection we will assume that players have order

independent strict preferences, i.e. p(z1, z2) ̸= p(ẑ1, ẑ2) for all (z1, z2), (ẑ1, ẑ2) ∈
{0, 1}K1 × {0, 1}K2

with (z1, z2) ̸= (ẑ1, ẑ2). This is the generic case and it avoids

dealing with multiple outcomes that are payoff equivalent.

The following theorem shows that all continuation equilibria at all states are

outcome equivalent if preferences are zero-sum and order independent. Moreover,

the theorem provides a characterization of the players’ payoffs at the continuation

equilibria at each state.
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Theorem 5.2 Let n = 2 and let players’ preferences be zero-sum, order inde-

pendent and strict.

(i) All equilibrium collections of sets of continuation states are outcome equiva-

lent, i.e. if (CE(σ))σ∈Σ and
(
ĈE(σ)

)
σ∈Σ

are two equilibrium collections of

sets of continuation states, then for all σ ∈ Σ, σ′ ∈ CE(σ) and σ′′ ∈ ĈE(σ)

implies that (z1(σ′), z2(σ′)) = (z1(σ′′), z2(σ′′)).

(ii) For i = 1, 2, let ei,k ∈ {0, 1}Ki
be such that ei,kk = 1 and ei,kl = 0 for all

l ̸= k. For all (z1, z2) ∈ {0, 1}K1×{0, 1}K2
let p∗(z1, z2) be the unique payoff

of player 1 in all continuation equilibria at σ ∈ Σ where z(σ) = (z1, z2).

Then

p∗(z1, z2) =



min
k:z2k=0

p∗(z1, z2 + e2,k), if p(z1, z2) > min
k:z2k=0

p∗(z1, z2 + e2,k)

p(z1, z2), if min
k:z2k=0

p∗(z1, z2 + e2,k) > p(z1, z2) > max
k:z1k=0

p∗(z1 + e1,k, z2)

max
k:z1k=0

p∗(z1 + e1,k, z2), if max
k:z1k=0

p∗(z1 + e1,k, z2) > p(z1, z2)

where the minimum (maximum) over the empty set is defined to be ∞
(−∞). In particular, it is true that

min
k:z2k=0

p∗(z1, z2 + e2,k) ≥ p∗(z1, z2) ≥ max
k:z1k=0

p∗(z1 + e1,k, z2).

In Section 4 we have seen that equilibrium outcomes for games of addition and

for their associated extensive form games with an option to pass can be different,

and that one cannot identify a priori an order of play for the extensive form that

might eventually lead to their equality. Yet, for the class of two-player zero-

sum games of addition considered in Theorem 5.2 equilibrium states are in fact

outcome-equivalent to the subgame perfect Nash equilibria of a specific associated

“move-or-pass” extensive form game, in which players take turns. Hence, in that

particular case, imposing a priori this order of play would guarantee outcome

equivalence, and both types of analysis would lead to identical predictions.
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Move-or-pass extensive form game

Either player 1 or player 2 is the first mover and then players take turns. If it is

player i’s turn, i can either take an action from her set of actions Ai that i has

not taken before or pass. In both cases the next move is by player j ̸= i. The

game ends if both players have taken all actions in their sets of actions, or if one

player i has taken all actions in Ai and j ̸= i has passed in the last move, or if

there are two passes in a row. Note that this move-or-pass game is an extensive

form game associated to the above two-player game of addition as it was defined

in section 4.1.

We then have the following equivalence between equilibrium states and sub-

game perfect Nash equilibria.

Theorem 5.3 Let n = 2 and let players’ preferences be zero-sum, order inde-

pendent and strict. Then all subgame perfect Nash equilibria of the move-or-pass

extensive form game are payoff equivalent. Moreover, the players’ payoffs in a

subgame perfect Nash equilibrium are independent of whether player 1 or player 2

is the first mover and if π∗ is the unique payoff of player 1 in all subgame perfect

Nash equilibria, then

π∗ = p∗(0 . . . 0, 0 . . . 0),

where p∗(0 . . . 0, 0 . . . 0) is the unique payoff of player 1 in all equilibrium states.

The previous results on two-player zero-sum games with order independent

preferences do not generalize to the case with more than two players. In par-

ticular, for more than two players equilibrium collections may not be outcome

equivalent anymore as we show by the following example.

Example 5.1 Let there be three players and let the sets of actions satisfy (2)

with Ai = {a} for i = 1, 2, 3. For each σ ∈ Σ, and i = 1, 2, 3, let zi(σ) ∈ {0, 1}
be given by

zi(σ) =

{
1, if (i, a) ∈ σ

0, if (i, a) /∈ σ
.

Let p(z) = (p1(z), p2(z), p3(z)) be the players’ payoff at z = (z1, z2, z3) ∈
{0, 1}3 and let
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p(0, 0, 0) = (0.30, 0.30, 0.40), p(1, 0, 0) = (0.60, 0.20, 0.20),

p(0, 1, 0) = (0.19, 0.62, 0.19), p(0, 0, 1) = (0.50, 0.25, 0.25),

p(1, 1, 0) = (0.18, 0.19, 0.63), p(1, 0, 1) = (0.64, 0.18, 0.18),

p(0, 1, 1) = (0.66, 0.17, 0.17), p(1, 1, 1) = (0.42, 0.16, 0.42).

Moreover, assume that for all σ, σ′ ∈ Σ,

σ ≿1 σ
′ ⇐⇒ pi(z1(σ), z2(σ), z3(σ)) ≥ pi(z1(σ′), z2(σ′), z3(σ′)).

Note that the sum of the payoffs of the players is 1 at all states, i.e. this is a

zero-sum game.

Figure 7 illustrates the equilibrium continuations. As we see there are two

equilibrium states, where either only player 1 or only player 2 takes an action:

CE(∅) = {(1, a), (2, a)}.

⋄

5.2 Order dependent preferences

We now consider the case of order dependent preferences, where the players’

preferences over states depend on the full sequence of actions taken by the players,

not only on the set of actions taken by each player. We will show that in general

with order dependent preferences equilibrium states are not unique even if there

are only two players with zero-sum preferences. We also provide conditions on

the players’ preferences that guarantee uniqueness.

We again focus on the case where there are only two players, i.e. n = 2, and

we assume that the sets of actions satisfy (2) with

Ai = {a1, . . . , aK} for i = 1, 2,

where K ≥ 1 is the number of actions available for each player. We still assume

that players’ preferences are zero-sum, i.e. for all σ, σ′ ∈ Σ,

σ ≿1 σ
′ ⇐⇒ σ′ ≿2 σ.
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Example 5.1

(0,0,0)
(0.30,0.30,0.40)

(0,1,0)
(0.19,0.62,0.19)

(1,0,0)
(0.60,0.20,0.20)

(1,1,0)
(0,18,0.19,0.63)

(0,0,1)
(0.50,0.25,0.25)

(0,1,1)
(0.66,0.17,0.17)

(1,0,1)
(0.64,0.18,0.18)

(1,1,1)
(0.42,0.16,0.42)

4

Figure 7: Equilibrium continuations in Example 5.1. At the top in each node

is the vector z recording which players have taken an action at the given state

and at the bottom are the corresponding payoffs of the players. Arrows denote

the equilibrium path. If there is no outbound arrow at a node stopping at the

corresponding state is the unique equilibrium continuation. The bordered nodes

correspond to the equilibrium states at ∅.

Let p(σ) for all σ ∈ Σ be a utility function representing player 1’s preferences

≿1.
8 This implies that player 2’s preferences over Σ are represented by 1− p(·).

The following example demonstrates that with order dependent preferences

there may be multiple equilibrium states which are not outcome equivalent even

if the game is zero-sum.

8Since Σ is finite, there always exists a utility function representing ≿1.
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Example 5.2 Let players’ preferences over states be given by

∅ ≻1 (a, b) ≻1 (a) ≻1 (b, a) ≻1 (b),

(b) ≻2 (b, a) ≻2 (a) ≻2 (a, b) ≻2 ∅.

Then (E2) and (E3) imply that CE(a) = {(a)} and CE(b) = {(b, a)}. More-

over, (E2) implies that ∅ /∈ CE(∅). Hence, CE(∅) ⊆ {(a), (b, a)}.
CE(∅) = {(a)} is ruled out by (E3) because ∅ ≻1 (a). CE(∅) = {(b, a)}

is ruled out by (E3) because (a) is rationalizable if (b, a) ∈ CE(∅) since (a) ≻1

(b, a). Hence, CE(∅) = {(a), (b, a)} which satisfies (E3). Hence, there exist two

equilibrium states which are not outcome equivalent. ⋄

The following theorem shows that under a specific assumption on the players’

preferences there exists a unique continuation equilibrium at each state. The

assumption is that for any two states which only differ with respect to the order

in which the players sequentially take one action each, a player prefers the state

where she is the last to take her action. This depicts situations where there is a

second mover advantage, e.g. due to learning from the actions of others.

Theorem 5.4 Let n = 2 and let players’ preferences be zero-sum and strict,

i.e. p(σ) ̸= p(σ′) for all σ ̸= σ′. Assume that

p (σ, (2, al), (1, ak), s1, . . . , sm) > p (σ, (1, ak), (2, al), s1, . . . , sm)

for all (σ, (2, al), (1, ak), s1, . . . , sm) , (σ, (1, ak), (2, al), s1, . . . , sm) ∈ Σ.

(i) There exists a unique equilibrium collection of sets of continuation states

(CE(σ))σ∈Σ and for all σ ∈ Σ, there is a unique continuation equilibrium

in CE(σ).

(ii) For all σ let p∗(σ) be the utility of player 1 in the unique continuation

equilibrium at σ. Then
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p∗(σ) =



min
k:(2,ak)/∈σ

p∗(σ, (2, ak)), if p(σ) > min
k:(2,ak)/∈σ

p∗(σ, (2, ak))

p(σ), if min
k:(2,ak)/∈σ

p∗(σ, (2, ak)) > p(σ) > max
k:(1,ak)/∈σ

p∗(σ, (1, ak))

max
k:(1,ak)/∈σ

p∗(σ, (1, ak)), if max
k:(1,ak)/∈σ

p∗(σ, (1, ak)) > p(σ)

where the minimum (maximum) over the empty set is defined to be ∞
(−∞). In particular, it is true that

min
k:(2,ak)/∈σ

p∗(σ, (2, ak)) ≥ p∗(σ) ≥ max
k:(1,ak)/∈σ

p∗(σ, (1, ak)).

(iii) For all (σ, (2, al), (1, ak), s1, . . . , sm) , (σ, (1, ak), (2, al), s1, . . . , sm) ∈ Σ,

p∗ (σ, (2, al), (1, ak), s1, . . . , sm) ≥ p∗ (σ, (1, ak), (2, al), s1, . . . , sm) .

6 Conclusion

Although there are circumstances in which the order of play is either naturally

predetermined or simply irrelevant, there are others in which order matters.

Moreover, there are cases where players may decide whether to continue their

interactions or just unanimously bring them to an end. We have offered a model

of agents’ interactions and a solution concept allowing for the order of play and

the decisions to stop playing to be endogenized as part of the equilibrium, and

we have proposed a number of existence and characterization results that clear

the way to further work.

We claim that the analysis of strategic situations when the order of play does

matter is often likely to be better served by using games of addition, rather

than by the study of games in extensive form. To make this point as clearly as

possible, we have studied a natural procedure to associate a family of extensive

form games that differ in the order of play for each given game of addition. We

have observed that, in general, each game of addition with well-defined equilib-

rium outcomes and order of plays is associated with extensive form ones whose
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equilibrium outcomes may widely differ. This casts doubts about the wisdom of

selecting an a priori order of play when it is possible to determine it endogenously

through an alternative approach. In all fairness, we have identified two special

cases, and there may be others, where the equilibrium outcomes are guaranteed

to be the same whether we start from a game of addition or from an extensive

form game associated to it, but both correspond to very restrictive situations.

Otherwise, the possibility of a mistaken identification of the appropriate order

and its resulting equilibrium is wide open.

Our conclusion is that it may be fruitful to adopt the format of games of

addition and its continuation equilibria to get conclusions that may differ from

those that one reaches by imposing a specific order of moves. This can distort the

understanding of the actual workings of processes of competition and negotiation.

We hope that this first set of results may prompt further work in that direction.
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Appendix

Proof of Theorem 3.1: Let (N,A,Σ, (≿i)i∈N) be a game of addition such

that that (C1) and (C2) are satisfied. For S ⊂ Σ let S|A =
{
σ|A

∣∣∣∣σ ∈ S
}
.

We will show that there exists an equilibrium collection of sets of continuation

states (CE(σ))σ∈Σ such that for all σ, σ̂ ∈ Σ with σ|A = σ̂|A it is true that

CE(σ)|A = CE(σ̂)|A.
Let K = #A and let σ = (s1, . . . , sm) ∈ Σ and let σ̂ ∈ Σ be such that

σ|A = σ̂|A. If m = 0, then σ = ∅. The proof is by induction over K −m.

If K −m = 0, then A(σ) = A(σ̂) = ∅ and hence CE(σ) = {σ} and CE(σ̂) =

{σ̂} fulfills (E1)-(E3) and satisfies CE(σ)|A = CE(σ̂)|A.
Assume that the claim has been proved for all m with 0 ≤ K −m ≤ L − 1,

where 1 ≤ L ≤ K. Let K−m = L. Then by the induction hypothesis for all i, j,

and for all a ∈ A(σ), CE(σ, (i, a)) ̸= ∅, CE(σ̂, (j, a)) ̸= ∅, and CE(σ, (i, a))|A =

CE(σ̂, (j, a))|A. Then there are two cases.

Case 1: For all i, σ ≿i σ
′ for all σ′ ∈ ⋃

a∈A(σ) CE(σ, (i, a)).

In this case

CE(σ) = {σ} ∪
{
σ′
∣∣∣ ∃ i such that σ′ ∈

⋃
a∈A(σ)

CE(σ, (i, a)) and σ′ ∼i σ
}

fulfills (E1)-(E3). Since σ|A = σ̂|A and CE(σ, (i, a))|A = CE(σ̂, (i, a))|A for all i

and for all a ∈ A(σ) (C2) implies that

σ̂ ≿i σ̂
′ for all i and for all σ̂′ ∈

⋃
a∈A(σ̂)

CE(σ̂, (i, a)).9

This implies

CE(σ̂) = {σ̂} ∪
{
σ̂′
∣∣∣ ∃ i such that σ̂′ ∈

⋃
a∈A(σ̂)

CE(σ̂, (i, a)) and σ̂′ ∼i σ̂
}

which in turn implies CE(σ)|A = CE(σ̂)|A.

Case 2: ∃i, a ∈ A(σ) and σ′ ∈ CE(σ, (i, a)) such that σ′ ≻i σ. (C2) then implies

that ∃ σ̂′ ∈ CE(σ̂, (i, a)) such that σ̂′ ≻i σ̂. Hence, σ /∈ CE(σ) and σ̂ /∈ CE(σ̂)

by (E2).

For all j let Zj(σ) be the set of all σ′ that satisfy the following conditions:

9Note that A(σ) = A(σ̂) since σ|A = σ̂|A.
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(1) σ′ ∈ CE(σ, (j, a)) for some a ∈ A(σ).

(2) For all a′ ̸= a with (σ, (j, a′)) ∈ Σ, ∃ σ′′ ∈ CE(σ, (j, a′)) such that σ′ ≿j σ
′′.

Then CE(σ) =
⋃n

j=1 Z
j(σ) satisfies (E1)-(E3). Similarly, for all j define Zj(σ̂)

and CE(σ̂) =
⋃n

j=1 Z
j(σ̂). Using (C2) and the induction hypothesis we conclude

that σ′ = (σ, (j, a)) ∈ CE(σ) if and only if σ̂′ = (σ̂, (j, a)) ∈ CE(σ̂). Hence,

CE(σ)|A = CE(σ̂)|A.
This proves the theorem. □

Proof of Theorem 4.1: Let G = (N,A,Σ, (≿i)i∈N) ∈ GU and let Γ =

(N,A′, H ′, P ′, (≿′
i)i∈N) be the associated unique extensive form game with an

option to pass. We have already shown that there exists a unique equilibrium

collection of sets of continuation states (CE(σ))σ∈Σ for G and for all σ ∈ Σ,

CE(σ) contains a unique equilibrium continuation. Moreover, for all nonter-

minal states σ ∈ Σ the unique continuation equilibrium σ′ ∈ CE(σ) has the

property that

σ′ ≻i σ
′′ for all σ′′ ∈

⋃
a∈Ai(σ)

CE(σ, (i, a)) ∪ {σ} with σ′′ ̸= σ′,

where i ∈ N is the unique player with Ai(σ) ̸= ∅. Since Γ is finite and players’

preferences are strict, Γ has a unique subgame perfect Nash equilibrium α∗. It

remains to prove that for all nonterminal histories h ∈ H ′, if Oh ∈ H ′ is the

outcome of α∗ in the subgame that follows h, then CE(σ(h)) = {σ(Oh)}.
The proof is by backwards induction. For each nonterminal history h ∈ H ′

let L(h) be the length of the longest history in the subgame that follows h. If

L(h) = 1, then (h, a) is a terminal history for all feasible actions a ∈ A(h) which

implies that CE(σ(h, a)) = {σ(h, a)} if a ̸= pass.

Let P ′(h) = i. Then the outcome of α∗ in the subgame that follows h is

Oh = (h, α∗
i (h)). We have

α∗
i (h) = pass ⇐⇒ (h, pass) ≻′

i (h, a) for all a ∈ A′(h), a ̸= pass

⇐⇒ σ(h) ≻i σ(h, a) for all a ∈ A′(h), a ̸= pass

⇐⇒ σ(h) ≻i σ
′ for all σ′ ∈

⋃
a∈Ai(σ(h))

CE(σ(h, a))

⇐⇒ CE(σ(h)) = {σ(h)} = {σ(h, pass))} = {σ(Oh)}.
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Moreover,

α∗
i (h) = a∗ ̸= pass ⇐⇒ (h, a∗) ≻′

i (h, a) for all a ∈ A′(h), a ̸= a∗

⇐⇒ σ(h, a∗) ≻i σ(h, a) for all a ∈ A′(h), a ̸= a∗

⇐⇒ σ(h, a∗) ≻i σ
′ for all

σ′ ∈
⋃

a∈Ai(σ(h))\{a∗}

CE(σ(h, a)) ∪ {σ(h)}

⇐⇒ CE(σ(h)) = {σ(h, a∗)} = {σ(Oh)}.

This proves the claim for L(h) = 1. Assume now the claim has been proved

for all histories h ∈ H ′ with L(h) ≤ m, where m ≥ 1. Let h ∈ H ′ be such that

L(h) = m + 1. Let a ∈ A(h) with a ̸= pass. Then by the induction hypothesis

CE(σ(h, a)) = {σ(O(h,a))}. Let P ′(h) = i. Then the outcome of α∗ in the

subgame that follows h is O(h,α∗
i (h))

. We have

α∗
i (h) = pass ⇐⇒ O(h,pass) ≻′

i O(h,a) for all a ∈ A′(h), a ̸= pass

⇐⇒ σ(h) ≻i σ(O(h,a)) for all a ∈ A′(h), a ̸= pass

⇐⇒ σ(h) ≻i σ
′ for all σ′ ∈

⋃
a∈Ai(σ(h))

CE(σ(h, a))

⇐⇒ CE(σ(h)) = {σ(h)} = {σ(O(h,pass))} = {σ(Oh)}.

Moreover,

α∗
i (h) = a∗ ̸= pass ⇐⇒ O(h,a∗) ≻′

i O(h,a) for all a ∈ A′(h), a ̸= a∗

⇐⇒ σ(O(h,a∗)) ≻i σ(O(h,a)) for all a ∈ A′(h), a ̸= a∗

⇐⇒ σ(O(h,a∗)) ≻i σ
′ for all

σ′ ∈
⋃

a∈Ai(σ(h))\{a∗}

CE(σ(h, a)) ∪ {σ(h)}

⇐⇒ CE(σ(h)) = {σ(O(h,a∗))} = {σ(Oh)}.

This proves the theorem. □

Proof of Theorem 5.1: Let n = 2 and let preferences satisfy σ ≿1 σ′ ⇐⇒
σ′ ≿2 σ for all σ, σ′ ∈ Σ. For all σ ∈ Σ let m(σ) be the length of σ and let M(σ)
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be the maximum length of a continuation state at σ. We will prove by induction

over D(σ) = M(σ) − m(σ) that for all σ ∈ Σ there exists CE(σ) that satisfies

(E1)-(E3).

If σ ∈ Σ is such that D(σ) = 0, then Ai(σ) = ∅ for i = 1, 2, and CE(σ) = {σ}
satisfies (E1)-(E3).

Let D̄ ≥ 0 and assume the claim has been proved for all σ ∈ Σ withD(σ) ≤ D̄.

Let σ ∈ Σ be such that D(σ) = D̄ + 1. Then by the induction hypothesis for all

i = 1, 2, and for all a ∈ Ai(σ) there exists CE(σ, (i, a)) that satisfies (E1)-(E3).

For i = 1, 2, let Zi(σ) be the set of all σ̂ that satisfy the following conditions:

(1) σ̂ ∈ CE(σ, (i, a)) for some a ∈ Ai(σ).

(2) For all a′ ̸= a with (σ, (i, a′)) ∈ Σ, ∃ σ′ ∈ CE(σ, (i, a′)) such that σ̂ ≿i σ
′.

(3) If for j = 1, 2, σ ≿j σ
′ for all σ′ ∈

⋃
a′′∈Aj(σ)

CE(σ, (j, a′′)), then σ̂ ≿i σ.

Note that Zi(σ) = ∅ implies that either Ai(σ) = ∅ or Ai(σ) ̸= ∅ and

σ ≿j σ
′ for all σ′ ∈

⋃
a′′∈Aj(σ)

CE(σ, (j, a′′)) for j = 1, 2. (6)

Moreover, note that Ai(σ) ̸= ∅ for at least one i ∈ {1, 2} since D(σ) ≥ 1.

Hence, if Zi(σ) = ∅ for i = 1, 2, then (6) holds and CE(σ) = {σ} satisfies

(E1)-(E3).

If Zi(σ) ̸= ∅ for some i ∈ {1, 2} and Zj(σ) = ∅ for j ̸= i, then there are two

cases: If (6) is satisfied, then CE(σ) = Zi(σ) ∪ {σ} satisfies (E1)-(E3). If (6) is

violated, then CE(σ) = Zi(σ) satisfies (E1)-(E3).

Finally, consider the case Zi(σ) ̸= ∅ for i = 1, 2. For i = 1, 2, let

Z̄i(σ) = {σ̂ ∈ Zi(σ)| ∃σ̃ ∈ Zj(σ) for j ̸= i with σ̂ ≿i σ̃}.

Note that for i = 1, 2, and j ̸= i,

σ̂ ∈ Z̄i(σ) ⇒ ∃ σ̃ ∈ Zj(σ) s.t. σ̂ ≿i σ̃

⇒ ∃ σ̃ ∈ Zj(σ) s.t. σ̃ ≿j σ̂

⇒ ∃ σ̃ ∈ Z̄j(σ).
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This implies that Z̄1(σ) ̸= ∅ ⇐⇒ Z̄2(σ) ̸= ∅ and that for all i = 1, 2, and

j ̸= i, and for all σ̂ ∈ Z̄i(σ) there exists some σ̃ ∈ Z̄j(σ) with σ̂ ≿i σ̃.

If Z̄i(σ) = ∅ for i = 1, 2, and (6) holds, then for any i ∈ {1, 2}, CE(σ) =

Zi(σ)∪{σ} satisfies (E1)-(E3). If Z̄i(σ) = ∅ for i = 1, 2, and (6) is violated, then

for any i ∈ {1, 2}, CE(σ) = Zi(σ) satisfies (E1)-(E3).

If Z̄i(σ) ̸= ∅ for i = 1, 2, and (6) holds, then CE(σ) = Z̄1(σ) ∪ Z̄2(σ) ∪ {σ}
satisfies (E1)-(E3). If Z̄i(σ) ̸= ∅ for i = 1, 2, and (6) is violated, then CE(σ) =

Z̄1(σ) ∪ Z̄2(σ) satisfies (E1)-(E3).

This proves the claim for σ ∈ Σ with D(σ) = D̄ + 1 and concludes the proof

of the theorem. □

Proof of Theorem 5.2: Let (CE(σ))σ∈Σ be an equilibrium collection of sets of

continuation states and let σ be a state with (z1(σ), z2(σ)) = (z1, z2). The proof

is by induction over the sum of the actions that have not been taken by the players

which we denote by L, i.e. L = #{(i, k)| zik = 0}. Note that 0 ≤ L ≤ K1 +K2.

If σ is such that L = 0, then (z1, z2) = (1 . . . 1, 1 . . . 1) and by (E1) CE(σ) =

{σ} which implies p∗(1 . . . 1, 1 . . . 1) = p(1 . . . 1, 1 . . . 1). This proves the claim for

L = 0.

Let 1 ≤ N ≤ K1 + K2 and assume that the claim has been proved for all

L with 0 ≤ L ≤ N − 1. Let σ be such that L = N . From the induction

hypothesis we then know that for all k with zik = 0 all continuation equilibria in

CE(σ, (i, aik)) are outcome equivalent. Moreover, if l is such that z1l = 0, then by

the induction hypothesis

min
l′:z2

l′=0
p∗(z1+e1,l, z2+e2,l

′
) ≥ p∗(z1+e1,l, z2) ≥ max

l′ ̸=l:z1
l′=0

p∗(z1+e1,l+e1,l
′
, z2), (7)

and if k is such that z2k = 0, then

min
k′ ̸=k:z2

k′=0
p∗(z1, z2 + e2,k + e2,k

′
) ≥ p∗(z1, z2 + e2,k) ≥ max

k′:z1
k′=0

p∗(z1 + e1,k
′
, z2 + e2,k),

(8)

where the minimum (maximum) over the empty set is defined to be ∞ (−∞).

(7) and (8) imply that for all k and l such that z1l = 0 and z2k = 0,

p∗(z1, z2 + e2,k) ≥ p∗(z1 + e1,l, z2 + e2,k) ≥ p∗(z1 + e1,l, z2). (9)
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(9) implies that

min
k:z2k=0

p∗(z1, z2 + e2,k) ≥ max
k:z1k=0

p∗(z1 + e1,k, z2). (10)

From (E1) we know that CE(σ) ⊆
⋃

(i,aik):z
i
k=0

CE(σ, (i, aik)) ∪ {σ}. By (E2) σ ∈

CE(σ) if and only if

min
k:z2k=0

p∗(z1, z2 + e2,k) > p(z1, z2) > max
k:z1k=0

p∗(z1 + e1,k, z2). (11)

Assume that (11) is satisfied which implies σ ∈ CE(σ). Suppose by way of

contradiction that there exist some (i, aik) with zik = 0 such that σ′ ∈ CE(σ) ∩
CE(σ, (i, aik)). Then σ′ is not rationalizable which contradicts (E3). Hence, if

(11) is satisfied, then CE(σ) = {σ} and

p∗(z1, z2) = p(z1, z2).

Assume now that

p(z1, z2) > min
k:z2k=0

p∗(z1, z2 + e2,k) ≥ max
k:z1k=0

p∗(z1 + e1,k, z2).

Then (11) is violated and (E2) implies that σ /∈ CE(σ). Suppose σ′ ∈ CE(σ) ∩
CE(σ, (1, a1k)) for some k with z1k = 0. Then there must exist some l with

z2l = 0 and CE(σ) ∩ CE(σ, (2, a2l )) ̸= ∅ because otherwise (E3) would imply

that p∗(z1 + e1,k, z2) ≥ p(z1, z2) which is not true. (E3) then implies that both

σ′ ∈ CE(σ) ∩ CE(σ, (1, a1k)) and σ′′ ∈ CE(σ) ∩ CE(σ, (2, a2l )) are rationalizable

and hence

p∗(z1+e1,k, z2) ≥ min
h:z2h=0

p∗(z1, z2+e2,h) ≥ max
h:z1h=0

p∗(z1+e1,h, z2) ≥ p∗(z1, z2+e2,l).

This implies that

p∗(z1+ e1,k, z2) = max
h:z1h=0

p∗(z1+ e1,h, z2) = min
h:z2h=0

p∗(z1, z2+ e2,h) = p∗(z1, z2+ e2,l).

Hence, if there exists some k and σ′ ∈ CE(σ) ∩ CE(σ, (1, a1k)), then given our

assumption that p(z1, z2) ̸= p(ẑ1, ẑ2) for all (z1, z2) ̸= (ẑ1, ẑ2), all continuation

equilibria in CE(σ) are outcome equivalent and p∗(z1, z2) = min
l:z2l =0

p∗(z1, z2+ e2,l).
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Suppose now that CE(σ) ∩ CE(σ, (1, a1k)) = ∅ for all k with z1k = 0. (E1)

then implies that

CE(σ) ⊆
⋃

(2,a2l )

CE(σ, (2, a2l )).

Let σ′ ∈ CE(σ) ∩ CE(σ, (2, a2k)) for some k with z2k = 0. Suppose by way of

contradiction that p∗(z1, z2+e2,k) > min
l:z2l =0

p∗(z1, z2+e2,l) and let p∗(z1, z2+e2,h) =

min
l:z2l =0

p∗(z1, z2 + e2,l). Then σ′′ ∈ CE(σ, (2, a2h)) is rationalizable and (E3) implies

that σ′′ ∈ CE(σ). But then σ′ is not rationalizable and (E3) implies that σ′ /∈
CE(σ) which is a contradiction. Hence, for all k with CE(σ)∩CE(σ, (2, a2k)) ̸= ∅
it is true that p∗(z1, z2+e2,k) = min

l:z2l =0
p∗(z1, z2+e2,l). We therefore again conclude

that all continuation equilibria in CE(σ) are outcome equivalent and p∗(z1, z2) =

min
l:z2l =0

p∗(z1, z2 + e2,l).

Finally, assume that

min
k:z2k=0

p∗(z1, z2 + e2,k) ≥ max
k:z1k=0

p∗(z1 + e1,k, z2) > p(z1, z2).

Then analogously to the previous case ones shows that all continuation equilibria

in CE(σ) are outcome equivalent and

p∗(z1, z2) = max
k:z1k=0

p∗(z1 + e1,k, z2).

This proves the claim for L = N and concludes the proof of the theorem. □

Proof of Theorem 5.3: Let H be the set of all feasible histories in the extensive

form game, i.e. the set of all sequences of actions by the players (including pass)

that are feasible in the given extensive form. We shortly write aik ∈ h if player

i has taken action aik in h. For any h ∈ H and i = 1, 2, let Zi(h) ∈ {0, 1}Ki
be

given by

Zi
k(h) =

{
1, if aik ∈ h

0, if aik /∈ h

for k = 1, . . . , Ki. Let Z(h) = (Z1(h), Z2(h)).

Fix a subgame perfect Nash equilibrium of the extensive form game10 and let

π(h) be player 1’s equilibrium payoff in the subgame starting at history h ∈ H

10Existence is guaranteed since the game is finite.

37



if the last element of h is an action of a player or if h is the empty history ∅.

Moreover, for i = 1, 2, let
◦
πi(h) be player 1’s equilibrium payoff in the subgame

starting at h ∈ H if the last element of h is a pass of player j ̸= i. For all

z = (z1, z2) ∈ {0, 1}K1 × {0, 1}K2
let p∗(z) be the unique payoff of player 1 in all

continuation equilibria at any state σ with z(σ) = z (see Theorem 5.2).

Let h ∈ H be a history that is either empty or such that the last element of

h is an action of a player. Let z = Z(h). We will show that

π(h) = p∗(z). (12)

The proof is by induction over the sum of the feasible actions of both players

at h which we denote by L, i.e. L = #{(i, k)|Zi
k(h) = 0}. Note that 0 ≤ L ≤

K1 +K2.

The claim is obviously true for L = 0 and L = 1. Let 2 ≤ M ≤ K1 +K2 and

assume that the claim has been proved for all L with 0 ≤ L ≤ M − 1. Let the

history h be such that L = M and let z = Z(h). Let 0i denote a pass by player

i. From the induction hypothesis we know that for all k with z1k = 0,

π(h, a1k) = p∗(z1 + e1,k, z2),

and for all k with z2k = 0,

π(h, a2k) = p∗(z1, z2 + e2,k).

If player 1 is moving at h, then

π(h) = max

{
◦
π2(h, 0

1), max
k:z1k=0

π(h, a1k)

}
,

where

◦
π2(h, 0

1) =


p(z), if min

k:z2k=0
π(h, 01, a2k) > p(z)

min
k:z2k=0

π(h, 01, a2k), otherwise

=


p(z), if min

k:z2k=0
p∗(z1, z2 + e2,k) > p(z)

min
k:z2k=0

p∗(z1, z2 + e2,k), otherwise
, (13)
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where the last equality follows from the induction hypothesis.

If player 2 is moving at h, then

π(h) = min

{
◦
π1(h, 0

2), min
k:z2k=0

π(h, a2k)

}
,

where

◦
π1(h, 0

2) =


p(z), if p(z) > max

k:z1k=0
π(h, 02, a1k)

max
k:z1k=0

π(h, 02, a1k), otherwise

=


p(z), if p(z) > max

k:z1k=0
p∗(z1 + e1,k, z2)

max
k:z1k=0

p∗(z1 + e1,k, z2), otherwise
, (14)

where again the last equality follows from the induction hypothesis.

There are three cases.

Case 1: p(z) > min
k:z2k=0

p∗(z1, z2 + e2,k)

Then (13) implies that

◦
π2(h, 0

1) = min
k:z2k=0

p∗(z1, z2 + e2,k),

and (14) implies that
◦
π1(h, 0

2) = p(z).

Hence, if player 1 is moving at h, then

π(h) = max

{
min
k:z2k=0

p∗(z1, z2 + e2,k), max
k:z1k=0

p∗(z1 + e1,k, z2)

}
= min

k:z2k=0
p∗(z1, z2+e2,k),

and if player 2 is moving at h, then
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π(h) = min

{
p(z), min

k:z2k=0
p∗(z1, z2 + e2,k)

}
= min

k:z2k=0
p∗(z1, z2 + e2,k).

Hence, independent of whether player 1 or player 2 is moving at h,

π(h) = min
k:z2k=0

p∗(z1, z2 + e2,k) = p∗(z1, z2)

by Theorem 5.2. This proves the claim for this case.

Case 2: min
k:z2k=0

p∗(z1, z2 + e2,k) > p(z) > max
k:z1k=0

p∗(z1 + e1,k, z2)

Then (13) and (14) imply that

◦
π2(h, 0

1) =
◦
π1(h, 0

2) = p(z).

Hence, if player 1 is moving at h, then

π(h) = max

{
p(z), max

k:z1k=0
p∗(z1 + e1,k, z2)

}
= p(z),

and if player 2 is moving at h, then

π(h) = min

{
p(z), min

k:z2k=0
p∗(z1, z2 + e2,k)

}
= p(z).

Hence, independent of whether player 1 or player 2 is moving at h,

π(h) = p(z) = p∗(z1, z2)

by Theorem 5.2. This proves the claim for this case.

Case 3: max
k:z1k=0

p∗(z1 + e1,k, z2) > p(z)

Then (13) implies that
◦
π2(h, 0

1) = p(z),

and (14) implies that

◦
π1(h, 0

2) = max
k:z1k=0

p∗(z1 + e1,k, z2).
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Hence, if player 1 is moving at h, then

π(h) = max

{
p(z), max

k:z1k=0
p∗(z1 + e1,k, z2)

}
= max

k:z1k=0
p∗(z1 + e1,k, z2),

and if player 2 is moving at h, then

π(h) = min

{
max
k:z1k=0

p∗(z1 + e1,k, z2), min
k:z2k=0

p∗(z1, z2 + e2,k)

}
= max

k:z1k=0
p∗(z1+e1,k, z2).

Hence, independent of whether player 1 or player 2 is moving at h,

π(h) = max
k:z1k=0

p∗(z1 + e1,k, z2) = p∗(z1, z2)

by Theorem 5.2. This proves the claim for this case.

This proves (12). We conclude that player 1’s payoff π∗ in a subgame perfect

Nash equilibrium is uniquely determined and satisfies

π∗ = π(∅) = p∗(0 . . . 0, 0 . . . 0),

where ∅ is the empty history with Z(∅) = (0 . . . 0, 0 . . . 0). This proves the

theorem. □

Proof of Theorem 5.4: Define Σ0 = {∅} and for 1 ≤ m ≤ M define Σm =

{σ ∈ Σ|σ = (s1, . . . , sm)}. Let (CE(σ))σ∈Σ be an equilibrium collection of sets of

continuation states and let σ ∈ Σ be an arbitrary state. Then σ ∈ Σm for some

0 ≤ m ≤ 2K. The proof is by induction over L, where L = #{(i, ak)| (i, ak) /∈ σ}.
Note that L = 2K −m if σ ∈ Σm.

If σ is such that L = 0, then Ai(σ) = ∅ for i = 1, 2. (E1) then implies that

CE(σ) = {σ} and p∗(σ) = p(σ). This proves the claim for L = 0.

Let 1 ≤ N ≤ 2K and assume that the claim has been proved for all L with

0 ≤ L ≤ N − 1. Let σ be such that L = N . From the induction hypothesis

we then know that for all (i, ak) with (i, ak) /∈ σ there is a unique continuation

equilibrium in CE(σ, (i, ak)). Moreover, if k is such that (1, ak) /∈ σ, then by the

induction hypothesis

min
l:(2,al)/∈σ

p∗(σ, (1, ak), (2, al)) ≥ p∗(σ, (1, ak)) ≥ max
l:(1,al)/∈σ

p∗(σ, (1, ak), (1, al)), (15)
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and if k is such that (2, ak) /∈ σ, then

min
l:(2,al)/∈σ

p∗(σ, (2, ak), (2, al)) ≥ p∗(σ, (2, ak)) ≥ max
l:(1,al)/∈σ

p∗(σ, (2, ak), (1, al)), (16)

where the minimum (maximum) over the empty set is defined to be ∞ (−∞).

(15) and (16) imply that for all k and l such that (1, ak) /∈ σ and (2, al) /∈ σ,

p∗(σ, (2, al)) ≥ p∗(σ, (2, al), (1, ak)) and p∗(σ, (1, ak), (2, al)) ≥ p∗(σ, (1, ak)).

(17)

From the induction hypothesis it follows that

p∗(σ, (2, al), (1, ak)) ≥ p∗(σ, (1, ak), (2, al)),

which together with (17) implies that

min
k:(2,ak)/∈σ

p∗(σ, (2, ak)) ≥ max
k:(1,ak)/∈σ

p∗(σ, (1, ak)). (18)

From (E1) we know that CE(σ) ⊆
⋃

(i,ak)/∈σ

CE(σ, (i, ak))∪{σ}. By (E2) σ ∈ CE(σ)

if and only if

min
k:(2,ak)/∈σ

p∗(σ, (2, ak)) > p(σ) > max
k:(1,ak)/∈σ

p∗(σ, (1, ak)). (19)

Assume that (19) is satisfied which implies σ ∈ CE(σ). Suppose by way

of contradiction that there exist some (i, ak) /∈ σ such that there exists σ′ ∈
CE(σ) ∩ CE(σ, (i, ak)). Then σ′ is not rationalizable which contradicts (E3).

Hence, if (19) is satisfied, then CE(σ) = {σ} and

p∗(σ) = p(σ).

Assume now that

p(σ) > min
k:(2,ak)/∈σ

p∗(σ, (2, ak)) > max
k:(1,ak)/∈σ

p∗(σ, (1, ak)).

Then (19) is violated and (E2) implies that σ /∈ CE(σ). Suppose by way of

contradiction that ∃ σ′ ∈ CE(σ) ∩ CE(σ, (1, ak)) for some k with (1, ak) /∈ σ.

Then there must exist some l with CE(σ)∩CE(σ, (2, al)) ̸= ∅ because otherwise

(E3) would imply that p∗(σ, (1, ak)) ≥ p(σ) which is not true. (E3) then implies
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that both σ′ ∈ CE(σ) ∩ CE(σ, (1, ak)) and σ′′ ∈ CE(σ) ∩ CE(σ, (2, al)) are

rationalizable and hence

p∗(σ, (1, ak)) ≥ min
h:(2,ah)/∈σ

p∗(σ, (2, ah)) > max
h:(1,ah)/∈σ

p∗(σ, (1, ah)) ≥ p∗(σ, (2, al))

which is impossible. Hence, CE(σ)∩CE(σ, (1, ak)) = ∅ for all k with (1, ak) /∈ σ.

(E1) then implies that

CE(σ) ⊆
⋃

(2,al)/∈σ

CE(σ, (2, al)).

Let

l̂ = argmin
l:(2,al)/∈σ

p∗(σ, (2, al)). (20)

Note that l̂ is well defined since by assumption players’ preferences over states

are strict. Suppose by way of contradiction that CE(σ) ∩CE(σ, (2, al̂)) = ∅ and

let σ′ ∈ CE(σ, (2, al̂)). Then σ′ is rationalizable and hence (E3) implies that

σ′ ∈ CE(σ) which is a contradiction. Hence, there exists some σ′ ∈ CE(σ) ∩
CE(σ, (2, al̂)). By the induction hypothesis CE(σ, (2, al̂)) has a unique element

and hence σ′ is unique.

Suppose by way of contradiction that CE(σ) ∩ CE(σ, (2, al)) ̸= ∅ for some

l ̸= l̂. Let l̄ ̸= l̂ be such that there exists some σ′ ∈ CE(σ)∩CE(σ, (2, al̄)). Then

from (E3) we conclude that σ′ is rationalizable which implies that p∗(σ, (2, al̄)) ≥
p∗(σ, (2, al̂)) which is a contradiction to (20) since players’ preferences over states

are strict. Hence, CE(σ) ∩ CE(σ, (2, al)) = ∅ for all l ̸= l̂ with (2, al) /∈ σ. This

implies that σ′ ∈ CE(σ) ∩ CE(σ, (2, al̂)) is the unique continuation equilibrium

in CE(σ) and

p∗(σ) = min
k:(2,ak)/∈σ

p∗(σ, (2, ak)).

Finally, assume that

min
k:(2,ak)/∈σ

p∗(σ, (2, ak)) > max
k:(1,ak)/∈σ

p∗(σ, (1, ak)) > p(σ).

Then analogously to the previous case ones shows that there is a unique contin-

uation equilibrium in CE(σ) and

p∗(σ) = max
k:(1,ak)/∈σ

p∗(σ, (1, ak)).
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This proves (i) and (ii) for L = N .

To prove (iii) let

σBA = (σ, (2, al), (1, ak), s1, . . . , sm) ∈ Σ2K−N

and σAB = (σ, (1, ak), (2, al), s1, . . . , sm) ∈ Σ2K−N .

Then by assumption p(σBA) ≥ p(σAB) and we have to prove that p∗(σBA) ≥
p∗(σAB). Since we have already proved (ii) for L = N we have the following

cases:

Case 1: p(σBA) > min
l′:(2,al′ )/∈σBA

p∗(σBA, (2, al′))

Then p∗(σBA) = min
l′:(2,al′ )/∈σBA

p∗(σBA, (2, al′)) and the induction hypothesis for L =

N − 1 implies that

p∗(σBA) = min
l′:(2,al′ )/∈σBA

p∗(σBA, (2, al′)) ≥ min
l′:(2,al′ )/∈σAB

p∗(σAB, (2, al′)) ≥ p∗(σAB).

Case 2: min
l′:(B,l′)/∈σBA

p∗(σBA, (2, al′)) > p(σBA) > max
l′:(1,al′ )/∈σBA

p∗(σBA, (1, al′))

Then p∗(σBA) = p(σBA).

Case 2a: p(σAB) > min
l′:(2,al′ )/∈σBA

p∗(σAB, (2, al′))

Then p∗(σAB) = min
l′:(2,al′ )/∈σAB

p∗(σAB, (2, al′)) and

p∗(σBA) = p(σBA) ≥ p(σAB) > p∗(σAB).

Case 2b: min
l′:(2,al′ )/∈σBA

p∗(σAB, (2, al′)) > p(σAB) > max
l′:(1,al′ )/∈σAB

p∗(σAB, (1, al′))

Then p∗(σAB) = p(σAB) which implies

p∗(σBA) = p(σBA) ≥ p(σAB) = p∗(σAB).

Case 2c: max
l′:(1,al′ )/∈σAB

p∗(σAB, (1, al′)) > p(σAB)
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Then p∗(σAB) = max
l′:(1,al′ )/∈σAB

p∗(σAB, (1, al′)) and the induction hypothesis for L =

N − 1 implies that

p∗(σBA) = p(σBA) > max
l′:(1,al′ )/∈σBA

p∗(σBA, (1, al′))

≥ max
l′:(1,al′ )/∈σAB

p∗(σAB, (1, al′)) = p∗(σAB).

Case 3: max
l′:(1,al′ )/∈σBA

p∗(σBA, (1, al′)) > p(σBA)

Then p∗(σBA) = max
l′:(1,al′ )/∈σBA

p∗(σBA, (1, al′)).

Case 3a: p(σAB) > min
l′:(2,al′ )/∈σBA

p∗(σAB, (2, al′))

Then p∗(σAB) = min
l′:(2,al′ )/∈σAB

p∗(σAB, (2, al′)) and

p∗(σBA) = max
l′:(1,al′ )/∈σBA

p∗(σBA, (1, al′)) > p(σBA) ≥ p(σAB) > p∗(σAB).

Case 3b: min
l′:(2,al′ )/∈σBA

p∗(σAB, (2, al′)) > p(σAB) > max
l′:(1,al′ )/∈σAB

p∗(σAB, (1, al′))

Then p∗(σAB) = p(σAB) which implies

p∗(σBA) = max
l′:(1,al′ )/∈σBA

p∗(σBA, (1, al′)) > p(σBA) ≥ p(σAB) = p∗(σAB).

Case 3c: max
l′:(1,al′ )/∈σAB

p∗(σAB, (1, al′)) > p(σAB)

Then p∗(σAB) = max
l′:(1,al′ )/∈σAB

p∗(σAB, (1, al′)) and the induction hypothesis for L =

N − 1 implies that

p∗(σBA) = max
l′:(1,al′ )/∈σBA

p∗(σBA, (1, al′))

≥ max
l′:(1,al′ )/∈σAB

p∗(σAB, (1, al′)) = p∗(σAB).

Hence, in all cases it is true that p∗(σBA) ≥ p∗(σAB) which proves (iii) for

L = N and concludes the proof of the theorem. □
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