
 

bse.eu/research 

 
 

Intermediate Condorcet Winners 
and Losers 
BSE Working Paper 1380 

January 2023 (Revised: March 2024) 

Salvador Barberà, Walter Bossert 



Intermediate Condorcet winners and losers∗

Salvador Barberà
Universitat Autònoma de Barcelona

Facultat d’Economia i Empresa
Edifici B

08193 Bellaterra (Barcelona)
Spain

salvador.barbera@uab.cat

Walter Bossert
Department of Economics

University of Montreal
P.O. Box 6128, Station Downtown

Montreal QC H3C 3J7
Canada

walter.bossert.wb@gmail.com

This version: March 27, 2024

∗ We thank Pietro Salmaso for his thoughtful comments. Earlier versions of the paper were
presented at the 2023 CEPET conference in Udine and at the 2023 meeting of the Spanish
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Abstract. The conditions of strong Condorcet winner consistency and strong Condorcet
loser consistency are, in essence, universally accepted as attractive criteria to evaluate the
performance of social choice functions. However, there are many situations in which these
conditions are silent because such winners and losers may not exist. Hence, weakening
these desiderata in order to extend the domain of profiles where they apply is an appealing
task. Yet, the often-proposed and accepted weak counterparts of these properties suffer
from the shortcoming that a weak Condorcet winner can be a weak Condorcet loser at the
same time, thus leading to contradictory recommendations regarding their use as normative
criteria. After presenting evidence that this anomaly is pervasive, even in the presence of
substantial and important domain restrictions, we propose new notions of Condorcet-type
winners and losers that are between these two extremes: they share the intuitive appeal
of strong Condorcet winner consistency and strong Condorcet loser consistency and avoid
the contradictory recommendations that would derive from the double identification of
candidates as being weak Condorcet winners and losers at the same time. We prove that
abiding to the new principles is compatible with various additional attractive normative
criteria. Finally, we propose a class of social choice functions that are consistent with
the recommendations of our new proposals and can be extended to the universal domain
through the lexicographical use of complementary choice criteria, in the spirit of previous
proposals by noted authors like Pierre Daunou and Duncan Black. Journal of Economic
Literature Classification Nos.: D71, D72, D63.

Keywords. Social choice; Voting; Condorcet consistency; Single-peakedness.



1 Introduction

The classical contribution of Condorcet (1785) continues to play a major role in the anal-
ysis of collective decision procedures. Along with Condorcet’s seminal work, numerous
pioneering advancements in the theory of voting appeared around the time of the French
Revolution; these include the essays of Borda (1781), Morales (1797), and Daunou (1803),
to name some of the most prominent examples. It is not very surprising that, reflecting the
turbulent events that transpired during that time period, the thoughts on collective choice
expressed by these scholars were mostly phrased in terms of the election of candidates for
public office by the citizenry. We follow this convention here, keeping in mind that our
observations as well as those of the above-mentioned classics are applicable to a broader
variety of collective decision problems.

Generally speaking, an election proceeds by selecting one or several of the feasible
candidates on the basis of the voters’ relative assessments of these candidates. This process
can be formalized by means of a voting rule, also referred to as a social choice function. For
a specific election, the set of feasible candidates is a subset of a universal set of candidates
that could, in principle, be available. Each voter is assumed to compare the candidates
using a goodness ordering: for any two candidates in the universal set, a voter can declare
one of them to be better than the other, or state that (s)he considers the two equally good.
A social choice function specifies, for every profile of the voters’ goodness orderings and for
every feasible set of candidates in its domain, the non-empty subset of elected candidates if
the voters’ assessments are represented by the goodness orderings that make up the profile.

Much of Condorcet’s work is concerned with the formulation of conditions that, loosely
speaking, guarantee the election of candidates who are strongly supported by the electorate
and prevent the election of candidates who are firmly rejected by the voters. Perhaps the
most prominent notions of such candidates are those of a strong Condorcet winner and a
strong Condorcet loser. A strong Condorcet winner is a candidate who wins against every
other feasible candidate in a pairwise comparison and, analogously, a strong Condorcet
loser loses against every other feasible candidate in a pairwise contest. To clarify our use
of the terms in question, we say that a candidate wins (loses) against another candidate if
the number of voters who consider the former better than the latter is higher (lower) than
the number of voters who consider the latter better than the former; if these two numbers
are the same, the two candidates tie with each other in a pairwise comparison. If a strong
Condorcet winner (loser) exists, this candidate is unique; this follows immediately from
the observation that at most one candidate can accumulate more (fewer) votes than every
feasible opponent in a pairwise contest.

Condorcet’s definitions apply to each instance of a voting situation and fall within the
class of what are called intra-profile conditions. In addition to identifying alternatives that
are prominent at each profile, they provide quite compelling criteria when designing social
choice functions.

Since a strong Condorcet winner has very solid support from the voters, one may want
to require that, when it exists, it should be uniquely selected. Likewise, a strong Condorcet
loser is firmly rejected by the voters, and it is natural to require from a social choice function
that it should never be chosen. We refer to these recommendations regarding social choice
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functions as strong Condorcet winner consistency and strong Condorcet loser consistency.
Unfortunately, while highly appealing, these requirements keep silent in the frequently
occurring cases where the demanding conditions for the existence of strong Condorcet
winners or losers do not hold. Because of that, relaxing these two notions is a natural way
to look for requirements in the same vein that might provide guidance for the design of
social choice functions in larger sets of voting situations. In this paper, we concentrate on
two such weakening proposals and their advantages when used for design purposes.

Before advancing our proposals, let us comment on a version of Condorcet winners
(losers) defined by means of the more modest requirement that a candidate must win (lose)
against or tie with each of the other candidates. This definition of weak Condorcet winners
and losers is unsatisfactory, however, because it is possible for a candidate to simultaneously
be a weak Condorcet winner and a weak Condorcet loser. It is even possible that every
candidate is a weak Condorcet winner and a weak Condorcet loser at the same time. Hence,
we cannot use these two properties as design criteria to suggest inclusion of the winners and
exclusion of the losers. We emphasize that this phenomenon is not restricted to degenerate
cases, and we illustrate this observation by presenting concrete examples later on. The
difficulty persists on important restricted domains over which we may want to define our
social choice function. For the most part of the paper, we work with a general domain
of possible profiles of orderings, and one may wonder whether the weakness we point at
could vanish as we consider domains of special relevance, like those of (multi-dimensional)
single-peakedness. It turns out that our observations are robust in the sense that they also
apply under domain restrictions of this nature.

Motivated by the above remarks, we introduce two new qualified notions of Condorcet
winners that are less demanding than the strong one, while harder to meet than the po-
tentially inconsistent weak version we just described. Candidates satisfying the first notion
are called intermediate Condorcet winners, whereas those in the second category are re-
ferred to as maximal intermediate Condorcet winners. By definition, maximal intermediate
Condorcet winners are contained in the set of intermediate Condorcet winners and, in view
of this subset relationship, we concentrate our discussion on the notion of intermediate
Condorcet winners and its dual counterpart, that of intermediate Condorcet losers, in the
remainder of this introduction. A detailed motivation and analysis of maximal interme-
diateness is postponed until Section 4. Our first proposal defines intermediate Condorcet
winners (losers) as those candidates who receive at least (at most) as many votes as their
opponent in every pairwise comparison, with at least one instance of a strict inequality.
That is, unlike a weak Condorcet winner (loser), an intermediate Condorcet winner (loser)
has to win (lose) against at least one other candidate. As a consequence, intermediate Con-
dorcet winners and losers do not lead to the type of contradictory recommendations that
weak Condorcet winners and losers are afflicted with. It is straightforward to verify that an
equivalent definition of an intermediate Condorcet winner (loser) is that this candidate is
a weak Condorcet winner (loser) but not a weak Condorcet loser (winner), an equivalence
that further underlines the intuitive appeal of the definition.

It may be tempting to see our proposal as no more than the alternative use of weak or
strict inequalities in otherwise similar definitions. But such a seemingly minor modification
can have substantial ramifications. To see that this is indeed the case, one has to go no
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further than the ubiquitous requirements that demand unanimity to be respected; it is well-
known that it may make a substantial difference whether the weak or the strong version
of the Pareto condition is employed. As another prominent example, consider Suzumura’s
(1976) property of consistency, which strengthens that of acyclicity. The latter condition
merely prevents cycles in which all links represent betterness, whereas Suzumura’s also
rules out all at-least-as-good-as cycles that involve at least one instance of betterness. This
change has profound consequences. As shown by Suzumura (1976), consistency is necessary
and sufficient for the existence of an ordering extension (Szpilrajn, 1930). Moreover, un-
like acyclicity, the property of consistency has a well-defined closure operator; see Bossert,
Sprumont, and Suzumura (2005). Another setting in which the choice of a weak versus a
strict inequality can make a major difference appears in Donaldson and Weymark (1986).
They show that, in the context of poverty measurement, it frequently matters whether
income recipients at the poverty line are considered poor or non-poor. As they illustrate,
some properties that are accommodated by one version lead to impossibilities if the al-
ternative definition is employed. A similar observation applies to the von Neumann and
Morgenstern abstract stable set that turns out to be remarkably sensitive to the choice of
dominance property employed; see Greenberg (1992). The basic question in the context of
stable sets is whether everyone in a coalition has to benefit from a deviation in order for
this coalition to object to a proposed outcome, or only one member of the coalition needs
to be made better off as long as no other member ends up worse off. Clearly, there is a
strong parallel between this question and the issue addressed in our contribution.

Before concluding this introduction, let us comment on some contributions that pre-
ceded ours in a similar spirit. Inspired by the observation that strong Condorcet winners
or strong Condorcet losers do not exist under many circumstances, there have been earlier
attempts to modify Condorcet’s original proposal and the corresponding consistency condi-
tions in order to identify candidates that enjoy overwhelming support from the voters. We
refer to Fishburn (1973, 1977) for detailed discussions of proposals made until then. Out
of those we single out Smith’s (1973) proposal to extend the original property of strong
Condorcet winner consistency to sets of candidates. Instead of a single candidate who wins
against every other candidate, Smith’s (1973) condition focuses on a (not necessarily single-
valued) subset of candidates each of which wins against every candidate in the complement
of this subset. As is the case for most—if not all—notions of strong voter support, such
sets need not exist. A major reason why we do not pursue Smith sets in detail is that social
choice functions that are consistent with the choice of a Smith set when it exists perform
relatively poorly when assessed in terms of some reference properties that we consider de-
sirable. In contrast, the intermediate variants of the original Condorcet criteria that we
propose fare better in that regard; one of our suggestions actually dominates Smith sets.
In a later proposal, Demange (1983) defines the notion of a strong (weak) quasi-Condorcet
winner, a concept that is, in general, more inclusive than that of a strong (weak) Condorcet
winner. A strong (weak) quasi-Condorcet winner is a candidate x such that, for every other
candidate y, the number of voters who consider y better than x is less than (at most) half
of the total number of voters. If the voters’ goodness relations are assumed to be anti-
symmetric, strong (weak) quasi-Condorcet winners and strong (weak) Condorcet winners
are equivalent; without the antisymmetry assumption, the sets of quasi-Condorcet win-
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ners are more accommodating than their respective original counterparts. Yet, Demange’s
proposal may recommend the choice of additional candidates even if a strong Condorcet
winner exists—and these additional candidates may include the strong Condorcet loser.
We stress, however, that this takes nothing away from the important role quasi-Condorcet
winners play in settings such as the spatial models analyzed in her work.

Our paper is organized as follows. We begin in Section 2 with a formal definition of
social choice functions, along with a discussion of the notion of strong voter support. This
includes a review of Condorcet’s original proposal of defining this type of support in terms
of strong and weak Condorcet winners. Our first variant of intermediate Condorcet winners
constitutes the main subject matter of Section 3, along with the consistency conditions they
induce. As announced, Section 4 suggests a criterion that focuses on a subset of the set of all
intermediate Condorcet winners, the ones we call maximal intermediate Condorcet winners.
The above-mentioned reference properties of a social choice function play a vital role in the
analysis of our intermediate notions of Condorcet consistency. Section 5 contains an explicit
method of constructing a large class of social choice functions that satisfy intermediate
Condorcet winner consistency and intermediate Condorcet loser consistency.

2 Social choice functions and strong voter support

There is a finite universal set of candidates X with cardinality |X| ≥ 2, and we use X to
denote the set of all non-empty subsets of X. The finite set of voters is N = {1, . . . , n}
with n ≥ 2. The set of all orderings on X (that is, the set of all reflexive, complete, and
transitive binary relations on X) is R. We assume that each voter i ∈ N has an ordering
Ri ∈ R, interpreted as a relation that expresses the relative goodness of the candidates.
The asymmetric and symmetric parts of Ri are denoted by Pi and Ii. Because the voters’
goodness relations are orderings, there is no risk of ambiguity in employing simplified
notation; for instance, we use xPiyIiz to indicate that, according to voter i ∈ N , candidate
x is better than candidates y and z, and y and z are equally good.

A profile is an n-tuple R = (R1, . . . , Rn) ∈ Rn. For a profile R ∈ Rn and two distinct
candidates x and y in X, we use

p(R; x, y) = |{i ∈ N : xPiy}|

to indicate the number of voters who consider x better than y in a profile R.
Let D ⊆ Rn × X be a non-empty domain of pairs of profiles and feasible sets. A

social choice function is a mapping F :D → X such that F (R, S) ⊆ S for all (R, S) ∈ D.
The function F assigns a set of selected candidates to each pair of a profile of the voters’
goodness orderings and a non-empty feasible set of candidates within the domain of F .

As alluded to in the introduction, Condorcet was concerned with the formulation of
conditions that guarantee the election of candidates who enjoy strong support on the part
of the voters. The underlying motivation of this requirement can be captured by identifying,
for each pair (R, S) in the domain of a social choice function, the set of candidates that
are deemed to have sufficient support for them to be chosen, to the exclusion of all others.
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The consistency requirement that applies to these privileged candidates demands that,
whenever this set is non-empty, the candidates chosen by the social choice function for R
and S must be contained in this set of those with strong voter support. A dual definition
identifies the set of candidates that are firmly rejected by the voters for a pair (R, S). The
corresponding consistency property requires that these strongly rejected candidates not be
selected by a social choice function.

The criteria proposed by Condorcet are based on the method of majority decision:
if a candidate wins against every other candidate in a pairwise majority contest, this
candidate—and only this candidate—is to be elected. If such a candidate exists, it is
referred to as a strong Condorcet winner. Because at most one candidate can win against
every other candidate, the set of strong Condorcet winners is either empty or a singleton
set. The counterpart of this definition declares a candidate to be a strong Condorcet loser
if this candidate loses against every other candidate in a pairwise majority comparison and,
because such a candidate is firmly rejected by the electorate, it should never be chosen if
it exists. As is the case for strong Condorcet winners, the set of strong Condorcet losers
is either empty or a singleton set. To introduce these properties formally, let R ∈ Rn and
S ∈ X . A candidate x ∈ S is a strong Condorcet winner for R in S if

p(R; x, z) > p(R; z, x) for all z ∈ S \ {x}, (1)

and x ∈ S is a strong Condorcet loser for R in S if the inequality in (1) is reversed. For
any profile R ∈ Rn and for any feasible set S ∈ X , there is at most one strong Condorcet
winner for R in S and at most one strong Condorcet loser for R in S. We denote the set of
strong Condorcet winners for R in S by SCW (R, S), and SCL(R, S) is the set of strong
Condorcet losers for R in S.

The notion of a strong Condorcet winner gives rise to the condition of strong Condorcet
winner consistency, which states that if there is a strong Condorcet winner, then this
candidate—and only this candidate—should be chosen.

Strong Condorcet winner consistency. For all (R, S) ∈ D, if SCW (R, S) 6= ∅, then

F (R, S) ⊆ SCW (R, S).

Because there can be at most one strong Condorcet winner for a profile R in a feasible set
S, the set inclusion in this definition must be satisfied with an equality.

Analogously, strong Condorcet loser consistency postulates that a strong Condorcet
loser should never be chosen.

Strong Condorcet loser consistency. For all (R, S) ∈ D,

F (R, S) ∩ SCL(R, S) = ∅.

There are numerous profiles and feasible sets for which strong Condorcet winners or
strong Condorcet losers do not exist. A weaker notion of Condorcet winners and losers is
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obtained if the strict inequalities in the above definitions are replaced with weak inequalities.
A candidate x ∈ S is a weak Condorcet winner for R in S if

p(R; x, z) ≥ p(R; z, x) for all z ∈ S \ {x}, (2)

and x ∈ S is a weak Condorcet loser for R in S if the inequality in (2) is reversed. The
set of weak Condorcet winners for R in S is denoted by WCW (R, S), and the set of
weak Condorcet losers for R in S is WCL(R, S). These definitions lead to the following
consistency conditions.

Weak Condorcet winner consistency. For all (R, S) ∈ D, if WCW (R, S) 6= ∅, then

F (R, S) ⊆ WCW (R, S).

Because there may be multiple weak Condorcet winners for a profile R in a feasible set S,
the set inclusion in this definition need not be satisfied with an equality; it is possible that
only some but not all weak Condorcet winners are selected. The condition does require,
though, that no candidates other than weak Condorcet winners are chosen if such winners
exist.

Weak Condorcet loser consistency precludes the choice of weak Condorcet losers.

Weak Condorcet loser consistency. For all (R, S) ∈ D,

F (R, S) ∩WCL(R, S) = ∅.

The consistency conditions that are based on weak Condorcet winners and weak Con-
dorcet losers suffer from an unfortunate shortcoming. As the example below illustrates,
it is possible for a candidate to be a weak Condorcet winner and a weak Condorcet loser
at the same time—and, therefore, it is impossible to satisfy both of the two consistency
properties.

Example 1 The set of feasible candidates is S = X = {x, y} and the set of voters is
N = {1, 2}. Define the profile R by xP1y and yP2x. Each candidate wins against or ties
with the other candidate with a score of one to one, and loses against or ties with the other
candidate with the same score. Thus, both candidates are weak Condorcet winners and weak
Condorcet losers at the same time.

The profile of this example is composed of antisymmetric relations, which implies that it
is not degenerate in the sense of displaying universal equal goodness on the part of every
voter.

The above example can be generalized to arbitrary numbers of candidates and voters. If
the number of voters n is even, assign an arbitrary antisymmetric ordering to n/2 voters and
its inverse to the remaining n/2 voters. It follows that each candidate wins against or ties
with every other candidate, and also loses against or ties with every other candidate with
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a score of n/2 to n/2. If n is odd, assign an arbitrary antisymmetric ordering to (n− 1)/2
voters, its inverse to (n − 1)/2 voters, and the universal equal-goodness relation to the
remaining voter. Now each candidate wins against or ties with every other candidate,
and also loses against or ties with every other candidate with a score of (n − 1)/2 to
(n − 1)/2. These generalized variants involve only single-peaked profiles if the number of
voters is even, and single-plateaued profiles for an odd number of voters. Thus, if the voters’
goodness relations are restricted to be antisymmetric, an example can be constructed for
all even numbers of voters but not if the number of voters is odd because, in this case, the
inequalities in the definition of weak Condorcet winners and weak Condorcet losers cannot
but be strict.

We chose the profile of the above example for its simplicity and easy generalizability. It
is possible to find more intricate examples in which not every candidate emerges as a weak
Condorcet winner and a weak Condorcet loser at the same time. For instance, the following
example displays a profile of six antisymmetric orderings such that only one out of four
candidates is a weak Condorcet winner and a weak Condorcet loser at the same time; it is
analogous to the example that appears in Barberà, Bossert, and Suzumura (2021, p. 267).

Example 2 Suppose that the set of feasible candidates is S = X = {x, y, z, w} and the set
of voters is N = {1, 2, 3, 4, 5, 6}. Define the profile R by

xP1yP1zP1w,

xP2yP2zP2w,

xP3zP3wP3y,

zP4wP4yP4x,

wP5yP5zP5x,

wP6yP6zP6x.

Candidate x is the unique weak Condorcet winner and the unique weak Condorcet loser
for R in S because x ties with every other candidate with a score of three to three. It is
straightforward to verify that none of the other candidates can be a weak Condorcet winner
or a weak Condorcet loser.

It is immediate that contradictory recommendations of the above-described nature cannot
occur if strong Condorcet winners and strong Condorcet losers are considered; by definition,
a strong Condorcet winner cannot be a strong Condorcet loser, and vice versa.

Fishburn (1977, Section 4) examines alternative Condorcet consistency conditions that
he refers to as the inclusive Condorcet principle, the exclusive Condorcet principle, and the
strict Condorcet principle; see also Fishburn (1973, Chapter 12) for a thorough treatment.
The strict Condorcet principle requires that the set of weak Condorcet winners be chosen
whenever this set is non-empty. This condition is equivalent to the conjunction of the inclu-
sive Condorcet principle and the exclusive Condorcet principle, each of which takes care of
one of the two weak set inclusions required in the strict Condorcet principle. Because all of
these three conditions involve the choice of weak Condorcet winners, the above observation
that it is possible for a candidate to be a weak Condorcet winner and a weak Condorcet
loser at the same time calls all of them into question.
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3 Intermediate Condorcet winners and losers

This section is devoted to our first proposal of generalizing the strong Condorcet consistency
conditions, thereby making Condorcet’s ideas applicable in a larger set of circumstances.
We define what we refer to as intermediate Condorcet winners by requiring weak inequalities
with at least one instance of strict inequality in the requisite definition. Thus, letting
R ∈ Rn and S ∈ X , a candidate x ∈ S is an intermediate Condorcet winner for R in S if

p(R; x, z) ≥ p(R; z, x) for all z ∈ S \ {x} with at least one strict inequality, (3)

and x ∈ S is an intermediate Condorcet loser for R in S if the inequality in (3) is reversed.
We denote the set of intermediate Condorcet winners for R in S by ICW (R, S), and
ICL(R, S) is the set of intermediate Condorcet losers for R in S. As is the case for strong
and weak Condorcet winners (losers), it is possible that the set of intermediate Condorcet
winners (losers) is empty. An intermediate Condorcet winner (loser) can alternatively be
described as a candidate who is a weak Condorcet winner (loser) but not a weak Condorcet
loser (winner); the requisite equivalence follows immediately from the above definitions.

By definition, every strong Condorcet winner (loser) is an intermediate Condorcet win-
ner (loser) but, as illustrated in the following example, the converse set inclusion is not
valid in general.

Example 3 Suppose that the set of feasible candidates is S = X = {x, y, z, w} and the set
of voters is N = {1, 2}. Define the profile R by xP1zP1yP1w and yP2xP2zP2w. Candidate
x ties with candidate y with a score of one to one, and x wins against z and against w
with a score of two to zero each. Candidate y ties with candidates x and z with a score
of one to one each, and y wins against w with a score of two to zero. Neither z nor w
can be an intermediate Condorcet winner for R in S because each of these candidates loses
against at least one other candidate in S. Thus, the set of intermediate Condorcet winners
for R in S consists of candidates x and y. There is no strong Condorcet winner because no
candidate wins against every other candidate. The profile of this example is single-peaked,
as illustrated in Figure 1.

Likewise, an intermediate Condorcet winner (loser) is a weak Condorcet winner (loser)
by definition but the reverse set inclusion is not valid in general, as established by Example
2. In the example, candidate x is a weak Condorcet winner and a weak Condorcet loser
but the set of intermediate Condorcet winners and the set of intermediate Condorcet losers
are empty.

As is the case for strong Condorcet winners and losers, intermediate Condorcet winners
and losers do not suffer from the shortcoming associated with weak Condorcet winners and
losers—it is not possible for a candidate to be an intermediate Condorcet winner and an
intermediate Condorcet loser at the same time. Again, this observation follows immediately
from the definition of intermediate Condorcet winners and intermediate Condorcet losers:
an intermediate Condorcet winner (loser) is a candidate who is a weak Condorcet winner
but not a weak Condorcet loser (winner) and, therefore, the requisite sets cannot but be
disjoint.
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Figure 1: The profile R of Example 3.
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We stress that even under comparatively rich and well-established restrictions on the
domain of possible profiles, the coincidence of weak Condorcet winners and weak Condorcet
losers is a common phenomenon. A prominent example that has its origin in Barberà, Gul,
and Stacchetti (1993) has been applied in numerous subsequent contributions, primarily
because of its usefulness in obtaining strategy-proof voting schemes; see Barberà (2011) for
a survey. This domain assumption substantially generalizes the notion of single-peakedness.
Suppose that the candidates can be represented by K-tuples of integers, where K ∈ N is
the number of relevant characteristics. Each characteristic k ∈ {1, . . . , K} can assume
values in an integer interval [ak, bk] with ak, bk ∈ Z and ak < bk. The number assigned
to a characteristic is of no relevance; the integers ak, ak + 1, . . . , bk merely represent a
convenient way of expressing the observation that characteristic k can have bk − ak + 1
possible different values. In this setting, a candidate can be identified with a K-tuple
α = (α1, . . . , αK) ∈ B =

∏K
k=1[ak, bk]. We endow the K-fold Cartesian product B with the

L1 metric defined by

|α− β| =
K∑

k=1

|αk − βk|

for all α, β ∈ B; in colloquial terms, this is also known as the city-block metric, the
Manhattan distance, or the taxicab metric.

A profile R is multi-dimensional single-peaked if each Ri is antisymmetric with peak
αi ∈ B and βiRiγ

i for all distinct βi, γi ∈ B such that

|αi − γi| = |αi − βi|+ |βi − γi|. (4)

The above condition on the distances between αi, βi, and γi according to this metric implies
that βi is on a minimal path joining γi with voter i’s peak αi—and (4) represents the only
constellation in which this minimal-path property is satisfied. In this sense, when the
condition holds, we can think of βi as being ‘between’ γi and the peak αi, or ‘closer to the
peak’ than γi is. This is analogous to how we compare candidates when single-peakedness
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applies in a single dimension. Indeed, if K = 1, our definition coincides with the well-known
notion of single-peakedness for antisymmetric orderings.

To see that this domain allows for candidates that are weak Condorcet winners and
weak Condorcet losers at the same time, consider the following example.

Example 4 Suppose that there are K = 2 characteristics with integer intervals [a1, b1] =
[a2, b2] = [1, 5]. The set of feasible candidates is S = X = {x, y, z, w, v} with x = (1, 1),
y = (1, 5), w = (5, 1), and v = (5, 5). To illustrate that the coincidence of weak Condorcet
winners and weak Condorcet losers is not restricted to knife-edge cases, we allow candidate
z to be located at any of the nine points in the integer square [2, 4]× [2, 4]. Define the profile
R by

xP1yP1zP1wP1v,

xP2yP2zP2wP2v,

xP3zP3wP3yP3v,

vP4zP4wP4yP4x,

vP5wP5yP5zP5x,

vP6wP6yP6zP6x.

Candidates x and v are the only weak Condorcet winners and, at the same time, the only
weak Condorcet losers for R in S because each of x and v ties with every other candidate
with a score of three to three. It is straightforward to verify that none of the other candidates
can be a weak Condorcet winner or a weak Condorcet loser. The profile is multi-dimensional
single-peaked, as illustrated in Figure 2. As mentioned earlier, candidate z may be located at
any of the nine points in the integer square [2, 4]× [2, 4]. Observe that the peak of goodness
relations R1, R2, and R3 is candidate x, whereas the peak of R4, R5, and R6 is candidate
v. Multi-dimensional single-peakedness imposes no restrictions on the relative rankings of
y, z, and w; therefore, it is perfectly legitimate to choose relations that generate a cycle
among these three candidates.

Example 2 can be expressed in terms of a multi-dimensional single-peaked profile as well.
To do so, use the definitions of the above example, and consider the subset S = X \ {v}
instead of the full set of candidates X.

Another interesting example consists of a domain employed by Barberà and Ehlers
(2011) in the context of characterizing circumstances under which the majority rule always
generates quasi-transitive aggregate goodness relations. The idea underlying the domain
assumption of Barberà and Ehlers (2011) is that there are objective instances of equal
goodness that may, for instance, have their origins in a voter’s inability to meaningfully
distinguish some of the candidates. This is modeled by using, for each voter i ∈ N , a
partition Ci of the universal set of candidates X. The interpretation is that, for each
element of the partition C ∈ Ci, voter i cannot distinguish between the candidates in C.
More precisely, if {x, y} ⊆ C for some x, y ∈ X and some C ∈ Ci, it must be the case that
xIiy; that is, candidates x and y must be (objectively) equally good according to voter i.
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Figure 2: The profile R of Example 4.

The requisite domain-restriction assumptions can now be expressed as properties of the
partitions Ci of the voters. A special case consists of requiring admissible partition profiles
to satisfy the following property of (n− 1) dichotomous goodness; see Barberà and Ehlers
(2011, p. 563).

(n−1) dichotomous goodness. For all pairwise distinct x, y, z ∈ X, there exists M ⊆ N
such that |M | ≥ n− 1 and, for all i ∈ M , there exists C ∈ Ci such that |C ∩ {x, y, z}| ≥ 2.

In words, the condition requires that, for each triple of candidates, at least n − 1 voters
cannot distinguish at least two candidates. Following Barberà and Ehlers (2011), we assume
that there are only instances of objective equal goodness, that is, any two candidates
x, y ∈ X such that x and y do not belong to the same constituent set of the partition Ci

are such that we have xPiy or yPix.
The following example further underlines that the divergence of weak and intermedi-

ate Condorcet winners is not restricted to degenerate cases but can be accommodated in
settings with well-established and plausible domain restrictions.

Example 5 Suppose that the set of feasible candidates is S = X = {x, y, z} and the set of
voters is N = {1, 2}. Furthermore, suppose that the partitions C1 and C2 are given by

C1 = {{x}, {y}, {z}},
C2 = {{x, y}, {z}}.

This partition satisfies 1 dichotomous goodness. There is only one triple, and one out of
two voters (voter 2) cannot distinguish at least two candidates in the triple.

Now define a profile R by

xP1yP1z,

zP2yI2x.

11



This profile respects the domain restriction induced by the partitions C1 and C2. Candidate
x is the unique intermediate Condorcet winner because it beats y with a score of one to zero
and ties with z with a score of one to one. In addition to x, z is a weak Condorcet winner
because it ties with x and with y with a score of one to one. Candidate z is also a weak
Condorcet loser.

For simplicity, Example 5 involves a mere two voters. We note that additional voters whose
relations are given by universal equal goodness could be added without changing the desired
result; this is worth mentioning because Barberà and Ehlers (2011) assume that the are at
least three voters.

The above-described restricted domains are merely two examples; there are a plethora
of additional scenarios that illustrate that the marked difference between weak Condorcet
winners and intermediate Condorcet winners is not limited to degenerate cases.

The condition of intermediate Condorcet winner consistency requires that only members
of the set ICW (R, S) can be chosen, provided that this set is non-empty.

Intermediate Condorcet winner consistency. For all (R, S) ∈ D, if ICW (R, S) 6= ∅,
then

F (R, S) ⊆ ICW (R, S).

In analogy to strong Condorcet loser consistency, intermediate Condorcet loser consistency
precludes intermediate Condorcet losers from being selected.

Intermediate Condorcet loser consistency. For all (R, S) ∈ D,

F (R, S) ∩ ICL(R, S) = ∅.

We emphasize that the conjunction of intermediate Condorcet winner consistency and
intermediate Condorcet loser consistency does not preclude the choice of weak Condorcet
winners if there are no intermediate Condorcet winners. Of course, these weak Condorcet
winners may also be weak Condorcet losers, which is why we evidently cannot endorse the
conjunction of weak Condorcet winner consistency and weak Condorcet loser consistency.
We certainly do not exclude the possibility of choosing weak Condorcet winners in the
absence of intermediate Condorcet winners but consider it inappropriate to assign a form
of privileged status to weak Condorcet winners from the outset.

The following theorem establishes that the set of intermediate Condorcet winners (losers)
for a profile R in a feasible set S can only be empty if either each candidate is tied with
every other candidate, or the profile R is cyclical in the feasible set S. A profile R ∈ Rn

is cyclical in a feasible set S ∈ X if there exist a number K ∈ {3, . . . , |S|} and K pairwise
distinct candidates x1, . . . , xK ∈ S such that

p(R; xk, xk+1) > p(R; xk+1, xk) for all k ∈ {1, . . . , K − 1}

and
p(R; xK , x1) > p(R; x1, xK).

12



Theorem 1 Let R ∈ Rn and S ∈ X . If ICW (R, S) = ∅ or ICL(R, S) = ∅, then
p(R; x, y) = p(R; y, x) for all distinct x, y ∈ X or the profile R is cyclical in S.

Proof. Suppose that a profile R and a feasible set S are such that ICW (R, S) = ∅ or
ICL(R, S) = ∅. Without loss of generality, suppose that ICW (R, S) = ∅; the proof for
the case ICL(R, S) = ∅ is obtained by reversing all inequalities. It is immediate that each
candidate being in a tie with every other candidate is one possible way of obtaining an
empty set of intermediate Condorcet winners. Now suppose that this case does not apply
so that there exist two distinct candidates x1 and x2 in S such that

p(R; x2, x1) > p(R; x1, x2). (5)

If p(R; x2, z) ≥ p(R; z, x2) for all z ∈ S \ {x2}, candidate x2 is an intermediate Condorcet
winner for R in S because of (5). This is not possible because ICW (R, S) is assumed to
be empty. Therefore, there exists x3 ∈ S such that p(R; x3, x2) > p(R; x2, x3). Because
S is finite, this process can be repeated until we reach a number K ≥ 3 and a candidate
xK ∈ S such that p(R; xK , xK−1) > p(R; xK−1, xK) and xK also appears earlier in the
iterative process as one of the candidates that loses against another candidate. This means
that the profile R is cyclical in S, as was to be established.

The result of Theorem 1 explains why the profile of Example 2 is not single-peaked.
Recall that the example is intended to be such that there is one candidate (candidate x
in the example) who is a weak Condorcet winner and a weak Condorcet loser at the same
time, and there are no other weak Condorcet winners or losers. This means that not all
pairwise comparisons can result in a tie; if that were the case, all candidates would be weak
Condorcet winners and weak Condorcet losers, and this is to be avoided for the purposes
of the example. Clearly, an intermediate Condorcet winner (loser) is a weak Condorcet
winner (loser) by definition and, therefore, there cannot be any intermediate Condorcet
winners or intermediate Condorcet losers. Thus, Theorem 1 implies that the profile must
be cyclical in the feasible set; in the example, the cycle involves the candidates y, z, and
w. As is well-known, such cycles cannot occur if the profile is single-peaked.

We employ three reference properties of a social choice function to assess the relative
performance of the alternative notions of strong voter support considered in this paper.
In our opinion, these properties are well-suited for this purpose because they capture the
spirit of the consistency conditions motivated by Condorcet’s proposals.

The first of these is the fairly uncontroversial requirement that dominated candidates
are not to be selected by a social choice function. That is, if there are two candidates z
and w such that all voters consider z better than w, then w cannot be chosen.

Exclusion of dominated candidates. For all (R, S) ∈ D and for all w ∈ S, if there
exists z ∈ S such that zPiw for all i ∈ N , then w 6∈ F (R, S).

A commonly-employed requirement is that the presence of candidates who are consid-
ered uniquely worst by all voters has no influence on the set of chosen candidates. We use
this condition as our second reference property.
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Independence of unanimously worst candidates. For all (R, S) ∈ D and for all
w ∈ X \ S, if (R, S ∪ {w}) ∈ D and zPiw for all i ∈ N and for all z ∈ S, then

F (R, S ∪ {w}) = F (R, S).

Two additional requirements linked to the reference properties of exclusion of dominated
candidates and independence of unanimously worst candidates could also be considered,
but none of them would help to discriminate between our two concepts of strong voter
support. Independence of dominated candidates (Ching, 1996) rules out not only the choice
of dominated candidates but also their influence on the selected set of candidates, thereby
strengthening both exclusion of dominated candidates and independence of unanimously
worst candidates. Neither of our two proposals satisfies this requirement. On the other
hand, exclusion of unanimously worst candidates is weaker than exclusion of dominated
candidates and independence of unanimously worst candidates, and both of our notions of
strong voter support comply with it.

Our third reference property is a suitable version of pairwise justifiability, an axiom
introduced and discussed by Barberà, Berga, Moreno, and Nicolò (2022). Consider two
pairs (R, S), (R′, S) ∈ D and suppose that x ∈ F (R, S). Suppose now that a change from
R to R′ has the effect of removing x from the choice set for the feasible set S—that is,
x 6∈ F (R′, S). Pairwise justifiability requires that the demotion of x must be caused by this
candidate having lost ground in the move from R to R′. More precisely, there must be a
voter j ∈ N and a candidate z in S \ {x} such that x is at least as good as z according to
Rj but not according to R′

j, or x is better than z according to Rj but not according to R′
j.

Pairwise justifiability. For all (R, S), (R′, S) ∈ D and for all x ∈ F (R, S), if x 6∈
F (R′, S), then there exist j ∈ N and z ∈ S \ {x} such that

[xRjz and ¬(xR′
jz)] or [xPjz and ¬(xP ′

jz)].

A consistency property regarding sets of candidates with strong voter support is silent
when it comes to pairs of profiles and feasible sets for which such candidates do not exist.
As a consequence, it is convenient to think of these sets as the outcomes assigned by a social
choice function the domain of which is restricted to pairs (R, S) such that the requisite
set of privileged candidates is non-empty. In the case of intermediate Condorcet winners,
define the domain DIC as the set of all pairs (R, S) ∈ Rn×X for which the set ICW (R, S)
is non-empty. The social choice function F ICW :DIC → X can now be defined by letting,
for all (R, S) ∈ DIC , F ICW (R, S) = ICW (R, S).

The following theorem shows how intermediate Condorcet winners fare when assessed
by means of our three reference properties.

Theorem 2 The social choice function F ICW

(a) satisfies exclusion of dominated candidates;

(b) violates independence of unanimously worst candidates if |X| > 3;

(c) satisfies pairwise justifiability.
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Proof. (a) To prove that F ICW satisfies exclusion of dominated candidates, let (R, S) ∈
DIC , and suppose that z, w ∈ S are such that zPiw for all i ∈ N . This implies p(R; z, w) =
n and p(R; w, z) = 0 and, therefore, p(R; w, z) < p(R; z, w). This inequality implies that
w cannot be an intermediate Condorcet winner for R in S, that is, w 6∈ F ICW (R, S).

(b) Example 3 can be used to demonstrate that F ICW does not satisfy independence
of unanimously worst candidates. Using the profile R of the example, it follows that
F ICW (R, {x, y, z}) = {x} and F ICW (R, {x, y, z, w}) = {x, y}. Thus, candidate y enters
the set of chosen candidates as a consequence of adding candidate w, who is uniquely worst
according to all voters, to the feasible set.

(c) Finally, we show that F ICW satisfies pairwise justifiability. Let (R, S), (R′, S) ∈
DIC , and suppose that x ∈ F ICW (R, S) and x 6∈ F ICW (R′, S). If

[xRjz and ¬(xR′
jz)] or [xPjz and ¬(xP ′

jz)] (6)

is violated for all j ∈ N and for all z ∈ S \ {x}, it follows that x does not lose against any
of the other candidates in S and wins against at least one of them for the profile R′; this
follows immediately because x is an intermediate Condorcet winner for R in S. Thus, x is
an intermediate Condorcet winner for R′ in S and, therefore, x ∈ F ICW (R′, S). This is a
contradiction and, therefore, (6) must be true.

4 Maximal intermediate Condorcet winners

By definition, an intermediate Condorcet winner wins against or ties with every other
candidate in a pairwise contest. This suggests a possible modification by focusing on
those intermediate Condorcet winners that register the highest number of wins. Example
3 illustrates this distinction: candidate x wins against two other candidates in S, whereas
y only wins against one other candidate and, therefore, x is maximal within the set of
intermediate Condorcet winners when assessed by means of the number-of-wins criterion.

To provide a formal definition, let R ∈ Rn and S ∈ X . A candidate x ∈ ICW (R, S)
is a maximal intermediate Condorcet winner for R in S if x scores the maximal number of
wins among the candidates in ICW (R, S); that is, if

|{z ∈ S \ {x} : p(R; x, z) > p(R; z, x)}| ≥ |{z ∈ S \ {y} : p(R; y, z) > p(R; z, y)}|
for all y ∈ ICW (R, S).

We denote the set of maximal intermediate Condorcet winners for R in S by MCW (R, S).
By definition, MCW (R, S) is non-empty if and only if ICW (R, S) is non-empty. Returning
to Example 3, it follows that x is a maximal intermediate Condorcet winner for R in S but
y is not.

The axiom of maximal intermediate Condorcet winner consistency is obtained by re-
placing the set of intermediate Condorcet winners with its maximal variant.

Maximal intermediate Condorcet winner consistency. For all (R, S) ∈ D, if
MCW (R, S) 6= ∅, then

F (R, S) ⊆ MCW (R, S).
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In analogy to the social choice function that selects the entire set of intermediate Con-
dorcet winners, a corresponding function FMCW for maximal intermediate Condorcet win-
ners can be defined. The function has the same domain DIC as F ICW because maximal
intermediate Condorcet winners exist if and only if intermediate Condorcet winners ex-
ist. Formally, this social choice function is defined by FMCW (R, S) = MCW (R, S) for
all (R, S) ∈ DIC . The following theorem establishes which of our reference properties are
satisfied by this social choice function.

Theorem 3 The social choice function FMCW

(a) satisfies exclusion of dominated candidates;

(b) satisfies independence of unanimously worst candidates;

(c) violates pairwise justifiability if |X| > 3.

Proof. (a) To prove that FMCW satisfies exclusion of dominated candidates, let (R, S) ∈
DIC , and suppose that z, w ∈ S are such that zPiw for all i ∈ N . This implies p(R; z, w) =
n and p(R; w, z) = 0 and, therefore, p(R; w, z) < p(R; z, w). This inequality implies that w
cannot be an intermediate Condorcet winner for R in S. Therefore, w cannot be a maximal
intermediate Condorcet winner for R in S so that w 6∈ FMCW (R, S).

(b) To prove that FMCW satisfies independence of unanimously worst candidates, let
(R, S), (R, S ∪ {w}) ∈ DIC , where w ∈ X \ S is such that zPiw for all i ∈ N and for all
z ∈ S.

To show that FMCW (R, S) ⊆ FMCW (R, S ∪ {w}), observe first that the addition of
candidate w who is worst according to all voters only has the effect of increasing the number
of candidates who lose against a member of FMCW (R, S) by one. Thus, every maximal
intermediate Condorcet winner for R in S is also a maximal intermediate Condorcet winner
for R in S ∪{w} and, therefore, any candidate who is a member of FMCW (R, S) must also
be a member of FMCW (R, S ∪ {w}), which establishes the set inclusion.

To prove the reverse set inclusion, suppose that x ∈ FMCW (R, S ∪ {w}). Because
every candidate in S wins against w with a score of n to zero, removing w from S ∪ {w}
reduces, for each candidate in FMCW (R, S), the number of wins of this candidate by one.
Therefore, because candidate x wins against the maximal number of other candidates
within ICW (R, S ∪ {w}), x also wins against the maximal number of candidates within
ICW (R, S); note that the latter set is non-empty because MCW (R, S) is non-empty.
Therefore, x is a candidate that records the maximal number of wins within the non-empty
set ICW (R, S) which, by definition, implies that x ∈ MCW (R, S) = FMCW (R, S).

(c) To show that FMCW violates pairwise justifiability, consider the following example.

Example 6 Let S = X = {x, y, z, w}, N = {1, 2}, and define the profile R by xP1zP1yP1w
and yP2wP2xP2z. Both x and y are maximal intermediate Condorcet winners and, there-
fore, FMCW (R, S) = {x, y}. This profile is single-peaked, as illustrated in Figure 3.

Now consider the profile R′ given by xP ′
1yP ′

1zP
′
1w and R′

2 = R2. The only change
when moving from R to R′ is that the relative position of y and z is reversed; there is no
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Figure 3: The profile R of Example 6.
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Figure 4: The profile R′ of Example 6.
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change that involves candidate x—and, therefore, no deterioration of x relative to any other
candidate. Both x and y are intermediate Condorcet winners for R′ in S but x no longer
is maximal—it registers only one win (against w), whereas y now wins against two other
candidates (z and w). Therefore, x 6∈ FMCW (R′, S) = {y} so that x is removed from the
set of selected candidates even though its relative position to the other candidates did not
deteriorate. This is a violation of pairwise justifiability. As is the case for R, the profile
R′ is single-peaked; see Figure 4.

Comparing Theorems 2 and 3, there is no immediately obvious way of favoring one of
the two notions of strong voter support over the other. Both F ICW and FMCW satisfy ex-
clusion of dominated candidates. Choosing the entire set of intermediate Condorcet winners
conflicts with independence of unanimously worst candidates and complies with pairwise
justifiability. Conversely, selecting only the set of maximal intermediate Condorcet winners
satisfies independence of unanimously worst candidates and violates pairwise justifiability.
The failure of the maximal variant to comply with pairwise justifiability is rooted in the
dependence of the criterion on other candidates. Whereas the privileged status of a can-
didate as an intermediate Condorcet winner can be identified exclusively in terms of this
candidate’s performance against others, this information no longer suffices to determine
whether an intermediate Condorcet winner possesses the maximality property. In addition
to calculating the number of pairwise wins achieved by the candidate in question, the pair-
wise contests that involve all other intermediate Condorcet winners must be consulted as
well. Especially in the context of defining a notion of privileged status, the observation
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that a candidate x can achieve such a position on its own without having to consult com-
parisons that do not involve x, this can be seen as an argument in favor of the entire set of
intermediate Condorcet winners. On the other hand, independence of unanimously worst
candidates has considerable appeal and is often regarded as being highly desirable because
it permits the elimination of unambiguously undesirable options without influencing the
resulting choice.

We do not propose a dual maximal intermediate Condorcet loser principle because there
is an important asymmetry between intermediate Condorcet winners and intermediate Con-
dorcet losers. While it may be desirable to select some but not all intermediate Condorcet
winners, all intermediate Condorcet losers can be considered unappealing and, therefore,
we think that it is appropriate to remove all of them from consideration.

5 A class of social choice functions

A natural class of social choice functions that satisfy intermediate Condorcet winner con-
sistency and intermediate Condorcet loser consistency is obtained by assigning priorities
in a lexicographic manner. This method parallels the definition of some social choice func-
tions that can be found in the earlier literature. Daunou (1803), a strong supporter of
Condorcet’s views, suggests such a social choice function. According to the interpretation
of Barberà, Bossert, and Suzumura (2021), Daunou’s method proceeds as follows. Strong
Condorcet winner consistency is used as the primary criterion—that is, if a strong Con-
dorcet winner exists, this candidate—and only this candidate—is to be chosen. If a strong
Condorcet winner does not exist, a second stage is reached in which the best candidates
according to the plurality rule are selected after the iterative elimination of the strong
Condorcet losers. Black (1958, p. 66) suggests to employ the Borda (1781) rule in place of
the plurality rule if a strong Condorcet winner does not exist. See Morales (1797) for an
elaborate endorsement of Borda’s method. A characterization of Daunou’s proposal and
a general discussion of the lexicographic assignment of priorities can be found in Barberà,
Bossert, and Suzumura (2021).

If the set of intermediate Condorcet losers is removed from a set of candidates S ∈ X ,
new intermediate Condorcet losers may appear in the reduced set. Therefore, we propose to
eliminate intermediate Condorcet losers in a cumulative fashion; see Barberà, Bossert, and
Suzumura (2021) for an analogous observation that applies to strong Condorcet losers. We
employ an iterative procedure and determine, after each step, whether there are candidates
that have become intermediate Condorcet losers as a consequence of removing others in
earlier steps. Because the set of candidates is finite, this procedure can be continued
until no further intermediate Condorcet losers remain. Furthermore, because intermediate
Condorcet losers must lose against some other candidate(s), the set that remains is non-
empty. That the iterative procedure may indeed be necessary is illustrated by the following
example, taken from Barberà, Bossert, and Suzumura (2021, p. 268).

Example 7 Suppose that the feasible set of candidates is given by S = X = {x, y, z, w, v}
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and the set of voters is N = {1, 2, 3}. Define the profile R by

xP1yP1zP1wP1v,

yP2zP2xP2wP2v,

wP3zP3xP3yP3v.

It follows that ICW (R, S) = ∅, ICL(R, S) = {v}, and ICL(R, S \ {v}) = {w}. Thus,
it is possible that a new intermediate Condorcet loser (here, candidate w) emerges once
an intermediate Condorcet loser (here, candidate v) is eliminated from the original feasible
set. The set of intermediate Condorcet winners is empty, which ensures that the example is
relevant in the sense that the second stage of the lexicographic procedure alluded to earlier
is indeed reached.

The profile of the above example is not single-peaked. Because we want the set of interme-
diate Condorcet losers to be non-empty, the profile to be constructed cannot be such that all
pairs of distinct candidates are in a tie with each other. Therefore, because the set of inter-
mediate Condorcet winners is supposed to be empty, Theorem 1 implies that the requisite
profile must be cyclical in the feasible set so that the profile cannot be single-peaked.

We define CICL(R, S), the cumulative set of intermediate Condorcet losers for a profile
R ∈ Rn in the feasible set S ∈ X , iteratively as follows (again, see Barberà, Bossert, and
Suzumura, 2021, for an analogous procedure in the context of strong Condorcet losers).
If ICL(R, S) = ∅, let CICL(R, S) = ∅. If ICL(R, S) 6= ∅, let S1 = S \ ICL(R, S). If
ICL(R, S1) 6= ∅, let S2 = S1 \ ICL(R, S1) and so on until we reach a step K such that
no intermediate Condorcet losers remain—that is, ICL(R, SK) = ∅. Because S is finite,
such a step K must exist. The cumulative set of intermediate Condorcet losers for R in S
is given by

CICL(R, S) = ICL(R, S) ∪ ICL(R, S1) ∪ . . . ∪ ICL(R, SK−1)

and, because the last iteratively eliminated intermediate Condorcet losers must lose against
some candidate(s) who are not intermediate Condorcet losers, the set S \ CICL(R, S) of
remaining candidates is non-empty.

As an illustration, consider Example 7. Candidate v is the unique intermediate Con-
dorcet loser for R in S = {x, y, z, w, v} and, therefore, ICL(R, S) = {v}. After elimi-
nating v, we obtain the reduced set S1 = S \ ICL(R, S) = {x, y, z, w}. It follows that
ICL(R, S1) = ICL(R, {x, y, z, w}) = {w} and, after removing w, the remaining set is
S2 = S1 \ ICL(R, S1) = {x, y, z}. There are no intermediate Condorcet losers for R in
{x, y, z} so that ICL(R, S2) = ∅ and, therefore, the cumulative set of intermediate Con-
dorcet losers for R in S is CICL(R, S) = {w, v}. The set of remaining candidates is given
by S \ CICL(R, S) = {x, y, z}.

In order to obtain a sensible lexicographic assignment of priorities that selects the set
of intermediate Condorcet winners in the first instance, it is important to ensure that
the successive elimination of intermediate Condorcet losers does not generate intermediate
Condorcet winners that were not intermediate Condorcet winners in a larger set obtained
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at an earlier stage in the iteration. This is indeed the case, as established in the following
theorem.

Theorem 4 For all R ∈ Rn and for all S ∈ X ,

ICW (R, S \ ICL(R, S)) ⊆ ICW (R, S). (7)

Proof. Let R ∈ Rn and S ∈ X , and suppose that x ∈ ICW (R, S \ ICL(R, S)). By
definition,

p(R; x, z) ≥ p(R; z, x) for all z ∈ S\({x}∪ICL(R, S)) with at least one strict inequality.

If x 6∈ ICW (R, S), there exists y ∈ ICL(R, S) such that p(R; x, y) < p(R; y, x). This
inequality is a contradiction because y is an intermediate Condorcet loser for R in S.
Thus, x 6∈ ICW (R, S), which proves the set inclusion in (7).

The reverse set inclusion of (7) is not valid. As shown in the following example, it is
possible that an intermediate Condorcet winner for a profile R in a feasible set S is not an
intermediate Condorcet winner for R in S \ ICL(R, S).

Example 8 Suppose that the set of feasible candidates is S = X = {x, y, z} and the set of
voters is N = {1, 2, 3, 4}. Define the profile R by

xP1yP1z,

xP2yP2z,

zP3yP3x,

yP4xP4z.

Candidate x ties with candidate y with a score of two to two, and x wins against z with
a score of three to one. Likewise, candidate y ties with candidate x with a score of two to
two, and y wins against z with a score of three to one. It follows that ICW (R, S) = {x, y}
and ICL(R, S) = {z}. After eliminating the intermediate Condorcet loser z from S, we
obtain S \ ICL(R, S) = {x, y} and

ICW (R, S \ ICL(R, S)) = ICW (R, {x, y}) = ∅

so that x and y are intermediate Condorcet winners for R in S = {x, y, z} but not in
S \ ICL(R, S) = {x, y}. The profile defined in this example is single-peaked, as illustrated
in Figure 4.

In analogy to the social choice functions advocated by Daunou (1803) and by Black
(1958), we propose the following general class of intermediate Condorcet lexicographic
social choice functions. In the first stage, the set of all intermediate Condorcet winners
is chosen if this set is non-empty. If there are no intermediate Condorcet winners, any
non-empty subset from the set of those who are not cumulative intermediate Condorcet
losers is selected.
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Figure 4: The profile R of Example 8.
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Definition 1 Let G be an arbitrary social choice function. The intermediate Condorcet
lexicographic social choice function FG corresponding to G is defined as follows. For all
R ∈ Rn and for all S ∈ X ,

(i) if ICW (R, S) 6= ∅, then FG(R, S) = ICW (R, S);

(ii) if ICW (R, S) = ∅, then FG(R, S) = G(R, S \ CICL(R, S)).

All intermediate Condorcet lexicographic social choice functions satisfy intermediate Con-
dorcet winner consistency and intermediate Condorcet loser consistency.

As illustrated by Example 7, removing cumulative intermediate Condorcet losers before
the application of the tie-breaking criterion is essential for some social choice functions G.
Observe that candidate w in the example is a plurality winner and, therefore, it would
be selected if G is the method of plurality decision, in spite of it being an intermediate
Condorcet loser (in fact, even a strong Condorcet loser) once candidate v is eliminated.

If the set of intermediate Condorcet winners is replaced with the set of maximal in-
termediate Condorcet winners in the definition of our class of social choice functions, the
members of the resulting class satisfy maximal intermediate Condorcet winner consistency
and intermediate Condorcet loser consistency. Thus, our lexicographic method is applicable
no matter which of the two variants is favored.
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