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Abstract

We consider the generalization of the classical Shapley and Scarf housing market model

(Shapley and Scarf, 1974) to so-called multiple-type housing markets (Moulin, 1995).

Throughout the paper, we focus on strict preferences. When preferences are separable,

the prominent solution for these markets is the typewise top-trading-cycles (tTTC) mech-

anism.

We first show that for lexicographic preferences, a mechanism is unanimous (or onto),

individually rational, strategy-proof, and non-bossy if and only if it is the tTTC mechanism.

Second, we obtain a corresponding characterization for separable preferences. We obtain

additional characterizations when replacing [strategy-proofness and non-bossiness] with

self-enforcing group (or pairwise) strategy-proofness. Finally, we show that for strict pref-

erences, there is no mechanism satisfying unanimity, individual rationality, and strategy-

proofness. We obtain further impossibility results for strict preferences based on weakening

unanimity to ontoness and on extending the tTTC solution.

Our characterizations of the tTTC mechanism constitute the first characterizations

of an extension of the prominent top-trading-cycles (TTC) mechanism to multiple-type

housing markets.
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1 Introduction

In many applied matching problems, indivisible goods that are in unit demand have to be

assigned without monetary transfers. One of the most prominent such problems is modeled by

classical Shapley-Scarf housing markets (Shapley and Scarf, 1974). Shapley and Scarf (1974)

consider an exchange economy in which each agent owns an indivisible object (say, a house); each

agent has preferences over houses and wishes to consume exactly one house. The objective of the

market designer then is to reallocate houses among agents. When preferences are strict, Shapley

and Scarf (1974) show that the strict core (defined by a weak blocking notion) has remarkable

features: it is non-empty,1 and can be easily calculated by the so-called top-trading-cycles (TTC)

algorithm (due to David Gale). Moreover, the TTC mechanism that assigns the unique strict

core allocation satisfies important incentive properties, strategy-proofness (Roth, 1982) as well

as the stronger property of group strategy-proofness (Bird, 1984). Furthermore, Ma (1994)

and Svensson (1999) show that the TTC mechanism is the unique mechanism satisfying Pareto

efficiency, individual rationality, and strategy-proofness. Throughout the paper, we focus on

strict preferences.

However, more general problems of exchanging indivisible objects that are in multi-unit

demand are known to be very difficult. In this paper, we consider an extension of the classical

Shapley-Scarf housing markets by allowing a specific kind of multi-unit demand: multiple-type

housing markets, to use the language of Moulin (1995).2 In this model, objects are of different

types (say, houses, cars, etc.) and agents initially own and wish to consume exactly one object of

each type. A familiar example for most readers would be the situation of students’ enrollment at

many universities where courses are taught in small groups and in multiple sessions (Klaus, 2008).

Furthermore, for term paper presentations during a course, students may want to exchange their

assigned topics and dates (Mackin and Xia, 2016); hospitals may want to improve their surgery

schedule for surgeons by swapping surgery staff, operating rooms, and dates (Huh et al., 2013);

and in cloud computing (Ghodsi et al., 2011, 2012) and 5G network slicing (Peng et al., 2015;

Bag et al., 2019; Han et al., 2019), there may be several types of resources that agents require,

including CPU, memory, and storage.

This model is firstly studied by Konishi et al. (2001). Their results are mainly negative:

they show that even if we further restrict preferences to be strict and additively separable, the

strict core may still be empty. Moreover, there exists no mechanism that is Pareto efficient,

individually rational, and strategy-proof.

Despite their negative results, for (strictly) separable preferences, Wako (2005) suggests an

alternative solution concept to the strict core by first decomposing a multiple-type housing

1Roth and Postlewaite (1977) show that the strict core is single-valued.
2There are many other resource allocation models with multi-unit demand, such as Pápai (2001, 2007) and

Manjunath and Westkamp (2021).
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market into typewise submarkets and second, determining the strict core in each submarket.

Wako (2005) calls this unique outcome the commoditywise competitive allocation and shows

that it is implementable in (self-enforcing) coalition-proof Nash equilibria but not in strong

Nash equilibria.3

Based on Wako’s result, we investigate the mechanism that always assigns the commoditywise

competitive allocation; since this allocation can be obtained by using the TTC algorithm for

each object type, we refer to it as the typewise TTC (tTTC) mechanism. Although the tTTC

mechanism is not Pareto efficient, it does have many desirable properties: it is individually

rational, strategy-proof, and second-best incentive compatible, i.e., it is not Pareto dominated

by any other strategy-proof mechanism (Klaus, 2008). In view of these positive results, one may

wonder whether the tTTC mechanism can be characterized by weakening Pareto efficiency and

strengthening strategy-proofness.

For Shapley-Scarf housing markets with strict preferences, a characterization along these

lines is provided by Takamiya (2001): he shows that the TTC mechanism is the only mechanism

satisfying unanimity, individual rationality, and group strategy-proofness.4 Based on Takamiya’s

result, one could now conjecture that this characterization of the TTC mechanism for Shapley-

Scarf housing markets can be carried over to the tTTC mechanism for multiple-type housing

markets. That conjecture is almost true; however, we need to weaken group strategy-proofness

to strategy-proofness and non-bossiness.5 In other words, inspired by Takamiya’s result for

Shapley-Scarf housing markets, we show that, remarkably, the tTTC mechanism is the only

mechanism satisfying unanimity (or ontoness), individual rationality, strategy-proofness, and

non-bossiness (see Theorems 1 and 2 for lexicographic and separable preferences, respectively).

We obtain additional characterizations when replacing [strategy-proofness and non-bossiness]

with self-enforcing group (or pairwise) strategy-proofness (Corollaries 1 and 2).

Our characterizations of the tTTC mechanism constitute the first characterizations of an ex-

tension of the prominent top-trading-cycles (TTC) mechanism to multiple-type housing markets.

Furthermore, our results suggest that when preferences are separable, the tTTC mechanism is

outstanding; first, because some efficiency in the form of unanimity is preserved (even if full

Pareto efficiency cannot be reached), and second, because of its incentive robustness in the

form of strategy-proofness, non-bossiness, and self-enforcing group (pairwise) strategy-proofness

(even if full group strategy-proofness cannot be reached). Moreover, we also provide several im-

possibility results (Theorems 3 and 4, Corollaries 3 and 4) for strict (but otherwise unrestricted)

3However, (1) the commoditywise competitive allocation may be Pareto inefficient; and (2) the mechanism

that always assigns this allocation is not group strategy-proof (see Wako, 2005, Section 6, for details).
4In fact, Takamiya’s characterization is based on ontoness, a weakening of unanimity. However, in the presence

of group strategy-proofness, ontoness coincides with unanimity.
5When preferences are strict but otherwise unrestricted, the combination of strategy-proofness and non-

bossiness is equivalent to group strategy-proofness. Example 1 shows that this is not true for separable prefer-

ences.
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preferences:

� there is no mechanism satisfying unanimity, individual rationality, and strategy-proofness

(Theorem 3);

� there is no mechanism satisfying ontoness, individual rationality, strategy-proofness, and

non-bossiness (Corollary 3);

� there is no individually rational and strategy-proof mechanism that extends the tTTC

mechanism from lexicographic (separable) preferences to strict preferences (Theorem 4);

and

� there is no strategy-proof and non-bossy mechanism that extends the tTTC mechanism

from lexicographic (separable) preferences to strict preferences (Corollary 4).

The rest of the paper is organized as follows. In the following section, Section 2, we introduce

multiple-type housing markets, mechanisms and their properties, and the tTTC mechanism. We

state our results in Section 3. In Subsection 3.1, we first show that for lexicographic preferences,

a mechanism is unanimous (or onto), individually rational, strategy-proof, and non-bossy if

and only if it is the tTTC mechanism (Theorem 1). In Subsection 3.2, using Theorem 1, we

obtain a corresponding characterization for separable preferences (Theorem 2). We would like

to emphasize that the proof strategy to use lexicographic preferences as a “stepping stone” to

obtain a corresponding result for separable preferences is, to the best of our knowledge, new. In

Subsections 3.1 and 3.2 we obtain additional characterizations when replacing [strategy-proofness

and non-bossiness] with self-enforcing group (or pairwise) strategy-proofness (Corollaries 1 and

2). In Subsection 3.3 and Appendix F, we finally show several impossibility results (Theorems 3

and 4, Corollaries 3 and 4). Section 4 concludes with a discussion of our results and how they

relate to the literature.

2 The model

Multiple-type housing markets

We consider a barter economy without monetary transfers formed by n agents and n × m

indivisible objects. Let N = {1, . . . , n} be a finite set of agents. A nonempty subset of agents

S ⊆ N is a coalition. We assume that there exist m ≥ 1 (distinct) types of indivisible objects and

n (distinct) indivisible objects of each type. We denote the set of types by T = {1, ...,m}. Note
that for m = 1 our model equals the classical Shapley-Scarf housing market model (Shapley and

Scarf, 1974).
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Each agent i ∈ N is endowed with exactly one object of each type t ∈ T , denoted by

oti. Hence, each agent i’s endowment is a list oi = (o1i , . . . , o
m
i ). The set of type-t objects is

Ot = {ot1, ..., otn}, and the set of all objects is O = {o11, o21, . . . , o1n, o2n, . . . , omn }. In particular,

|O| = n×m.

For each i ∈ N , an allotment xi assigns one object of each type to agent i, i.e., xi is a list

xi = (x1
i , . . . , x

m
i ) ∈ Πt∈TO

t, where xt
i ∈ Ot is agent i’s type-t allotment. We assume that each

agent i has complete, antisymmetric, and transitive preferences Ri over all possible allotments,

i.e., Ri is a linear order over Πt∈TO
t.6 For two allotments xi and yi, xi is weakly preferred to

yi if xi Ri yi, and xi is strictly preferred to yi if [xi Ri yi and not yi Ri xi], denoted by xi Pi yi.

Finally, since preferences over allotments are strict, agent i is indifferent between xi and yi only

if xi = yi. We denote preferences as ordered lists, e.g., Ri : xi, yi, zi instead of xi Pi yi Pi zi.

The set of all preferences is denoted by R, which we will also refer to as the strict preference

domain.

A preference profile specifies preferences for all agents and is denoted by a list R =

(R1, . . . , Rn) ∈ RN . We use the standard notation R−i = (R1, . . . , Ri−1, Ri+1, . . . , Rn) to de-

note the list of all agents’ preferences, except for agent i’s preferences. Furthermore, for each

coalition S we define RS = (Ri)i∈S and R−S = (Ri)i∈N\S to be the lists of preferences of the

members of coalitions S and N\S, respectively.

In addition to the domain of strict preferences, we consider two preference subdomains based

on agents’ “marginal preferences”: assume that for each i ∈ N and for each type t ∈ T , agent i

has complete, antisymmetric, and transitive preferences Rt
i over the set of type-t objects Ot.

We refer to Rt
i as agent i’s type-t marginal preferences, and denote by Rt the set of all type-t

marginal preferences. Then, we can define the following two preference domains.

(Strictly) Separable preferences. Agent i’s preferences Ri ∈ R are separable if for each

t ∈ T there exist type-t marginal preferences Rt
i ∈ Rt such that for any two allotments xi and yi,

if for all t ∈ T, xt
i R

t
i y

t
i , then xi Ri yi.

Rs denotes the domain of separable preferences.

Before defining our next preference domain, we introduce some notation. We use a bijective

function πi : T → T to order types according to agent i’s “(subjective) importance,” with πi(1)

being the most important and πi(m) being the least important object type. We denote πi as an

ordered list of types, e.g., by πi = (2, 3, 1), we mean that πi(1) = 2, πi(2) = 3, and πi(3) = 1.

For each agent i ∈ N and each allotment xi = (x1
i , . . . , x

m
i ), x

πi
i = (x

πi(1)
i , . . . , x

πi(m)
i ) denotes the

allotment after rearranging it with respect to the object-type importance order πi.

6Preferences Ri are complete if for any two allotments xi, yi, xi Ri yi or yi Ri xi; they are antisymmetric if

xiRi yi and yiRi xi imply xi = yi; and they are transitive if for any three allotments xi, yi, zi, xiRi yi and yiRi zi

imply xi Ri zi.
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(Separably) Lexicographic preferences. Agent i’s preferences Ri ∈ R are (separably) lex-

icographical if they are separable with type-t marginal preferences (Rt
i)t∈T and there exists an

object-type importance order πi : T → T such that for any two allotments xi and yi,

if x
πi(1)
i P

πi(1)
i y

πi(1)
i or

if there exists a positive integer k ≤ m− 1 such that

x
πi(1)
i = y

πi(1)
i , . . . , x

πi(k)
i = y

πi(k)
i , and x

πi(k+1)
i P

πi(k+1)
i y

πi(k+1)
i ,

then xi Pi yi.

Rl denotes the domain of lexicographic preferences.

Note that Ri ∈ Rl can be represented by a m+1-tuple Ri = (R1
i , . . . , R

m
i , πi) = ((Rt

i)t∈T , πi),

or a strict ordering of all objects,7 i.e., Ri lists first all π(1) objects (according to R
π(1)
i ), then

all π(2) objects (according to R
π(2)
i ), and so on. We provide a simple illustration in Example 1.

Note that if m > 1,

Rl ⊊ Rs ⊊ R.

An allocation x partitions the set of all objectsO into agents’ allotments, i.e., x = {x1, . . . , xn}
is such that for each t ∈ T , ∪i∈Nx

t
i = Ot and for each pair i ̸= j, xt

i ̸= xt
j. For simplicity,

sometimes we will restate an allocation as a list x = (x1, . . . , xn). The set of all allocations is

denoted by X, and the endowment allocation is denoted by e = (o1, . . . , on).

We assume that when facing an allocation x, there are no consumption externalities and

each agent i ∈ N only cares about his own allotment xi. Hence, each agent i’s preferences over

allocations X are essentially equivalent to his preferences over allotments Πt∈TO
t. With some

abuse of notation, we use notation Ri to denote an agent i’s preferences over allotments as well

as his preferences over allocations, i.e., for each agent i ∈ N and for any two allocations x, y ∈ X,

x Ri y if and only if xi Ri yi.
8

A (multiple-type housing) market is a triple (N, e,R). When no confusion is possible about

the set of agents N and the endowment allocation e, we denote market (N, e,R) by R. Thus,

the domain of strict preference profiles RN also denotes the set of all markets.

Mechanisms and properties

Note that the following definitions and results for the domain of strict preference profiles RN can

be formulated for the domain of separable preference profiles RN
s or the domain of lexicographic

preference profiles RN
l .

7See Feng and Klaus (2022, Remark 1) for details.
8Note that when extending strict preferences over allotments to preferences over allocations without consump-

tion externalities, strictness is lost because an agent is indifferent between any two allocations where he gets the

same allotment.
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A mechanism (on RN) is a function f : RN → X that assigns to each market R ∈ RN an

allocation f(R) ∈ X, and

� for each i ∈ N , fi(R) is agent i’s allotment ;

� for each i ∈ N and each t ∈ T , f t
i (R) is agent i’s type-t allotment

under mechanism f at R.

We next introduce and discuss some well-known properties for allocations and mechanisms.

Let R ∈ RN .

First we consider a voluntary participation condition for an allocation x to be implementable

without causing agents any harm: no agent will be worse off than at his endowment.

Definition 1 (Individual rationality).

An allocation x ∈ X is individually rational if for each agent i ∈ N , xi Ri oi. A mechanism on

RN is individually rational if for each market, it assigns an individually rational allocation.9

Next, we consider two well-known efficiency criteria.

Definition 2 (Pareto efficiency).

An allocation y ∈ X Pareto dominates allocation x ∈ X if for each agent i ∈ N , yi Ri xi, and

for at least one agent j ∈ N , yj Pj xj. An allocation x ∈ X is Pareto efficient if there is no

allocation y ∈ X that Pareto dominates it. A mechanism on RN is Pareto efficient if for each

market, it assigns a Pareto efficient allocation.

Definition 3 (Unanimity).

An allocation x ∈ X is unanimously best if for each agent i ∈ N and each allocation y ∈ X, we

have xRi y.
10 A mechanism on RN is unanimous if for each market, it assigns the unanimously

best allocation whenever it exists.

If a unanimously best allocation exists for R ∈ RN , then that allocation is the only Pareto

efficient allocation for R. Hence, Pareto efficiency implies unanimity.

Next, we introduce a weaker condition than unanimity that guarantees that no allocation is

a priori excluded.

Definition 4 (Ontoness).

A mechanism on RN is onto if each allocation is assigned to some markets. In other words, a

mechanism is onto if it is an onto function.

9Note that even if preferences Ri are lexicographic, xi Ri oi does not imply that for each type t ∈ T , xt
i R

t
i o

t
i.

For instance, in Example 1, (H2, C2) R1 (H1, C1) but C1 R
C
1 C2. The stronger requirement that for each type

t ∈ T , xt
i R

t
i o

t
i, which we call marginal individual rationality, is introduced for lexicographic preferences in

Definition 12 (Appendix B).
10Since all preferences are strict, the set of unanimously best allocations is empty or single-valued.
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It is immediate that unanimity implies ontoness (see also Lemma 1).

The next two properties are incentive or invariance properties that model that no agent can

benefit from misrepresenting his preferences or alter other agents’ allotments.

Definition 5 (Strategy-proofness).

A mechanism f on RN is strategy-proof if for each R ∈ RN , each agent i ∈ N , and each

preference relation R′
i ∈ R, fi(Ri, R−i)Ri fi(R

′
i, R−i), i.e., agent i cannot manipulate mechanism

f at R via R′
i.

Next, we consider a well-known property for mechanisms that restricts each agent’s influence:

no agent can change other agents’ allotments without changing his own allotment.

Definition 6 (Non-bossiness).

A mechanism f on RN is non-bossy if for each R ∈ RN , each agent i ∈ N , and each R′
i ∈ R,

fi(Ri, R−i) = fi(R
′
i, R−i) implies f(Ri, R−i) = f(R′

i, R−i).

We already mentioned that unanimity implies ontoness. We next show that, in the presence

of strategy-proofness and non-bossiness, ontoness implies unanimity.

Lemma 1.

(a) If a mechanism on RN is unanimous, then it is onto.

(b) If a mechanism on RN is strategy-proof, non-bossy, and onto, then it is unanimous.

The proof of Lemma 1 is relegated to Appendix A.

The next property models that no coalition can benefit from misrepresenting their prefer-

ences.

Definition 7 (Group strategy-proofness).

A mechanism f on RN is group strategy-proof if for each R ∈ RN , there is no coalition S ⊆ N

and no preference list R′
S = (R′

i)i∈S ∈ RS such that for each i ∈ S, fi(R
′
S, R−S)Ri fi(R), and for

some j ∈ S, fj(R
′
S, R−S)Pj fj(R), i.e., coalition S cannot manipulate mechanism f at R via R′

S.

Group-strategy-proofness implies strategy-proofness and non-bossiness. In fact, using the

arguments of the proof of Pápai (2000, Lemma 1), it is easy to see that, when preferences are

(strict and) unrestricted (i.e., the domain is RN), the combination of strategy-proofness and

non-bossiness coincides with group strategy-proofness. However, on some smaller domains of

preference profiles (e.g., RN
s / RN

l ), group strategy-proofness can be stronger than the combi-

nation of strategy-proofness and non-bossiness (see Example 1).

Finally, we introduce a strategic robustness property that is stronger than strategy-proofness

and weaker than group strategy-proofness; group strategy-proofness is weakened by requiring

that coalitional manipulations are “self-enforcing.”
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Definition 8 (Self-enforcing group (pairwise) strategy-proofness).

A coalition S ⊆ N can manipulate mechanism f on RN at R ∈ RN in a self-enforcing manner

if S can manipulate f at R via some deviation R′
S such that for each V ⊊ S and each ℓ ∈ V ,

fℓ(R
′
S, RN\S)Rℓ fℓ(RV , R

′
S\V , RN\S).

11 A mechanism f is self-enforcing group strategy-proof if

no coalition can manipulate f in a self-enforcing manner at any R ∈ RN . A mechanism f

is self-enforcing pairwise strategy-proof if no coalition S with S ≤ |2| can manipulate f in a

self-enforcing manner at any R ∈ RN .

Serizawa (2006), Alva (2017), and Biró et al. (2022a) introduce and analyze related (but slightly

different) notions of self-enforcing pairwise strategy-proofness for various economic models. Simi-

larly to Alva (2017, Proposition 1) and Biró et al. (2022a, Proposition 11), we show that strategy-

proofness and non-bossiness are equivalent to self-enforcing pairwise strategy-proofness as well

as self-enforcing group strategy-proofness. Thus, as the combination with strategy-proofness

reveals, the invariance property non-bossiness embodies an important aspect of group incentive

robustness.

Lemma 2.

The following statements for a mechanism f on RN are equivalent.

(i) f is strategy-proof and non-bossy;

(ii) f is self-enforcing pairwise strategy-proof;

(iii) f is self-enforcing group strategy-proof.

When preferences are (strict and) unrestricted (i.e., the domain isRN), Lemma 2 follows from the

equivalence of group strategy-proofness with [strategy-proofness and non-bossiness]. However,

recall that definitions and results in this section also apply to the domain of separable preference

profiles RN
s and the domain of lexicographic preference profiles RN

l . On these smaller domains

of preference profiles, Lemma 2 establishes new results. The proof of Lemma 2 is relegated to

Appendix A.

We next focus on the domain of separable preference profilesRN
s (the domain of lexicographic

preference profiles RN
l , respectively) and extend Gale’s famous top-trading-cycles (TTC) algo-

rithm to multiple-type housing markets.

Definition 9 (The type-t top-trading-cycles (TTC) algorithm).

Consider a market (N, e,R) such that R ∈ RN
s . For each type t ∈ T , let (N, et, Rt) =

(N, (ot1, . . . , o
t
n), (R

t
1, . . . , R

t
n)) be its associated type-t submarket.

11Intuitively, self-enforcement of a coalitional S’s manipulation means that no sub-coalition V of S has an

incentive to revert to their original preference reports while the remainder of the coalition S \ V continues to

misreport.
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For each type t, we define the top-trading-cycles (TTC) allocation for the type-t submarket

as follows.

Input. A type-t submarket (N, et, Rt).

Step 1. Let N1 := N and Ot
1 := Ot. We construct a directed graph with the set of nodes

N1 ∪ Ot
1. For each agent i ∈ N1, there is an edge from the agent to his most preferred type-t

object in Ot
1 according to Rt

i. For each edge (i, o) we say that agent i points to type-t object o.

For each type-t object o ∈ Ot
1, there is an edge from the object to its owner.

A trading cycle is a directed cycle in the graph. Given the finite number of nodes, at least

one trading cycle exists. We assign to each agent in a trading cycle the type-t object he points

to and remove all trading cycle agents and type-t objects. If there are some agents (and hence

objects) left, we continue with the next step. Otherwise we stop.

Step k. Let Nk be the set of agents that remain after Step k − 1 and Ot
k be the set of type-t

objects that remain after Step k−1. We construct a directed graph with the set of nodes Nk∪Ot
k.

For each agent i ∈ Nk, there is an edge from the agent to his most preferred type-t object in Ot
k

according to Rt
i. For each type-t object o ∈ Ot

k, there is an edge from the object to its owner. At

least one trading cycle exists and we assign to each agent in a trading cycle the type-t object he

points to and remove all trading cycle agents and objects. If there are some agents (and hence

objects) left, we continue with the next step. Otherwise we stop.

Output. The type-t TTC algorithm terminates when each agent in N is assigned an object in

Ot, which takes at most n steps. We denote the object in Ot that agent i ∈ N obtains in the

type-t TTC algorithm by TTCt
i (R

t) and the final type-t allocation by TTCt(Rt).

Definition 10 (tTTC allocations and the tTTC mechanism).

The typewise top-trading-cycles (tTTC) allocation, tTTC(R), is the collection of all type-t TTC

allocations, i.e., for each R ∈ RN
s ,

tTTC(R) =
( (

TTC1
1(R

1), . . . , TTCm
1 (Rm)

)
, . . . ,

(
TTC1

n(R
1), . . . , TTCm

n (Rm)
) )

.

The tTTC mechanism (introduced by Wako, 2005) assigns to each market R ∈ RN
s its tTTC

allocation.

Shapley-Scarf housing market results

As mentioned before, for m = 1 our model equals the classical Shapley-Scarf housing market

model (Shapley and Scarf, 1974) and the tTTC mechanism reduces to the standard TTC mech-

anism. The Shapley-Scarf housing market (with strict preferences) results that are pertinent for

our analysis of multiple-type housing markets are the following.

Result 1 (Bird, 1984).

Let m = 1. The TTC mechanism on RN is group strategy-proof.

10



Recall that group strategy-proofness implies strategy-proofness and non-bossiness. Thus,

Result 1 also implies that the TTC mechanism is non-bossy (Miyagawa, 2002, explicitly shows

this). Also recall that when preferences are (strict and) unrestricted, the combination of strategy-

proofness and non-bossiness coincides with group strategy-proofness. Recently, Alva (2017)

identifies other preference domain properties such that this equivalence holds.

Result 2 (Pápai, 2000; Takamiya, 2001; Alva, 2017).

Let m = 1. A mechanism on RN is strategy-proof and non-bossy if and only if it is group

strategy-proof.

Result 3 (Ma, 1994; Svensson, 1999).

Let m = 1. A mechanism on RN is Pareto efficient, individually rational, and strategy-proof if

and only if it is the TTC mechanism.

Result 4 (Takamiya, 2001).

Let m = 1. A mechanism on RN is onto, individually rational, strategy-proof, and non-bossy

if and only if it is the TTC mechanism.

Extension of existing Shapley-Scarf housing market results to

multiple-type housing markets

The results in the previous subsection imply that for Shapley-Scarf housing markets, the TTC

mechanism on RN satisfies

� Pareto efficiency and hence unanimity and ontoness;

� individual rationality ; and

� group strategy-proofness and hence strategy-proofness and non-bossiness.

The tTTC mechanism (which is defined on RN
s and RN

l ) inherits most of these properties,

except for Pareto efficiency and group strategy-proofness. Hence, TTC Results 1, 2, and 3 do

not extend to the tTTC mechanism when more than one object type is allocated.

Proposition 1. The tTTC mechanism on RN
s (RN

l , respectively) satisfies unanimity, ontoness,

individual rationality, strategy-proofness, non-bossiness, and self-enforcing group (pairwise)

strategy-proofness.

The proof of Proposition 1 is relegated to Appendix A.

Example 1 below shows that the tTTC mechanism on RN
s / RN

l , is neither Pareto efficient

nor group strategy-proof.

11



Example 1 (tTTC is neither Pareto efficient nor group strategy-proof ).

Consider the market with N = {1, 2}, T = {H(ouse), C(ar)}, O = {H1, H2, C1, C2}, and where

each agent i’s endowment is (Hi, Ci). The preference profile R ∈ RN
l is as follows:12

R1 : H2,H1,C1, C2,

R2 : C1,C2,H2, H1.

Thus, agent 1, who primarily cares for houses, would like to trade houses but not cars and

agent 2, who primarily cares about cars, would like to trade cars but not houses. One easily

verifies that tTTC(R) =
(
(H1, C1), (H2, C2)

)
, the no-trade allocation. However, note that since

preferences are lexicographic, both agents would be strictly better off if they traded cars and

houses. Thus, allocation
(
(H2, C2), (H1, C1)

)
Pareto dominates tTTC(R). Hence, tTTC is not

Pareto efficient. Furthermore, assume that both agents (mis)report their preferences as follows:

R′
1 : H2,H1, C2,C1,

R′
2 : C1,C2, H1,H2.

Then, tTTC(R′) =
(
(H2, C2), (H1, C1)

)
, making both agents better off compared to tTTC(R).

Hence, tTTC is not group strategy-proof. Finally, note that

tTTC1(R1, R
′
2) = (H2, C1) P1 (H2, C2) = tTTC1(R

′)

and

tTTC2(R
′
1, R2) = (H2, C1) P2 (H1, C1) = tTTC2(R

′),

and hence R′ is not a manipulation in a self-enforcing manner; the tTTC mechanism does not

violate self-enforcing group (pairwise) strategy-proofness (Proposition 1). Finally, we note that

since tTTC is also onto (Proposition 1), it follows that self-enforcing group strategy-proofness

and ontoness do not imply Pareto efficiency (which is known to be implied by group strategy-

proofness and ontoness). ⋄

While Example 1 shows that tTTC mechanism is not Pareto efficient, Klaus (2008) shows

that it is second-best incentive compatible, i.e., there exists no other strategy-proof mechanism

that Pareto dominates the tTTC mechanism. At the end of her paper, Klaus (2008) presents a

mechanism for classical housing markets that is different from the TTC mechanism and satisfies

individual rationality, second-best incentive compatibility, and strategy-proofness. This mecha-

nism can be extended to multiple-type housing markets by applying it typewise; thus, the tTTC

mechanism is not the unique mechanism that satisfies these properties.

12In all examples we indicate endowments in boldface.
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Example 1 also shows that the tTTC mechanism does not satisfy the three properties that

are used in Result 3. Is there another mechanism that does satisfy the three properties? The

following result gives an answer in the negative: there is no mechanism that satisfies Pareto

efficiency, individual rationality, and strategy-proofness, neither on the domain of separable

preference profiles nor on the domain of lexicographic preference profiles.

Result 5 (Impossible trinity).

(a) Let m > 1. There is no mechanism on RN
s that is Pareto efficient, individually rational,

and strategy-proof (Konishi et al., 2001, Proposition 4.1).

(b) Let m > 1. There is no mechanism on RN
l that is Pareto efficient, individually rational,

and strategy-proof (Sikdar et al., 2017, Theorem 2).

Result 5 implies that there is no other mechanism that does better than the tTTC mechanism

by satisfying the three properties on either the domain of separable preference profiles or the

domain of lexicographic preference profiles. However, the tTTC mechanism on RN
s (RN

l , respec-

tively) does satisfy all the properties used in Result 4. In the next section we answer the question

if Takamiya’s characterization of the TTC mechanism for Shapley-Scarf housing markets can be

extended to characterize the tTTC mechanism for multiple-type housing markets.

Finally, Proposition 1 and Example 1 also demonstrate that the equivalence of strategy-

proofness and non-bossiness with group strategy-proofness (Result 2) does not extend to

multiple-type housing markets with separable or lexicographic preferences (because strategy-

proofness and non-bossiness do not imply group strategy-proofness).

3 Characterizing the tTTC mechanism

From now on, we focus on the multiple-type extension of the Shapley-Scarf housing market model

as introduced by Moulin (1995) with more than 1 agent and more than 1 type, i.e., |N | = n > 1

and |T | = m > 1.13

3.1 Characterizing the tTTC mechanism for lexicographic prefer-

ences

We first show that Takamiya’s result (Takamiya, 2001, Corollary 4.16) can indeed be extended

to characterize the tTTC mechanism for lexicographic preferences.

13One agent multiple-type housing market problems are rather trivial since no trade occurs and for just one

object type, we are back to the Shapley-Scarf housing market model.
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Theorem 1. A mechanism on RN
l is

� unanimous (or onto),

� individually rational,

� strategy-proof, and

� non-bossy

if and only if it is the tTTC mechanism.

From Proposition 1 it follows that the tTTC mechanism satisfies unanimity (or ontoness),

individual rationality, strategy-proofness, and non-bossiness. Next, we explain the uniqueness

part of the proof; the full proof that there is no other mechanism that satisfies the above

properties is relegated to Appendices B and C.

First, we establish several auxiliary results for a mechanism f satisfying the properties of

Theorem 1 (Appendix B): invariance of f under (Maskin) monotonic transformations (Lemma 3)

and marginal individual rationality (Lemma 4). Next, we assume that a mechanism f that is not

equal to the tTTC mechanism, but has the same properties, exists (Appendix C). We then obtain

a contradiction via a well-constructed sequence of preference profiles (by using the lexicographic

nature of preferences).

Lemma 2 implies the following corollary.

Corollary 1. A mechanism on RN
l is

� unanimous (or onto),

� individually rational, and

� self-enforcing group (or pairwise) strategy-proof

if and only if it is the tTTC mechanism.

Note that even if one does not consider the domain of lexicographic preference profiles as an

interesting or relevant preference profile domain for multiple-type housing markets, Theorem 1

serves as an important stepping stone to establish the corresponding characterization of the

tTTC mechanism for separable preferences, see Subsection 3.2. To the best of our knowledge,

the technical tool of “lifting up” a result from lexicographic preferences to separable preferences

is used here for the first time.

We establish the logical independence of the properties in Theorem 1 (Corollary 1) in Ap-

pendix D.
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3.2 Characterizing the tTTC mechanism for separable preferences

Note that for lexicographic preferences, under the tTTC mechanism, the importance order of

types plays no role because the allocation of each type only depends on the agents’ marginal

preferences of each type, i.e., for each market R and type t, tTTCt(R) = TTC(Rt
1, . . . , R

t
n).

Thus, one could conjecture that Theorem 1 also holds for separable preferences. This conjecture

is correct.

Theorem 2. A mechanism on RN
s is

� unanimous (or onto),

� individually rational,

� strategy-proof, and

� non-bossy

if and only if it is the tTTC mechanism.

From Proposition 1 it follows that the tTTC mechanism on RN
s satisfies unanimity (or

ontoness), individual rationality, strategy-proofness, and non-bossiness. Next, we explain the

uniqueness part of the proof; the full proof that there is no other mechanism that satisfies the

above properties is relegated to Appendix E.

The uniqueness part of the proof works as follows. We assume that a mechanism is unanimous

(or onto), individually rational, strategy-proof, and non-bossy. By Theorem 1, we know that if

all agents happen to have lexicographic preferences, then the tTTC allocation is assigned. Next,

we consider a preference profile such that only one agent has separable and non-lexicographic

preferences. We show that for this agent, if he (mis)reports lexicographic preferences without

changing his marginal preferences, then he must receive the same allotment. According to Theo-

rem 1, the allotment (in fact, the whole allocation) then equals the tTTC allotment (allocation).

Hence, f assigns the tTTC allocation if all but one agent have lexicographic preferences. By

applying this preference replacement argument, one by one, for all other agents, we conclude

that f equals the tTTC mechanism on the domain of separable preference profiles.

Lemma 2 implies the following corollary.

Corollary 2. A mechanism on RN
s is

� unanimous (or onto),

� individually rational, and

� self-enforcing group (or pairwise) strategy-proof
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if and only if it is the tTTC mechanism.

The examples in Appendix D are well-defined on the domain of separable preference profiles

and establish the logical independence of the properties in Theorem 2 (Corollary 2).

Having established Theorem 2 on the domain of separable preference profiles, a natural ques-

tion that emerges is whether it is a maximal domain for the existence of a mechanism that

satisfies all properties, i.e., where all properties are compatible. While we do not have an answer

to this question and leave it for future research, we note that there are economically interesting

domains that contain non-separable preferences and on which there exists a mechanism that sat-

isfies all properties. For instance, consider the market with N = {1, 2, 3}, T = {H(ouse), C(ar)},
O = {H1, H2, H3, C1, C2, C3}, and where each agent i’s endowment is (Hi, Ci). Let agents have

(and report) preferences where they primarily care about houses. However, each agent’s prefer-

ences over cars is allowed to depend on the house he receives. For instance,

R1 : (H2, C2), (H2, C1), (H2, C3), (H3, C3), (H3, C2), (H3, C1), (H1, C1), (H1, C2), (H1, C3).

Obviously, agent 1’s preferences R1 are not separable. Sikdar et al. (2017, Theorem 1) implies

that on this domain Sikdar et al.’s (2017) mTTC mechanism satisfies all four properties from

our Theorem 2.

3.3 Impossibility results for strict preferences

Note that for m > 1 the tTTC mechanism is not well-defined for strict preferences since for non-

separable preferences, marginal type preferences cannot be derived. Then, a natural question is

if there exists an extension of the tTTC mechanism to the domain of strict preference profiles

that satisfies our properties. First, observe that the impossibility trinity result (Result 5) implies

that for strict preferences, no mechanism satisfies Pareto efficiency, individual rationality, and

strategy-proofness. Our next result shows that weakening Pareto efficiency to unanimity cannot

resolve this impossibility.

Theorem 3. Let m > 1. Then, no mechanism on RN is

� unanimous,

� individually rational, and

� strategy-proof.

Proof. Without loss of generality, let m = 2. Suppose that there is a mechanism f : RN → X

that is unanimous, individually rational, and strategy-proof. Let x, y ∈ X\{e} be such that at
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x agents 1 and 2 swap their endowments of type 2, i.e.,

x1 = (o11, o
2
2, o

3
1, o

4
1, . . . , o

m
1 ),

x2 = (o12, o
2
1, o

3
2, o

4
2, . . . , o

m
2 ),

and for each i = 3, . . . , n, xi = oi

and at y agents 1 and 2 swap their endowments of type 1, i.e.,

y1 = (o12, o
2
1, o

3
1, o

4
1, . . . , o

m
1 ),

y2 = (o11, o
2
2, o

3
2, o

4
2, . . . , o

m
2 ),

and for each i = 3, . . . , n, yi = oi.

Obviously, x ̸= y.

Let R ∈ RN be such that agents 1 and 2 prefer only their allotments at x and y to their

endowments, they disagree on which allocation is the better one, and each other agent ranks his

endowments highest, i.e.,

R1 : x1, y1, o1, . . . ,

R2 : y2, x2, o2, . . . ,

and for each i = 3, . . . , n, Ri : oi, . . . .

Note that R ∈ RN\RN
s . There are only three individually rational allocations at R: x, y, and e.

Let

� R′
1 : x1, o1, . . .,

� R′
2 : y2, o2, . . .,

� R′′
1 : y1, o1, . . ., and

� R′′
2 : x2, o2, . . ..

Suppose that f(R) = e. Then, by unanimity of f , f(R′′
2, R−2) = x, which implies that

agent 2 has an incentive to misreport R′′
2 at R; contradicting strategy-proofness of f . Therefore,

f(R) ∈ {x, y}.
Suppose that f(R) = x. Then, by strategy-proofness of f , f2(R

′
2, R−2) ̸= y2 and hence by

individual rationality of f , f(R′
2, R−2) = e. However, by unanimity of f , f(R′′

1, R
′
2, R−{1,2}) = y,

which implies that agent 1 has an incentive to misreport R′′
1 at (R

′
2, R−2); contradicting strategy-

proofness of f .

Suppose that f(R) = y. Then, by strategy-proofness of f , f1(R
′
1, R−1) ̸= x1 and hence, by

individual rationality of f , f(R′
1, R−1) = e. However, by unanimity of f , f(R′

1, R
′′
2, R−{1,2}) = x,

which implies that agent 2 has an incentive to misreport R′′
2 at (R

′
1, R−1); contradicting strategy-

proofness of f .
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Examples 2, 3, and 4 in Appendix D are well-defined on the domain of strict preference

profiles and establish the logical independence of the corresponding properties in Theorem 3.

Our next impossibility result is established by weakening unanimity to ontoness and by

adding non-bossiness.

Corollary 3. Let m > 1. Then, no mechanism on RN is

� onto,

� individually rational,

� strategy-proof, and

� non-bossy.

Note that Lemma 2 implies that strategy-proofness and non-bossiness in Corollary 3 can be

replaced by self-enforcing group (or pairwise) strategy-proofness. In fact, on the domain of

strict preference profiles, strategy-proofness and non-bossiness imply group strategy-proofness.

Proof. Lemma 1 (b) together with Theorem 3 implies Corollary 3.

An alternative proof, based on Konishi et al. (2001), is as follows. Since the domain is

RN , strategy-proofness and non-bossiness imply group strategy-proofness. Moreover, group

strategy-proofness and ontoness imply Pareto efficiency. Thus, Konishi et al. (2001, Proposition

4.1) implies Corollary 3.

Examples 2, 3, and 4 in Appendix D are well-defined on the domain of strict preference profiles

and establish the logical independence of ontoness, individual rationality, and strategy-proofness

in Corollary 3. The non-bossiness example, Example 5, in Appendix D can be extended to strict

preferences for m = 1; for m > 1 and with separable preferences, the mechanism is extended by

applying it typewise to all object types. The latter extension method does not work for strict

preferences and the independence of non-bossiness from the other properties in Corollary 3 is

an open problem for m > 1.

We provide two further impossibility results that are based on extending the tTTCmechanism

from lexicographic (separable) preferences to strict preferences in Appendix F.

Finally, an interesting question is whether, besides the domain of strict preferences, there is

a natural and economically interesting preference domain that subsumes separable preferences;

and if so, whether such preference domains have enough structure to establish again either

possibility results (as in the previous section) or impossibility results (as in this section and

Appendix F). We believe that these important questions are beyond the scope of the current

paper, and we leave them for future research.
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4 Discussion

Shapley-Scarf housing markets

Our results (Theorem 1 and Theorem 2) can be compared to Takamiya (2001, Corollary 4.16)

for Shapley-Scarf housing markets. In the proof of Theorem 1 we make explicit use of the

steps used by the TTC algorithm to compute the TTC allocation. In contrast, Takamiya’s

proof is not based on the TTC algorithm. Instead, his proof is based on strict core-stability,14

i.e., the absence of weak blocking coalitions and profitable coalitional deviations. His proof

consists of two steps: (1) strict core-stability implies group strategy-proofness and (2) group

strategy-proofness and ontoness together imply Pareto efficiency. Since the tTTC mechanism

neither satisfies Pareto efficiency nor group strategy-proofness, our results and proof strategy are

logically independent. Moreover, Takamiya’s proof strategy cannot be extended to multiple-type

housing markets because weak blocking coalitions and profitable coalitional deviations need not

coincide (see Feng and Klaus, 2022, for details).

Furthermore, comparing the classical TTC characterization by Ma (1994) with that of

Takamiya (2001) yields the following result. For Shapley-Scarf housing markets, an individ-

ually rational and strategy-proof mechanism is Pareto efficient if and only if it is unanimous

and non-bossy. However, this result does not extend to multiple-type housing markets, as il-

lustrated in Example 1, which shows that tTTC is not Pareto efficient (recall that there, the

no-trade allocation tTTC(R) = ((H1, C1), (H2, C2)) is Pareto dominated by the full-trade allo-

cation ((H2, C2), (H1, C1))).

Object allocation problems with multi-demand and without ownership

Our results can be compared to Monte and Tumennasan (2015) and Pápai (2001) for object

allocation problems with multi-demand and without ownership, i.e., agents can consume more

than one object, and the set of objects is a social endowment.

While Monte and Tumennasan (2015) still assume that objects are of different types and

agents can only consume one object of each type, Pápai (2001) imposes no consumption restric-

tion.15 Although both models are slightly different, their characterization results are similar:

the only mechanisms satisfying Pareto efficiency, strategy-proofness, and non-bossiness are se-

quential dictatorships. Clearly, if agents, like in our model, have property rights, sequential

dictatorship mechanisms will not satisfy individual rationality. Thus, their characterization re-

sults imply an impossibility result for our model, in line with our Theorem 3; however, note that

our efficiency notion in Theorem 3, unanimity, is weaker than Pareto efficiency.

14A mechanism is strictly core-stable if it always assigns a strict core allocation.
15In Pápai (2001), agents can consume any set of objects, and their preferences are linear orders over all sets

of objects.
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Object allocation problems with multi-demand and with ownership

Finally, we compare our results (Theorems 1 and 2) to Pápai (2003).

Similarly to Pápai (2001), Pápai (2003) considers a more general model of allocating objects

to the set of agents who can consume any set of objects. In contrast to Pápai (2001), each

object now is owned by an agent and each agent has strict preferences over all objects, and his

preferences over sets of objects are monotonically responsive to these “objects-preferences.”16 In

our model, we impose more structure by assuming that (i) the set of objects is partitioned into

sets of exogenously given types and (ii) each agent owns and wishes to consume one object of

each type.

Pápai (2003) considers strategy-proofness and non-bossiness (as we do) and she introduces

two additional (non-standard) properties: trade sovereignty and strong individual rationality.

Trade sovereignty requires that every feasible allocation that consists of “admissible transac-

tions” should be realized at some preference profile; it allows for trade restrictions and some

objects never being traded and is hence weaker than ontoness (for details see Pápai, 2003).

Strong individual rationality requires that for each agent and all preference relations with the

same objects-preferences as the agent has, individual rationality holds (for details see Pápai,

2003). Note that strong individual rationality is stronger than individual rationality. For in-

stance, if agent 1’s endowment is (H1, C1), and his objects-preferences are R1 : H2, H1, C1, C2,

then allotment (H2, C2) is not strongly individually rational.17

Pápai (2003) shows that the set of mechanisms satisfying trade sovereignty, strong individual

rationality, strategy-proofness, and non-bossiness coincides with the set of segmented trading

cycle mechanisms. In this class of mechanisms, all objects are (endogenously) decomposed into

different segments that can be expressed as the components of a trading possibility graph (which

can express trading restrictions that can even mean that certain objects cannot be traded).

Agents can own at most one object per segment and the TTC algorithm is then executed

separately for each segment. The set of segmented trading cycle mechanisms is large and, for

our model, would include the tTTC mechanism, the no-trade mechanism, and many segmented

trading cycles mechanisms with restricted trades.

The tTTC mechanism is a specific segmented trading cycle mechanism in the sense that all

16Formally, let O be a finite set of objects. A preference relation ⪰ over all non-empty sets of objects is

monotonically responsive if (i) it is monotonic, i.e., for any two non-empty subsets of objects, A,B ⊆ O, A ⊆ B

implies that B ⪰ A; and (ii) responsive, i.e., there exists a strict “objects-preference relation” over all objects,

R, such that for any two distinct objects o, o′ ∈ O, and a subset of objects A ⊆ O\{o, o′}, o P o′ implies that

{o} ∪ A ≻ {o′} ∪ A. In our model, since agents’ allotments have a fixed number of objects, monotonicity of

preferences over sets of objects plays no role. Furthermore, given our constraint that each agent needs to receive

an object of each type, responsiveness corresponds to separability.
17Let ≻̃1 : (H2, C1), (H1, C1), (H2, C2), (H1, C2) and ≻̂1 : (H2, C1), (H2, C2), (H1, C1), (H1, C2). Note that both

preferences are responsive to R1. We see that (H2, C2) ≻̂1 (H1, C1) but (H1, C1) ≻̃1 (H2, C2). Thus, (H2, C2) is

individually rational at ≻̂1 but not individually rational at ≻̃1.
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segments are a priori determined by object types. Thus, our characterization result of the tTTC

mechanism can be seen as characterizing a specific segmented trading cycle mechanism while

Pápai characterizes the whole class of segmented trading cycle mechanisms. On the one hand, we

weaken strong individual rationality to individual rationality but strengthen trade sovereignty

to ontoness. On the other hand, we consider two different preference domains that reflect some

responsiveness through separability. Therefore, while there is a close connection between our

models and results, there is no direct logical relation between Pápai (2003)’s result and ours

(Theorems 1 and 2).

Appendix

A Proof of Lemmas 1 and 2 and Proposition 1

Proof of Lemma 1. (a) Let f on RN be unanimous. Fix any allocation x ∈ X. Let R ∈ RN

be a preference profile such that x is unanimously best under R. Then, by unanimity of f ,

f(R) = x. Hence, f is an onto function.

(b) Let f onRN be strategy-proof, non-bossy, and onto. Let x ∈ X and R ∈ RN be a preference

profile such that x is unanimously best under R. By ontoness of f , there exists a preference

profile R′ ∈ R such that f(R′) = x. Let i ∈ N and y = f(Ri, R
′
−i). By strategy-proofness of

f , we have yi Ri xi. Since xi is agent i’s most preferred allotment, we have yi = xi. Then, by

non-bossiness of f , we have f(Ri, R
′
−i) = y = x = f(R′). By applying this argument repeatedly

for all agents in N\{i}, we find that f(R) = x = f(R′). So, f is unanimous.

Proof of Lemma 2. Note that (iii) ⇒ (ii) is immediate.

We first prove (ii) ⇒ (i). It is easy to see that self-enforcing pairwise strategy-proofness

implies strategy-proofness (by considering S = {i}). We will show that self-enforcing pairwise

strategy-proofness also implies non-bossiness. Suppose that a mechanism f is self-enforcing

pairwise strategy-proof and bossy. Then there exist R ∈ RN , i, j,∈ N , and R′
i ∈ R such

that fi(R) = fi(R
′
i, R−i) and fj(R) ̸= fj(R

′
i, R−i). Let S = {i, j} and let R′

j = Rj. Then,

(R′
S, R−S) = (R′

i, R−i) and fi(R
′
S, R−S)Rifi(R). Moreover, since fj(R

′
S, R−S) ̸= fj(R), we can

assume, without loss of generality, that fj(R
′
S, R−S)Pjfj(R). This proves that coalition S = {i, j}

can manipulate f at R via deviation (R′
i, R

′
j). Finally, note that fi(R

′
S, R−S)Rifi(Ri, R

′
j, R−{i,j})

is equivalent to fi(R
′
S, R−S)Rifi(R) and that fj(R

′
S, R−S)Rjfj(R

′
i, Rj, R−{i,j}) is equivalent to

fj(R
′
S, R−S)Rjfj(R

′
S, R−S), both of which are satisfied. Thus, S = {i, j} can manipulate f in a

self-enforcing manner at R, which contradicts our assumption that f is self-enforcing pairwise

strategy-proof.

Finally, we will show (i) ⇒ (iii). Let f be a strategy-proof and non-bossy mechanism.

By contradiction, assume that there exists a coalition S ⊆ N that can manipulate f at R ∈
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RN via deviation R′
S ∈ RS in a self-enforcing manner. Without loss of generality, we can

assume that S is such that there is no proper coalition T ⊊ S such that T can manipulate f

at R via deviation R′
T in a self-enforcing manner. Let j ∈ S such that fj(R

′
S, R−S)Pjfj(R).

Note that since f is strategy-proof, S \ {j} ≠ ∅. Let i ∈ S \ {j}. Then, since deviation R′
S

is self-enforcing, fi(R
′
S, R−S)Rifi(Ri, R

′
S\{i}, R−S). Since f is strategy-proof, this implies that

fi(R
′
S, R−S) = fi(Ri, R

′
S\{i}, R−S) and thus, by non-bossiness, f(R′

S, R−S) = f(Ri, R
′
S\{i}, R−S).

Let T = S \ {i}. Then, since j ∈ T , coalition T is a manipulating coalition at R via R′
T . In fact,

the deviation R′
T at R is self-enforcing. To see this, let W ⊊ T and V = W ∪ {i}. Note that

V ⊊ S. Then, since deviation R′
S is self-enforcing, for each ℓ ∈ W ,

fℓ(R
′
T , RN\T ) = fℓ(R

′
S, RN\S)Rℓ fℓ(RV , R

′
S\V , RN\S).

Moreover, since V = W ∪ {i} and S = T ∪ {i},

f(RV , R
′
S\V , RN\S) = f(RW , Ri, R

′
S\(W∪{i}), RN\S) = f(RW , R′

T\W , RN\T ).

Hence, it follows that for each ℓ ∈ W ,

fℓ(R
′
T , RN\T )Rℓ fℓ(RW , R′

T\W , RN\T ).

Therefore, T ⊊ S can manipulate f at R via deviation R′
T in a self-enforcing manner. This

contradicts the minimality of S.

Proof of Proposition 1. It is straightforward to check that the tTTC mechanism on RN
s is

individually rational and unanimous (and hence onto).

We next show that the tTTC mechanism on RN
s inherits strategy-proofness from the TTC

mechanism. Let R ∈ RN
s , i ∈ N , and R̂i ∈ Rs with marginal preferences (R̂1

i , . . . , R̂
m
i ). By

the definition and strategy-proofness of the TTC mechanism, for each t ∈ T , tTTCt
i (R) =

TTCt
i (R

t) Rt
i TTCt

i (R̂
t
i, R

t
−i) = tTTCt

i (R̂i, R−i). Then, by the separability of preferences, we

have tTTCi(R)Ri tTTCi(R̂i, R−i) and the tTTC mechanism is strategy-proof.

Finally, to show that the tTTC mechanism on RN
s is non-bossy, let R ∈ RN

s , i ∈ N , and R̂i ∈
Rs, with marginal preferences (R̂1

i , . . . , R̂
m
i ), be such that tTTCi(R) = tTTCi(R̂i, R−i). Thus,

for each t ∈ T , tTTCt
i (R) = tTTCt

i (R̂i, R−i). Moreover, by definition of the tTTC mechanism,

we have for each t ∈ T , tTTCt
i (R) = TTCi(R

t) and tTTCt
i (R̂i, R−i) = TTCi(R̂

t
i, R

t
−i). Thus,

for each t ∈ T , TTCi(R
t) = TTCi(R̂

t
i, R

t
−i), and since the TTC mechanism is non-bossy, we

have that for each t ∈ T , TTC(Rt) = TTC(R̂t
i, R

t
−i). Then, for each t ∈ T , tTTCt(R) =

tTTCt(R̂i, R−i). Thus, tTTC(R) = tTTC(R̂i, R−i) and the tTTC mechanism is non-bossy.

Since the tTTC mechanism on RN
s is strategy-proof and non-bossy, by Lemma 2, it also

satisfies self-enforcing group (pairwise) strategy-proof.
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B Auxiliary properties and results

In this appendix, we introduce auxiliary properties and obtain results that are key for the proof

of Theorem 1 (Appendix C). While some of the results below can also be proven for separable

preferences, we focus on lexicographic preferences because Theorem 1 deals with lexicographic

preferences.

We introduce the well-known property of (Maskin) monotonicity, which requires that if an

allocation is chosen, then that allocation will still be chosen if each agent shifts it up in his

preferences.

Let i ∈ N . Given preferences Ri ∈ Rl and an allotment xi, let L(xi, Ri) = {yi ∈ Πt∈TO
t |

xi Ri yi} be the lower contour set of Ri at xi. Preference relation R′
i ∈ Rl is a monotonic

transformation of Ri at xi if L(xi, Ri) ⊆ L(xi, R
′
i). Similarly, given a preference profile R ∈ RN

l

and an allocation x, a preference profile R′ ∈ RN
l is a monotonic transformation of R at x if for

each i ∈ N , R′
i is a monotonic transformation of Ri at xi.

Definition 11 (Monotonicity).

A mechanism f on RN
l is monotonic if for each R ∈ RN

l and for each monotonic transformation

R′ ∈ RN
l of R at f(R), we have f(R′) = f(R).

We show that strategy-proofness and non-bossiness imply monotonicity.

Lemma 3. If a mechanism on RN
l is strategy-proof and non-bossy, then it is monotonic.

Proof. The proof is a straightforward extension of Takamiya (2001, Theorem 4.12) and Pápai

(2001, Lemma 1). Suppose mechanism f on RN
l is strategy-proof and non-bossy. Let R ∈ RN

l

and let x = f(R). Let R′ ∈ RN
l be a monotonic transformation of R at x. Let i ∈ N and

y = f(R′
i, R−i). By strategy-proofness of f , we have xiRi yi, which implies that yi ∈ L(xi, Ri) ⊆

L(xi, R
′
i). However, by strategy-proofness of f , we also have yi R

′
i xi. Thus, since yi ∈ L(xi, R

′
i),

xi = yi. Then, by non-bossiness of f , we have x = y. By applying this argument sequentially

for all agents in N\{i}, we find that f(R) = x = f(R′).

The converse of Lemma 3 is not true: lexicographic preferences are not rich enough to satisfy

Alva’s (2017) preference domain richness condition two-point connectedness.

Next, we introduce a “marginal version” of monotonic preference transformations. Let i ∈ N .

Given preferences Ri ∈ Rl and an allotment xi, for each type t, consider the associated marginal

preferences Rt
i and marginal allotment xt

i. Let L(xt
i, R

t
i) = {yti ∈ Ot | xt

i R
t
i y

t
i} be the lower

contour set of Rt
i at x

t
i. Marginal preference relation R̂t

i is a monotonic transformation of Rt
i at

xt
i if L(x

t
i, R

t
i) ⊆ L(xt

i, R̂
t
i).

Fact 1. Let xi be an allotment. Let Ri, R̂i be lexicographic preferences such that (1) πi = π̂i

and (2) for each t ∈ T , R̂t
i is a monotonic transformation of Rt

i at x
t
i. Then, R̂i is a monotonic

transformation of Ri at xi.
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Proof. We show that L(xi, Ri) ⊆ L(xi, R̂i). Let yi ∈ L(xi, Ri) with yi ̸= xi. Then, xi Pi yi.

Restate yi and xi as yπi
i = (y

πi(1)
i , . . . , y

πi(m)
i ) and xπi

i = (x
πi(1)
i , . . . , x

πi(m)
i ), respectively. Let k

be the first type for which xi and yi assign different objects, i.e., for all l < k, y
πi(l)
i = x

πi(l)
i and

y
πi(k)
i ̸= x

πi(k)
i . Since xi Pi yi and preferences are lexicographic, we have x

πi(k)
i P

πi(k)
i y

πi(k)
i . Thus,

y
πi(k)
i ∈ L(x

πi(k)
i , R

πi(k)
i ) ⊆ L(x

πi(k)
i , R̂

πi(k)
i ), which implies that x

πi(k)
i P̂

πi(k)
i y

πi(k)
i . Then, since

πi = π̂i, xi P̂i yi, i.e., yi ∈ L(xi, R̂i).

Therefore, by monotonicity, if an agent receives an allotment and shifts each of its objects

up in the marginal preferences (without changing his importance order), he still receives that

allotment and the allotments of the other agents do not change either.

Next, for lexicographic preferences, we introduce a new property, marginal individual ratio-

nality, which is a stronger property than individual rationality.

Definition 12 (Marginal individual rationality).

A mechanism f on RN
l is marginally individually rational if for each R ∈ RN

l , each i ∈ N , and

each t ∈ T , f t
i (R)Rt

i o
t
i.

Lemma 4. If a mechanism on RN
l is unanimous, individually rational, strategy-proof, and

non-bossy, then it is marginally individually rational.

Proof. Suppose mechanism f on RN
l is unanimous, individually rational, strategy-proof, non-

bossy, and not marginally individually rational, i.e., there exist a preference profile R ∈ RN
l , an

agent i ∈ N , and a type t ∈ T such that oti P
t
i f

t
i (R). Then, by individual rationality of f , we

know that t ̸= πi(1).

Let x ≡ f(R). Consider a preference profile R̂ ∈ RN
l such that

for agent i,

� R̂t
i : o

t
i, x

t
i, . . . ,

� for each τ ∈ T\{t}, R̂τ
i : xτ

i , . . . , and

� π̂i = πi;

and for each agent j ∈ N\{i},

� for each τ ∈ T , R̂τ
j : xτ

j , . . . , and

� π̂j = πj.

Note that, by Fact 1, R̂ is a monotonic transformation of R at x. By Lemma 3, f is monotonic.

Thus, f(R̂) = x.

Next, consider a preference profile (R̄i, R̂−i) ∈ RN
l , where R̄i is such that
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� for each τ ∈ T , R̄τ
i = R̂τ

i , and

� π̄i(1) = t.

Note that R̄i can be interpreted as a linear order over all objects such that R̄i : o
t
i, . . ., i.e., object

oti is the most preferred object.

Let y ≡ f(R̄i, R̂−i). By individual rationality of f , yti = oti. Thus, yi ̸= xi. By strategy-

proofness of f , xi = f(R̂i, R̂−i) P̂i f(R̄i, R̂−i) = yi. Since agent i gains in type t by misreporting

at R̂ (i.e., yti = oti P̂
t
i f

t
i (R̂) = xt

i), he must lose in some other more important type according to

π̂i. That is, there is a type t′ ̸= t such that (1) π̂−1
i (t′) < π̂−1

i (t) and (2) xt′
i P̂

t′
i yt

′
i . In particular,

xt′
i ̸= yt

′
i .

Next, consider a preference profile R̄ ≡ (R̄i, R̄−i) such that

for each agent j ∈ N\{i},

� R̄t
j : y

t
j, . . . ,

� for each τ ∈ T\{t}, R̄τ
j = R̂τ

i , and

� π̄j = π̂j.

Note that the only relevant difference between R̄ and (R̄i, R̂−i) is that under R̄, each agent

j ̸= i positions ytj as his most preferred type-t object. Thus, R̄ is a monotonic transformation of

(R̄i, R̂−i) at y. Therefore, by monotonicity of f , f(R̄) = y.

However, under R̄, for each agent k ∈ N , his most preferred allotment is zk =

(x1
k, . . . , x

t−1
k , ytk, x

t+1
k , . . . , xm

k ). Note that z = (zk)k∈N ∈ X is an allocation because z is a

mixture of y (for type t) and x (for other types). Thus, by unanimity of f , f(R̄) = z. So, y = z.

However, for type t′, zt
′
i = xt′

i ̸= yt
′
i , a contradiction.

C Proof of Theorem 1: uniqueness

Proof of Theorem 1: uniqueness. Suppose that there is a mechanism f : RN
l → X, differ-

ent from the tTTC mechanism, that satisfies the properties listed in Theorem 1 (by Lemma 1,

ontoness and unanimity can be used interchangeably). Then, there is a market R such that

y ≡ f(R) ̸= tTTC(R) ≡ x. In particular, there is a type t such that (yt1, . . . , y
t
n) ̸= (xt

1, . . . , x
t
n).

By Lemma 3, both mechanisms, f and tTTC, are monotonic. By Lemma 4, both mecha-

nisms, f and tTTC, are marginally individually rational. Since both mechanisms are marginally

individually rational, for each i ∈ N and each τ ∈ T , yτi R
τ
i o

τ
i and xτ

iR
τ
i o

τ
i . So, we can define a

preference profile R̂ ∈ RN
l such that

for each agent i ∈ N ,
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� R̂t
i :

{
xt
i, y

t
i , o

t
i, . . . if xt

i R
t
i y

t
i

yti , x
t
i, o

t
i, . . . if yti R

t
i x

t
i

� for each τ ∈ T\{t}, R̂τ
i : yτi , o

τ
i , . . . , and

� π̂i = πi.

Note that, by Fact 1, R̂ is a monotonic transformation of R at y. Since f is monotonic, f(R̂) = y.

Furthermore, since R̂t is a monotonic transformation of Rt at xt, monotonicity of the TTC

mechanism implies tTTCt(R̂) = TTC(R̂t) = xt.

Next, consider a preference profile R̄ ∈ RN
l such that

for each agent i ∈ N ,

� R̄t
i : x

t
i, o

t
i, . . . ,

� for each τ ∈ T\{t} R̄τ
i = R̂τ

i , and

� π̄i = πi.

Note that the only relevant difference between R̄ and R̂ is that under R̄, each agent i ∈ N

positions xt
i as his most preferred type-t object and his endowment oti as his second preferred.

Under R̄, each agent i’s most preferred allotment is zi ≡ (y1i , . . . , y
t−1
i , xt

i, y
t+1
i , . . . , ymi ). Note

that z = (zi)i∈N ∈ X is an allocation because z is a mixture of x (for type t) and y (for other

types). Thus, by unanimity of f , f(R̄) = z.

Recall that since (xt
1, . . . , x

t
n) = tTTCt(R̂) = TTC(R̂t), (xt

1, . . . , x
t
n) is obtained by applying

the TTC algorithm to preference profile R̂t. For each i ∈ N , let si be the step of the TTC

algorithm at which agent i receives object xt
i. Without loss of generality, assume that if i < i′

then si ≤ si′ .

Next, we will show that f(R̂) = z by using that f(R̄) = z and replacing, step-by-step, each R̄i

with R̂i. More specifically, we will replace the individual preferences in the order n, n− 1, . . . , 1.

We first show that f(R̄−n, R̂n) = z. Suppose xt
n R̂t

n ytn. Then, (R̄−n, R̂n) is a monotonic

transformation of R̄ at z. By monotonicity of f , f(R̄−n, R̂n) = f(R̄) = z.

Now suppose ytn P̂ t
n xt

n. Let τ ∈ T such that πn(τ) = 1 < πn(t) (if πn(t) = 1, then skip this

step). Since f is strategy-proof, preferences are lexicographic, and τ is the most important type

for agent n, we have f τ
n(R̄−n, R̂n)R̂

τ
nf

τ
n(R̄). Since τ ̸= t, f τ

n(R̄) = zτn = yτn and f τ
n(R̄−n, R̂n)R̂

τ
ny

τ
n.

Since τ ̸= t, it follows from the definition of R̂τ
n that yτn is the best type-τ object. So,

f τ
n(R̄−n, R̂n) = yτn. Now one can, sequentially, from more to less important types, apply similar

arguments to show that

for each type t′ ∈ T with πn(t
′) < πn(t), f

t′

n (R̄−n, R̂n) = yt
′

n = f t′

n (R̄). (1)
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Since f is marginally individually rational, f t
n(R̄−n, R̂n) ∈ {xt

n, y
t
n, o

t
n}. Suppose

f t
n(R̄−n, R̂n) = otn and otn ̸= xt

n. Then, f t
n(R̄) = ztn = xt

n P̂ t
n otn = f t

n(R̄−n, R̂n), which together

with (1) would contradict the strategy-proofness of f . Hence, f t
n(R̄−n, R̂n) ∈ {xt

n, y
t
n}.

Suppose that f t
n(R̄−n, R̂n) = ytn. By the definition of the TTC algorithm, xt

n is agent n’s

most preferred type-t object among the remaining objects at Step sn of the TTC algorithm at

preference profile R̂t. Therefore, object ytn is removed (i.e., assigned to some agent) at some

Step s∗ < sn of the TTC algorithm at preference profile R̂t.

Let C be the trading cycle of the TTC algorithm at preference profile R̂t that contains ytn.

Suppose C only contains one agent, say j ̸= n. Then, among all objects present at Step s∗, agent j

most prefers his own endowment, i.e., otj = ytn. Hence, xt
j = tTTCt

j(R̂) = TTCj(R̂
t) = ytn = otj.

So, by definition of R̄, we have that at (R̄−n, R̂n) agent j’s marginal preferences of type t are given

by R̄t
j : otj, . . .. By marginal individual rationality of f , f t

j (R̄−n, R̂n) = ytn, which contradicts

f t
n(R̄−n, R̂n) = ytn.

Hence, C consists of agents i1, i2, . . . , iK (with K ≥ 2) and type-t objects oti1 , . . . , o
t
iK

such

that n ̸∈ {i1, . . . , iK} and ytn ∈ {oti1 , . . . , o
t
iK
}. Without loss of generality, the cycle C is or-

dered (i1, i2, . . . , iK). Note that at (R̄−n, R̂n), for each ik ∈ {i1, . . . , iK}, agent ik’s marginal

preferences of type t are R̄t
ik

: otik+1
(= xt

ik
), otik , . . . (modulo K). Without loss of generality, as-

sume that ytn = oti1 . It follows from f t
n(R̄−n, R̂n) = ytn and marginal individual rationality of

f that f t
iK
(R̄−n, R̂n) = otiK . Subsequently, for each agent ik ∈ {i2, . . . , iK}, f t

ik
(R̄−n, R̂n) = otik .

Therefore, f t
i1
(R̄−n, R̂n) ̸= oti2 . Moreover, f t

i1
(R̄−n, R̂n) ̸= oti1 because f t

n(R̄−n, R̂n) = ytn = oti1 .

Thus, oti1 P̄i1 f t
i1
(R̄−n, R̂n), which violates marginal individual rationality of f . Therefore,

f t
n(R̄−n, R̂n) ̸= ytn. Hence,

f t
n(R̄−n, R̂n) = xt

n = f t
n(R̄). (2)

Having established (1) and (2), one can use arguments similar to those for (1) to show that

for each type t′ ∈ T with πn(t
′) > πn(t), f

t′

n (R̄−n, R̂n) = yt
′

n = f t′

n (R̄). (3)

From (1), (2), and (3) it follows that for each type τ ∈ T , f τ
n(R̄−n, R̂n) = f τ

n(R̄). Hence,

fn(R̄−n, R̂n) = fn(R̄). By non-bossiness of f , f(R̄−n, R̂n) = f(R̄) = z.

By applying repeatedly the same arguments for agents i = n− 1, . . . , 1, we can sequentially

replace each R̄i with R̂i, and conclude that f(R̂) = f(R̄) = z. However, since (yt1, . . . , y
t
n) ̸=

(xt
1, . . . , x

t
n), there exists an agent j such that ytj ̸= xt

j. Hence, f t
j (R̂) = ytj ̸= xt

j = ztj, a

contradiction.

D Independence of properties in Theorem 1

The following examples establish the logical independence of the properties in Theorem 1 (Corol-

lary 1) on RN
l . We label the examples by the property/properties that is/are not satisfied.
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Example 2 (Ontoness and unanimity).

The no-trade mechanism that always assigns the endowment allocation to each market is indi-

vidually rational, (group) strategy-proof, and non-bossy, but neither onto nor unanimous. ⋄

The no-trade mechanism in Example 2 is well-defined on RN
l , RN

s , and RN .

Example 3 (Individual rationality).

By ignoring property rights that are established via the endowments, we can easily adjust the

well-known mechanism of serial dictatorship to our setting: based on an ordering of agents,

we let agents sequentially choose their allotments. Serial dictatorship mechanisms have been

shown in various resource allocation models to satisfy Pareto efficiency (and hence ontoness

and unanimity), strategy-proofness, and non-bossiness; since property rights are ignored, they

violate individual rationality (e.g., see Monte and Tumennasan, 2015, Theorem 1). ⋄

The serial dictatorship mechanism in Example 3 is well-defined on RN
l , RN

s , and RN .

Example 4 (Strategy-proofness).

We adapt so-called Multiple-Serial-IR mechanisms introduced by Biró et al. (2022b) for their

circulation model to our multiple-type housing markets model. A Multiple-Serial-IR mechanism

is determined by a fixed order of the agents. At any preference profile and following the order,

the mechanism lets each agent pick his most preferred allotment from the available objects such

that this choice together with previous agents’ choices is compatible with an individually rational

allocation. Formally,

Input. An order δ = (i1, . . . , in) of the agents and a multiple-type housing market R ∈ RN
l .

Step 0. Let Y (0) be the set of individually rational allocations in X.

Step 1. Let Y1 be the set of agent i1’s allotments that are compatible with some allocation in

Y (0), i.e., Y1 consists of all yi1 ∈ Πt∈TO
t for which there exists an allocation x ∈ Y (0) such that

xi1 = yi1 .

Let y∗i1 be agent i1’s most preferred allotment in Y1, i.e., for each yi1 ∈ Y1, y
∗
i1
Ri yi1 .

Let Y (1) ⊆ Y (0) be the set of allocations in Y (0) that are compatible with y∗i1 , i.e., Y (1) consists

of all x ∈ Y (0) with xi1 = y∗i1 .

Step k = 2, . . . , n. Let Yk be the set of agent ik’s allotments that are compatible with some

allocation in Y (k − 1).

Let y∗ik be agent ik’s most preferred allotment in Yk.

Let Y (k) ⊆ Y (k − 1) be the set of allocations in Y (k − 1) that are compatible with y∗ik .

Output. The allocation of the Multiple-Serial-IR mechanism associated with δ at R is

MSIR(δ, R) ≡ (y∗1, y
∗
2, . . . , y

∗
n).

Given an order δ, the associated Multiple-Serial-IR mechanism ∆ assigns to each market R the

allocation ∆(R) ≡ MSIR(δ, R).
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Biró et al. (2022b) show that Multiple-Serial-IR mechanisms are individually rational and

Pareto efficient.

Next, we show that Multiple-Serial-IR mechanisms are non-bossy. Let δ = (i1, . . . , in) be an

order of the agents and let ∆ denote the associated Multiple-Serial-IR mechanism.

Let R ∈ RN
l , i ∈ N , and R′

i ∈ Rl. Let R′ ≡ (R′
i, R−i), x ≡ ∆(R), and y ≡ ∆(R′). Assume

yi = xi. We show that y = x.

Let ik ≡ i. Since yi = xi and for each ℓ = 2, . . . , k−1, k+1, . . . , n, R′
iℓ
= Riℓ , agent i1’s choice

at Step 1 under R′ is restricted in the same way as agent i1’s choice at Step 1 under R. Thus, since

R′
i1
= Ri1 , we have yi1 = xi1 . Similar arguments show that for each ℓ = 2, . . . , k−1, k+1, . . . , n,

yiℓ = xiℓ . Hence, ∆ is non-bossy.

In the context of multiple-type housing markets, Konishi et al. (2001) show that there is

no mechanism that is Pareto efficient, individually rational, and strategy-proof. Since Multiple-

Serial-IR mechanisms are Pareto efficient and individually rational, they are not strategy-proof.

We include a simple illustrative example for n = 2 agents and m = 2 types for completeness.

Let N = {1, 2} and T = {H(ouse), C(ar)}. For each i ∈ N , let (Hi, Ci) be agent i’s

endowment. Let R ∈ RN
l be given by

R1 : H2,H1, C2,C1,

R2 : H1,H2,C2, C1.

Consider the Multiple-Serial-IR mechanism ∆ induced by δ = (1, 2), i.e., agent 1 moves first

(note that since there are only two agents, when agent 1 picks his allotment, the final allocation

is completely determined). Since allocation x ≡ ((H2, C2), (H1, C1)) is individually rational at

R and x1 = (H2, C2) is agent 1’s most preferred allotment, ∆(R) = x.

Next, consider R′
2 : C2, C1, H1,H2. Note that at (R1, R

′
2), only y ≡ ((H2, C1), (H1, C2)) and

e are individually rational. Thus, agent 1 can only pick y1 or o1. Since y1 R1 o1, agent 1 picks

y1 and hence ∆(R1, R
′
2) = y. Finally, we see that y2 R2 x2, which implies that agent 2 has an

incentive to misreport R′
2 at R. Hence, the Multiple-Serial-IR mechanism induced by δ = (1, 2)

is not strategy-proof. ⋄

The mechanism in Example 4 is well-defined on RN
l , RN

s , and RN .

Note that if n = 2, then any mechanism is non-bossy. Thus, for our last independence

example, we assume n > 2.

Example 5 (Non-bossiness).

We first provide an example of a mechanism for n = 3 and m = 1. Let N = {1, 2, 3} and

T = {H(ouse)}. Let R ∈ RN . We say that agents 1 and 3 are in conflict if H2 is the most

preferred object for both R1 and R3. Similarly, we say that agents 1 and 2 are in conflict if H3

is the most preferred object for both R1 and R2. Let mechanism f be defined as follows: for

each R ∈ RN ,
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(a) if agents 1 and 2 are in conflict, then (i) transform R2 to R̄2 by dropping H3 to the

bottom, i.e., R̄2 : . . . , H3, while keeping the relative order of H1 and H2, and (ii) set

f(R) ≡ TTC(R1, R̄2, R3);

(b) if agents 1 and 3 are in conflict, then (i) transform R3 to R̄3 by dropping H2 to the

bottom, i.e., R̄3 : . . . , H2, while keeping the relative order of H1 and H3, and (ii) set

f(R) ≡ TTC(R1, R2, R̄3);

(c) if agent 1 is not in conflict with either agent 2 or agent 3, then f(R) ≡ TTC(R).

It is easy to verify that f is individually rational and unanimous. We prove that f is strategy-

proof in Appendix D.1. To see that f is bossy, let R be such that

R1 : H3,H1, H2,

R2 : H3,H2, H1,

R3 : H2,H3, H1.

Then, since agents 1 and 2 are in conflict, we have R̄2 : H2, H1, H3 and f(R) = TTC(R̄2, R−2).

In particular, for each i = 1, 2, 3, fi(R) = Hi. Next consider R′
1 : H1, . . .. Then, f(R′

1, R−1) =

TTC(R′
1, R−1). In particular, f1(R

′
1, R−1) = H1, f2(R

′
1, R−1) = H3, and f3(R

′
1, R−1) = H2.

Therefore, f1(R
′
1, R−1) = H1 = f1(R), f2(R

′
1, R−1) = H3 ̸= H2 = f2(R), and f3(R

′
1, R−1) =

H2 ̸= H3 = f3(R). Hence, f is bossy (and not Pareto efficient).

Next, we extend mechanism f from n = 3 to any n > 3. Let n > 3 and recall that m = 1.

An object o ∈ O is acceptable for agent i ∈ N if oRi Hi. Let mechanism g be defined as follows:

for each R ∈ RN ,

Case (A) if some agent i ∈ {4, . . . , n} finds some object different from his endowment accept-

able, then set g(R) ≡ TTC(R);

Case (B) if each agent i ∈ {4, . . . , n} only finds his own endowment acceptable, then

� let N ′ ≡ {1, 2, 3} and for each i ∈ N ′, let gi(R) ≡ fi(R|N ′) where R|N ′ denotes the

preferences of agents in N ′ restricted to {H1, H2, H3};

� for each agent i ∈ {4, . . . , n}, gi(R) ≡ Hi.

Since f and TTC are individually rational and unanimous, g is individually rational and

unanimous. Since f is bossy, g is bossy as well.

Next, we show that g is strategy-proof. First, we verify that no agent i ∈ {4, . . . , n} can

profitably misreport his preferences. If R is in case (A), then a misreport by agent i that creates

another profile in case (A) does not lead to a more preferred allotment because TTC is strategy-

proof ; a misreport that creates a profile in case (B) assigns endowment Hi to agent i. In either
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case, the misreport does not yield a more preferred allotment for agent i. If R is in case (B),

then each agent i ∈ {4, . . . , n} obtains his most preferred object (his own endowment) and hence

cannot gain by misreporting his preferences.

Second, no agent in {1, 2, 3} can “move” R from case (A) to case (B) nor from case (B)

to case (A). If R is in case (A), no agent in {1, 2, 3} can profitably misreport his preferences

because TTC is strategy-proof. If R is in case (B), no agent in {1, 2, 3} can profitably misreport

his preferences because f is strategy-proof. Hence, g is strategy-proof.

Finally, we extend mechanism g from Shapley-Scarf housing markets to multiple-type housing

markets with lexicographic (or separable) preferences by applying it typewise to all object types.

Let h be the mechanism that assigns the objects of each type t according to g. Then, h is

unanimous (and hence onto), individually rational, and strategy-proof, but bossy. ⋄

The mechanism in Example 5 is well-defined on RN
l and RN

s (but not on RN).

D.1 Proof of strategy-proofness in Example 5

We show that mechanism f on RN defined in Example 5 for n = 3 and m = 1 is strategy-proof.

Proof. Let R ∈ RN . We consider three cases.

Case 1. Preferences of agent 1 are R1 : H1, . . ..

By individual rationality of f , f1(R) = H1 and since this is his most preferred object, agent 1

cannot gain by misreporting his preferences.

Let R′
2 be some misreport of agent 2. Since neither agents 1 and 2 nor agents 1 and 3 are

in conflict at R or at (R1, R
′
2, R3), mechanism f yields the corresponding TTC allocations at

R and (R1, R
′
2, R3). Hence, by strategy-proofness of TTC, agent 2 does not have a profitable

deviation at R. Similarly, agent 3 does not have a profitable deviation at R.

Case 2. Preferences of agent 1 are R1 : H2, H1, H3. (Since agents 2 and 3 play a symmetric

role in the definition of f , similar symmetric arguments work for preferences R1 : H3, H1, H2.)

Agents 1 and 2 are not in conflict. Hence, by strategy-proofness of TTC, agent 2 does not have

a profitable deviation at R.

Next, we verify that agent 1 does not have a profitable deviation at R.

Case 2.a. Preferences of agent 2 are R2 : H2, . . ..

Note that by individual rationality of f we have f2(R) = H2. So, f1(R) = H1 and by reporting

other preferences, agent 1 still cannot obtain H2. So, agent 1 does not have a profitable deviation

at R.

Case 2.b. Preferences of agent 2 are R2 : H3, H2, H1 and preferences of agent 3 are R3 :

H2, H3, H1.

Agents 1 and 3 are in conflict and one easily verifies that f(R) is the no-trade allocation.

In particular, agent 1 receives his endowment H1 at R. Obviously, by reporting preferences
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R′
1 : H1, . . ., agent 1 still obtains H1. Any other misreport of agent 1’s preferences yields the

no-trade allocation. So, agent 1 does not have a profitable deviation at R.

Case 2.c. Preferences of agent 2 are R2 : H1, . . . or preferences of agent 2 are R2 : H3, H1, H2

or [ preferences of agent 2 are R2 : H3, H2, H1 and preferences of agent 3 are R3 : H1, H2, H3,

R3 : H1, H3, H2, or R3 : H2, H1, H3 ].

It is easy but cumbersome to verify that f1(R) = H2, i.e., agent 1 receives his most preferred

object H2.
18 So, agent 1 does not have a profitable deviation at R.

Case 2.d. Preferences of agent 2 are R2 : H3, H2, H1 and preferences of agent 3 are R3 : H3, . . ..

By individual rationality of f we have that for all preferences R′
1 (in particular for R′

1 = R1) of

agent 1, f3(R
′
1, R2, R3) = H3 and thus, also f2(R

′
1, R2, R3) = H2. Hence, f1(R

′
1, R2, R3) = H1,

i.e., independently of his reported preferences, agent 1 receives his own object H1. So, agent 1

does not have a profitable deviation at R.

Finally, we verify that agent 3 does not have a profitable deviation at R.

Case 2.I. Preferences of agent 3 are R3 : H3, . . ..

By individual rationality of f , f3(R) = H3 and since this is his most preferred object, agent 3

cannot gain by misreporting his preferences.

Case 2.II. Preferences of agent 3 are R3 : H1, . . ..

Agents 1 and 3 are not in conflict and by strategy-proofness of TTC, agent 3 does not have a

profitable deviation at R.

Case 2.III. Preferences of agent 3 are R3 : H2, H3, H1.

Agents 1 and 3 are in conflict and one easily verifies that f3(R) = H3. Any possible profitable

misreport of preferences by agent 3 requires that H2 is acceptable and appears in second position.

Hence, the only possible candidate for a profitable deviation is R′
3 : H1, H2, H3. However, if R2 :

H1, . . . or R2 : H2, . . . , then f3(R1, R2, R
′
3) = H3; and if R2 : H3, . . . , then f3(R1, R2, R

′
3) = H1.

So, agent 3 does not have a profitable deviation at R.

Case 2.IV.i. Preferences of agent 3 are R3 : H2, H1, H3 and preferences of agent 2 are R2 : H1, . . .

or R2 : H2, . . ..

Agents 1 and 3 are in conflict and for any possible deviation R′
3, f3(R1, R2, R

′
3) = H3 = f3(R).

Hence, agent 3 does not have a profitable deviation at R.

Case 2.IV.ii. Preferences of agent 3 are R3 : H2, H1, H3 and preferences of agent 2 are R2 :

H3, . . ..

Agents 1 and 3 are in conflict and one easily verifies that f3(R) = H1. Any possible profitable

misreport of preferences by agent 3 requires that H2 is acceptable and appears in second position.

Hence, the only possible candidate for a profitable deviation is R′
3 : H1, H2, H3. However,

f3(R1, R2, R
′
3) = H1. So, agent 3 does not have a profitable deviation at R.

18Note that for R3 : H2, . . ., agents 1 and 3 are in conflict and hence, agent 3 cannot receive H2.
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Case 3. Preferences of agent 1 are R1 : H2, H3, H1. (Since agents 2 and 3 play a symmetric

role in the definition of f , similar symmetric arguments work for preferences R1 : H3, H2, H1.)

Agents 1 and 2 are not in conflict. Hence, by strategy-proofness of TTC, agent 2 does not have

a profitable deviation at R.

Next, we verify that agent 1 does not have a profitable deviation at R.

Case 3.a. Preferences of agent 2 are R2 : H1, . . ..

One immediately verifies that f1(R) = H2, which is his most preferred object. So, agent 1 does

not have a profitable deviation at R.

Case 3.b. Preferences of agent 2 are R2 : H2, . . . and preferences of agent 3 are R3 : H1, . . . or

R3 : H2, H1, H3.

By individual rationality of f we have that for any preference relation R′
1 (in particular for

R′
1 = R1) of agent 1, f2(R

′
1, R2, R3) = H2. Hence, f1(R

′
1, R2, R3) ̸= H2, i.e., agent 1 does not

obtain his most preferred object. Since f1(R) = H3 is his second most preferred object, we

conclude that agent 1 does not have a profitable deviation at R.

Case 3.c. Preferences of agent 2 are R2 : H2, . . . and preferences of agent 3 are R3 : H3, . . . or

R3 : H2, H3, H1;

or

Case 3.d. Preferences of agent 2 are R2 : H3, H2, H1 and preferences of agent 3 are R3 : H3, . . .

or R3 : H2, H3, H1.

In cases 3.c and 3.d, we have that for any possible deviation R′
1, f1(R

′
1, R2, R3) = H1 = f1(R).

Hence, agent 1 does not have a profitable deviation at R.

Case 3.e. Preferences of agent 2 are R2 : H3, . . . and preferences of agent 3 are R3 : H1, . . .;

or

Case 3.f. Preferences of agent 2 are R2 : H3, H2, H1 and preferences of agent 3 are R3 :

H2, H1, H3;

or

Case 3.g. Preferences of agent 2 are R2 : H3, H1, H2 and preferences of agent 3 are R3 : H2, . . .;

or

Case 3.h. Preferences of agent 2 are R2 : H3, H1, H2 and preferences of agent 3 are R3 : H3, . . ..

In cases 3.e, 3.f, 3.g, and 3.h, f1(R) = H2, i.e., agent 1 receives his most preferred object H2.
19

So, agent 1 does not have a profitable deviation at R.

Finally, we verify that agent 3 does not have a profitable deviation at R. Cases 3.I, 3.II, and

3.III below are as 2.I, 2.II, and 2.III. There is a small difference between cases 2.IV and 3.IV.

Case 3.I. Preferences of agent 3 are R3 : H3, . . ..

By individual rationality of f , f3(R) = H3 and since this is his most preferred object, agent 3

cannot gain by misreporting his preferences.

19Note that for R3 : H2, . . ., agents 1 and 3 are in conflict and hence, agent 3 cannot receive H2.
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Case 3.II. Preferences of agent 3 are R3 : H1, . . ..

Agents 1 and 3 are not in conflict and by strategy-proofness of TTC, agent 3 does not have a

profitable deviation at R.

Case 3.III. Preferences of agent 3 are R3 : H2, H3, H1.

Agents 1 and 3 are in conflict and one easily verifies that f3(R) = H3. Any possible profitable

misreport of preferences by agent 3 requires that H2 is acceptable and appears in second position.

Hence, the only possible candidate for a profitable deviation is R′
3 : H1, H2, H3. However, if R2 :

H1, . . . , then f3(R1, R2, R
′
3) = H3; and if R2 : H3, . . . or R2 : H2, . . . , then f3(R1, R2, R

′
3) = H1.

So, agent 3 does not have a profitable deviation at R.

Case 3.IV.i. Preferences of agent 3 are R3 : H2, H1, H3 and preferences of agent 2 are R2 : H1, . . ..

Agents 1 and 3 are in conflict and for any possible deviation R′
3, f3(R1, R2, R

′
3) = H3 = f3(R).

Hence, agent 3 does not have a profitable deviation at R.

Case 3.IV.ii. Preferences of agent 3 are R3 : H2, H1, H3 and preferences of agent 2 are R2 : H2, . . .

or R2 : H3, . . ..

Agents 1 and 3 are in conflict and one easily verifies that f3(R) = H1. Any possible profitable

misreport of preferences by agent 3 requires that H2 is acceptable and appears in second position.

Hence, the only possible candidate for a profitable deviation is R′
3 : H1, H2, H3. However,

f3(R1, R2, R
′
3) = H1. So, agent 3 does not have a profitable deviation at R.

E Proof of Theorem 2: uniqueness

Proof of Theorem 2: uniqueness. Suppose that mechanism f : RN
s → X satisfies the prop-

erties listed in Theorem 2 (by Lemma 1, ontoness and unanimity can be used interchangeably).

We will show that for each R ∈ RN
s , f(R) = tTTC(R). We introduce the following notation.

For any agent i ∈ N and any two separable preferences Ri, R̄i ∈ Rs, we write Ri ∼ R̄i if they

induce the same marginal preferences, i.e., for each t ∈ T , Rt
i = R̄t

i.

Let R ∈ RN
s such that each agent has lexicographic preferences, i.e., R ∈ RN

l . Since the

restriction of f to RN
l satisfies the properties listed in Theorem 1, it immediately follows from

Theorem 1 that f(R) = tTTC(R).

Let R ∈ RN
s such that only one agent does not have lexicographic preferences. We can

assume, without loss of generality, that R1 ∈ Rs\Rl and for each agent j ̸= 1, Rj ∈ Rl. Let

y ≡ f(R).

For each t ∈ T , define R′
1(t) ∈ Rl such that R′

1(t) ∼ R1 and the most important type of

R′
1(t) is type t. Since R1 ∼ R′

1(1) ∼ R′
1(2) ∼ · · · ∼ R′

1(m), it follows from the definition of tTTC

that x ≡ tTTC(R) = tTTC(R′
1(1), R−1) = tTTC(R′

1(2), R−1) = · · · = tTTC(R′
1(m), R−1). We

will show that y = x.
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Let t ∈ T . From the case where each agent has lexicographic preferences, it follows

that f(R′
1(t), R−1) = tTTC(R′

1(t), R−1) = x. By strategy-proofness of f when moving from

(R′
1(t), R−1) to (R1, R−1), x1 = f1(R

′
1(t), R−1) R

′
1(t) f1(R1, R−1) = y1. Then, since R′

1(t) ∼ R1

and R′
1(t) is a lexicographic preference relation where t is the most important type, xt

1 R
t
1 y

t
1.

Since for each t ∈ T , xt
1R

t
1 y

t
1 and since R1 ∈ Rs, we have x1R1 y1. By strategy-proofness of f

when moving from (R1, R−1) to (R′
1(t), R−1), we have that y1 = f1(R1, R−1)R1 f1(R

′
1(t), R−1) =

x1. Hence, x1 = y1. By non-bossiness of f , we have that y = f(R1, R−1) = f(R′
1(t), R−1) = x.

Let R ∈ RN
s such that exactly two agents do not have lexicographic preferences. We can

assume, without loss of generality, that R1, R2 ∈ Rs\Rl and for each agent j ̸= 1, 2, Rj ∈ Rl.

Let y ≡ f(R).

For each t ∈ T , define R′
2(t) ∈ Rl such that R′

2(t) ∼ R2 and the most important type of

R′
2(t) is type t. Since R2 ∼ R′

2(1) ∼ R′
2(2) ∼ · · · ∼ R′

2(m), it follows from the definition of tTTC

that x ≡ tTTC(R) = tTTC(R′
2(1), R−2) = tTTC(R′

2(2), R−2) = · · · = tTTC(R′
2(m), R−2). We

will show that y = x.

Let t ∈ T . At preference profile (R′
2(t), R−2), only agent 1 has non-lexicographic prefer-

ences. Thus, from the previous case, f(R′
2(t), R−2) = tTTC(R′

2(t), R−2) = tTTC(R) = x.

By strategy-proofness of f when moving from (R′
2(t), R−2) to (R2, R−2), we have that x2 =

f2(R
′
2(t), R−2) R

′
2(t) f2(R2, R−2) = y2. Then, since R′

2(t) ∼ R2 and R′
2(t) is a lexicographic

preference relation where t is the most important type, xt
2 R

t
2 y

t
2.

Since for each t ∈ T , xt
2 R

t
2 y

t
2 and since R2 ∈ Rs, we have x2 R2 y2. By strategy-proofness of

f when moving from (R2, R−2) to (R′
2(t), R−2), y2 = f2(R2, R−2)R2 f2(R

′
2(t), R−2) = x2. Hence,

x2 = y2. By non-bossiness of f , we have that y = f(R2, R−2) = f(R′
2(t), R−2) = x.

We can apply repeatedly the same arguments to obtain that for each k = 0, 1, . . . , n and

each preference profile R ∈ RN
s where exactly k agents have non-lexicographic preferences,

f(R) = tTTC(R). Thus, for each R ∈ RN
s , f(R) = tTTC(R).

F Two further impossibility results for strict preferences

A mechanism f : RN → X extends the tTTC mechanism from RN
l (RN

s , respectively) to RN , if

for each R ∈ RN
l (RN

s , respectively), f(R) = tTTC(R).

The following theorem captures another impossibility result.

Theorem 4. Let m > 1. Then, no mechanism satisfying individual rationality and strategy-

proofness extends the tTTC mechanism from lexicographic (separable) preferences to strict pref-

erences.

Proof. Without loss of generality, let m = 2. Suppose that there is a mechanism f : RN → X

that is individually rational and strategy-proof and that coincides with the tTTC mechanism
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on RN
l (RN

s , respectively). Let x, y ∈ X\{e} be such that at x agents 1 and 2 swap their

endowments of types 1 and 2, i.e.,

x1 = (o12, o
2
2, o

3
1, o

4
1, . . . , o

m
1 ),

x2 = (o11, o
2
1, o

3
2, o

4
2, . . . , o

m
2 ),

and for each i = 3, . . . , n, xi = oi

and at y agents 1 and 2 swap their endowments of type 1, i.e.,

y1 = (o12, o
2
1, o

3
1, o

4
1, . . . , o

m
1 ),

y2 = (o11, o
2
2, o

3
2, o

4
2, . . . , o

m
2 ),

and for each i = 3, . . . , n, yi = oi.

Obviously, x ̸= y.

Next, we define lexicographic preferences for agent 1 by listing a strict ordering of all objects.

At R1, agent 1’s type order is 1, 2, . . . ,m and the only object he prefers to one of his endowments

is the type 1 endowment of agent 2, i.e.,

R1 : o
1
2, o

1
1, o

1
3, . . . , o

1
n, o

2
1, . . . , o

2
n, o

3
1, . . . , o

3
n, o

m
1 , . . . , o

m
n

At R′
1, agent 1’s type order is 1, 2, . . . ,m and the only objects he prefers to some of his

endowments are the type 1 and 2 endowments of agent 2, i.e.,

R′
1 : o

1
2, o

1
1, o

1
3, . . . , o

1
n, o

2
2, o

2
1, o

2
3, . . . , o

2
n, o

3
1, . . . , o

3
n, o

m
1 , . . . , o

m
n .

Similarly, we define lexicographic preferences for agent 2 by listing a strict ordering of all

objects. At R2, agent 2’s type order is 1, 2, . . . ,m and the only objects he prefers to some of his

endowments are the type 1 and 2 endowments of agent 1, i.e.,

R2 : o
1
1, o

1
2, o

1
3, . . . , o

1
n, o

2
1, o

2
2, o

2
3, . . . , o

2
n, o

3
1, . . . , o

3
n, o

m
1 , . . . , o

m
n .

Next, we define lexicographic preferences for all remaining agents as follows. For each i =

3, . . . , n, agent i prefers his full endowment to all other allotments, i.e.,

for each t ∈ T, Rt
i : o

t
i, . . . .

Finally, let R′
2 be strict and non-separable preferences for agent 2 such that agent 2 prefers

only his allotment at x to his endowment, i.e.,

R′
2 : x2, o2, . . . .

Note that (R′
1, R

′
2, RN\{1,2}) ∈ RN\RN

s . There are only two individually rational allocations at

(R′
1, R

′
2, RN\{1,2}): e and x.
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Since R is a profile of lexicographic preferences, we have f(R) = tTTC(R) = y. By individual

rationality of f , f(R1, R
′
2, RN\{1,2}) = e. Hence, by individual rationality and strategy-proofness

of f , f(R′
1, R

′
2, RN\{1,2}) = e.

Since (R′
1, R2, RN\{1,2}) is a profile of lexicographic preferences, we have f(R′

1, R2, RN\{1,2}) =

tTTC(R′
1, R2, RN\{1,2}) = x. Therefore, agent 2 has an incentive to misreport R2 at

(R′
1, R

′
2, RN\{1,2}); contradicting strategy-proofness of f .

The no-trade rule (Example 2, Appendix D) is individually rational, strategy-proof, and

does not extend the tTTC mechanism from lexicographic (separable) preferences to strict pref-

erences. The following mechanism that extends tTTC from lexicographic (separable) preferences

to strict preferences is individually rational but not strategy-proof : the mechanism assigns the

tTTC allocation on RN
l (RN

s , respectively) and the endowment allocation on RN\RN
l (RN\RN

s ,

respectively). The independence of strategy-proofness is an open problem.

Lemma 5. Let m > 1. If a mechanism satisfies strategy-proofness, non-bossiness, and extends

the tTTC mechanism from lexicographic (separable) preferences to strict preferences, then it

satisfies individual rationality.

Proof. Suppose that there is a mechanism f : RN → X that is strategy-proof, non-bossy, and

that coincides with the tTTC mechanism on RN
l (RN

s , respectively). By Lemma 3 (which can

be proven for RN using the same arguments), f is monotonic.

By contradiction, assume that f is not individually rational. Thus, there exists a profile

R ∈ RN and an agent i ∈ N such that oi Pi fi(R). Without loss of generality, let i = 1.

Let x ≡ f(R). Let R̂1 ∈ R be such that agent 1 positions o1 first and x1 second, i.e.,

R̂1 : o1, x1, . . . .

For each agent j = 2, 3, . . . , n, let R̂j ∈ Rl be such that agent j positions xj first, i.e.,

for each t ∈ T, R̂t
j : x

t
j, . . . .

It is easy to see that R̂ is a monotonic transformation of R at x. Thus, by monotonicity of f ,

f(R̂) = x.

Next, let R̄1 ∈ Rl be such that

for each t ∈ T, R̄t
1 : o

t
1, x

t
1, . . . .

Note that (R̄1, R̂−1) ∈ RN
l . Thus, f(R̄1, R̂−1) = tTTC(R̄1, R̂−1), and in particular,

f1(R̄1, R̂−1) = o1. However, then f1(R̄1, R̂−1) = o1 P̂1 x1 = f1(R̂) and agent 1 has an incen-

tive to misreport R̄1 at R̂, which contradicts with strategy-proofness of f .

Now, Theorem 4 and Lemma 5 imply the following impossibility result.
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Corollary 4. Let m > 1. Then, no mechanism satisfying strategy-proofness and non-bossiness

extends the tTTC mechanism from lexicographic (separable) preferences to strict preferences.

The no-trade rule (Example 2, Appendix D) is strategy-proof and non-bossy, and does not

extend the tTTC mechanism from lexicographic (separable) preferences to strict preferences.

The independence of strategy-proofness (non-bossiness, respectively) is an open problem.
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Pápai, S. (2003). Strategyproof exchange of indivisible goods. Journal of Mathematical Eco-

nomics 39 (8), 931–959.
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