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Abstract

All parameters in structural vector autoregressive (SVAR) models are locally identified when
the structural shocks are independent and follow non-Gaussian distributions. Unfortunately,
standard inference methods that exploit such features of the data for identification fail to
yield correct coverage for structural functions of the model parameters when deviations
from Gaussianity are small. To this extent, we propose a locally robust semi-parametric
approach to conduct hypothesis tests and construct confidence sets for structural functions
in SVAR models. The methodology fully exploits non-Gaussianity when it is present, but
yields correct size / coverage for local-to-Gaussian densities. Empirically we revisit two
macroeconomic SVAR studies where we document mixed results. For the oil price model
of Kilian and Murphy (2012) we find that non-Gaussianity can robustly identify reasonable
confidence sets, whereas for the labour supply-demand model of Baumeister and Hamilton
(2015) this is not the case. Moreover, these exercises highlight the importance of using weak
identification robust methods to assess estimation uncertainty when using non-Gaussianity
for identification.
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1 Introduction

In this paper we develop locally robust inference methods for non-Gaussian structural vector

autoregressive (SVAR) models. To outline our contribution, consider the SVAR model

Yt = c+B1Yt−1 + · · ·+BpYt−p +A−1εt , (1)

where Yt is a K × 1 vector of variables, c is an intercept, B1, . . . , Bp are the autoregressive

matrices, A is the invertible contemporaneous effect matrix and εt is the K × 1 vector of

structural shocks with mean zero and unit variance.

It is well known that, without further restrictions, the first and second moments of {Yt} are

insufficient to identify all parameters in A (e.g. Kilian and Lütkepohl, 2017). Instead, higher

order moments or non-Gaussian distributions can be exploited to (locally) identify A. The most

well known result follows from the Darmois–Skitovich theorem and is central to the literature on

independent components analysis (ICA): if the components of εt are independent and at least

K − 1 have a non-Gaussian distribution, then A can be recovered up to sign and permutation

of its rows, see Comon (1994). Based on such results several recent works have exploited non-

Gaussianity to improve identification and conduct inference in SVAR models (e.g. Lanne and

Lütkepohl, 2010; Moneta et al., 2013; Lanne et al., 2017; Kilian and Lütkepohl, 2017; Maxand,

2020; Lanne and Luoto, 2021; Gouriéroux et al., 2017, 2019; Tank et al., 2019; Herwartz, 2019;

Bekaert et al., 2021, 2020; Fiorentini and Sentana, 2022; Braun, 2021; Sims, 2021; Guay, 2021;

Brunnermeier et al., 2021; Drautzburg and Wright, 2023; Keweloh, 2021; Davis and Ng, 2022;

Lanne et al., 2022).1,2

Unfortunately, as we show in this paper, standard inference methods for non-Gaussian

SVARs are not robust in situations where the densities of the structural shocks are too “close”

to the Gaussian density. Intuitively, what matters for correctly sized inference is not non-

Gaussianity per se, but a sufficient distance from the Gaussian distribution. When the true

distributions of the structural shocks are close to the Gaussian distribution, local identifica-

tion deteriorates and coverage distortions occur in confidence sets for structural functions, e.g.

structural impulse response functions or forecast error variance decompositions.3 The problem

is somewhat analogous to the weak instruments problem where it is well known that non-zero

correlation between the instruments and the endogenous variables is not sufficient for standard

inference methods to be reliable; the correlation must be sufficiently large in order for conven-

tional IV asymptotic theory to provide an approximation which accurately reflects the finite

sample situation.4 Similarly, in our setting, non-Gaussianity alone is not sufficient for standard

(pseudo) maximum likelihood or generalised method of moments methodologies to yield correct

coverage when the distance to the Gaussian distribution is not sufficiently large. As such we

1See Montiel Olea et al. (2022) for a recent review of this approach and, for example, Lewis (2021) for a related
approach based on heteroskedasticity.

2ICA type identification results have been applied/extended for various related models such as linear simultaneous
equations models, graphical models and factor models (e.g. Shimizu et al., 2006; Bonhomme and Robin, 2009;
Wang and Drton, 2019).

3Simulation studies in, among others, Gouriéroux et al. (2017, 2019) and Lanne and Luoto (2021) have previously
highlighted such coverage distortions for parameter estimates in the case of “weakly” non-Gaussian distributions,
see also Lee and Mesters (2023a) for more discussion of the same issue in static ICA models.

4See e.g. the recent review by Andrews et al. (2019).
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refer to this phenomenon as “weak non-Gaussianity”.

In this paper, we propose a solution to this problem by combining insights from the econo-

metric literature on weak identification robust hypothesis testing as well as the statistical lit-

erature on semiparametric inference. Specifically, we treat the SVAR model with independent

structural shocks as a semiparametric model where the densities of the structural shocks form

the non-parametric part.

For this set-up we provide three main results. First, we adopt a semi-parametric generali-

sation of Neyman-Rao score statistic in order to test the possibly weakly identified (or under /

unidentified) parameters of the SVAR. More precisely, the semi-parametric score statistic that

we propose is based on a quadratic form of the efficient score function, which projects out all

scores for the nuisance parameters, including the scores corresponding to the density functions

of the structural shocks, from the conventional score function for the parameter of interest. This

projection, along with the fact that the potentially weakly/non- identified parameter is fixed

under the null when conducting the test (as is standard in score-type testing procedures), en-

ables us to circumvent the (weak-)identification problem and we show that the semi-parametric

score test has a χ2 limit under local parameter sequences consistent with the null hypothesis.

Second, we propose a method for constructing confidence sets for smooth structural func-

tions. Prominent examples of interest include structural impulse responses and forecast error

variance decompositions. Specifically, we utilise our proposed score test for the weakly identified

parameters in a Bonferroni-based procedure (cf. Granziera et al., 2018; Drautzburg and Wright,

2023) which is guaranteed to provide correct coverage asymptotically.

Third, under the additional assumption that the errors of the SVAR model follow dis-

tributions that are different from the Gaussian distribution in the limit, we show that point

estimates, constructed as one-step updates based on the efficient score function, are consistent

and semi-parametrically efficient for the finite dimensional parameters in the semi-parametric

SVAR model. This implies that under strong identification and some regularity conditions such

estimators are preferable to existing pseudo MLE and GMM estimators.

Overall, our methods are computationally simple as the estimation of the efficient scores

typically only requires estimating regression coefficients, a covariance matrix and the log density

scores of the structural shocks. To estimate the log density scores, we use B-spline regressions

as developed in Jin (1992) and also considered in Chen and Bickel (2006) for semi-parametric

independent component analysis. This approach is computationally convenient and allows our

methodology to work under a wide variety of possible distributions for the structural shocks.5

We assess the finite-sample performance of our method in a large simulation study and find

that the empirical rejection frequencies of the semi-parametric score test are always close to

the nominal size. This is in contrast to several existing methods that are not robust to weak

non-Gaussianity and show substantial size distortions for non-Gaussian distributions that are

close to the Gaussian density. We also analyze the power of the proposed procedure and find

that the power of the semi-parametric score test generally exceeds that of alternative robust

methods such as weak identification robust GMM methods. Finally, we show that while the

5The general approach is applicable with other choices of log density score estimators, e.g. the local polynomial
estimators proposed in Pinkse and Schurter (2021). The main requirement is that the chosen estimator should
satisfy the high-level conditions stated in Lemma A.1.
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Bonferroni approach for constructing confidence sets for structural functions is (by construction)

conservative, it does often substantially reduce the length of the confidence bands for structural

impulse responses when compared to alternative methods.

In our empirical study we revisit two prominent macroeconomic SVAR applications and ask

whether non-Gaussian distributions can help to robustly identify structural functions of interest.

Specifically, we revisit (i) the labor supply-demand model of Baumeister and Hamilton (2015)

and (ii) the oil price model of Kilian and Murphy (2012).6 Our findings are mixed.

In the labor supply-demand model of Baumeister and Hamilton (2015) we find that allowing

for non-Gaussian structural shocks does not lead to a tight confidence set for the supply and

demand elasticities. In contrast, when non-robust methods are used, as in Lanne and Luoto

(2022) for instance, non-Gaussianity appears to pin down the elasticities in a narrow set. These

findings strongly support the usage of robust confidence sets when assessing uncertainty around

parameter estimates obtained using non-Gaussianity as an identifying assumption.

For the oil price model of Kilian and Murphy (2012) non-Gaussian structural shocks provide

substantially more identifying power. In fact, we show that our robust methodology yields a

finite confidence set for the short-run oil supply elasticities, thus avoiding the need to impose

a priori bounds on these elasticities. For instance, the bounds imposed in Kilian and Murphy

(2012) have been criticized for being too tight in Baumeister and Hamilton (2019) and have led

to a large literature that assesses their importance, see Herrera and Rangaraju (2020) for an

overview. We show that exploiting non-Gaussian shocks leads to finite bounds that are within

the range of estimates documented in the literature, hence providing a data driven solution to

the determination of appropriate bounds.

This paper relates to several strands of literature. First and foremost, the paper contributes

to the SVAR literature that exploits non-Gaussianity of the structural shocks for identification

(see the references above). Most related, Drautzburg and Wright (2023) are also concerned

about identification when using higher order moment restrictions for identification. To circum-

vent distortions in confidence sets they exploit the identification robust S-statistic of Stock and

Wright (2000) as well as a non-parametric independence test for conducting inference. The

benefit of the S-statistic is that it is not necessary to assume full independence of the structural

shocks. Instead, typically only the third and fourth order higher cross moments are set to zero,

leaving all higher order moments unrestricted. A downside of such a robust moment approach

is that it requires the existence of substantially higher order moments. For instance, when

using fourth order moment restrictions the convergence of the S-statistic requires the existence

of at least eight moments. We provide a detailed comparison between the approaches in our

simulation study.

Besides the non-Gaussian SVAR literature, we note that our approach is inspired by the

identification robust inference literature in econometrics (e.g. Stock and Wright, 2000; Kleiber-

gen, 2005; Andrews and Mikusheva, 2015). The crucial difference in our setting is that the

nuisance parameters which determine identification status are infinite dimensional, i.e. the den-

sities of the structural shocks. Despite this difference, conceptually our approach is similar to

6The assumption of independence among the structural shocks is maintained throughout this paper. Therefore in
each application we test for the existence of independent components following both Matteson and Tsay (2017)
and Montiel Olea et al. (2022).
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the score testing approach developed for weakly identified parametric models in Andrews and

Mikusheva (2015). To handle infinite dimensional nuisance parameters we build on the general

statistical theory discussed in Bickel et al. (1998) and van der Vaart (2002). While the major-

ity of the statistical literature focuses on efficient estimation in semi-parametric models, a few

papers have contributed to testing in well identified models (e.g. Choi et al., 1996; Bickel et al.,

2006). The major difference with our paper is that in our setting, a subset of the parameters of

interest are possibly weakly- or un- / under- identified, which violates a key regularity condition

assumed in this literature. Lee and Mesters (2023a) consider a similar score testing approach,

but their setting only considers static linear models and hence their results cannot be applied

to the SVAR models that are of interest in this paper.

The remainder of this paper is organized as follows. Section 2 casts the SVAR model as a

semi-parametric model and discusses the needed regularity conditions. Section 3 establishes a

number of preliminary results that are of general interest. The semi-parametric score testing

approach is presented in Section 4 and inference for smooth structural functions is covered in

Section 5. Section 6 discusses point estimation under strong identification. Section 7 evaluates

the finite-sample performance of the proposed methodology and Section 8 discusses the results

from the empirical studies. Section 9 concludes. Any references to sections, equations, lemmas

etc. which start with “S” refer to the supplementary material.

2 Semi-parametric SVAR model

In this section we cast the SVAR model as a semi-parametric model and impose some primi-

tive assumptions that will be maintained throughout the text. For convenience, we adopt the

following notation for the SVAR model

Yt = BXt +A−1(α, σ)εt , t ∈ Z , (2)

where Xt := (1, Y ′t−1, . . . , Y
′
t−p)

′, B := (c,B1, . . . , Bp) and A(α, σ) is a K ×K invertible matrix

that is parametrized by the vectors α and σ.

In general, we leave the choice for the specific parametrization of A(α, σ) open to the re-

searcher. The key restriction is that σ should be recoverable from the variance of Yt − BXt

after α has been fixed, whereas α itself may be unidentified depending on the distribution of

the structural shocks. One popular choice in this context sets A−1(α, σ) = Σ1/2(σ)R(α), where

Σ1/2(σ) is a lower triangular matrix (with positive diagonal elements) parametrized by the vec-

tor σ and R(α) is a rotation matrix that is parametrized by the vector α. Alternatively, letting

σ capture the lower triangular entries of A−1(α, σ) and α the strictly upper triangular entries

also defines an easy to interpret parametrization.7

To describe the non-parametric part of model (2) we let η = (η1, . . . , ηK) correspond to the

7In general, different parametrizations are often used in practice (cf Section 8) and our general formulation allows
for all sufficiently smooth choices (cf Assumption 2.1). The supplementary material Section S1 provides more
discussion and examples.

5



density functions of εt = (ε1,t, . . . , εK,t)
′. All parameters are summarized as follows

θ = (γ, η) , γ = (α, β) , β = (σ, b) , (3)

where b = vec(B).

Let Y n = (Y1, . . . , Yn)′ and let Pnθ denote the distribution of Y n conditional on the initial

values (Y1−p, . . . , Y0). Throughout we work with these conditional distributions; see Hallin and

Werker (1999) for a similar setup. For a sample of size n, our semi-parametric SVAR model is

the collection

PnΘ = {Pnθ : θ ∈ Θ} , Θ = A× B︸ ︷︷ ︸
Γ

×H , (4)

where Γ ⊂ RL, with L = Lα+Lσ+Lb corresponding to the dimensions of (α, σ, b), Lβ = Lσ+Lb,

and H ⊂
∏K
k=1 H with

H :=

{
f ∈ L1(λ) ∩ C1 : f(z) ≥ 0,

∫
f(z) dz = 1,

∫
zf(z)dz = 0,

∫
κ(z)f(z) dz = 0

}
,

where λ denotes Lebesgue measure on R, C1 is the class of real functions on R which are

continuously differentiable and κ(z) = z2 − 1. It is understood that γ ∈ Γ and η ∈ H, where

the parameter space for the densities ηk is restricted such that εk,t has mean zero and variance

one. Further restrictions are placed on the parameter space Θ in the assumptions below.

Assumptions

Having defined the semi-parametric SVAR model, we now proceed to formulate the required

assumptions. Broadly speaking, we split our assumptions into two parts: Assumption 2.1 details

the main assumptions that allow us to establish the properties of the semi-parametric score test

and Assumption 2.2 defines a set of regularity conditions on densities ηk under which the log

density scores can be consistently estimated using B-splines.8 These scores are an important

ingredient for the methodology discussed below.

The main assumption is stated as follows.

Assumption 2.1: For model (2), we assume that

(i) For all β ∈ B, |IK −
∑p

j=1Bjz
j | 6= 0 for all |z| ≤ 1 with z ∈ C

(ii) Conditional on the initial values (Y ′−p+1, . . . , Y
′

0)′, εt = (ε1,t, . . . , εK,t)
′ is independently and

identically distributed across t, with independent components εk,t. Each η = (η1, . . . , ηK) ∈
H is such that each ηk is nowhere vanishing, dominated by Lebesgue measure on R, con-

tinuously differentiable with log density scores denoted by φk(z) := ∂ log ηk(z)/∂z, and for

all k = 1, . . . ,K

(a) Eεk,t = 0, Eε2k,t = 1, Eε4+δ
k,t < ∞, E(ε4k,t) − 1 > E(ε3k,t)

2, and Eφ4+δ
k (εk,t) < ∞ (for

some δ > 0);

8Lemma A.1 in the Appendix shows that, under Assumptions 2.1 and 2.2, the B-spline based estimator satisfies
a particular high-level condition; the results of this paper will continue to apply if any alternative density score
estimator which also satisfies this high-level condition is used.
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(b) Eφk(εk,t) = 0, Eφ2
k(εk,t) > 0, Eφk(εk,t)εk,t = −1, Eφk(εk,t)ε2k,t = 0 and Eφk(εk,t)ε3k,t =

−3;

(iii) Γ is an open subset of RL and for all (α, β) ∈ Γ we have that

(a) A(α, σ) is nonsingular

(b) (α, σ)→ A(α, σ) is continuously differentiable

(c) (α, σ)→ [Dαl(α, σ)]k•A(α, σ)−1
•j and (α, σ)→ [Dσm(α, σ)]k•A(α, σ)−1

•j , with Dαl(α, σ) :=

∂A(α, σ)/∂αl and Dσm(α, σ) := ∂A(α, σ)/∂σm, are locally Lipschitz continuous for

all l = 1, . . . , Lα, m = 1, . . . , Lσ and j, k = 1, . . . ,K, where the notation M•j or Mj•

denotes the jth column or row of a matrix M .

Part (i) imposes that the SVAR model (2) admits a stationary and causal solution. Part

(ii) imposes that the densities of the shocks are continuously differentiable and certain moment

conditions hold. Specifically, part (a) normalises the shocks to have mean zero, variance one and

finite four+δ moments.9 Additionally, we require the log density scores φk(x) = ∂ log ηk(x)/∂x

evaluated at the shocks to have finite 4 + δ moments. Part (b) simplifies the construction of the

efficient score functions. Whilst this may at first glance appear a strong condition, in Section S3

of the supplementary material we show that simple sufficient condition is that the tails of the

densities ηk converge to zero at a polynomial rate. The final part (iii) of the assumption imposes

that A(α, σ) is invertible and that the parametrization chosen by the researcher is sufficiently

smooth.10 These conditions can be easily verified for specific choices for A(α, σ).

Next, we impose a number of smoothness conditions on the densities ηk. These assumptions

facilitate the estimation of the log density scores φk(z) = ∇z log ηk(z), which are an important

ingredient for the efficient score test discussed below.

Assumption 2.2: Let φk,n := φk1[ΞLk,n,Ξ
U
k,n], ∆k,n := ΞUk,n − ΞLk,n and νn = ν2

n,p with 1 < p ≤
1 + δ/4 and n−1/2(1−1/p) = o(νn,p). Suppose that for [ΞLk,n,Ξ

U
k,n] ↑ Ξ̃ ⊃ supp(ηk) and δk,n ↓ 0 it

holds that

(i) P (εk,t /∈ [ΞLk,n,Ξ
U
k,n]) = o(ν2

n);

(ii) For some ι > 0, n−1∆2+2ι
k,n δ

−(8+2ι)
k,n = o(νn);

(iii) ηk is bounded (‖ηk‖∞ <∞) and differentiable, with a bounded derivative: ‖η′k‖∞ <∞;

(iv) For each n, φk,n is three-times continuously differentiable on [ΞLk,n,Ξ
U
k,n] and ‖φ(3)

k,n‖
2
∞δ

6
k,n =

o(νn);11

(v) There are c > 0 and N ∈ N such that for n ≥ N we have infs∈[ΞLk,n,Ξ
U
k,n] |ηk(s)| ≥ cδk,n.

9E(ε4k,t) − 1 ≥ E(ε3k,t)
2 always holds; this is known as Pearson’s inequality. See e.g. result 1 in Sen (2012).

Assuming that E(ε4k,t) − 1 > E(ε3k,t)
2 rules out (only) cases where 1, εk,t and ε2k,t are linearly dependent when

considered as elements of L2. See e.g. Theorem 7.2.10 in Horn and Johnson (2013).
10All of our results continue to hold without the restriction that Γ is open provided γ is an interior point of Γ.
11The differentiability and continuity requirements at the end-points are one-sided.
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These assumptions are similar to those considered in Chen and Bickel (2006). They ensure

that the log density scores can be estimated sufficiently accurately using B-spline regressions (as

explained in section 4).12 Formally, we require that the support of the density ηk is contained

with high probability in the interval [ΞLk,n,Ξ
U
k,n]. These lower and upper points will correspond

to the smallest and largest knots of the B-splines. Second, condition (ii) ensures that the number

of knots does not increase too fast, relative to the sample size n. Conditions (iii) and (iv) impose

that the density is sufficiently smooth, such that it can be well-fitted by B-splines. The final

condition restricts the tails of the density.

3 Preliminary results

In this section we present two preliminary results for semi-parametric SVAR models that we

believe are useful more broadly. First, we provide a (uniform) local asymptotic normality

[(U)LAN] result for the semi-parametric SVAR model in (2). The primary difference with

existing results is that we explicitly perturb the non-parametric part of the model, i.e. the

densities ηk, whereas existing (U)LAN results for VARs hold this fixed (e.g. Hallin and Saidi,

2007). This extension is necessary for deriving the form of the score test proposed in this

paper and can be used in other applications. Second, we analytically derive the efficient score

function for the semi-parametric SVAR model, see e.g. van der Vaart (1998); Bickel et al.

(1998) for general discussions on efficient score functions. Readers who are mainly interested in

implementing the methodology of this paper can safely skip this section.

3.1 Uniform Local Asymptotic Normality

Let Gk denote the law on R corresponding to ηk (k = 1, . . . ,K) and define

˙H :=
K∏
k=1

˙Hk, ˙Hk :=

{
hk ∈ C1

b (λ) :

∫
hk dGk =

∫
hkιdGk =

∫
hkκdGk = 0

}
, (5)

where ι is the identity funcion, κ(z) = z2−1 (as defined above) and C1
b (λ) denotes the class of real

functions on R which are bounded, continuously differentiable and have bounded derivatives.

Note that RL× ˙H is a linear subspace of RL×
∏K
k=1 L2(Gk). Let this be normed by ‖(g, h)‖ :=√

‖g‖22 +
∑K

k=1 ‖hk‖2L2(Gk) where ‖ · ‖2 denotes the Euclidean norm.

For an arbitrary convergent sequence (gn, hn) → (g, h) ∈ RL × ˙H let θn := θn(gn, hn) :=

(γ + gn/
√
n, η(1 + hn/

√
n)). Denote by pnθ the density of Pnθ with respect to λn and Λnθn the

(conditional) log likelihood ratio:

Λnθn := log

(
pnθn
pnθ

)
=

n∑
t=1

`θn(Yt, Xt)− `θ(Yt, Xt) , (6)

where `θ(Yt, Xt) denotes the t-th contribution to the conditional log likelihood for the SVAR

12These assumptions are tailored to the specific density score estimator we propose in this paper. Nevertheless, in
principle, other density score estimators may be used. Inspection of the proofs reveals that any such estimator
which satisfies the conclusions of Lemma A.1 can be adopted.
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model evaluated at θ. We note that this can be explicitly written as

`θ(Yt, Xt) = log |det(A(α, σ))|+
K∑
k=1

ηk(Ak•(α, σ)(Yt −BXt)) .

With this notation established we first derive the scores for the full vector of finite dimensional

parameters γ = (α, σ, b). The score functions with respect to the components αl, σl and bl are

˙̀
θ,αl(Yt, Xt) =

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφk(Ak•Vθ,t)Aj•Vθ,t +

K∑
k=1

ζαl,k,k (φk(Ak•Vθ,t)Ak•Vθ,t + 1) , (7)

˙̀
θ,σl(Yt, Xt) =

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,jφk(Ak•Vθ,t)Aj•Vθ,t +
K∑
k=1

ζσl,k,k (φk(Ak•Vθ,t)Ak•Vθ,t + 1) , (8)

˙̀
θ,bl(Yt, Xt) =

K∑
k=1

φk(Ak•Vθ,t)× [−Ak•DblXt] , (9)

where Vθ,t := Yt − BXt, A := A(α, σ), Dαl(α, σ) := ∇αlA(α, σ), Dσl(α, σ) := ∇σlA(α, σ),

Dbl = ∇blB, ζαl,k,j := [Dαl(α, σ)]k•A
−1
•j , ζσl,k,j := [Dσl(α, σ)]k•A

−1
•j and φk(z) := ∇z log ηk(z).

We collect these scores in the vector

˙̀
θ(Yt, Xt) :=

((
˙̀
θ,αl(Yt, Xt)

)Lα
l=1

,
(

˙̀
θ,σl(Yt, Xt)

)Lσ
l=1

,
(

˙̀
θ,bl(Yt, Xt)

)Lb
l=1

)′
.

Under assumption 2.1, we have the following ULAN result.13

Proposition 3.1 (ULAN): Suppose that assumption 2.1 holds. Then as n→∞,

Λnθn(Y n) = gn(Y n)− 1

2
Eθ
[
gn(Y n)2

]
+ oPnθ (1), (10)

where Eθ indicates that the expectation is taken under Pnθ and

gn(Y n) :=
1√
n

n∑
t=1

[
g′ ˙̀θ(Yt, Xt) +

K∑
k=1

hk(Ak•Vθ,t)

]
,

with A = A(α, σ). Moreover, under Pnθ ,

gn(Y n) N (0,Ψθ(g, h)), Ψθ(g, h) := lim
n→∞

Eθ
[
gn(Y n)2

]
.

The corollary below follows from Le Cam’s first Lemma (e.g. van der Vaart, 1998, Example

6.5).

Corollary 3.1: If assumption 2.1 holds, then the sequences (Pnθn)n∈N and (Pnθ )n∈N are mutually

contiguous.

The importance of this result is that the semi-parametric SVAR model can be locally asymp-

13The proof of LAN is based on verifying the conditions of Lemma 1 in Swensen (1985). ULAN then follows by
combining this with an asymptotic equicontinuity condition on (g, h) 7→ Pnθn(g,h).
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totically approximated by a Gaussian shift experiment. This local approximation can be ex-

ploited to derive the form of the score test below as well as its limiting distribution under

local alternatives, but can be more broadly used for other inference problems, such as building

estimators.

3.2 Efficient score function

One of the key ingredients in our framework is the efficient score function for the parameter of

interest, α. Loosely speaking this is defined as the projection of the score function for α on the

orthogonal complement (in L2) of the space spanned by the score functions for the nuisance

parameters (β, η) (e.g. Bickel et al., 1998; van der Vaart, 2002; Newey, 1990; Choi et al., 1996).

In the case of interest here, where the nuisance parameter contains both finite (β) and

infinite-dimensional (η) components, the efficient score function can be calculated in two steps:

(1) compute the projection of the score for γ = (α, β) on the orthocomplement of the space

spanned by the score functions for η, and (2) partition the resulting object into the components

corresponding to α and β and project the former onto the orthocomplement of the latter.

We proceed according to this two-step procedure and now establish the form of the first

projection.

Lemma 3.1: Given Assumption 2.1 the efficient score function for γ in the semi-parametric

SVAR model PnΘ at any θ = (γ, η) with γ = (α, β), α ∈ A, β = (σ, b) ∈ B and η ∈ H is given

by ˜̀
n,θ(Y

n) =
∑n

t=1
˜̀
θ(Yt, Xt), where

˜̀
θ(Yt, Xt) =

((
˜̀
θ,αl(Yt, Xt)

)Lα
l=1

,
(

˜̀
θ,σl(Yt, Xt)

)Lσ
l=1

,
(

˜̀
θ,bl(Yt, Xt)

)Lb
l=1

)′
with components

˜̀
θ,αl(Yt, Xt) =

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφk(Ak•Vθ,t)Aj•Vθ,t +
K∑
k=1

ζαl,k,k [τk,1Ak•Vθ,t + τk,2κ(Ak•Vθ,t)]

˜̀
θ,σl(Yt, Xt) =

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,jφk(Ak•Vθ,t)Aj•Vθ,t +
K∑
k=1

ζσl,k,k [τk,1Ak•Vθ,t + τk,2κ(Ak•Vθ,t)]

˜̀
θ,bl(Yt, Xt) =

K∑
k=1

−Ak•Dbl [(Xt − µ)φk(Ak•Vθ,t)− µ(ςk,1Ak•Vθ,t + ςk,2κ(Ak•Vθ,t))]

where Vθ,t = Yt − BXt, ζ
α
l,k,j := [Dαl(α, σ)]k•A

−1
•j with Dαl(α, σ) := ∂A(α, σ)/∂αl, ζ

σ
l,k,j :=

[Dσl(α, σ)]k•A
−1
•j with Dσl(α, σ) := ∂A(α, σ)/∂σl, Dbl := ∂B/∂bl, µ := (1, vec(ιp ⊗ (IK − B1 −

. . .−Bp)−1c)′)′, and τk := (τ1,k, τ2,k)
′ and ςk := (ς1,k, ς2,k)

′ are defined as

τk := M−1
k

(
0

−2

)
, ςk := M−1

k

(
1

0

)
where Mk :=

(
1 Eθ(Ak•Vθ,t)3

Eθ(Ak•Vθ,t)3 Eθ(Ak•Vθ,t)4 − 1

)
.

The derivation of the efficient scores ˜̀
θ(Yt, Xt) follows along the same lines as in Amari and

Cardoso (1997); Chen and Bickel (2006); Lee and Mesters (2023a). The dependence on η comes
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through (a) the log density scores φk(z) = ∇z log ηk(z), for k = 1, . . . ,K and (b) the third and

fourth order moments of εk in Mk.

For future reference, we partition

˜̀
θ(Yt, Xt) =

(
˜̀
θ,α(Yt, Xt)

˜̀
θ,β(Yt, Xt)

)
,

where ˜̀
θ,α(Yt, Xt) = (˜̀

θ,αl(Yt, Xt))
Lα
l=1 and ˜̀

θ,β(Yt, Xt) =
(

(˜̀
θ,σl(Yt, Xt))

Lσ
l=1, (

˜̀
θ,bl(Yt, Xt))

Lb
l=1

)′
.

Based on the efficient scores, we define the efficient information matrix for γ by

Ĩn,θ :=
1

n

n∑
t=1

E ˜̀
θ(Yt, Xt)˜̀′

θ(Yt, Xt) with partitioning Ĩn,θ =

(
Ĩn,θ,αα Ĩn,θ,αβ

Ĩn,θ,βα Ĩn,θ,ββ

)
. (11)

With Lemma 3.1 and the efficient information matrix in place, we can compute the efficient

score function for α with respect to β and η. In particular this score can be computed by the

second projection (e.g. Bickel et al., 1998, p. 74)

κ̃n,θ(Yt, Xt) := ˜̀
θ,α(Yt, Xt)− Ĩn,θ,αβ Ĩ−1

n,θ,ββ
˜̀
θ,β(Yt, Xt) , (12)

as long as Ĩθ,ββ is positive definite. The corresponding efficient information matrix is given by

Ĩn,θ := Ĩn,θ,αα − Ĩn,θ,αβ Ĩ−1
n,θ,ββ Ĩn,θ,βα . (13)

We note that the efficient score function κ̃θ(Yt, Xt) and the efficient information matrix Ĩn,θ can

be evaluated at any parameters θ = (α, β, η) and variables (Yt, Xt).

Building tests or estimators based on the efficient score function is attractive as efficiency

results are well established, see Choi et al. (1996), Bickel et al. (1998) and van der Vaart (2002).

A crucial difference in our setting is that the efficient information matrix might be singular.

For instance, if more than one component of εt follows an exact Gaussian distribution, Ĩn,θ is

singular, see Lemma S15 in Lee and Mesters (2023b). The singularity plays an important role

in the construction of the semi-parametric score statistic below.

4 Inference for potentially non-identified parameters

In this section we consider conducting inference on α without assuming that α is locally iden-

tified. Specifically and in contrast to the existing literature, we do not assume that sufficiently

many components of εt have a non-Gaussian distribution. Only Assumptions 2.1 and 2.2 are

imposed, under which α may not be (locally) identified.

Our approach is based on testing hypotheses of the form

H0 : α = α0 , β ∈ B , η ∈ H against H1 : α 6= α0 , β ∈ B , η ∈ H . (14)

The main idea is to consider test statistics whose computation does not require evaluation

under the alternative H1, thus avoiding the need to consistently estimate α. Clearly, based
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on the trinity of classical tests, the score test is the only viable candidate and we will proceed

by constructing score tests in the spirit of Neyman-Rao, but adapted for the semi-parametric

setting (e.g. Choi et al., 1996). Such test statistics can then be inverted to yield a confidence

region for α with correct coverage. This confidence region then forms the basis for constructing

confidence intervals for structural functions as we show in the next section.

In our setting, we rely on the efficient score functions for the SVAR model to construct

test statistics. The functional form of the efficient scores ˜̀
θ(yt, xt) was analytically derived in

Lemma 3.1. These scores can be estimated by replacing the population quantities by sample

equivalents. We have

ˆ̀
γ(Yt, Xt) =

((
ˆ̀
γ,αl(Yt, Xt)

)Lα
l=1

,
(

ˆ̀
γ,σl(Yt, Xt)

)Lσ
l=1

,
(

ˆ̀
γ,bl(Yt, Xt)

)Lb
l=1

)′
(15)

with components

ˆ̀
γ,αl(Yt, Xt) =

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφ̂k,n(Ak•Vγ,t)Aj•Vγ,t +
K∑
k=1

ζαl,k,k [τ̂k,1Ak•Vγ,t + τ̂k,2κ(Ak•Vγ,t)]

ˆ̀
γ,σl(Yt, Xt) =

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,jφ̂k,n(Ak•Vγ,t)Aj•Vγ,t +
K∑
k=1

ζσl,k,k [τ̂k,1Ak•Vγ,t + τ̂k,2κ(Ak•Vγ,t)]

ˆ̀
γ,bl(Yt, Xt) =

K∑
k=1

−Ak•Dbl

[
(Xt − X̄n)φ̂k,n(Ak•Vγ,t)− X̄n(ς̂k,1Ak•Vγ,t + ς̂k,2κ(Ak•Vγ,t))

]
where Vγ,t = Yt−BXt and X̄n = 1

n

∑n
t=1Xt.

14 The estimates for the τk’s and ςk’s are obtained

by replacing the population moments defined in Lemma 3.1 by their sample counterparts: τ̂k =

M̂k(0,−2)′ and ς̂k = M̂k(1, 0)′, where

M̂k :=

(
1 1

n

∑n
t=1(Ak•Vγ,t)

3

1
n

∑n
t=1(Ak•Vγ,t)

3 1
n

∑n
t=1(Ak•Vγ,t)

4 − 1

)
. (16)

Finally, the estimates of ˆ̀
γ(Yt, Xt) depend on φ̂k,n(·) which is the estimate for the log density

scores φk(z) = ∇z log ηk(z). In practice, we estimate these density scores using B-splines fol-

lowing the methodology of Jin (1992) and Chen and Bickel (2006). To set this up, let bk,n =

(bk,n,1, . . . , bk,n,Bk,n)′ be a collection of Bk,n cubic B-splines and let ck,n = (ck,n,1, . . . , ck,n,Bk,n)′

be their derivatives: ck,n,i(x) :=
dbk,n,i(x)

dx for each i = 1, . . . , Bk,n. The knots of the splines,

ξk,n = (ξk,n,i)
Kk,n
i=1 are taken as equally spaced in [ΞLk,n,Ξ

U
k,n]. In practice we take these points

as the 95th and 5th percentile of the samples {Ak•Vt}ni=1 adjusted by log(log(n)), where

A = A(α, σ) and Vt = Yt −BXt for a given parameter choice γ = (α, β).15

With this our estimate for the log density score φk is given by

φ̂k,n(z) := ψ̂′k,nbk,n(z) , (17)

14Note that the components are now indexed by γ as the score estimates no longer depend on η, recalling that
θ = (γ, η).

15In the simulation study below we fix the number of B-splines Bk,n = 7 and in the supplementary material we
also investigate a data driven selection procedure.
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where

ψ̂k,n := −

[
1

n

n∑
t=1

bk,n(Ak•Vγ,t)bk,n(Ak•Vγ,t)
′

]−1
1

n

n∑
t=1

ck,n(Ak•Vγ,t) . (18)

This shows that computing the log density score estimate (17) only requires computing the

B-spline regression coefficients ψ̂k,n in (18). The supplementary material Section S4 provides

the exact expressions for the B-splines and more discussion.

Having defined all the components of the efficient score estimates we may estimate the

efficient information matrix for γ by

În,γ =
1

n

n∑
t=1

ˆ̀
γ(Yt, Xt)ˆ̀

γ(Yt, Xt)
′ . (19)

With the estimates for the efficient scores and information for γ, we can estimate the efficient

score and information for α. This amounts to replacing the population score κ̃n,θ(Yt, Xt) and

information Ĩn,θ in (12) and (13) by their sample counterparts. We have that

κ̂n,γ(Yt, Xt) = ˆ̀
γ,α(Yt, Xt)− În,γ,αβ Î−1

n,γ,ββ
ˆ̀
γ,β(Yt, Xt) (20)

and

În,γ = În,γ,αα − În,γ,αβ Î−1
n,γ,ββ În,γ,βα . (21)

Since the information matrix may be singular, we need to make an adjustment. Specifically,

given the truncation rate νn defined in Assumption 2.2, we define a truncated eigenvalue version

of the information matrix estimate as

Îtn,γ = ÛnΛ̂n(ν1/2
n )Û ′n , (22)

where Λ̂n(ν
1/2
n ) is a diagonal matrix with the ν

1/2
n -truncated eigenvalues of În,γ on the main

diagonal and Ûn is the matrix of corresponding orthonormal eigenvectors. To be specific, let

{λ̂n,i}Li=1 denote the non-increasing eigenvalues of În,γ , then the (i, i)th element of Λ̂n(νn) is

given by λ̂n,i1(λ̂n,i ≥ ν
1/2
n ). Similar truncation schemes are discussed for reduced rank Wald

statistics in Dufour and Valery (2016).

Based on this, we define the semi-parametric score statistic for the SVAR model as follows.

Ŝn,γ :=

(
1√
n

n∑
t=1

κ̂n,γ(Yt, Xt)

)′
Ît,†n,γ

(
1√
n

n∑
t=1

κ̂n,γ(Yt, Xt)

)
, (23)

where Ît,†n,γ is the Moore-Penrose pseudo-inverse of Îtn,γ . We note that the test statistic can

be evaluated at any γ = (α, β). In practice we will set α = α0, i.e. fixing the potentially

unidentified parameters under the null (14), and β̂n, some
√
n-consistent estimate for the finite

dimensional nuisance parameters.

For such parameter choices, the limiting distribution of Ŝn,γ (under the null hypothesis

α = α0) is derived in the following theorem.

Theorem 4.1: Suppose Assumptions 2.1 and 2.2 hold and that β̂n is a
√
n−consistent estimator
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of β under Pnθ , for θ = (α0, β, η). Define Sn = n−1/2CZLβ for some C > 0 and let β̄n

be a discretized version of β̂n which replaces its value with the closest point in Sn; define

γ̄n = (α0, β̄n). Let rn = rank(Îtn,γ̄n) and denote by cn the 1− a quantile of the χ2
rn distribution,

for any a ∈ (0, 1). Then if θn := (α0, β + b/
√
n, η(1 + h/

√
n)),

lim
n→∞

Pnθn(Ŝn,γ̄n > cn) ≤ a,

with inequality only if rank(Ĩθ) = 0. Moreover, this size control is uniform over (b, h) ∈ B? ×
H? ⊂ RLβ × ˙H , where B? and H? are compact.16 That is,

lim
n→∞

sup
(b,h)∈B?×H?

Pnθn(b,h)(Ŝn,γ̄n > cn) ≤ a.

The theorem shows that the efficient score test (23) is locally uniformly asymptotically

correctly sized when we choose the critical value cn to correspond to the 1 − a quantile of the

chi squared distribution with degrees of freedom equal to the rank of the truncated (estimated)

efficient information matrix. Several comments are in order.

First, we do not impose which estimator β̂n should be adopted as the theorem holds for any
√
n-consistent estimator. In practice, standard estimators (e.g. GMM estimators) will satisfy

this condition. Moreover, given that the efficient scores for γ need to be computed anyway, it

is attractive to rely on one-step efficient estimates for β = (σ, b) as discussed in van der Vaart

(1998, Section 5.7). These estimates are guaranteed to satisfy the requirements of the Theorem

and typically improve the (finite sample) power of the test.17

Second, the score statistic is evaluated at the discretised estimator β̄n, which takes the

estimate β̂n and replaces its value with the closest point in Sn = n−1/2CZL2 . Note that this

changes each coordinate of β̂n by a quantity which is at most Op(n
1/2), hence the

√
n-consistency

is retained by discretization. Since the constant C can be chosen arbitrarily small this change

has no practical relevance for the implementation of the test.18 Discretization is a technical

device due to Le Cam (1960) that allows the proof to go through under weak conditions, see Le

Cam and Yang (2000, p. 125) or van der Vaart (1998, pp. 72 – 73) for further discussion.

Third, the practical choice for the eigenvalue truncation rate ν
1/2
n , which theoretically needs

to satisfy Assumption 2.2, appears to have little effect on the finite sample results. In our

simulation studies and empirical applications, we always truncate at machine precision which

implies that Ît,†n,γ is similar to Î†n,γ , the Moore-Penrose inverse of În,γ . Experimenting with

different, but small, truncation rates appears to show that this choice matters little in practice.

Fourth, if Ĩθ has full rank, the singularity adjusted score statistic is asymptotically equivalent

to its non-singular version that is computed with Î−1
n,γ̄n instead of Ît,†n,γ̄n ; it is well known that the

former is (locally asymptotically) optimal in a number of settings.19 Moreover, if the rank of Ĩθ
is positive, the singularity adjusted score statistic is (locally asymptotically) minimax optimal,

16H? ⊂ Ḣ ⊂
∏K
k=1 L2(Gk) and is equipped with the

∏K
k=1 L2(Gk) norm.

17See the simulation results of section 7.
18Indeed, in practice, we always discretise at machine precision, see Algorithm 1 below.
19This can be seen by comparison of the asymptotic local power of this test with the power bound in the

appropriate limit experiment. For example, see Theorem 25.44 in van der Vaart (1998) for the one-dimensional
one-sided case; optimality amongst unbiased tests in the two-sided case can be shown similarly.
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as can be shown by an argument analogous to that given in Lee (2022).

Confidence set

A confidence set for the parameters α can be constructed by inverting the efficient score test

Ŝn,γ over an arbitrarily fine grid of values for α. Formally, for any a ∈ (0, 1) we define the 1− a
confidence set estimate for α as

Ĉn,1−a := {α ∈ A : Sn,(α,β̄n) ≤ cn,α} ,

where cn,α the 1 − a quantile of the χ2
rn,α distribution and rn,α = rank(Ît

n,(α,β̄n)
). The fol-

lowing corollary establishes that the confidence set Ĉn,1−a has asymptotically correct coverage,

uniformly over local alternatives in the nuisance parameters.

Corollary 4.1: Suppose that assumptions 2.1 and 2.2 hold. Let β̄n, B?, H? and θn(b, h) be as

in Theorem 4.1. Then,

lim
n→∞

inf
(b,h)∈B?×H?

Pnθn(b,h)

(
α ∈ Ĉn,1−a

)
≥ 1− a. (24)

The confidence set Ĉn,1−a is the main building block for constructing confidence bands for

the structural functions in the next section. In addition, this set may be of interest in its

own right as in some models the coefficients α have a direct structural interpretation, see for

instance the labour supply-demand model of Baumeister and Hamilton (2015) that is considered

in Section 8.

We finish this section by summarising the practical implementation for the construction of

the confidence set, which naturally includes the implementation for the efficient score test.

Algorithm 1: Confidence set for α

(i) Choose a set A;

(ii) For each α ∈ A:

1 Obtain estimates β̂n = (σ̂n, b̂n), with bn = vec(Bn), and set V̂t = Yt − B̂nXt;

2 For k = 1, . . . ,K, compute the log density scores φ̂k(A(α0, σ̂n)k•V̂t) from (17);

3 Compute the efficient scores ˆ̀̂
γn(Yt, Xt) from (15) and the information matrix În,γ̂n

from (19) using γ̂n = (α0, β̂n);

4 Compute κ̂n,γ̂n(Yt, Xt) and În,γ̂n from (20) and (21).

5 Compute the score statistic Ŝn,γ̂n from (23) and accept H0 : α = α0 if Ŝn,γ̂n ≤ cn,

where cn is the 1− a quantile of the χ2
rn distribution with rn = rank(Îtn,γ̂n).

(iii) Collect the accepted values for α to form Ĉn,1−a.

The algorithm highlights that the computation costs for evaluating the score test, i.e. step

(ii), are modest. Only K B-spline regressions and a few standard computations are needed.

That said, for some applications the dimension of α may be large and therefore the grid over
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which the test needs to be computed is large as well leading to substantial computational

costs. To avoid this somewhat it is attractive to parameterize A(α, σ) such that α is as low

dimensional as possible, i.e. Lα = K(K − 1)/2. In addition, it is attractive to incorporate

additional restrictions, for example in our empirical work we typically use sign restrictions to a

priori shrink the set A.

5 Robust inference for smooth functions

In this section we discuss the methodology for conducting robust inference on smooth functions

of the finite dimensional parameters γ = (α, β). The main functions of interest are the structural

impulse response functions (sIRF), but also forecast error variance decompositions and forecast

scenarios can be considered within the general framework that we develop (e.g. Kilian and

Lütkepohl, 2017). The main difference with the preceding section is that we are now explicitly

interested in conducting inference on functions of both α and β, where we recall that the

parameters β are
√
n-consistently estimable, but α may not be consistently estimable due to a

potential lack of identification.

We define the general function of interest by

g(α, β) : Dg → Rdg , with Dg ⊃ A× B , (25)

where Dg is the domain of g and dg is some positive integer. The following assumption restricts

the class of functions that we consider.

Assumption 5.1: g : Dg → Rdg is continuously differentiable with respect to β and the Jacobian

matrix Jγ := ∇β′g(α, β) has full column rank on Dg.

The differentiability condition allows for the application of the (uniform) delta-method,

whereas the rank condition ensures that no further degeneracy in the asymptotic distribution

occurs, apart from that caused by α potentially suffering from identification problems.

For concreteness the next example provides the details for a vector of structural impulse

response functions.

Example 5.1: Consider the vector that collects all sIRF at horizon l

IRF(l) = g(α, β) := vec
(
DB(b)lD′A(α, σ)−1

)
,

where

D :=
[
IK 0K×K(p−1)

]
, and B(b) :=



B1 B2 · · · Bp−1 Bp

IK 0 · · · 0 0

0 IK · · · 0 0
...

...
. . .

...
...

0 0 · · · IK 0


.

In our general notation we have dg = K2 and we note that, given Assumption 2.1, this function
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is continuously differentiable with respect to β. The Jacobian Jγ ∈ RK2×Lβ has the form Jγ =

[Jγ,1, Jγ,2] where

Jγ,1 :=
[
(A(α, σ)−1)′ ⊗ IK

] { h−1∑
j=0

[
D(B(b)′)h−1−j ⊗ (DB(b)jD′)

]}
Jγ,2 :=

[
IK ⊗DB(b)hD′

]
∇σ vec(A(α, σ)−1) .

Similar details can be worked out for forecast error variance decompositions and other

structural functions of interest.

In general, our objective is to construct a valid 1− q confidence set for g(α, β). Intuitively,

we proceed in two steps: first we construct a valid confidence set for α using the methodology of

the previous section, and second, for each included α we construct a confidence set for g(α, β̂n).

The union over the latter sets provides the final set. Overall, this two-step Bonferroni approach

is similar to the approach utilised by Granziera et al. (2018) and Drautzburg and Wright (2023).

Formally, let q1, q2 ∈ (0, 1) such that q1 + q2 = q ∈ (0, 1). In the first step we construct

a 1 − q1 confidence set Ĉn,1−q1 for α using Algorithm 1. The asymptotic validity of this set

was proven in Corollary 4.1. Second, for each α ∈ Ĉn,1−q1 we compute %̂α,n := g(α, β̂n). The

confidence set for ν̂α,n is given by

Ĉn,g,α,1−q2 :=
{
% : n(%̂α,n − %)′V̂ −1

n,α(%̂α,n − %) ≤ cq2
}
, (26)

where % := g(α, β) and V̂n,α = Jγ̂Σ̂nJ
′
γ̂ , with γ̂ = (α, β̂n) and Σ̂n a consistent estimate for the

asymptotic variance of β̂n. The critical value cq2 corresponds to the 1− q2 quantile of a χ2
1−q2

random variable. The following proposition establishes the conditions on the estimates β̂n that

ensure that the confidence set (26) is valid.

Proposition 5.1: Suppose that assumption 5.1 holds. Let β̂n and Σ̂n be sequences of estimates

and B? ⊂ B, H? ⊂ ˙H be compact. Let βn(b) := β+b/
√
n. If, for any θn(b, h) := (α, βn(b), η(1+

h/
√
n)) with (b, h) ∈ B? ×H?,

√
n(β̂n − βn(b))

Pnθn N (0,Σ) , and, Σ̂n

Pnθn−−→ Σ,

where Σ is positive definite, then the confidence set Ĉn,g,α in (26) satisfies

lim
n→∞

inf
(b,h)∈B?×H?

Pnθn(b,h)

(
g(α, βn(b)) ∈ Ĉn,g,α,1−q2

)
= 1− q2 . (27)

The proposition formally establishes that if β̂n is asymptotically normal along the local

sequences θn(b, h), then the confidence set Ĉn,g,α is valid. The proof of this proposition is a

straightforward application of the uniform delta method.

The condition imposed on the estimator β̂n is satisfied by most typical estimators (e.g. GMM

estimators) under appropriate regularity conditions. Additionally, it can always be ensured

(under Assumption 2.1) by taking β̂n as a one-step efficient estimator based on any initial
√
n

– consistent estimator (cf. Section 6).
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The final confidence set for g(α, β), i.e. Ĉn,g, is formed by taking the union of the sets

Ĉn,g,α,1−q2 over α ∈ Ĉn,1−q1 . Formally, we consider

Ĉn,g :=
⋃

α∈Ĉn,1−q1

Ĉn,g,α,1−q2 . (28)

The confidence set Ĉn,g is a valid 1− q confidence set as we formally establish in the following

Corollary.

Corollary 5.1: Let βn(b), θn(b, h) and B?, H? be as in Proposition 5.1. If Ĉn,1−q1 satisfies

(24) and Ĉn,g,α,1−q2 satisfies (27), then

lim inf
n→∞

inf
(b,h)∈B?×H?

Pnθn(b,h)

(
g(α, βn(b)) ∈ Ĉn,g

)
≥ 1− q .

This Corollary requires only the conclusions of Corollary 4.1 and Proposition 5.1.20 For

convenience we summarize the practical implementation in the following algorithm.

Algorithm 2: Robust confidence sets for smooth functions

(i) Obtain the confidence set Ĉn,1−q1 for α using Algorithm 1;

(ii) For each α ∈ Ĉn,1−q1

(a) Estimate β̂n and Σ̂n;

(b) Compute V̂n,α = Jγ̂Σ̂J ′γ̂ with Jγ̂ and γ̂ = (α, β̂n)

(c) Construct the confidence set Ĉn,g,α,1−q2 as in (26);

(iii) Construct Ĉn,g from (28).

As is demonstrated in the subsequent section, for structural impulse responses this approach

often provides confidence sets with shorter average length when compared to alternative robust

confidence set constructions proposed in the literature.

The structure of Algorithm 2 implies that different parametrizations for A(α, σ) can lead

to different confidence sets for the structural functions. For example, suppose that K = 2: we

could choose A(α, σ) = Σ1/2(σ)R(α) such that α is a scalar, or we could set α = (α1, α2) as the

off-diagonal elements of A(α, σ) and let σ = (σ1, σ2) capture the diagonal elements. The stated

results hold for both options, but which approach results in the smallest confidence sets for a

given structural function depends on the true data generating process. In practice, unless the

researcher is interested in jointly testing specific entries of A, we recommend choosing α as small

as possible, this reduces the computational burden of searching over the set A in Algorithm

1 and therefore immediately reduce the computational cost of Algorithm 2.

20These are proven under Assumptions 2.1 and 2.2 which, we re-iterate, do not impose that the structural shocks
have non-Gaussian distributions.
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6 Point estimation under strong identification

While the main emphasis of this paper is on providing robust confidence sets for (functions of)

possibly weakly identified parameters in non-Gaussian SVAR models, the results from Section

3 can also be exploited to construct point estimates for the finite dimensional parameters γ =

(α, σ, b). Under an additional strong identification assumption, e.g. the densities of the errors

are non-Gaussian, such estimates have desirable efficiency properties as we document in this

section.21

Assumption 6.1: The limiting efficient information matrix for γ, Ĩθ = limn→∞ Ĩn,θ is non-

singular, where Ĩn,θ is as in (11).

A necessary underlying condition for this assumption is that at most one of the structural

shocks can follow a Gaussian distribution (e.g. Comon, 1994).22 Under this assumption the

literature has developed a variety of
√
n – consistent estimators for this case, see the references

cited in the introduction. Based on any of such estimators we define the one-step efficient

estimator as

γ̂n = γ̄n + Î−1
n,γ̄n

¯̀
n,γ̄n , where ¯̀

n,γ̄n =
1

n

n∑
t=1

ˆ̀
n,γ̄n(Yt, Xt) , (29)

with ˆ̀
n,γ(Yt, Xt) and În,γ defined in (15) and (19) respectively and γ̄n a discretised version

of any
√
n–consistent estimator γ̃n = (α̃n, β̃n). We note that under Assumption 6.1 and the

regularity conditions stated above Î−1
n,γ̄n exists with probability approaching one. See van der

Vaart (1998) for a more elaborate discussion on one-step efficient estimators.

The following theorem summarizes the main result.

Theorem 6.1: Suppose that Assumptions 2.1, 2.2 and 6.1 hold. Let γ̃n be a
√
n–consistent

estimator of γ under Pnθ . Let γ̄n be a discretised version of γ̃n which which replaces its value

with the closest point in S ∗
n := n−1/2CZL. Then,

√
n(γ̂n − γ) =

1√
n

n∑
t=1

Ĩ−1
θ

˜̀
θ(Yt, Xt) + oPnθ (1) N (0, Ĩ−1

θ ), (30)

and, moreover,

Ĩ
1/2
θ

√
n(γ̂n − γ) N (0, I).

The theorem reveals that the estimator γ̂n is asymptotically efficient in the sense that it is

locally regular and achieves the asymptotic semiparametric efficiency bound for locally regular

estimators given by an infinite dimensional version of the Hájek – Le Cam convolution theorem,

see e.g. Theorem 3.11.2 in van der Vaart and Wellner (1996) for a version of this theorem which

applies to the present setting. The estimator in (29) can be iterated to achieve finite sample

improvements.

21These efficiency properties transfer to smooth functions of γ (e.g. IRFs) in the usual way (cf. Section 25.7 in
van der Vaart (1998))

22We note that primitive sufficient conditions depend also on the specific parametrization that is chosen for
A(α, σ).
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Table 1: Distributions for Structural Shocks

Abbreviation Name Definition

N (0, 1) Gaussian 1√
2π

exp
(
−1

2x
2
)

t(ν), ν = 15, 10, 5 Student’s t
Γ( ν+1

2 )
√
νπΓ( ν2 )

(
1 + x2

ν

)(− ν+1
2 )

SKU Skewed Unimodal 1
5N
(
0, 1
)

+ 1
5N
(

1
2 , (

2
3)2
)

+ 3
5N
(

13
12 , (

5
9)2
)

KU Kurtotic Unimodal 2
3N
(
0, 1
)

+ 1
3N
(
0, ( 1

10)2
)

BM Bimodal 1
2N
(
− 1, (2

3)2
)

+ 1
2N
(
1, (2

3)2
)

SPB Separated Bimodal 1
2N
(
− 3

2 , (
1
2)2
)

+ 1
2N
(

3
2 , (

1
2)2
)

SKB Skewed Bimodal 3
4N
(
0, 1
)

+ 1
4N
(

3
2 , (

1
3)2
)

TRI Trimodal 9
20N

(
− 6

5 , (
3
5)2
)

+ 9
20N

(
6
5 , (

3
5)2
)

+ 1
10N

(
0, (1

4)2
)

Note: The table reports the distributions that are used in the simulation studies in section 7 to draw the structural
shocks. The mixture distributions are taken from Marron and Wand (1992), see their table 1.

7 Finite sample performance

This section discusses the results from a collection of simulation studies that were designed

to evaluate the size and power of the proposed inference procedures. Additional results are

presented in the supplementary material Section S5.

7.1 Size of semi-parametric score test

We start by evaluating the empirical rejection frequencies of the score test Ŝn,γ̂n for the semi-

parametric SVAR model. We consider SVAR(p) specifications with p = 1, 4, 12 lags, K = 2, 3

variables and sample sizes T = 200, 500, 1000. We simulate the SVAR(p) model for ten different

choices for the distributions of the structural shocks εk,t. The density functions that we consider

and their abbreviated names are reported in Table 1. We normalize each εk,t to have mean zero

and variance one by standardizing by the population mean and variance implied by the densities

in Table 1.

For the purpose of the simulation study, we parametrize the contemporaneous effect matrix

by A(α, σ)−1 = Σ1/2(σ)R(α)′ where Σ1/2(σ) is lower triangular and the rotation matrix R(α)

is parametrized using the Cayley transform: R(α) = [IK − Γ(α)] [IK + Γ(α)]−1, where Γ(α) is

a skew-symmetric matrix with elements α.23 The true structural parameters α0 are fixed at

randomly sampled values. Furthermore, we choose Σ1/2 to be lower triangular with ones on the

main diagonal and zeros elsewhere. The coefficient matrices, Aj , j = 1, . . . , p are parametrized

as Aj = φjIK where φj are fixed at values that ensure the SVAR is stationary. We use 400

23Our results are robust to using different parametrizations such as parametrizing R(α) by Euler angles (e.g.
Rose, 1957) or directly parametrizing A−1(α, σ) = L(σ) + U(α) where L(σ) is a lower triangular matrix and
U(α) is an upper triangular matrix excluding the main diagonal. The supplementary material Section S5
reports the results for the latter case.
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burn-in periods to simulate data and, unless indicated differently, we use M = 2, 500 Monte

Carlo replications throughout the simulations.

Table 2 reports the empirical rejection frequencies of the semi-parametric score test defined

in Section 4 for testing the hypothesis H0 : α = α0 vs. H1 : α 6= α0. The test is implemented

following steps 1-5 of Algorithm 1 for α = α0 and using B = 7 cubic B-splines for the

estimation of the log density scores. The nuisance parameters β are estimated using either OLS

or using a one-step efficient estimator for β which update the OLS estimates using one Gauss-

Newton iteration (van der Vaart, 1998, Section 5.7). All tests are conducted at 5% nominal

size.

For the one-step efficient estimates (top panel) we find that the size of the test is generally

very close to the nominal size of 5%, regardless of the dimension of the SVAR or the number

of lags. Only for SVARs with a large number of parameters (high K and high p), do we see

minor size distortions. Most notably for K = 3, p = 12 and n = 200 the empirical size of the

test is often below the nominal level. We note that such settings, where the number of nuisance

parameters Lβ is proportional to the sample size is not covered by our theory which imposes

Lβ/n→ 0.

Most importantly however, and central to the main objective of this paper, the results are

similar across the different densities for εk,t. Regardless whether the density is Gaussian, close-

to-Gaussian or far away from the Gaussian density the behavior of the test is similar, and we

do not see an increase in the rejection frequency around the point of no-identification, i.e. the

Gaussian density.

For the test that is based on OLS estimates (bottom panel) the results are quite similar.

The only difference is that for small sample sizes with K and p large the test over-rejects

substantially more when compared to the test based on one-step efficient estimates. The reason

is that OLS estimates are considerably more noisy and biased in settings where the number of

parameters is proportional to the number of observations.

7.2 Comparison to alternative approaches

Next, we compare the performance of the semi-parametric score test to a variety of alternative

methods that have been proposed in the literature based on size and power. We focus on

an SVAR(1) model with K = 2 variables and a sample size of T = 500. We use the same

parametrization and parameter values as described in the previous subsection to generate the

data.

We distinguish between two types of alternative tests: (i) tests that do not fix α under the

null (e.g. Wald and Likelihood ratio type tests) and (ii) tests that fix α under the null (e.g. score

type or Lagrange multiplier tests). We expect the tests in the first category to perform poorly

as they are more vulnerable to identification failures.24 In the first category, we consider three

different Wald and three different Likelihood-ratio tests. The first test (WPML,t) is a pseudo-

maximum likelihood test based on the t-distribution, implemented using one (standardised)

t(7) density and a (standardised) t(12) density for the second shock. The test is closely related

24Simulation evidence in Lee and Mesters (2023a) has shown that tests that do not fix α under the null often
show severe over-rejection in static ICA models when the errors are close to Gaussian.
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Table 2: Empirical rejection frequencies

K p n N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

One-Step Efficient Estimates

2 1 200 5.4 6.3 5.8 5.4 5.8 5.3 4.6 4.3 4.7 4.8
2 1 500 6.6 6.3 6.1 6.1 5.4 5.4 4.2 4.2 5.5 4.9
2 1 1000 5.9 6.3 5.7 5.2 4.8 6.1 4.4 4.1 4.8 5.2

2 4 200 4.3 6.0 6.0 4.4 4.5 4.2 5.2 5.4 3.8 4.6
2 4 500 6.0 5.7 6.0 5.3 4.6 5.5 5.6 5.9 4.6 4.8
2 4 1000 5.8 5.8 6.6 4.7 4.8 5.3 4.3 4.0 4.8 4.4

2 12 200 4.7 4.3 5.0 4.7 4.4 3.9 4.6 6.5 3.3 5.4
2 12 500 6.2 6.9 5.0 4.9 4.2 4.5 5.2 5.8 4.7 4.6
2 12 1000 6.8 5.7 5.5 5.4 4.4 4.8 4.3 4.4 5.0 5.6

3 1 200 7.2 7.6 7.6 8.4 7.4 7.2 4.8 4.4 4.8 5.7
3 1 500 7.4 8.3 8.1 6.6 6.1 5.6 5.6 5.4 5.2 4.9
3 1 1000 7.4 7.8 6.5 5.6 5.0 5.5 4.6 4.2 5.3 4.1

3 4 200 6.2 7.6 7.5 8.3 6.0 5.9 3.6 4.1 5.5 3.6
3 4 500 9.5 7.2 8.0 7.7 6.4 6.2 5.9 5.6 4.7 4.5
3 4 1000 7.8 6.7 7.9 6.2 5.3 6.7 5.7 5.5 5.0 5.0

3 12 200 2.4 2.7 3.3 4.5 3.1 2.7 3.2 2.0 2.3 3.4
3 12 500 8.4 8.5 9.4 9.4 6.6 4.7 3.9 3.5 5.3 2.4
3 12 1000 8.4 8.0 8.5 8.1 5.8 6.6 6.7 6.3 5.3 4.6

OLS Estimates

2 1 200 4.0 4.4 4.8 5.7 4.4 5.0 3.8 3.5 4.0 3.8
2 1 500 4.6 5.0 5.5 6.6 5.0 5.0 3.6 4.0 4.2 4.6
2 1 1000 4.7 5.4 4.9 5.0 4.8 6.2 3.9 3.8 5.1 4.9

2 4 200 4.6 6.1 5.1 5.1 3.5 4.0 3.0 2.8 4.0 3.0
2 4 500 5.0 5.3 5.5 5.9 5.1 4.0 3.5 3.7 4.1 3.6
2 4 1000 4.8 5.4 5.4 4.8 5.0 4.6 3.9 3.3 4.0 3.5

2 12 200 8.2 6.9 8.5 9.6 4.7 5.4 4.8 4.0 5.6 3.5
2 12 500 6.7 7.8 6.4 6.7 5.4 3.4 3.5 2.7 4.4 3.6
2 12 1000 6.3 5.3 5.8 5.6 6.2 3.7 3.9 3.0 4.6 4.2

3 1 200 5.6 6.9 7.1 10.2 5.7 5.7 3.4 2.5 4.4 3.0
3 1 500 5.4 6.4 6.7 8.6 5.6 5.9 3.3 3.0 4.2 3.0
3 1 1000 5.0 5.9 5.5 6.6 4.8 6.0 3.6 3.2 4.4 3.2

3 4 200 7.7 8.9 10.1 11.5 5.7 3.7 2.4 1.3 4.7 1.9
3 4 500 6.9 6.3 7.7 9.0 5.9 3.0 2.5 1.8 3.5 2.2
3 4 1000 6.1 5.7 7.5 6.7 5.0 4.2 3.0 2.4 3.9 2.6

3 12 200 16.0 18.5 19.7 20.6 11.0 9.7 6.1 4.8 13.6 4.7
3 12 500 12.7 13.6 13.7 14.5 7.2 2.5 2.5 1.4 6.2 1.5
3 12 1000 8.5 8.8 8.7 8.4 7.0 2.5 2.9 1.4 4.3 2.0

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
H0 : α = α0 vs. H1 : α 6= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameter
estimates β̂ are either one-step efficient or OLS estimates. The columns correspond to the dimension K, the
number of lags p, the sample size n and the different choices for the distributions of the structural shocks, εk,t
for k = 1, . . . ,K. The distributions are reported in Table 1. Rejection rates are computed based on M = 2, 500
Monte Carlo replications.
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to the Wald test of Gouriéroux et al. (2017). We also consider the (psuedo –) likelihood ratio

test (LRPML,t). In addition, we consider two tests based on the work of Lanne and Luoto

(2021) – the GMM Wald (WGMM,LL) and likelihood ratio (LRGMM,LL) tests which are based on

higher (third & fourth) order moment conditions. We also include the closely related moment

estimator from Keweloh (2021) for a Wald (WGMM,Kew) and likelihood-ratio (LRGMM,Kew) test.

In the second category we consider five tests. First, we have the pseudo maximum likelihood

Lagrange Multiplier test (LMPML,t) that is based on work of Gouriéroux et al. (2017). This

test is based on the score of the pseudo log likelihood which we take, following Gouriéroux

et al. (2017), to be the Student’s t with degrees of freedom fixed at ν = 7 and ν = 12 for

the first and second shocks respectively.25 Secondly, we consider the LM test corresponding to

the GMM setup of Lanne and Luoto (2021) (LMGMM,LL). Lastly, we compare to the recently

proposed robust GMM methods of Drautzburg and Wright (2023). We include both tests that

they propose. The first is based on the S-statistic of Stock and Wright (2000) which sets the

cross third and fourth order moments to zero (SDW). Second, we include their non-parametric

test which is based on Hoeffding (1948) and Blum et al. (1961) and sets all higher order cross

moments to zero (BKRDW). The SDW has the benefit that it does not require a full independence

assumption, whereas the BKRDW test, similarly to our semi-parametric score test, requires full

independence of the structural shocks. We implement the SDW and BKRDW tests using the

bootstrap procedure described in Drautzburg and Wright (2023).

Size comparison

Table 3 compares the size of the different testing procedures.

First as expected, the tests in group (i) — WPML, WLL and DMLL — tend to perform very

poorly, with the simulation results demonstrating both substantial over-rejection and extremely

conservative performance, depending on the test and distribution pair. This leads to the strong

recommendation to avoid tests that are not robust to weak deviations from Gaussian densities.

Overall, all tests in group (ii) perform much better, yet there are some differences that are

worth noting. First, similarly as before the rejection rates for the two efficient score tests (Ŝ)

are close to the nominal size of 5%, regardless of the distribution of the structural shocks (as in

table 2).

Next, consider the LM test based on Gouriéroux et al. (2017) (LMPML): in the case with one

Gaussian density, this test is able to control size for all choices of the second density considered.

In the case where both shocks are drawn from the same distribution, this test is able to control

size for most of the distributions, however over-rejects somewhat for the BM, SPB and TRI

distributions. The LM test based on Lanne and Luoto (2021) (LMLL) displays slightly worse

performance, with over-rejections for about half of the distributions considered. Interestingly

many of these over-rejections occur in the first panel, where we may expect that identification

is somewhat stronger. The identification robust moment tests of Drautzburg and Wright (2023)

(GMMDW and BKRDW) generally perform well, with the former always controlling size correctly

25Note that this test is not actually discussed in Gouriéroux et al. (2017), but the simulations in Lee and Mesters
(2023a) show that it has reliable size for ICA models. Moreover, the same idea could be implemented using
mixtures of normals instead of the Student’s t density (Fiorentini and Sentana, 2022).
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Table 3: Empirical rejection frequencies for alternative tests

Test N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

ε1,t ∼ ε2,t
Ŝols 5.3 5.7 6.1 5.7 4.4 5.7 4.0 3.7 4.8 3.9

Ŝonestep 7.8 6.5 6.7 6.0 4.7 5.3 5.2 5.0 5.5 4.7
SDW 3.9 3.8 3.7 5.8 5.3 4.3 2.6 2.9 3.6 3.7
BKRDW 3.8 3.9 4.3 4.9 5.5 28.5 5.9 5.5 7.9 6.1

LMPML,t 5.1 5.1 5.7 5.3 4.9 6.8 16.6 22.2 5.4 21.7
LMGMM,LL 1.8 1.5 4.2 12.1 16.2 10.6 3.5 3.7 2.3 3.9
LMGMM,Kew 1.4 1.5 4.0 15.0 15.3 6.5 4.5 4.3 1.4 4.1

LRPML,t 34.7 13.1 7.6 3.7 1.6 1.9 100.0 100.0 14.0 100.0
LRGMM,LL 7.4 10.5 11.7 19.2 16.1 12.6 3.9 3.4 9.6 3.8
LRGMM,Kew 9.8 10.3 13.7 20.0 16.9 12.6 4.6 4.7 9.4 4.3

WPML,t 16.7 10.8 11.3 8.1 6.2 5.9 37.4 41.7 12.4 38.5
WGMM,LL 20.5 24.5 23.5 27.2 22.2 17.9 4.4 4.8 22.8 4.5
WGMM,Kew 33.0 29.7 28.7 24.1 21.1 14.5 5.0 5.3 27.6 4.8

Note: The table reports empirical rejection frequencies for tests of the hypothesis H0 : α = α0 vs. H1 : α 6= α0

with 5% nominal size for the SVAR(1) model with K = 2 and T = 500, and α0 = 0.5594. Ŝols denotes the semi-
parametric score test using OLS estimates for β, Ŝonestep uses one-step efficient estimates. LMPML,t, WPML,t and
LRPML,t denote the pseudo-maximum likelihood tests based on Gouriéroux et al. (2017), assuming t-distributed
shocks. LMGMM,LL, WGMM,LL and LRGMM,LL denote the GMM-based tests based on Lanne and Luoto (2021)
with one co-kurtosis condition based on ε31tε2t. LMGMM,Kew, WGMM,Kew and LRGMM,Kew denote the correspond-
ing GMM-based tests of Keweloh (2021) using both co-kurtosis conditions. Finally, SDW and BKRDW denote
the bootstrapped GMM-based and non-parametric test of Drautzburg and Wright (2023), respectively. The
columns correspond to different choices for the distributions of the structural shocks, εk,t for k = 1, . . . ,K. The
distributions are reported in Table 1. The tests of Drautzburg and Wright (2023) use 500 bootstrap replications
to simulate the null distribution of the test statistics. Rejection rates are computed based on M = 1, 000 Monte
Carlo replications.

and the latter over-rejecting only in a few cases (e.g. the kurtotic unimodal distribution). This

over-rejection is not due to identification failure but rather slow convergence due to the higher

order moment conditions used.

To summarize, most of the non-robust alternative procedures lead to incorrect inference if

the distribution of the structural shocks is not “sufficiently” non-Gaussian. Furthermore, the

identity of the best-performing alternative procedure crucially depends on which non-Gaussian

distribution generated the data. In contrast, the semi-parametric score test proposed in this

paper gives correct inference regardless of the distribution of the structural shocks.

Power comparison

Next, we compare power among the identification robust tests. We again focus on an SVAR(1)

model with K = 2 variables a sample size of T = 500.

Figure 1 reports the raw (i.e not size-adjusted) power for the semi-parametric score test

using one-step nuisance parameter estimates (red solid line), the semi-parametric score test

using OLS nuisance parameter estimates (black sold line), the pseudo maximum likelihood LM
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Figure 1: Power in the SVAR(1) model
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Ŝols Ŝonestep LMPML, t SDW BKRDW

Note: The figure reports unadjusted empirical power curves for tests of the hypothesisH0 : α = α0 vs. H1 : α 6= α0

with 5% nominal size for the SVAR(1) model with K = 2 and T = 500. The x-axis corresponds to different
alternatives for α around α0 = 0.5594. Ŝols denotes the semi-parametric score test using OLS estimates for
β, Ŝonestep uses one-step efficient estimates. LMPML,t denotes the pseudo-maximum likelihood test based on
Gouriéroux et al. (2017), SDW denotes the GMM-based test of Drautzburg and Wright (2023), BKRDW denotes
the non-parametric test of Drautzburg and Wright (2023). The tests of Drautzburg and Wright (2023) use 500
bootstrap replications to obtain critical values. Rejection frequencies are computed using M = 1, 000 Monte
Carlo replications.

test (dot - dashed blue line), the Drautzburg and Wright (2023) GMM test (dotted green line)

and the non-parametric Drautzburg and Wright (2023) test (dot - dashed purple line).

For the t distributions in the first row of the figure, the best performing test is the pseudo

maximum likelihood LM test. This is not surprising as this test is based on the t – density and

therefore is close to correctly specified. The efficient score tests show greater power than either

of the other tests considered. Moreover, in the other panels, the efficient score tests are typically

the most powerful tests (that also control size), with the one-step update version performing

slightly better. The quality of the other three tests depends to a large extent on the underlying

density. For example, the tests of Drautzburg and Wright (2023) offer very little power in the

t-distribution cases, but for the other distributions their non-parametric test has power curves
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which are not much below those of the efficient score test.26

7.3 Additional results

In the supplementary material we present additional results that evaluate (i) the score test

under alternative parametrizations, (ii) the score test for higher dimensions, (iii) the score test

with cross-validation for selecting the number of B-splines as in Chen and Bickel (2006), (iv)

the confidence sets for smooth functions of the SVAR parameters as discussed in Section 5

(both coverage and confidence set length) and (v) the point estimates introduced in Section

6. The results show that the finite sample properties of the score test are invariant to the

specific parametrization chosen. The cross-validation procedure leads to rejection frequencies

that are generally closer to the nominal level. In higher dimensions the performance of the

test deteriorates; similar to other SVAR studies, a bootstrap implementation of our test is

likely to be preferable in such settings. The evaluation of the impulse responses shows that the

two-step Bonferroni approach is conservative; but if the efficient score test, based on one-step

efficient estimates, is used as the first step the coverage becomes much closer to the nominal

size. Also, the efficient score approach gives the smallest length among all procedures considered

and for all densities. Finally, the one-step efficient point estimates are generally more accurate

when compared to non-efficient competitors, i.e. their root-mean-squared error is lower when

compared to existing estimators.

8 Empirical studies

In this section, we discuss the results from two empirical studies: one for labor supply and

demand and the other for the oil market. We investigate the consequences of replacing some of

the identifying information used in previous studies with identification based on non-Gaussianity

and illustrate the calculation of confidence sets based on the methodology of this paper.

8.1 Labor supply-demand model of Baumeister and Hamilton (2015)

We revisit the bivariate SVAR(p) model of the U.S. labor market as considered in Baumeister

and Hamilton (2015). We have Yt = (∆wt,∆ηt)
′, where ∆wt is the growth rate of real compen-

sation per hour and ∆ηt is the growth rate of total U.S. employment. The SVAR model for Yt

is defined by (2) with parametrization27

A−1(α, σ) =

(
−αd 1

−αs 1

)−1(
σ1 0

0 σ2

)
.

26For the kurtotic unimodal distribution the power curve of this test is higher, however this test is substantially
oversized for this density. It should also be noted that the tests of Drautzburg and Wright (2023) are sub-
stantially more computationally demanding than the efficient score based approaches, as they use a bootstrap
approach to obtain the critical value. Relying on asymptotic critical values for these tests yields substantially
worse performance.

27In the supplementary material, we provide additional results from an alternative parametrization of the model
using a rotation matrix.

26



It follows that here the parameter αd is the short-run wage elasticity of demand, and αs is

the short-run wage elasticity of supply. The number of lags used is p = 8, the sample is

from 1970:Q1 through 2014:Q2, and conventional sign restrictions are imposed on the supply

and demand elasticities (αd ≤ 0, αs ≥ 0). These restrictions ensure that we test economically

interesting permutations of the impact matrix.

Without further identifying information, any fixed point that satisfies the sign restrictions

is a valid point and nothing more can be learned. To improve identification, Baumeister and

Hamilton (2015) introduce carefully motivated priors on the short-run labor supply and demand

elasticities, based on estimates from the micro-econometric and macroeconomic literature, as

well as a long-run restriction on the effect of labor-demand shocks on employment (e.g. Shapiro

and Watson, 1988). We investigate whether such additional identifying assumptions can be

avoided by exploiting possible non-Gaussianity in the supply and demand shocks. For the

purpose of our analysis, we consider a wide grid of potential elasticities, (αd, αs) ∈ [−3, 0)×(0, 3],

which covers the majority of elasticity estimates reported in the microeconometric literature, as

well as findings from theoretical macroeconomic models (see the discussion in Baumeister and

Hamilton (2015)). We confine our analysis to this grid which can be regarded as an additional

identification restriction.

Recently, Lanne and Luoto (2022) adopted the methodology of Lanne and Luoto (2021) to

assess identification of the model using non-Gaussianity, but this approach may yield incorrect

coverage when the shocks are close to Gaussian (cf Section 7). Here we will adopt the robust

score testing approach of Sections 4 and 5 to construct confidence sets for the elasticity param-

eters as well as impulse responses to labor supply and labor demand shocks. Specifically, we

construct confidence sets for α using Algorithm 1 and confidence bands for the impulse re-

sponses using Algorithm 2. For both algorithms, we make use of one-step efficient parameter

estimates β̂n.

Before getting there, we recall that our methodology relies on the assumption that the

demand and supply shocks are independent and not merely uncorrelated. Therefore, we start

by testing for independent components using the permutation tests of Matteson and Tsay (2017)

and Montiel Olea et al. (2022). To compute the test, we obtain an initial GMM estimate of

α using the moment conditions of Keweloh (2021). For the given sample period, we obtain a

p-value of 0.12 for the test of Matteson and Tsay (2017) and a p-value of 0.55 for the test of

Montiel Olea et al. (2022), hence we conclude this assumption is not unreasonable and proceed

with constructing confidence sets for the elasticity parameters.

Confidence Sets for (αd, αs)

Figure 2 shows the 95% and 67% joint confidence sets for labor demand (αd) and labor supply

(αs) parameters obtained using Algorithm 1 of Section 4. The confidence sets are constructed

based on a grid of 250,000 equally spaced points spanning the elasticity ranges discussed above.

The figure shows that overall, non-Gaussianity is not sufficient to pin down a precise region for

the elasticities, though it does rule out parts of the parameter space which would be accepted

under Gaussianity. For sufficiently negative values of the short-run demand elasticity, the

short-run supply elasticity is reasonably well identified from non-Gaussianity with confidence
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Figure 2: Confidence Sets for Labor Demand and Supply Elasticities
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Note: 95% (light blue) and 67% (dark blue) confidence regions for labor demand and supply elasticities obtained
using Algorithm 1 with 250,000 equally-spaced grid points for (αd, αs) ∈ [−3, 0)× (0, 3].

sets indicating that αs lies in the 0 - 0.3 range for both 95% and 67% confidence level. In

contrast, for values of αd that are less negative (smaller absolute value), the confidence sets

support a wide range of values for the supply elasticity, up to 0.6 at 67% confidence level and

spanning almost all values in the inspected grid at 95% confidence level. Our results match the

findings of Baumeister and Hamilton (2015) who report that the main posterior mass for αs

lies in the 0 - 0.5 range while the posterior for αd indicates that demand elasticities between -3

and 0 are well supported by the model.

Note that the estimate of Lanne and Luoto (2022) obtained using non-Gaussianity identi-

fication (αd = 0.317, αs = 0.514) falls within our confidence set at 95% level. However, they

find narrow confidence sets for the elasticity parameters while our weak-identification robust

approach results in much wider confidence sets, similar to the credible sets of Baumeister and

Hamilton (2015).

Confidence Sets for impulse responses

Figure 3 shows our identification-robust 95% and 67% confidence sets for the impulse responses

to labor-demand and labor-supply shocks. Comparing the impulse response bands to the poste-

rior credible sets reported by Baumeister and Hamilton (2015), we note that the implied impulse

responses are, overall, very similar and show long and persistent responses to the supply and

demand shocks. The main differences are that our 95% identification-robust bands support

slightly negative long-run responses of the real wage and employment to a demand shock, as

well as a more pronounced negative long-run response of employment to a supply shock while
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Figure 3: IRF confidence bands for labor demand and supply shocks
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Note: 95% (light blue) and 67% (dark blue) identification-robust confidence bands for impulse responses to labor
supply and labor demand shocks, obtained using 250,000 equally-spaced grid points for (αd, αs) ∈ [−3, 0)× (0, 3].

Baumeister and Hamilton (2015)’s credible sets contain only (weakly) positive responses. Com-

paring our results to Lanne and Luoto (2022), we note several differences. First, Lanne and

Luoto (2022) find a significant negative long-run response of the real wage to a supply shock

while our confidence sets do not rule out that the long-run response is weakly positive. Second,

and most important, they find a strong and significant dynamic response of both the real wage

and employment to the labor demand shock, inconsistent with the tight prior variance Baumeis-

ter and Hamilton (2015) impose on the long-run response of employment to a demand shock.

In contrast to their findings, both our 67% and 95% identification-robust confidence bands do

not rule out that the long-run response of either variable to the demand shock is zero. This

evidence suggests that the long-run restriction of Baumeister and Hamilton (2015) cannot be

rejected solely on the basis of non-Gaussianity.

8.2 Oil price model of Kilian and Murphy (2012)

Next, we revisit the tri-variate oil market SVAR(p) model of Kilian and Murphy (2012). We

have Yt = (∆qt, xt, pt)
′ where ∆qt is the percent change in global crude oil production, xt is an
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index of real economic activity representing the global business cycle and pt is the log of the

real price of oil. The SVAR model is parameterised as follows

Yt = c+B1yt−1 + · · ·+BpYt−p +A−1(α, σ) εt, A−1(α, σ) =

σ1 αqx · σ5 αqp · σ6

σ2 σ4 αxp

σ3 σ5 σ6

 (31)

where following Baumeister and Hamilton (2019) we use p = 12. In this model, εt includes

a shock to the world production of crude oil (“oil supply shock”), a shock to the demand for

crude oil and other industrial commodities associated with the global business cycle (“aggregate

demand shock”), and a shock to demand for oil that is specific to the oil market (“oil-market-

specific demand shock”). In the parametrisation above, αqx is the short-run (impact) demand

elasticity of oil supply while αqp captures the short-run (impact) price elasticity of oil supply.

The baseline model of Kilian and Murphy (2012) makes use of the following sign restrictions

on the impact responses in A−1 to identify impulse responses:28

A−1(α, σ) =

+ + +

+ + −
− + +

 . (32)

In addition, Kilian and Murphy (2012) impose a set of upper bounds on the short-run oil supply

elasticities implied by the model to shrink the identified set for the impulse responses. Specif-

ically, they assume that αqp < 0.0258, αqx < 0.0258 and that αxp > −1.5. These restrictions,

in particular the elasticity bound on αqp, have been criticised by Baumeister and Hamilton

(2019) as being too tight and there is an active debate around which values for these bounds

are reasonable (see Herrera and Rangaraju (2020) for an overview).

We investigate whether the bounds on the elasticities can be avoided by exploiting non-

Gaussian features of the structural shocks. We base our analysis on the monthly data sample

considered in Zhou (2020) which spans February 1973 - August 2009. This data corresponds

to the original data of Kilian and Murphy (2014), but includes the correction to the index

of global economic activity discussed in Kilian (2019). We consider the robust score testing

approach of Sections 4 and 5 to construct confidence sets for the elasticity parameters as well

as the impulse responses to the oil supply shock, the aggregate demand shock and the oil-

market-specific demand shock. Our implementation is similar as in the previous application.

We start by testing for independent components using the permutation tests of Matteson and

Tsay (2017) and Montiel Olea et al. (2022). As before, we base the test on a GMM estimate of

α obtained using the moment conditions of Keweloh (2021). For the given sample period, we

obtain a p-value of 0.35 for the test of Matteson and Tsay (2017) and a p-value of 0.47 for the

test of Montiel Olea et al. (2022), hence we conclude this assumption is not unreasonable and

proceed with constructing confidence sets for the elasticity parameters.

28Kilian and Murphy (2012) normalize the first shock to be an oil supply disruption, leading to inverted signs in
the first column of A−1. Following Baumeister and Hamilton (2019), we consider a positive oil supply shock.
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Figure 4: Confidence Sets for (αqx, αqp)
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Note: 95% (light blue) and 67% (dark blue) confidence regions for supply elasticities (αqx, αqp) obtained using
Algorithm 1 using 500,000 grid points for (αqx, αqp, αxp) ∈ (0, 0.25] × (0, 0.1] × [−3, 0) by projection across
accepted values for αxp. The black dashed lines denote the original supply elasticity bounds of 0.0258 imposed
by Kilian and Murphy (2012).

Confidence sets for oil supply elasticities (αqx, αqp)

Figure 4 shows the 95% and 67% joint confidence sets for the price elasticity of oil supply (αqp)

and the demand elasticity of oil supply (αqx) obtained using Algorithm 1 of Section 4 from a

grid of 500,000 points for (αqx, αqp, αxp) ∈ (0, 0.25] × (0, 0.1] × [−3, 0) with 100 points for αqx

and αqp each and 50 points for αxp. The confidence set for (αqx, αqp) is obtained by projecting

over all values of αxp in the grid. The end points of the grid were chosen by (i) doubling the

bound on αxp imposed by Kilian and Murphy (2012), (ii) allowing for a large range of values for

αqx and (iii) substantially relaxing the bound on the price elasticity of oil supply (αqp) in Kilian

and Murphy (2012) to address the critique of Baumeister and Hamilton (2019). In particular,

the grid end-point of 0.1 for αqp matches the largest supply elasticity bound considered in

the sensitivity analysis of Baumeister and Hamilton (2019)’s model carried out in Herrera and

Rangaraju (2020) and nests the relaxed supply elasticity bound considered in Zhou (2020). To

ensure that our robust confidence set is compatible with the sign restrictions in (32), we impose

these signs in the estimation of the nuisance parameters σ.29

Inspecting the confidence set depicted in Figure 4, we note that non-Gaussianity significantly

helps to identify the price elasticity of the oil supply, but is less able to accurately pin down

the demand elasticity of oil supply. In particular, while the considered grid allows for supply

29Note that the set of sign restrictions on A−1 does not merely pin down a signed permutation of A−1, but also
imposes additional restrictions on the magnitudes of elasticities; see the discussion in Baumeister and Hamilton
(2019, p. 1881).
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Figure 5: IRF Confidence Bands in the Oil Market Model
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Note: 95% (light blue) and 67% (dark blue) identification-robust confidence bands for the impulse responses to
oil supply, aggregate demand and oil-specific demand shocks, obtained using 500,000 equally-spaced grid points
for (αqx, αqp, αxp) ∈ (0, 0.25]× (0, 0.1]× [−3, 0).

elasticities up to 0.1, the bound on the price elasticity of oil supply implied by the 95% and

67% confidence set for αqp falls within the relaxed bound of 0.04 considered by Zhou (2020). In

addition, at the 67% level, the elasticity lies within the bound of 0.0258 originally considered

in Kilian and Murphy (2012). At the 95% level, non-Gaussianity can not rule out that αqp falls

outside this bound. For the demand elasticity of oil supply (αqx), the confidence set spans a

large range of values between zero and 0.22, depending on the value for αqp.

Overall, our results suggest that non-Gaussianity is informative about the oil supply elas-

ticities αqx, αqp in the model of Kilian and Murphy (2012). However, it is not able to justify

the bounds considered in Kilian and Murphy (2012).

Confidence Sets for Impulse Responses

Finally, we turn to inspecting the 95% and 67% confidence bands for impulse responses to

oil supply, aggregate demand and oil-specific supply shocks which are depicted in Figure 5.

We note that our confidence bands overall exhibit response patterns that are similar to the
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results reported in Kilian and Murphy (2012) based on sign restrictions and the elasticity

bound of 0.0258. However, our procedure results in substantially wider confidence bands for

the responses of global real activity and the real price of oil than the ones originally reported

in Kilian and Murphy (2012). In particular, while the responses of oil production are identified

precisely, the responses of global real activity and of the real price of oil exhibit large uncertainty

with insignificant and flat responses to the oil supply shock, significant positive hump-shaped

responses to the aggregate demand shock and mixed response patterns to the oil-specific demand

shock.

9 Conclusion

This paper develops robust inference methods for structural vector autoregressive (SVAR) mod-

els that are identified via non-Gaussianity in the distributions of the structural shocks. We treat

the SVAR model as a semi-parametric model where the densities of the structural shocks form

the non-parametric part and conduct inference on the possibly weakly identified or non identi-

fied parameters of the SVAR, using a semi-parametric score statistic. We additionally provide a

two-step Bonferroni-based approach to conduct inference on smooth functions of all the finite-

dimension parameters of the model.

We assess the finite-sample performance of our method in a large simulation study and find

that the empirical rejection frequencies of the semi-parametric score test are always close to the

nominal size, regardless of the true distribution of the shocks. Moreover, the power of the test

is typically higher than alternative methods that have been proposed in the literature.

Finally, we employ the proposed approach in a number of empirical studies. Overall our

findings are mixed. Whilst non-Gaussianity does provide some identifying information for the

structural parameters of interest, it is unable to always pin down the parameter values or impulse

responses precisely. These exercises also highlight the importance of using weak identification

robust methods to asses estimation uncertainty when using non-Gaussianity for identification.
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Appendix

A Proofs and additional results

Here we prove the main results of the paper. Only the main arguments are given here, with the
verification of technical details relegated to Lemmas which can be found in the supplementary
material.

A.1 Notation

x := y means that x is defined to be y. The Lebesgue measure on RK is denoted by λK or
λ if the dimension is clear from context. The standard basis vectors in RK are e1, . . . , eK .
We make use of the empirical process notation: Pf :=

∫
f dP , Pnf := 1

n

∑n
i=1 f(Yi) and

Gnf :=
√
n(Pn − P )f . For any two sequence of probability measures (Qn)n∈N and (Pn)n∈N

(where Qn and Pn are defined on a common measurable space for each n ∈ N), Qn / Pn
indicates that (Qn)n∈N is contiguous with respect to (Pn)n∈N. Qn / . Pn indicates that both
Qn / Pn and Pn / Qn hold, see van der Vaart (1998, Section 6.2) for formal definitions. X ⊥⊥ Y
indicates that random vectors X and Y are independent; X ' Y indicates that they have the
same distribution. a . b means that a is bounded above by Cb for some constant C ∈ (0,∞);
the constant C may change from line to line. clX means the closure of X. vec−1 is the inverse
vec operator, i.e. if b = vec(B) then B = vec−1(b). If S is a subset of an inner product space
(V, 〈·, ·〉), S⊥ is its orthogonal complement, i.e. S⊥ = {x ∈ V : 〈x, s〉 = 0 for all s ∈ S}. If
S ⊂ V is complete (hence a Hilbert space) the orthogonal projection of x ∈ V onto S is Π(x|S).
The total variation distance between measures P and Q defined on the measurable space (Ω,F)
is dTV (P,Q) = supA∈F |P (A)−Q(A)|.  denotes weak convergence.

A.2 Density score estimation

Lemma A.1: Suppose Assumptions 2.1 and 2.2 hold. Let θn = (αn, βn, η)→ θ be a deterministic
sequence with

√
n‖βn− β‖ = O(1). Then the log density score estimates φ̂k,n defined as in (17)

satisfy for j, k = 1, . . . ,K, k 6= j

1

n

n∑
t=1

[
φ̂k,n(An,k•(Yt −BnXt))− φk(An,k•(Yt −BnXt))

]
Wn,t = oPn

θ̃n
(n−1/2), (33)

where An := A(αn, βn), Bn := B(βn) and Wn,t are any mean-zero random variables independent
from all An,k•(Ys − BnXs) with s ≥ t and such that supn∈N,1≤t≤n Eθ̃nW

2
n,t < ∞. Additionally,

for νn = ν2
n,p with 1 < p ≤ 1 + δ/4 and n−1/2(1−1/p) = o(νn,p) we have

1

n

n∑
t=1

([
φ̂k,n(An,k•(Yt −BnXt))− φk(An,k•(Yt −BnXt))

]
Wn,t

)2
= oPn

θ′n
(νn). (34)

where Wn,t are any random variables independent from all An,k•(Ys − BnXs) with s ≥ t and
such that supn∈N,1≤t≤n Eθ̃nW

2
n,t <∞.

Proof. The claim follows by an argument analogous to that used to prove Lemma 4 of Lee and
Mesters (2023a); see Lee and Mesters (2023b) for the proof.30

30Note that in the statement of Lemma 4 of Lee and Mesters (2023a) the object corresponding to Wn,t here
(their Zn,i) is assumed to be mean zero in the equations corresponding to both (33) and (34). Inspection of
the proof reveals that this is unnecessary for the equation corresponding to (34).
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A.3 ULAN

To establish ULAN we establish LAN, as in Proposition A.1 directly below. Following this
in Proposition A.2 we show that (g, h) 7→ Pnθn(g,h) is asymptotically equicontinuous in total
variation. These properties are together equivalent to ULAN.

Proposition A.1 (LAN): Suppose that assumption 2.1 holds. Then for any g, h ∈ RL × ˙H
such that θn(g, h) = (γ + g/

√
n, η(1 + h/

√
n)), as n→∞,

Λnθn(g,h)(Y
n) = gn(Y n)− 1

2
E
[
gn(Y n)2

]
+ oPnθ (1), (35)

where the expectation is taken under Pnθ and

gn(Y n) :=
1√
n

n∑
t=1

[
g′ ˙̀θ(Yt, Xt) +

K∑
k=1

hk(Ak•Vθ,t)

]
,

with A = A(α, σ). Moreover, under Pnθ ,

gn(Y n) N (0,Ψθ(g, h)), Ψθ(g, h) := lim
n→∞

E
[
gn(Y n)2

]
.

Proof. Throughout we work conditional on (Y−p+1, . . . , Y0)′. Define Vθ,t := Yt −BXt and

Wn,t :=
1

2
√
n

[
g′ ˙̀θ(Yt, Xt) +

K∑
k=1

hk(Ak•Vθ,t)

]
,

Fn,t := σ(Yt, Xt) and note that (Wn,t,Fn,t)n∈N, 1≤t≤n forms an adapted stochastic process. By
Assumption 2.1(ii),

E [Wn,t|Fn,t−1] =
1

2
√
n

[
g′ E

[
˙̀
θ(Yt, Xt)|Fn,t−1

]
+

K∑
k=1

E[hk(Ak•Vθ,t)|Fn,t−1]

]
= 0, (36)

almost surely, where the expectation is taken under Pnθ .
Next define Un,t := (un,t/un,t−1)1/2 − 1 where un,0 = 1 and else

un,j :=

(
|An|
|A|

)j
×

j∏
t=1

K∏
k=1

ηk(An,k•Vθn,t)

ηk(Ak•Vθ,t)

(
1 +

hk(An,k•Vθn,t)√
n

)
, (37)

with A := A(α, σ) and An := A(α+ gα/
√
n, σ + gσ/

√
n). That is,

Un,t :=

[(
|An|
|A|

)
×

K∏
k=1

ηk(An,k•Vθn,t)

ηk(Ak•Vθ,t)

(
1 +

hk(An,k•Vθn,t)√
n

)]1/2

− 1. (38)

We now verify conditions (1.2) – (1.6) of Lemma 1 in Swensen (1985), having shown (1.7) to
hold above. (1.2), i.e. that E

∑n
t=1[Wn,t −Un,t]2 → 0, where the expectation is taken under Pnθ

is shown to hold in Lemma S2.5. For (1.3) note that by Lemma S2.4, Pnθ [|
√
nWn,t|2+ρ] ≤ C for

some ρ > 0. Hence

sup
n∈N

Pnθ

[
n∑
t=1

W 2
n,t

]
≤ sup

n∈N

1

n

n∑
t=1

Pnθ (
√
nWn,t)

2 . C.
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For (1.4), by Lemma S2.4 and Markov’s inequality,

Pnθ

(
max

1≤t≤n
|Wn,t| > ε

)
≤ Pnθ

(
n∑
t=1

W 2
n,t1{|Wn,t| > ε} > ε2

)

≤ ε−2
n∑
t=1

E
[
W 2
n,t1{

√
n|Wn,t| >

√
nε}
]

→ 0.

(1.5) follows from Lemma S2.7. For (1.6), by Lemma S2.4 and the fact that conditional expec-
tations are L1 contractions we have for any ε > 0

E

∣∣∣∣∣
n∑
t=1

E
[
W 2
n,t1{|Wn,t| > ε}|Fn,t−1

]∣∣∣∣∣ ≤
n∑
t=1

E
∣∣E [W 2

n,t1{
√
n|Wn,t| >

√
nε}|Fn,t−1

]∣∣
≤

n∑
t=1

E
[
W 2
n,t1{

√
n|Wn,t| >

√
nε}
]

→ 0.

under Pnθ . Additionally (iii) of Theorem 1 in Swensen (1985) holds since the relevant measures
are both absolutely continuous with respect to Lebesgue measure (cf. Taniguchi and Kakizawa,
2000, p. 34). Therefore, by Lemma 1 in Swensen (1985), under Pnθ ,

Λnθn(g,h)(Y
n) = 2

n∑
t=1

Wn,t − τ2/2 + oPnθ (1) N
(
−τ

2

2
, τ2

)
.

Given the form of Wn,t, it remains only to show that E[gn(Y n)2] → τ2. Since gn(Y n) =
2
∑n

t=1Wn,t and Wn,t forms a martingale difference array with respect to Fn,t (equation (36)),

E[gn(Y n)2] = 4E

[
n∑
t=1

Wn,t

]2

= 4E
n∑
t=1

W 2
n,t.

That this converges to τ2 follows from Lemma S2.7 and the reverse triangle inequality.

Proposition A.2: Suppose that assumption 2.1 holds. Then, if (gn, hn)→ (g, h),

lim
n→∞

dTV (Pnθn(gn,hn), P
n
θn(g,h)) = 0.

Proof. By Lemmas S2.8 and S2.9

log
pnθn(gn,hn)

pnθn(gn,h)

= oPn
θn(gn,h)

(1) and log
pnθn(gn,h)

pnθn(g,h)

= oPn
θn(g,h)

(1), (39)

whenever (gn, hn) → (g, h). Therefore, by Lemma S3.3, (i) dTV (Pnθn(gn,hn), P
n
θn(gn,h)) → 0 and

(ii) dTV (Pnθn(gn,h), P
n
θn(g,h))→ 0.

Proof of Proposition 3.1. The only conclusion of Proposition 3.1 which is not immediately im-
plied by those of Proposition A.1 is that

Λnθn(gn,hn)(Y
n)− gn(Y n) +

1

2
E
[
gn(Y n)2

]
= oPnθ (1).
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By Proposition A.1,

Λnθn(g,h)(Y
n)− gn(Y n) +

1

2
E
[
gn(Y n)2

]
= oPnθ (1),

and hence it suffices to show that

Λnθn(gn,hn)(Y
n)− Λnθn(g,h)(Y

n) = oPnθ (1). (40)

By Proposition A.2, dTV (Pnθn(gn,hn), P
n
θn(g,h)) → 0, hence (Pnθn(gn,hn))n∈N and (Pnθn(g,h))n∈N are

mutually contiguous (e.g. Lemma 2.15 & Remark 18.3 in Strasser (1985)). By Proposition A.1
and Example 6.5 in van der Vaart (1998) the same is true of (Pnθn(g,h))n∈N and (Pnθ )n∈N. By the

transitivity of mutual contiguity, we conclude that (Pnθn(gn,hn))n∈N and (Pnθ )n∈N are mutually

contiguous. Combine this with equation (39) to conclude that (40) holds.

Proof of Corollary 3.1. Combine Example 6.5 in van der Vaart (1998) with the fact that by
Proposition 3.1, under Pnθ

Λnθn(gn,hn)  N
(
−1

2
Ψ(g, h),Ψ(g, h)

)
.

A.4 Scores

Proof of Lemma 3.1. Define

T η|γPθ,H
:=

{
n∑
t=1

K∑
k=1

hk(Ak•Vθ,t) : h = (h1, . . . , hK) ∈ ˙H

}
, Vθ,t := Yt −BθXt. (41)

It suffices to show that (a) ˜̀
θ(Ys, Xs) ∈

[
T η|γPθ,H

]⊥
⊂ L2(Pnθ ) (componentwise) and (b)

˙̀
θ(Ys, Xs)− ˜̀

θ(Ys, Xs) ∈

{
K∑
k=1

hk(Ak•Vθ,s) : h = (h1, . . . , hK) ∈ cl ˙H

}
, s = 1, . . . , n. (42)

For (a), the fact that ˜̀
θ(Ys, Xs) ∈ L2(Pnθ ) follows straightforwardly from its form and the

moment conditions in assumption 2.1(ii). Next note that for any h ∈ ˙H , 1 ≤ s ≤ n,

n∑
t=1

K∑
k=1

E
[
˜̀
θ(Ys, Xs)hk(Ak•Vθ,t)

]
= 0

will be obtained under Pnθ if for all k, j,m ∈ [K] with m 6= j and all 1 ≤ s ≤ n, 1 ≤ t ≤ n,

E [φl(εm,s)εj,shk(εk,t)] = 0

E [εm,shk(εk,t)] = 0

E [κ(εm,s)hk(εk,t)] = 0

E [(Xs − µ)φm(εm,s)hk(εk,t)] = 0,

the first three of which follow from the independence between components and across time of
(εt)t≥1. If s ≤ t, then by independence E [(Xs − µ)φm(εm,s)hk(εk,t)] = E [(Xs − µ)]E [φm(εm,s)hk(εk,t)] =
0. If s > t, then E [(Xs − µ)φm(εm,s)hk(εk,t)] = E [(Xs − µ)hk(εk,t)E [φm(εm,s)|σ(ε1, . . . , εs−1)]] =
0 again by independence.

For (b), we note that for the components corresponding to a xl ∈ {αl : l = 1, . . . , Lα}∪{σl :
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l = 1, . . . , Lσ} we have

˙̀
θ,xl(Ys, Xs)− ˜̀

θ,xl(Ys, Xs) =
K∑
k=1

φk(Ak•Vθ,s)Ak•Vθ,s + 1− τk,1Ak•Vθ,s − τk,2κ(Ak•Vθ,s).

That this is mean zero and has finite second moment follows immediately from Assumption 2.1.
That it has covariance zero with Ak•Vθ,s and κ(Ak•Vθ,s) is ensured by the choice of τk.

For the components xl ∈ {bl : l = 1, . . . , Lb},

˙̀
θ,xl(Ys, Xs)− ˜̀

θ,xl(Ys, Xs) =
K∑
k=1

(φk(Ak•Vθ,s) + ςk,1Ak•Vθ,s + ςk,2κ(Ak•Vθ,s)) [−e′kµ].

Again that this is mean zero and has finite second moment follows immediately from Assumption
2.1. That it has covariance zero with Ak•Vθ,s and κ(Ak•Vθ,s) is ensured by the choice of ςk.

This establishes that (42) holds since these are the defining properties of cl ˙H .31

A.5 Main Theorems

Proof of Theorem 4.1. Define

Rn,1(γ?) :=
∥∥∥√nPn [ˆ̀γ? − ˜̀

θ?

]∥∥∥
Rn,2(γ?) :=

∥∥∥√nPn [˜̀θ? − ˜̀
θ

]
+
√
nĨn,θ(γ? − γ)

∥∥∥
Rn,3(γ?) := ν−1/2

n

∥∥∥În,γ? − Ĩθ∥∥∥ ,
where γ? := (α, β?) and θ? := (γ?, η). By Corollary 3.1, Pnθ /. P

n
θn((0,bn),0) for any bn → b ∈ RLβ .

It then follows by Lemmas S2.13, S2.15 and Le Cam’s first Lemma (e.g. van der Vaart, 1998,
Lemma 6.4) that

Rn,i(γn)
Pnθ−−→ 0 for i = 1, 2, 3,

for any sequence γn = (α, β + bn/
√
n) with bn → b ∈ RLβ . Hence by Lemma S3.1 also

Rn,i(γ̄n)
Pnθ−−→ 0 for i = 1, 2, 3. (43)

It follows that

√
nPn

[
ˆ̀̄
γn − ˜̀

θ

]
=
√
nPn

[
ˆ̀̄
γn − ˜̀̄

θn

]
+
√
nPn

[
˜̀̄
θn
− ˜̀

θ

]
= −Ĩn,θ(0,

√
n(β̄n − β)′)′ + oPnθ (1),

and În,θ̄n
Pnθ−−→ Ĩθ and so K̂θ̄n,n

Pnθ−−→ K̃θ for

K̃θ :=
[
I −Ĩθ,αβ Ĩ−1

θ,ββ

]
, K̂n,θ :=

[
I −În,θ,αβ Î−1

n,θ,ββ

]
.

31This follows by the argument of Lemma S8 in Lee and Mesters (2023b), noting that in the present context
their H0, H

?
0 , H̃0 may be dropped.
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We combine these to obtain

√
nPn [κ̂γ̄n,n − κ̃n,θ]

=
(
K̂n,γ̄n − K̃θ

)√
nPn

[
ˆ̀̄
γn − ˜̀

θ

]
+ K̃θn

√
nPn

[
ˆ̀̄
γn − ˜̀

θ

]
+
(
K̂n,γ̄n − K̃θ

)√
nPn ˜̀

θ

= −K̃θ Ĩθ(0,
√
n(β̄n − β)′)′ + oPnθ (1)

= −
[
I −Ĩθ,αβ Ĩ−1

θ,ββ

] [Ĩθ,αα Ĩθ,αβ
Ĩθ,βα Ĩθ,ββ

] [
0√

n(β̄n − β)

]
+ oPnθ (1)

= oPnθ (1).

Next, let Zn := 1√
n

∑n
t=1 κ̂n,γ̄n(Yt, Xt) and re-write it as

Zn =
1√
n

n∑
t=1

κ̃θ(Yt, Xt) +
1√
n

n∑
t=1

(κ̂γ̄n,n(Yt, Xt)− κ̃θ(Yt, Xt)) =
1√
n

n∑
t=1

κ̃θ(Yt, Xt) + oPnθ (1).

By (i) of Lemma S2.15 and Le Cam’s third lemma (e.g. van der Vaart, 1998, Example 6.7)

1√
n

n∑
t=1

˜̀
θ(Yt, Xt) N

(
Ĩθ(0

′, b′)′, Ĩθ

)
under Pθn ,

and hence under Pθn

Zn =
1√
n

n∑
t=1

˜̀
θ,α(Yt, Xt)− Ĩθ,αβ Ĩ−1

θ,ββ
˜̀
θ,β(Yt, Xt) + oPnθn

(1) Z ∼ N (0, Ĩθ).

By repeated addition and subtraction along with the observations that any submatrix has a
smaller operator norm than the original matrix we obtain and the matrix inverse is Lipschitz
continuous at a non-singular matrix we obtain∥∥∥În,γ̄n − Ĩθ∥∥∥

2
.
∥∥∥În,γ̄n − Ĩθ∥∥∥

2
.

Hence by (43) have
∥∥∥În,γ̄n − Ĩθ∥∥∥

2
= oPnθn

(ν
1/2
n ). By Proposition S1 in Lee and Mesters (2023b)

Ît,†n,γ̄n
Pnθn−−→ Ĩ†θ and PnθnRn → 1, where Rn := {rank(Ĩtn,γ̄n) = rank(Ĩθ)}.

Suppose first that r := rank(Ĩθ) > 0. By Slutsky’s lemma and the continuous mapping
theorem we have that

ŜSRn,γ̄n = Z ′nÎ
t,†
n,γ̄nZn  Z ′Ĩ†θZ ∼ χ

2
r

where the distributional result X := Z ′Ĩ†θZ ∼ χ2
r , follows from e.g. Theorem 9.2.2 in Rao and

Mitra (1971). On Rn cn is the 1−a quantile of the χ2
r distribution, which we will call c. Hence,

we have cn
Pnθn−−→ c and as a result,ŜSRn,γ̄n − cn  X − c where X ∼ χ2

r . Since the χ2
r distribution

is continuous, we have by the Portmanteau theorem

Pnθn

(
ŜSRn,γ̄n > cn

)
= 1−Pnθn

(
ŜSRn,γ̄n − cn ≤ 0

)
→ 1−P (X − c ≤ 0) = 1−P (X ≤ c) = 1−(1−a) = a ,

which completes the proof in the case that r > 0.
We next handle the case with r = 0. On the sets Rn we have that Îtn,γ̄n is the zero matrix,

whose Moore-Penrose inverse is also the zero matrix. Hence on these sets we have ŜSRn,γ̄n = 0
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and cn = 0 and therefore do not reject, implying

Pnθn(ŜSRn,γ̄n > cn) ≤ 1− PnθnRn → 0.

It follows that Pnθn(ŜSRn,γ̄n > cn)→ 0.
This completes the demonstration of the pointwise convergence

lim
n→∞

Pnθn(b,h)(Ŝn,γ̄n > cn) =

{
α if rank(Ĩθ) > 0

0 if rank(Ĩθ) = 0
.

Finally, to complete the proof, note that the norm on B× ˙H induces the product topology,
hence B? ×H? is compact. The uniformity then follows from the asymptotic uniform equicon-
tinuity in total variation of (b, h) 7→ Pnθn(b,h) on B? × H? which is an immediate consequence
of Lemma A.2 and the fact that asymptotic uniform equicontinuity is implied by asymptotic
equicontinuity on a compact set.

Proof of Corollary 4.1. Apply Theorem 4.1 to conclude:

lim
n→∞

inf
(b,h)∈B?×H?

Pnθn(b,h)(α ∈ Ĉn) ≥ 1− lim
n→∞

sup
(b,h)∈B?×H?

Pnθn(b,h)(Ŝ
SR
n,γ̄n > cn) ≥ 1− α.

Proof of Proposition 5.1. By the uniform delta method (van der Vaart, 1998, Theorem 3.8),
under Pnθn(b,h),

√
n
(
g(α, β̂n)− g(α, βn(b))

) Pn
θn(b,h)
 N

(
0, JγΣJ ′γ

)
.

Combine with V̂n,α
Pn
θn(b,h)−−−−−→ JγΣJ ′γ � 0 and the continuous mapping theorem to obtain

ng(α, β̂n)′V̂ −1
n,αg(α, β̂n)

Pn
θn(b,h)
 χ2

dg .

Hence, pointwise in (b, h) ∈ B? ×H?,

lim
n→∞

Pnθn(b,h)(g(α, βn(b)) ∈ Ĉn,g,αn,1−a) = lim
n→∞

Pnθn(b,h)

(
ng(α, β̂n)′V̂ −1

n,αg(α, β̂n) ≤ ca
)

= 1− a.

The uniform statement then follows from Proposition A.2.

Proof of Corollary 5.1. This follows directly from the hypotheses and the fact that

Pnθn(b,h)

(
g(α, βn(b)) ∈ Ĉn,g

)
≥ Pnθn(b,h)

({
g(α, β̂n) ∈ Ĉn,g,α,1−q2

}
∩
{
α ∈ Ĉn,1−q1

})
≥ Pnθn(b,h)

(
g(α, β̂n) ∈ Ĉn,g,α,1−q2

)
+ Pnθn(b,h)

(
α ∈ Ĉn,1−q1

)
− 1.

Proof of Theorem 6.1. Similarly to as in the Proof of Theorem 4.1, define

Rn,1(γ?) :=
∥∥∥√nPn [ˆ̀γ? − ˜̀

θ?

]∥∥∥
Rn,2(γ?) :=

∥∥∥√nPn [˜̀θ? − ˜̀
θ

]
+
√
nĨn,θ(γ? − γ)

∥∥∥
Rn,3(γ?) :=

∥∥∥Îγ?,n − Ĩθ∥∥∥ ,
where θ? := (γ?, η). By Corollary 3.1, for any gn → g ∈ RLα+Lβ , Pnθ / . P

n
θn(gn,0). By Lemmas
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S2.13, S2.15 and Le Cam’s first Lemma (e.g. van der Vaart, 1998, Lemma 6.4)

Rn,i(γn)
Pnθ−−→ 0 for i = 1, 2, 3,

where γn = γ + gn/
√
n. Hence by Lemma S3.1 also

Rn,i(γ̄n)
Pnθ−−→ 0 for i = 1, 2, 3. (44)

Combine these and (29) to yield

√
nĨθ(γ̂n − γ) =

√
nĨθ(γ̄n − γ) +

√
nĨθ Î

−1
n,γ̄n

¯̀
n,γ̄n

=
√
nĨθ(γ̄n − γ) +

√
nPn

(
ˆ̀
n,γ̄n − ˜̀̄

θn

)
+
√
nPn

(
˜̀̄
θn
− ˜̀

θ

)
+
√
nPn ˜̀

θ + oPnθ (1)

=
√
nPn ˜̀

θ + oPnθ (1).

Combine this with Lemma S2.15 (i) and the continuous mapping theorem.

41



References

Amari, S. and Cardoso, J.-F. (1997). Blind Source Separation - Semiparametric Statistical
Approach. IEEE Transactions On Signal Processing, 45(11).

Andrews, I. and Mikusheva, A. (2015). Maximum likelihood inference in weakly identified
dynamic stochastic general equilibrium models. Quantitative Economics, 6.

Andrews, I., Stock, J., and Sun, L. (2019). Weak instruments in iv regression: Theory and
practice. Annual Review of Economics, 11:727–753.

Baumeister, C. and Hamilton, J. D. (2015). Sign restrictions, structural vector autoregressions,
and useful prior information. Econometrica, 83(5):1963–1999.

Baumeister, C. and Hamilton, J. D. (2019). Structural interpretation of vector autoregressions
with incomplete identification: Revisiting the role of oil supply and demand shocks. American
Economic Review, 109(5):1873–1910.

Bekaert, G., Engstrom, E., and Ermolov, A. (2020). Aggregate Demand and Aggregate Supply
Effects of COVID-19: A Real-time Analysis. Working paper.

Bekaert, G., Engstrom, E., and Ermolov, A. (2021). Macro risks and the term structure of
interest rates. Journal of Financial Economics, 141(2):479–504.

Bickel, P., Klaasen, C. A. J., Ritov, Y., and Wellner, J. A. (1998). Efficient and Adaptive
Estimation for Semiparametric Models. Springer, New York, NY, USA.

Bickel, P. J., Ritov, Y., and Stoker, T. M. (2006). Tailor-made tests for goodness of fit to
semiparametric hypotheses. Ann. Statist., 34(2):721–741.

Blum, J. R., Kiefer, J., and Rosenblatt, M. (1961). Distribution Free Tests of Independence
Based on the Sample Distribution Function. The Annals of Mathematical Statistics, 32(2):485
– 498.

Bonhomme, S. and Robin, J.-M. (2009). Consistent noisy independent component analysis.
Journal of Econometrics, 149.

Braun, R. (2021). The importance of supply and demand for oil prices: evidence from non-
gaussianity. Working paper.

Brunnermeier, M., Palia, D., Sastry, K. A., and Sims, C. A. (2021). Feedbacks: Financial
markets and economic activity. American Economic Review, 111(6):1845–79.

Chen, A. and Bickel, P. J. (2006). Efficient Independent Component Analysis. Annals of
Statistics, 34(6).

Choi, S., Hall, W. J., and Schick, A. (1996). Asymptotically uniformly most powerful tests in
parametric and semiparametric models. Ann. Statist., 24(2):841–861.

Comon, P. (1994). Independent component analysis, A new concept? Signal Processing, 36.

Davis, R. and Ng, S. (2022). Time Series Estimation of the Dynamic Effects of Disaster-Type
Shocks. Working paper.

Drautzburg, T. and Wright, J. H. (2023). Refining set-identification in vars through indepen-
dence. Journal of Econometrics, 235(2):1827–1847.

Dufour, J.-M. and Valery, P. (2016). Rank-robust regularized wald-type tests. Working paper.

42



Fiorentini, G. and Sentana, E. (2022). Discrete mixtures of normals pseudo maximum likelihood
estimators of structural vector autoregressions. Journal of Econometrics.

Gouriéroux, C., Monfort, A., and Renne, J.-P. (2017). Statistical inference for independent
component analysis: Application to structural VAR models. Journal of Econometrics, 196.

Gouriéroux, C., Monfort, A., and Renne, J.-P. (2019). Identification and Estimation in Non-
Fundamental Structural VARMA Models. The Review of Economic Studies, 87(4):1915–1953.

Granziera, E., Moon, H. R., and Schorfheide, F. (2018). Inference for vars identified with sign
restrictions. Quantitative Economics, 9(3):1087–1121.

Guay, A. (2021). Identification of structural vector autoregressions through higher unconditional
moments. Journal of Econometrics, 225(1):27–46.

Hallin, M. and Saidi, A. (2007). Optimal tests of noncorrelation between multivariate time
series. Journal of the American Statistical Association, 102(479):938–951.

Hallin, M. and Werker, B. J. M. (1999). Optimal testing for semi-parametric autoregressive
models: From gaussian lagrange multipliers to regression rank scores and adaptive tests. In
Ghosh, S., editor, Asymptotics, Nonparametrics and Time Series, pages 295 – 358. Marcel
Dekker.

Herrera, A. M. and Rangaraju, S. K. (2020). The effect of oil supply shocks on us economic
activity: What have we learned? Journal of Applied Econometrics, 35(2):141–159.

Herwartz, H. (2019). Long-run neutrality of demand shocks: Revisiting blanchard and quah
(1989) with independent structural shocks. Journal of Applied Econometrics, 34(5):811–819.

Hoeffding, W. (1948). A Class of Statistics with Asymptotically Normal Distribution. The
Annals of Mathematical Statistics, 19(3):293 – 325.

Horn, R. A. and Johnson, C. R. (2013). Matrix Analysis. Cambridge University Press, 2 edition.

Jin, K. (1992). Empirical smoothing parameter selection in adaptive estimation. The Annals
of Statistics, pages 1844–1874.

Keweloh, S. A. (2021). A generalized method of moments estimator for structural vector autore-
gressions based on higher moments. Journal of Business & Economic Statistics, 39(3):772–
782.

Kilian, L. (2019). Measuring global real economic activity: Do recent critiques hold up to
scrutiny? Economics Letters, 178:106–110.

Kilian, L. and Lütkepohl, H. (2017). Structural Vector Autoregressive Analysis. Cambridge
University Press.

Kilian, L. and Murphy, D. P. (2012). Why agnostic sign restrictions are not enough: understand-
ing the dynamics of oil market var models. Journal of the European Economic Association,
10(5):1166–1188.

Kilian, L. and Murphy, D. P. (2014). The role of inventories and speculative trading in the
global market for crude oil. Journal of Applied econometrics, 29(3):454–478.

Kleibergen, F. (2005). Testing parameters in GMM without assuming that they are identified.
Econometrica, 73(4).

43



Lanne, M., Liu, K., and Luoto, J. (2022). Identifying structural vector autoregression via
leptokurtic economic shocks. Journal of Business & Economic Statistics, 0(0):1–11.

Lanne, M. and Luoto, J. (2021). Gmm estimation of non-gaussian structural vector autoregres-
sion. Journal of Business & Economic Statistics, 39(1):69–81.

Lanne, M. and Luoto, J. (2022). Statistical identification of economics shocks by signs in struc-
tural vector autoregression. Essays is Honor of Fabio Canova. Advances in Econometrics,
A(44):165–175.

Lanne, M. and Lütkepohl, H. (2010). Structural vector autoregressions with nonnormal resid-
uals. Journal of Business & Economic Statistics, 28(1):159–168.

Lanne, M., Meitz, M., and Saikkonen, P. (2017). Identification and estimation of non-Gaussian
structual vector autoregressions. Journal of Econometrics, 196.

Le Cam, L. M. (1960). Locally Asymptotically Normal Families of Distributions: Certain Ap-
proximations to Families of Distributions and Their Use in the Theory of Estimation and
Testing Hypotheses. University of California Berkeley, Calif: University of California publi-
cations in statistics. University of California Press.

Le Cam, L. M. and Yang, G. L. (2000). Asypmtotics in Statistics: Some Basic Concepts.
Springer, New York, NY, USA, 2 edition.

Lee, A. (2022). Robust and efficient inference for non-regular semiparametric models. Working
paper.

Lee, A. and Mesters, G. (2023a). Robust inference for non-gaussian linear simultaneous equa-
tions models. Working Paper.

Lee, A. and Mesters, G. (2023b). Supplement to “robust inference for non-gaussian linear
simultaneous equations models”. Working Paper.

Lewis, D. J. (2021). Identifying Shocks via Time-Varying Volatility. The Review of Economic
Studies, 88(6):3086–3124.

Marron, J. S. and Wand, M. P. (1992). Exact mean integrated squared error. The Annals of
Statistics, pages 712–736.

Matteson, D. S. and Tsay, R. S. (2017). Independent component analysis via distance covariance.
Journal of the American Statistical Association, 112(518):623–637.

Maxand, S. (2020). Identification of independent structural shocks in the presence of multiple
gaussian components. Econometrics and Statistics, 16:55–68.

Moneta, A., Entner, D., Hoyer, P. O., and Coad, A. (2013). Causal inference by independent
component analysis: Theory and applications*. Oxford Bulletin of Economics and Statistics,
75(5):705–730.

Montiel Olea, J. L., Plagborg-Møller, M., and Qian, E. (2022). Svar identification from higher
moments: Has the simultaneous causality problem been solved? Prepared for AEA Papers
and Proceedings.

Newey, W. K. (1990). Semiparametric efficiency bounds. Journal of Applied Econometrics,
5(2):99–135.

Pinkse, J. and Schurter, K. (2021). Estimates of derivatives of (log) densities and related objects.
Econometric Theory, page 136.

44



Rao, C. R. and Mitra, S. K. (1971). Generalized Inverse of Matrices and its Applications. John
Wiley & Sons, Inc., New York, NY, USA.

Rose, M. (1957). Elementary Theory of Angular Momentum. John Wiley & Sons.

Sen, A. (2012). On the Interrelation Between the Sample Mean and the Sample Variance. The
American Statistician, 66(2).

Shapiro, M. D. and Watson, M. W. (1988). Sources of business cycle fluctuations. NBER
Macroeconomics Annual, 3:111–148.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., and Kerminen, A. (2006). A linear non-gaussian
acyclic model for causal discovery. Journal of Machine Learning Research, 7(72):2003–2030.

Sims, C. A. (2021). Svar identification through heteroskedasticity with misspecified regimes.
working paper.

Stock, J. H. and Wright, J. H. (2000). GMM with weak identification. Econometrica, 68(5).

Strasser, H. (1985). Mathematical Theory of Statistics: Statistical Experiments and Asymptotic
Decision Theory. De Gruyter studies in mathematics. W. de Gruyter.

Swensen, A. R. (1985). The asymptotic distribution of the likelihood ratio for autoregressive
time series with a regression trend. Journal of Multivariate Analysis, 16(1):54–70.

Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical Inference for Time
Series. Springer.

Tank, A., Fox, E. B., and Shojaie, A. (2019). Identifiability and estimation of structural
vector autoregressive models for subsampled and mixed-frequency time series. Biometrika,
106(2):433–452.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, New York,
NY, USA, 1st edition.

van der Vaart, A. W. (2002). Semiparametric statistics. In Bernard, P., editor, Lectures on
Probability Theory and Statistics: Ecole d’Eté de Probabilités de Saint-Flour XXIX - 1999.
Springer, Berlin, Germany.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes.
Springer-Verlag New York, Inc., New York, NY, USA, 1st edition.

Wang, Y. S. and Drton, M. (2019). High-dimensional causal discovery under non-Gaussianity.
Biometrika, 107(1):41–59.

Zhou, X. (2020). Refining the workhorse oil market model. Journal of Applied Econometrics,
35(1):130–140.

45



Supplementary Material for:

Locally Robust Inference for

Non-Gaussian SVAR models

Lukas Hoesch∗ Adam Lee† Geert Mesters‡

This draft: December 20, 2023

Abstract

In this supplementary material we provide the following additional results.

S1: Choice for the parametrization

S2: Technical details for the main proofs

S3: Some technical tools

S4: Details log density score estimation

S5: Additional simulation results

S6: Additional empirical results

∗Vrije Universiteit Amsterdam and Tinbergen Institute; l.hoesch@vu.nl
†BI Norwegian Business School; adam.lee@bi.no
‡Universitat Pompeu Fabra, Barcelona School of Economics and CREI; geert.mesters@upf.edu

1



S1 Parametrization of the semi-parametric SVAR model

Under the main assumptions of the paper (i.e. Assumptions 2.1 and 2.2) the parameters of

the SVAR are generally not locally identified. Even under the additional assumption that the

errors εk,t follow non-Gaussian distributions, we have that A(α, σ) can only be identified up to

permutation and sign changes of its rows (e.g. Comon, 1994).

Therefore, to ensure that we study economically interesting permutations we typically need

to impose additional identifying restrictions, such as zero or sign restrictions. The choice for

such restrictions interacts with the chosen parametrization for A(α, σ) for which we give a few

examples.

Example S1.1 (Supply and demand): Following Baumeister and Hamilton (2015), when the

SVAR defines a demand and a supply equation we can set

A−1(α, σ) =

 −αd 1

−αs 1

−1 σ1 0

0 σ2

 , (S1)

where α = (αd, αs)′ are the short run demand and supply elasticities, and σ = (σ1, σ2)
′ scales

the structural shocks. With independent non-Gaussian errors A is identified up to permutation

and sign changes of its rows. To pin down an economically interesting rotation we can impose

the sign restrictions αd ≤ 0, αs ≥ 0 and σ1, σ2 > 0.

Example S1.2 (Rotation matrix): A canonical choice sets

A−1(α, σ) = Σ1/2(σ)R(α) , (S2)

where Σ1/2(σ) is a lower triangular matrix (with positive diagonal elements) defined by the vector

σ and R(α) is a rotation matrix that is parametrized by the vector α. Different parametrizations

for the rotation matrix are possible, see Magnus et al. (2021) for a detailed discussion. Similar

to in Example S1.1, even with independent non-Gaussian errors R(α) is not uniquely identified

and additional zero-, sign-, or long-run-restrictions are needed to pin down the desired rotation.

As the above examples make clear, several commonly used parametrizations can be adopted.

Three general comments apply.

First, pinning down a specific permutation, as in the first example, is necessary for the

economic interpretation of the results, but it is not necessary for the score testing methodology

of the paper which fixes α under the null.
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Second, the robust non-Gaussian approach of this paper can be combined with any of the

existing SVAR identification approaches to obtain an economically interesting specification.

Besides zero and sign restrictions one can also think of combining with external instruments or

more general prior information as in Baumeister and Hamilton (2015) or Braun (2021).

Third, often multiple parametrizations are possible. We recommend jointly testing the

possibly weakly identified parameters when they are of direct economic interest (e.g. Example

1). In contrast, when the interest is in more general functions, such as impulse responses or

forecast error variances, we suggest to parameterize A such that α is as low-dimensional as

possible, e.g. via the rotation matrix specification as in Example 2. In this way the Bonferroni

procedure of Algorithm 2 can be executed over the smallest possible grid for α, which reduces

the computational burden.

S2 Technical details for the main proofs

Here we establish some technical details utilised in the proofs in section A of the main text.

S2.1 Markov structure

Define Zt := (Y ′t , Y
′
t−1, . . . , Y

′
t−p+1)

′, Cθ := (c′θ, 0
′, . . . , 0′)′,

Bθ :=



Bθ,1 Bθ,2 · · · Bθ,p−1 Bθ,p

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


, Dθ :=



A−1θ

0

0
...

0


and note that we can write

Zt = Cθ + BθZt−1 + Dθεt. (S3)

This can be re-written in de-meaned form as

Z̃t = BθZ̃t−1 + Dθεt (S4)

with Z̃t := Zt −mθ, for mθ := (
∑∞

i=0 Bθ)Cθ = (I − Bθ)
−1Cθ.

Lemma S2.1: Suppose that assumption 2.1 holds. Define Uθ,t as the (unique, strictly) stationary
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solution to (S3). Then Uθ,t has the representation

Uθ,t = mθ +

∞∑
j=0

BjθDθεt−j , mθ := (I − Bθ)
−1Cθ,

∞∑
j=0

‖Bjθ‖ <∞.

If ρθ is the largest absolute eigenvalue of the companion matrix Bθ and υ > 0 is such that

ρθ + υ < 1, then

E ‖Uθ,t −mθ‖ρ ≤
E ‖Dθεt‖ρ

1− (ρθ + υ)ρ
, ρ ∈ [1, 4 + δ].

Proof. Rewriting (S3) as (S4) and applying Theorem 11.3.1 in Brockwell and Davis (1991) yields

the first part. For the second part,

‖Uθ,t −mθ‖ ≤
∞∑
j=0

‖Bjθ‖‖Dθεt−j‖ ≤
∞∑
j=0

‖Bθ‖j‖Dθεt−j‖ ≤
∞∑
j=0

(ρθ + ν)j‖Dθεt−j‖.

Since E ‖Dθεt−j‖ρ = E ‖Dθεt‖ρ <∞ for all t ∈ N, all j ≥ 0 and ρ ∈ [1, 4 + δ], it follows that

E ‖Uθ,t −mθ‖ρ ≤
∞∑
j=0

(ρθ + ν)jρ E ‖Dθεt−j‖ρ =
E ‖Dθεt‖ρ

1− (ρθ + ν)ρ
.

Lemma S2.2: Let Qn,θ be the probability measure corresponding to q̄n,θ := 1
n

∑n
t=1 qθ,t, where qθ,t

is the density of Xt under Pnθ (1 ≤ t ≤ n).S1 Then Qn,θ
TV−−→ Qθ, where Qθ is the distribution

of the (unique, strictly) stationary solution to (1).

Proof. By Lemma S2.1, (S4) has a (unique, strictly) stationary solution with finite second

moments. Applying Theorem 2 in Saikkonen (2007) gives that the Markov chain (Z̃t) is V-

geometrically ergodic with V(x) = 1 + ‖x‖2. That is, for an invariant probability measure π̃θ,

some r ∈ (1,∞) and some R <∞

∞∑
n=1

rn‖P̃nθ (·, z̃)− π̃θ‖TV ≤
∞∑
n=1

rn‖P̃nθ (·, z̃)− π̃θ‖V ≤ RV(z̃) = R(‖z̃‖2 + 1) <∞, (S5)

where P̃nθ (·, z̃) is the n-step transition probability and z̃ is the initial condition.S2 π̃θ is the

distribution of Uθ,t −mθ as defined in Lemma S2.1 (Kallenberg, 2021, Theorem 11.11).

Let fθ : RKp → RK be defined as

fθ(x) :=
[
IK 0K×K(p−1)

]
(x+mθ),

S1Here, and throughout the appendix, any reference to the density of Xt is to be understood as to the density of
the non-deterministic parts of Xt.

S2The norm ‖ν‖V is defined by ‖ν‖V := supf≤V

∣∣∫ f dν
∣∣ where the supremum is taken over all measurable functions

dominated by V for any probability measure ν.
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i.e. the function which adds mθ to its argument and then returns the first K elements. The

distribution of Xt under Pnθ (given the initial condition z̃) is then Qt−1θ (·, z̃) = P̃ t−1θ (·, z̃) ◦ f−1θ ,

i.e. the pushforward of P̃ t−1θ (·, z̃) under fθ. Henceforth we shall omit the z̃ in the notation.

Similarly let Qθ = π̃θ ◦ f−1θ , i.e.the pushforward of π̃θ under f . That Qθ is the distribution of

the (unique, strictly) stationary solution to (1) can be seen by noting that the first K elements

of Uθ,t form a (strictly) stationary time series and satisfy the defining equation (1); by Theorem

11.3.1 in Brockwell and Davis (1991) it is therefore the unique solution. Then by (S5),∥∥∥∥∥ 1

n

n∑
t=1

Qtθ −Qθ

∥∥∥∥∥
TV

≤ 1

n

n∑
t=1

∥∥Qtθ −Qθ∥∥TV
≤ 1

n

n∑
t=1

∥∥∥P̃ t−1θ − π̃θ
∥∥∥
TV

≤ 1

n

n∑
t=1

∥∥∥P̃ tθ − π̃θ∥∥∥
TV

+ o(1)

→ 0.

S2.2 Moment bounds

Lemma S2.3: Suppose that assumption 2.1 holds. Then for any sequence θn = (γ + gn/
√
n, η)

with gn → g ∈ RL, for some ρ > 0, under Pnθn

(i) supn∈N E
[
‖ ˙̀
θn‖2+ρ

]
<∞;

(ii) supn∈N E
[
‖˜̀θn‖2+ρ

]
<∞.

Proof. Since the deterministic terms in ˙̀
θn and ˜̀

θn are either constants or continuous functions

of γ (by Assumption 2.1(iii)), they are uniformly bounded, since {γ + gn/
√
n : n ∈ N} ∪ {γ} is

compact. It is therefore sufficient to show that under Pnθn , each of

sup
n∈N,1≤t≤n

E
[
|A(θn)k•Vθn,t|4+δ

]
, sup
n∈N,1≤t≤n

E
[
|φk(A(θn)k•Vθn,t)|4+δ

]
, sup
n∈N,1≤t≤n

E
[
‖Xt‖4+δ

]
,

is finite. Since under Pnθn , each A(θn)k•Vθn,t ∼ ηk, finiteness of the first two follow directly from

Assumption 2.1(ii). For the third, recurse equation (S3) backwards under θ = θn, to obtain

Zt =
t−1∑
j=0

BjθnCθn +
t−1∑
j=0

BjθnDθnεt−j + BtθnZ0.
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Each of Bθ, Cθ, Dθ (depend on θ only through γ and) are continuous functions of γ, hence

% := sup
n∈N
‖Bθn‖2 < 1, sup

n∈N
‖Cθn‖2 < C1, sup

n∈N
‖Dθn‖2 < C2,

where the first is due to Assumption 2.1(i). Since we condition on Z0, by Assumption 2.1(ii),

E ‖Zt‖4+δ .
(

C1

1− %

)4+δ

+

(
C2

1− %

)4+δ

E |ε1|4+δ + ‖Z0‖4+δ <∞. (S6)

As the bound on the right hand side is independent of t or n, the claim follows.

Lemma S2.4: Let Wn,t be as in the Proof of Proposition A.1 and suppose the conditions of that

Proposition hold. Then, Pnθ [|
√
nWn,t|2+ρ] is uniformly bounded for some ρ > 0. In consequence,

under Pnθ , Wn,t satisfies:

lim
n→∞

n∑
t=1

E
[
W 2
n,t1{|

√
nWn,t| > ε

√
n}
]

= 0, for any ε > 0. (S7)

Proof. Uniform boundedness of Pnθ [|
√
nWn,t|2+ρ] implies:

lim
n→∞

n∑
t=1

W 2+ρ
n,t = 0,

which in turns implies (S7) (cf. Billingsley, 1995, page 362). For the uniform boundedness, as

2
√
nWn,t = g′ ˙̀θ(Yt, Xt) +

K∑
k=1

hk(Ak•(α, σ)Vθ,t),

and the hk are bounded, it suffices to note that by Lemma S2.3 E[(g′ ˙̀θ(Xt, Yt))
2+ρ] ≤ C under

Pnθ for some ρ > 0.

S2.3 Log-likelihood ratios

Lemma S2.5 (DQM): Suppose that assumption 2.1 holds. Then with Wn,t and Un,t defined as

in the proof of Proposition A.1,

lim
n→∞

E
n∑
t=1

(Wn,t − Un,t)2 = 0,

where the expectation is taken under Pnθ .

Proof. We argue similarly to Lemma 7.6 in van der Vaart (1998). Let Vθ,t := Yt − BXt and
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ϕ(v) = (g, η1h1, . . . , ηKhK) for v = (g, h) with g ∈ RL, h ∈ ˙H . Let

pθ(Yt, Xt) := |A(θ)|
K∏
k=1

ηk(Ak•(θ)Vθ,t)

sθ,u(Yt, Xt) := g′ ˙̀θ+uϕ(v)(Yt, Xt) +
K∑
k=1

hk(Ak•(θ + uϕ(v))Vθ+uϕ(v),t)

1 + uhk(Ak•(θ + uϕ(v))Vθ+uϕ(v),t)

+

K∑
k=1

uh′k(Ak•(θ + uϕ(v))Vθ+uϕ(v),t)
[
D1,k,uVθ+uϕ(v),t + D2,k,uXt

]
1 + uhk(Ak•(θ + uϕ(v))Vθ+uϕ(v),t)

,

with

D1,k,u := e′k

Lα∑
l=1

gα,lDα,l(θ + uϕ(v)) + e′k

Lσ∑
l=1

gσ,lDσ,l(θ + uϕ(v))

D2,k,u := −Ak•(θ + uϕ(v))

Lb∑
l=1

Db,l(θ + uϕ(v)).

By Assumption 2.1 and standard computations, the derivative of u 7→ √pθ+uϕ(v) at u = u is

1
2sθ,u

√
pθ+uϕ(v) (everywhere). Inspection reveals that this is continuous in u.

For qθ,t the density of Xt under Pnθ and sθ := sθ,0,

E
n∑
t=1

(Wn,t − Un,t)2 =
1

n

n∑
t=1

∫ (√
n

[√
pθn
pθ
− 1

]
− 1

2
sθ

)2

pθqθ,t dλ

=

∫ (√
n
[√
pθn −

√
pθ
]
− 1

2
sθ
√
pθ

)2

q̄n,θ dλ,

with q̄n,θ := 1
n

∑n
t=1 qθ,t. The integrand converges to zero as n → ∞ by the differentiability of

u 7→ √pθ+uϕ(v) at u = 0.S3 Let

Iθ,u,n :=

∫
s2θ,u pθ+uϕ(v) q̄n,θ dλ =

∫
s2θ,u dGθ,u,n,

where Gθ,u,n is the distribution of (Yt, Xt) corresponding to the density pθ+uϕ(v)q̄n,θ. By Lemma

S3.2 Gθ,u/
√
n,n

TV−−→ Gθ, defined by

Gθ(A) :=

∫
A
pθ d(λ(y)⊗Qθ(x)).

For any (un) ⊂ [0, 1] we have that s2
θ,un/

√
n
→ s2θ (pointwise). By Lemma S2.6 and Corollary

S3Note that pθn = pθn(g,h) = pθ+ϕ(v)/√n.
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2.9 in Feinberg et al. (2016), limn→∞ Iθ,un/
√
n,n =

∫
s2θ dGθ <∞ and hence

∣∣∣∣∫ 1

0
Iθ,u/

√
n,n du−

∫ 1

0

∫
s2θ dGθ du

∣∣∣∣ ≤ sup
u∈[0,1]

∣∣∣∣Iθ,u/√n,n − ∫ s2θ dGθ

∣∣∣∣→ 0.

By absolute continuity, Jensen’s inequality and the Fubini – Tonelli theorem,

∫ (√
n
[√
pθn −

√
pθ
])2

q̄n,θ dλ ≤ 1

4

∫ ∫ 1

0

(
sθ,u/

√
n
√
pθ+uϕ(v)/

√
n

)2
q̄n,θ dudλ ≤

∫ 1

0
Iθ,u/

√
n,n du.

Combine these observations with Proposition 2.29 in van der Vaart (1998).

Lemma S2.6: Suppose that assumption 2.1 holds. Let sθ,u and Gθ,u,n be as in the proof of Propo-

sition S2.5. Then for any (un)n∈N ⊂ [0, 1], s2
θ,un/

√
n

is asymptotically uniformly Gθ,un/
√
n,n–

integrable and sθ ∈ L2(Gθ).

Proof. That sθ ∈ L2(Gθ) follows from the moment bounds in Assumption 2.1(ii), the bounded-

ness of the hk, the form of ˙̀
θ given in equations (7) – (9) and Lemma S2.1 given that Qθ is the

law of the stationary solution to (1).

For the uniform integrability, let ϑn := θ + unϕ(v)/
√
n→ θ and

sϑn,1(Yt, Xt) := g′ ˙̀ϑn(Yt, Xt)

sϑn,2(Yt, Xt) :=
K∑
k=1

hk(Ak•(ϑn)Vϑn,t)

1 + unhk(Ak•(ϑn)Vϑn,t)/
√
n

sϑn,3(Yt, Xt) :=
K∑
k=1

unh
′
k(Ak•(ϑn)Vϑn,t)

[
D1,k,un/

√
nVϑn,t + D2,k,un/

√
nXt

]
/
√
n

1 + unhk(Ak•(ϑn)Vϑn,t)/
√
n

It suffices to show that under Gθ,un/
√
n,n each sϑn,i (i = 1, 2, 3) has uniformly bounded 2 + ρ

moments for some ρ > 0 for all sufficiently large n.

We start with sϑn,2: since each hk is bounded, for all large enough n, each numerator is

uniformly bounded above and each denominator is uniformly bounded below, away from zero.

Thus there is a M such that |sϑn,2(Yt, Xt)| ≤M for all such n.

For sϑn,3, by assumption 2.1 part (iii), each D1,k,un/
√
n and D2,k,un/

√
n are uniformly bounded

for all large enough n; the same is true of ‖A(ϑn)−1‖2. Using this, the fact that Vϑn,t =

A (ϑn)−1 εt and arguing similarly to as in the preceding paragraph we have that for some M

and all large enough n, |sϑn,3(Yt, Xt)| ≤M [‖εt‖+ ‖Xt‖]. Thus it is enough to verify that

sup
n≥N,1≤t≤n

Gθ,un/
√
n,n‖εt‖4+δ <∞, sup

n≥N,1≤t≤n
Gθ,un/

√
n,n‖Xt‖4+δ <∞. (S8)
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Under Gθ,un/
√
n,n, the elements εt,k are (independently across k) distributed according to ηk(1+

unhk/
√
n), so there are c, C <∞ such that

Gθ,un/
√
n,n‖εt‖4+δ ≤ Gθ,un/√n,n

[
K∑
k=1

ε2t,k

] 4+δ
2

≤ c
K∑
k=1

[(
1 +

h̄k√
n

)∫
|xk|4+δηk(xk) dxk

]
≤ C,

where |hk(x)| ≤ h̄k. By arguing analogously to as in in Lemma S2.3, one has (cf. (S6))

Gθ,un/
√
n,n‖Zt‖4+δ .

(
C1

1− %

)4+δ

+

(
C2

1− %

)4+δ

Gθ,un/
√
n,n|ε1|4+δ + ‖Z0‖4+δ,

which is uniformly bounded given the penultimate display.

Finally consider sϑn,1. It suffices to show that each component of ˙̀
ϑn has 4 + δ moment

bounded uniformly for all n ≥ N .S4 By Assumption 2.1(iii), by increasing N if necessary,

supϑ∈T |ζxl,k,j(ϑ)| ≤ M for all l, k, j and x ∈ α, σ and likewise supϑ∈T ‖Ak•(ϑ)Dbl(ϑ)‖ ≤ M .

Recall that Vϑn,t = A (ϑn)−1 εt. Given (S8) and the observations in footnote S4 to complete the

proof it suffices to note that (for φk = d log ηk(x)
dx ) and some C <∞,

Gθ,un/
√
n,n|φk|4+δ ≤

(
1 +

h̄k√
n

)∫
|φ(x)|4+δηk(x) dx ≤ C.

Lemma S2.7: Let Wn,t be as in the Proof of Proposition A.1 and suppose the conditions of that

Proposition hold. Let Gθ be defined as in the Proof of Lemma S2.5. Then, under Pnθ ,

lim
n→∞

E

∣∣∣∣∣
n∑
t=1

W 2
n,t −

τ2

4

∣∣∣∣∣ = 0, with τ2 := Gθ

(
g′ ˙̀θ(Y,X) +

K∑
k=1

hk(Ak•(θ)Vθ)

)2

.

Proof. Define

rθ(Xt) := E[sθ(Yt, Xt)
2|Xt], sθ(Y,X) := g′ ˙̀θ(Y,X) +

K∑
k=1

hk(Ak•(θ)Vθ),

where the conditional expectation is taken under Pnθ . Since conditional expectations are L1 con-

S4The form each such component is that given in equations equations (7) – (9). Note here that each φk is
(implicitly) a function of ηk and thus when evaluating equations (7) – (9) at ϑn, the φk that appear are
φk,un,n, defined as

φk,u,n :=
d(log ηk(x) + log(1 + uhk(x)/

√
n))

dx
= φk +

uh′k/
√
n

1 + uhk/
√
n
.

Since each hk, and h′k are bounded, increasing N if necessary, one has for n ≥ N ,

|φk,un,n| ≤ |φk|+M.
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tractions, by Lemma S2.4, we have that Pnθ [|rθ(Xt)|1+ρ/2] . C <∞ and hence (|rθ(Xt)|1+ρ/2)t∈N
is uniformly Pnθ –integrable. Moreover we have for Ft := σ(ε1, . . . , εt),

rθ(Xt) = E[sθ(Yt, Xt)
2|Xt] = E[sθ(Yt, Xt)

2|Ft−1],

as is clear from the definition of sθ.
S5 Hence (sθ(Yt, Xt)

2−rθ(Xt),Ft) is a martingale difference

squence and by Theorem 19.7 in Davidson (1994)

lim
n→∞

E

∣∣∣∣∣ 1n
n∑
t=1

[sθ(Yt, Xt)
2 − rθ(Xt)]

∣∣∣∣∣
1+ρ/2

= 0.

Now define uθ(Xt) := rθ(Xt) − E[rθ(Xt)], which satisfies Pnθ [|uθ(Xt)|1+ρ/2] . C < ∞ and is

evidently mean zero. By Theorem 3 in Saikkonen (2007), Zt and hence uθ(Xt) (e.g. Davidson,

1994, Theorem 14.1) has geometrically decaying β-mixing coefficients. Therefore, by Theorem

14.2 in Davidson (1994), (uθ(Xt)/n)n∈N,1≤t≤n is an L1–mixingale array with respect to the

filtration formed by Fn,t := σ(X1, . . . , Xt) relative to the sequence of positive constants

n−1 ≤ cn,t = max

{
1/n,

(
Pnθ

[
|uθ(Xt)/n|1+ρ/2

])1/(1+ρ/2)}
≤ n−1 max{C, 1}.

By Theorem 19.11 in Davidson (1994),

lim
n→∞

E

∣∣∣∣∣ 1n
n∑
t=1

uθ(Yt, Xt)

∣∣∣∣∣ = 0.

It remains to show that 1
n

∑n
i=1 E[rθ(Xt)]→ τ2. Since E[rθ(Xt)] = E[sθ(Yt, Xt)],

τ2n := Gθ,0,n
[
sθ(Y,X)2

]
=

1

n

n∑
t=1

E sθ(Yt, Xt)
2 =

1

n

n∑
t=1

E[rθ(Xt)],

where Gθ,0,n is as defined in the Proof of Lemma S2.5. That E 1
n

∑n
t=1 sθ(Yt, Xt)

2 . C follows

from Lemma S2.4. Therefore, by Lemma S2.6, sθ(Y,X)2 is uniformly Gθ,0,n–integrable and also

τ2 <∞. Then, by Corollary 2.9 in Feinberg et al. (2016) and Lemma S3.2, τ2n → τ .

Lemma S2.8: In the setting of Proposition A.2,

log
pnθn(gn,h)

pnθn(g,h)
= oPn

θn(g,h)
(1).

S5See e.g. Theorem 7.3.1 in Chow and Teicher (1997) for the (almost sure) equality of the conditional expectations.
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Proof. Since by Proposition A.1 and Example 6.5 in van der Vaart (1998) Pnθn(g,h) / . Pnθ it

suffices to show that the left hand side is oPnθ (1). We first show that

log
pnθn(gn,0)

pnθ
=

1√
n

n∑
t=1

g′ ˙̀θ(Yt, Xt)− E

(
1√
n

n∑
t=1

g′ ˙̀θ(Yt, Xt)

)2

+ oPnθ (1)

log
pnθn(g,0)

pnθ
=

1√
n

n∑
t=1

g′ ˙̀θ(Yt, Xt)− E

(
1√
n

n∑
t=1

g′ ˙̀θ(Yt, Xt)

)2

+ oPnθ (1)

For these log–likelihood expansions we may appeal to Lemma 1 in Swensen (1985). The

required Conditions (1.3) - (1.7) and (iii) of his Theorem 1 are all established in the proof of

Proposition A.1 (take each hk = 0). It remains to show condition (1.2) for each of the cases in

the above display. In particular, set

Wn,t :=
1

2
√
n
g′ ˙̀θ(Yt, Xt)

and (cf. equations (37), (38))

Un,t :=

[(
|A(θn(gn, h))|
|A(θ)|

)
×

K∏
k=1

ηk(Ak•(θn(gn, h))Vθn(gn,h),t)

ηk(Ak•(θ)Vθ,t)

]1/2
− 1

where we note that A(θ) = A(θn(0, h)) and Vθ = Vθn(0,h). We verify (1.2), i.e. that

lim
n→∞

E

[
n∑
t=1

(Wn,t − Un,t)2
]

= 0,

under Pnθ .S6 The argument now follows similarly to that in Lemma S2.5. To simplify the nota-

tion, let pγ := p(γ,η) and ˙̀
γ := ˙̀

(γ,η) where η = (η1, . . . , ηK) will remain fixed. By Assumption

2.1 and standard computations, the derivative of γ 7→ √pγ is 1
2

˙̀
γ
√
pγ (everywhere). Inspection

reveals that this is continuous in γ.

Let γn := γ + gn/
√
n. For qθ,t the density of Xt under Pnθ ,

E
n∑
t=1

(Wn,t − Un,t)2 =
1

n

n∑
t=1

∫ (√
n

[√
pγn
pγ
− 1

]
− 1

2
g′ ˙̀γ

)2

pγqθ,t dλ

=

∫ (√
n
[√
pγn −

√
pγ
]
− 1

2
g′ ˙̀γ
√
pγ

)2

q̄n,θ dλ,

with q̄n,θ := 1
n

∑n
t=1 qθ,t. The term inside the parentheses converges to zero as n → ∞ by the

S6This suffices as the second expansion is just the special case gn = g for each n ∈ N.
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differentiability of γ 7→ √pγ and that (gn − g)′ ˙̀γ
√
pγ → 0 pointwise. Let

Iθ,u,n :=

∫
(g′ ˙̀γ+ugn)2 pγ+ugn q̄n,θ dλ =

∫
(g′ ˙̀γ+ugn)2 dGθ,u,n,

where Gθ,u,n is the distribution of (Yt, Xt) corresponding to the density pγ+ugn q̄n,θ. By Lemma

S3.2 Gθ,un/
√
n,n

TV−−→ Gθ, defined as in the proof of Lemma S2.5. For any (un) ⊂ [0, 1] we

have that (g′ ˙̀γ+ungn/
√
n)2 → (g′ ˙̀γ)2 (pointwise). Each component of ˙̀

γ ∈ L2(Gθ) by Lemma

S2.6 and moreover supn≥N Gθ,un/
√
n,n‖ ˙̀

γ+ungn/
√
n‖2+ρ ≤ C for some ρ > 0.S7 Therefore, by

Corollary 2.9 in Feinberg et al. (2016), limn→∞ Iθ,un/
√
n,n =

∫
(g′ ˙̀γ)2 dGθ <∞ and hence

∣∣∣∣∫ 1

0
Iθ,u/

√
n,n du−

∫ 1

0

∫
s2θ dGθ du

∣∣∣∣ ≤ sup
u∈[0,1]

∣∣∣∣Iθ,u/√n,n − ∫ (g′ ˙̀γ)2 dGθ

∣∣∣∣→ 0.

By the continuous differentiability of
√
pγ , Jensen’s inequality and the Fubini – Tonelli

theorem,

∫ (√
n
[√
pγn −

√
pγ
])2

q̄n,θ dλ ≤ 1

4

∫ ∫ 1

0

(
(g′ ˙̀γ+ugn/

√
n)
√
pγ+ugn/

√
n

)2
q̄n,θ dudλ

≤
∫ 1

0
Iθ,u/

√
n,n du.

Combining these observations with Proposition 2.29 in van der Vaart (1998) verifies (1.2) and

hence the claimed log – likelihood expansions follow from Lemma 1 in Swensen (1985).

To complete the proof set

ũk,n,t := Ak•(θn(gn, h))Vθn(gn,h),t, uk,n,t := Ak•(θn(g, h))Vθn(g,h),t,

and observe that

log
pnθn(gn,h)

pnθn(g,h)
−

[
log

pnθn(gn,0)

pnθ
− log

pnθn(g,0)

pnθ

]

=

K∑
k=1

n∑
i=1

log

(
1 +

hk(ũk,n,t)√
n

)
− log

(
1 +

hk(uk,n,t)√
n

)
,

where the bracketed term is oPnθ (1) by the preceding argument. Hence it suffices to show that

an arbitrary k-th element of the outer sum on the right hand side is also oPnθ (1). Let ε ∈ (0, 1)

S7This follows from (a) the continuity requirements in Assumption 2.1(iii), (b) under Gθ,un/
√
n,n we have that

e′kA(θn(ungn, 0))−1Vθn(ungn,0) = εk ∼ ηk and (c) supn≥N,1≤t≤nGθ,un/
√
n,n‖Xt‖4+δ <∞, which can be shown

by an argument analogous to that which is established in the proof of Lemma S2.6.
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be fixed and define

En :=

{
max
1≤i≤n

|hk(ũk,n,t)|/
√
n ≤ ε

}
, Fn :=

{
max
1≤i≤n

|hk(uk,n,t)|/
√
n ≤ ε

}
.

Since hk is bounded Pnθ (En∩Fn)→ 1. On this set we may perform a two-term Taylor expansion

of log(1 + x) to obtain

log

(
1 +

hk(ũk,n,t)√
n

)
− log

(
1 +

hk(uk,n,t)√
n

)
=
hk(ũk,n,t)− hk(uk,n,t)√

n
− 1

2

hk(ũk,n,t)
2 − hk(uk,n,t)2

n
+R

(
hk(ũk,n,t)√

n

)
−R

(
hk(uk,n,t)√

n

)
,

where |R(x)| ≤ |x|3. For the remainder terms one has for any ui,

n∑
i=1

∣∣∣∣R(hk(ui)√
n

)∣∣∣∣ ≤ max
1≤i≤n

hk(ui)√
n

1

n

n∑
i=1

hk(ui)
2 .

1√
n
,

since hk is bounded. For the first term in Taylor expansion, note that the derivative (in θ, σ) of

A(θ, σ) is bounded on a neighbourhood of (θ, σ) (by Assumption 2.1). Combine this with the

boundedness of h′k and the mean value theorem to conclude that

|hk(ũk,n,t)− hk(uk,n,t)| . n−1/2‖gn − g‖ [‖εt‖+ ‖Xt‖] .

Using this, since hk is bounded,

|hk(ũk,n,t)2 − hk(uk,n,t)2| . n−1/2‖gn − g‖ [‖εt‖+ ‖Xt‖] .

Therefore, using (S6) and Assumption 2.1(ii)

n∑
i=1

∣∣∣∣hk(ũk,n,t)− hk(uk,n,t)√
n

− 1

2

hk(ũk,n,t)
2 − hk(uk,n,t)2

n

∣∣∣∣
. ‖gn − g‖

(
1 +

1√
n

)
1

n

n∑
i=1

[‖εt‖+ ‖Xt‖] = oPnγ (1).

Lemma S2.9: In the setting of Proposition A.2,

log
pnθn(gn,hn)

pnθn(gn,h)
= oPn

θn(gn,h)
(1).
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Proof. For notational ease, set

uk,n,t := e′kA(θn(gn, h))Vθn(gn,h),t = e′kA(θn(gn, hn))Vθn(gn,hn),t.

One has that

log
pnθn(gn,hn)

pnθn(gn,h)
=

K∑
k=1

n∑
t=1

log(1 + hk,n(uk,n,t)/
√
n)− log(1 + hk(uk,n,t)/

√
n),

hence it suffices to show that each

ln,k :=
n∑
t=1

log(1 + hk,n(uk,n,t)/
√
n)− log(1 + hk(uk,n,t)/

√
n)

Pn
θn(gn,h)−−−−−−→ 0.

Let ε ∈ (0, 1) be fixed and define

En :=

{
max
1≤t≤n

|hk,n(uk,n,t)|/
√
n ≤ ε

}
;

Fn :=

{
max
1≤t≤n

|hk(uk,n,t)|/
√
n ≤ ε

}
.

Since hk is bounded, Pnθn(gn,h)Fn → 1; Pnθn(gn,h)En → 1 follows from Lemma S2.11. Hence

Pnθn(gn,h)Fn ∩ En → 1. On En ∩ Fn we can perform a two-term Taylor expansion of log(1 + x)

to obtain

log(1+hk,n(uk,n,t)/
√
n)− log(1 + hk(uk,n,t)/

√
n)

=
hk,n(uk,n,t)√

n
− 1

2

hk,n(uk,n,t)
2

n
−
hk(uk,n,t)√

n
+

1

2

hk(uk,n,t)
2

n

+R

(
hk,n(uk,n,t)√

n

)
−R

(
hk(uk,n,t)√

n

)
,

where |R(x)| ≤ |x|3. It follows that

ln,k =
1√
n

n∑
t=1

hk,n(uk,n,t)− hk(uk,n,t)−
1

2

1

n

n∑
t=1

[hk,n(uk,n,t)
2 − hk(uk,n,t)2]

+

n∑
t=1

R

(
hk,n(uk,n,t)√

n

)
−R

(
hk(uk,n,t)√

n

)
.

We will show that the remainder terms vanish. In particular, one has

n∑
t=1

∣∣∣∣R(hk,n(uk,n,t)√
n

)∣∣∣∣ ≤ n∑
t=1

∣∣∣∣hk,n(uk,n,t)√
n

∣∣∣∣ ∣∣∣∣hk,n(uk,n,t)
2

n

∣∣∣∣ ≤ max
1≤t≤n

|hk,n(uk,t,n)|√
n

1

n

n∑
t=1

hk,n(uk,n,t)
2.
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By Markov’s inequality with Lemmas S2.10 and S2.11, this converges to zero in Pnθn(gn,h) prob-

ability. The same evidently holds for the case where hk,n = hk for each n ∈ N. Thus,

ln,k =
1√
n

n∑
t=1

hk,n(uk,n,t)− hk(uk,n,t)−
1

2

1

n

n∑
t=1

[hk,n(uk,n,t)
2 − hk(uk,n,t)2] + oPn

θn(gn,h)
(1),

and it remains to show that 1√
n

∑n
t=1 hk,n(uk,n,t)−hk(uk,n,t) and 1

n

∑n
t=1[hk,n(uk,n,t)

2−hk(uk,n,t)2]

also converge to zero in probability. The second of these follows directly from Lemma S2.10,

Markov’s inequality and the reverse triangle inequality since

Pnθn(gn,h)

(∣∣∣∣∣ 1n
n∑
t=1

[hk,n(uk,n,t)
2 − hk(uk,n,t)2]

∣∣∣∣∣ > ε

)
≤ ε−1 1

n

n∑
t=1

E
[
hk,n(uk,n,t)

2 − hk(uk,n,t)2
]

= ε−1 E
[
hk,n(uk,n,t)

2 − hk(uk,n,t)2
]

→ 0.

For the remaining term, we start by noting that

E[hk,n(uk,n,t)− hk(uk,n,t)] =
E[(hk,n(εk)− hk(εk))hk(εk)]√

n

so ∣∣∣∣∣ 1√
n

n∑
t=1

E[hk,n(uk,n,t)]− E[hk(uk,n,t)]

∣∣∣∣∣ ≤ 1

n

n∑
t=1

‖hk,n − hk‖L2(Pnθ )‖hk‖L2(Pnθ ) → 0.

Thus it suffices to show that

1√
n

n∑
t=1

h̃k,n(uk,n,t)− h̃k(uk,n,t)
Pn
θn(gn,h)−−−−−−→ 0,

for h̃k,n(uk,n,t) := h̃k,n(uk,n,t)−E
[
h̃k,n(uk,n,t)

]
and h̃k(uk,n,t) := h̃k,n(uk,n,t)−E

[
h̃k(uk,n,t)

]
. By

the reverse triangle inequality and Lemma S2.10,

E
[(
h̃k,n(uk,n,t)− h̃k(uk,n,t)

)2]
→ 0, uniformly in t.

Using this, the independence of the uk,t,n and Markov’s inequality:

Pnθn(gn,h)

(∣∣∣∣∣ 1√
n

n∑
t=1

h̃k,n(uk,n,t)− h̃k(uk,n,t)

∣∣∣∣∣ > ε

)
≤ 1

ε2
1

n

n∑
t=1

E
[(
h̃k,n(uk,n,t)− h̃k(uk,n,t)

)2]
→ 0.

This establishes that
∑K

k=1 ln,k
Pn
θn(gn,h)−−−−−−→ 0, as required.
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Lemma S2.10: In the setting of Proposition A.2, let uk,n,t := e′kAθn(gn,h)Vθn(gn,h),t. Under

Pnθn(gn,h),

E [hk,n(uk,n,t)− hk(uk,n,t)]2 ≤ ‖hn,k − hk‖L2(Pnθ )

(
1 +
‖hk‖L∞(Pnθ )√

n

)
.

Proof. Under Pnθn(gn,h), uk,n,t ∼ ηk(1 + hk/
√
n), so for εk ∼ ηk, since hk is bounded,

E [hk,n(uk,n,t)− hk(uk,n,t)]2

=

∫
[hn,k(x)− hk(x)]2 ηk(x)(1 + hk(x)/

√
n) dx

≤ E[hk,n(εk)− hk(εk)]2 +
1√
n
E[hk,n(εk)− hk(εk)]2‖hk‖L∞(Pnθ )

≤ ‖hn,k − hk‖L2(Pnθ ) + ‖hn,k − hk‖L2(Pnθ )‖hk‖L∞(Pnθ )/
√
n.

Lemma S2.11: In the setting of Proposition A.2, let uk,n,t := e′kAθn(gn,h)Vθn(gn,h),t. Then

max
1≤t≤n

|hk,n(uk,n,t)|√
n

Pn
θn(gn,h)−−−−−−→ 0.

Proof. Under Pnθn(gn,h), uk,n,t ∼ ηk(1 + hk/
√
n). By Lemma S2.10, hk,n(uk,n,t) is uniformly

square Pnθn(gn,h)–integrable and hence the Lindeberg condition holds for hk,n(uk,n,t)/
√
n:

lim
n→∞

n∑
t=1

E
[
hk,n(uk,n,t)

2

n
1
{
|hn,k(uk,n,t)| > δ

√
n
}]

= lim
n→∞

1

n

n∑
t=1

E
[
hk,n(uk,n,t)

21
{
|hn,k(uk,n,t)| > δ

√
n
}]

= lim
n→∞

E
[
hk,n(uk,n,t)

21
{
|hn,k(uk,n,t)| > δ

√
n
}]

= 0,

for any δ > 0. This implies the claimed uniform asymptotic negligability condition (e.g. Gut,

2005, Remark 7.2.4):

max
1≤t≤n

|hk,n(uk,n,t)|√
n

Pn
θn(gn,h)−−−−−−→ 0.
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S2.4 Scores

Lemma S2.12: Suppose Assumption 2.1 holds. Let pθ and q̄n,θ be as in the Proof of Proposition

S2.5 and suppose that θn = (γn, η)→ (γ, η) = θ. Then

lim
n→∞

∫ ∥∥∥˜̀
θnp

1/2
θn
q̄
1/2
n,θ − ˜̀

θp
1/2
θ q̄

1/2
n,θ

∥∥∥2 dλ = 0. (S9)

Proof. The integral in (S9) can be re-written as

L∑
l=1

∫ (
˜̀
θn,l(y, x)pθn(y, x)1/2 − ˜̀

θ,l(y, x)pθ(y, x)1/2
)2

d(λ(y)⊗Qn,θ(x))

Inspection of the forms of ˜̀
ϑ and pϑ reveals that each integrand in the preceding display con-

verges to zero as n→∞. If we show that

lim sup
n→∞

∫
˜̀2
θn,lpθn d(λ⊗Qn,θ) ≤

∫
˜̀2
θ,lpθ d(λ⊗Qθ) <∞, (S10)

the proof will be complete in view of Lemma S2.2, Proposition S3.1 and Remark S3.1.S8 The

preceding display is equivalent to

lim sup
n→∞

∫
˜̀2
θn,l dGθn,θ,n ≤

∫
˜̀2
θ,l dGθ <∞,

for Gϑ,θ,n the distribution of (Y,X) corresponding to the density pϑq̄n,θ and Gθ as defined in

the proof of Lemma S2.5. That ˜̀2
θn,l
→ ˜̀2

θ,l pointwise is clear from its form, as given in Lemma

3.1. The finiteness of each of the integrals in the above display along with the fact that for some

N ∈ N and some ρ > 0,

sup
n≥N

∫
˜̀2+ρ
θn,l

dGθn,θ,n <∞

follows from the form of ˜̀2
ϑ,l (as given in Lemma 3.1) along with Assumption 2.1.S9

Lemma S2.13 (Smoothness): Suppose that Assumption 2.1 holds. Then for any sequence θn =

(γ + gn/
√
n, η) with gn → g ∈ RL,

Rn :=
1√
n

n∑
t=1

[
˜̀
θn(Yt, Xt)− ˜̀

θ(Yt, Xt)
]

+ Ĩθ,ngn
Pnθ−−→ 0.

S8Note that the product structure of λ⊗Qn,θ and Lemma S2.2 ensure that λ⊗Qn,θ → λ⊗Qθ setwise.
S9Cf. the proof of Lemma S2.3: arguing in essentially the same manner as there allows one to obtain uniform

boundedness of the 4 + δ moments of εk, φk(εk), Xt (uniformly in t) and all the non-stochastic terms in ˜̀2
θn,l.
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Proof. From (the proof of) Lemma S2.8 we have

lim
n→∞

∫ [√
n
(
p
1/2
θn
− p1/2θ

)
q̄
1/2
n,θ −

1

2
g′ ˙̀θp

1/2
θ q̄

1/2
n,θ

]2
dλ = 0, (S11)

whilst by Lemma S2.12 we have

lim
n→∞

∫ ∥∥∥˜̀
θnp

1/2
θn
q̄
1/2
n,θ − ˜̀

θp
1/2
θ q̄

1/2
n,θ

∥∥∥2 dλ = 0. (S12)

Define

c−1n :=

∫
p
1/2
θn
p
1/2
θ q̄n,θ dλ = 1− 1

2

∫
(p

1/2
θ − p1/2θn

)2q̄n,θ dλ.

We have

−n
(
p
1/2
θ − p1/2θn

)2
= −

(√
n
[
p
1/2
θn
− p1/2θ

]
− 1

2
g′ ˙̀θp

1/2
θ

)2

+

(
1

2
g′ ˙̀θp

1/2
θ

)2

− g′ ˙̀θp
1/2
θ

√
n
(
p
1/2
θn
− p1/2θ

)
,

and so by (S11) and the continuity of the inner product

∫
(p

1/2
θ − p1/2θn

)2q̄n,θ dλ =
1

n

∫
g′ ˙̀θp

1/2
θ q̄

1/2
n,θ

√
n
(
p
1/2
θn
− p1/2θ

)
q̄
1/2
n,θ dλ

− 1

n

∫ (
1

2
g′ ˙̀θp

1/2
θ

)2

q̄n,θ dλ+ o(n−1)

=
1

4
(n−1/2g)′İn,θ(n

−1/2g) + o(n−1),

where İn,θ :=
∫

˙̀
θ

˙̀′
θpθ q̄n,θ dλ = O(1).S10 It follows that c−1n = 1 − an with an → 0 and

nan = 1
4g
′İθg + o(1).

Rn is equal to the sum of

R′1,n :=
1√
n

n∑
t=1

[
˜̀
θn(Yt, Xt)

(
1− pθn(Yt, Xt)

1/2

pθ(Yt, Xt)1/2

)]
+

1

2
Ĩn,θgn ;

R′2,n :=
1√
n

n∑
t=1

[
˜̀
θn(Yt, Xt)

pθn(Yt, Xt)
1/2

pθ(Yt, Xt)1/2
− ˜̀

θ(Yt, Xt)

]
+

1

2
Ĩn,θgn .

Since Ĩn,θ is O(1) by Lemma S2.3 it suffices to prove that these converge in probability to zero

with gn replaced by g; let the corresponding expressions be called Ri,n for i = 1, 2.

S10This follows by noting that ‖ ˙̀
θ‖2 is uniformly integrable under pθ q̄n,θ which is a consequence of Lemma S2.3.
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For R1,n we note that (omitting the arguments of the functions)

1√
n

n∑
t=1

˜̀
θn

(
1−

p
1/2
θn

p
1/2
θ

)
+

1

2

1

n

n∑
t=1

˜̀
θn

˙̀′
θg =

1

n

n∑
t=1

˜̀
θn

√
n

(
1−

p
1/2
θn

p
1/2
θ

+
1

2
√
n

˙̀′
θg

)

≤ 1

n

n∑
t=1

‖˜̀θn‖2 ×
1

n

n∑
t=1

[
√
n

(
1−

p
1/2
θn

p
1/2
θ

+
1

2
√
n

˙̀′
θg

)]2
.

The first term on the second line is OPnθn
(1) hence OPnθ (1) (by contiguity). The second has

L1(P
n
θ ) norm

E

∣∣∣∣∣∣ 1n
n∑
t=1

[
√
n

(
1−

p
1/2
θn

p
1/2
θ

+
1

2
√
n

˙̀′
θg

)]2∣∣∣∣∣∣ ≤
∫ [√

n

(
p
1/2
θ − p1/2θn

+
1

2
√
n

˙̀′
θgp

1/2
θ

)]2
q̄n,θ dλ→ 0,

where the convergence is by (S11). Therefore, it suffices to show that

1

n

n∑
t=1

˜̀
θn

˙̀′
θ − Ĩn,θ

Pnθ−−→ 0. (S13)

We may replace Ĩn,θ in (S13) with Ĩθ :=
∫

˜̀
θ

˙̀′
θ dGθ with Gθ as defined in the proof of Lemma

S2.5. In particular, let Gθ,n := Gθ,0,n as defined in the proof of Lemma S2.5. Then, since

‖˜̀θ(Yt, Xt) ˙̀
θ(Yt, Xt)

′‖1+ρ/2 is uniformly L1(P
n
θ ) bounded (Lemma S2.3) one has

sup
n∈N

∫
‖˜̀θ ˙̀′

θ‖1+ρ/2 dGn,θ <∞,

and so ‖˜̀θ ˙̀′
θ‖ is uniformly Gθ,n–integrable. By Lemma S3.2 and Theorem 2.8 of Serfozo (1982),

Ĩn,θ =
1

n

n∑
t=1

E
[
˜̀
θ(Yt, Xt) ˙̀

θ(Yt, Xt)
′
]

=

∫
˜̀
θ

˙̀′
θ dGn,θ →

∫
˜̀
θ

˙̀′
θ dGθ = Ĩθ. (S14)

For any M > 0, one has the decompositions

EMn,1 :=
1

n

n∑
t=1

˜̀
θn

˙̀′
θ −

1

n

n∑
t=1

˜̀
θn1{‖˜̀θn‖ ≤M} ˙̀′

θ1{‖ ˙̀
θ‖ ≤M}

=
1

n

n∑
t=1

˜̀
θn1{‖˜̀θn‖ > M} ˙̀′

θ +
1

n

n∑
t=1

˜̀
θn1{‖˜̀θn‖ ≤M} ˙̀′

θ1{‖ ˙̀
θ‖ > M}
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and

EM2 := Ĩθ −
∫

˜̀
θ

˙̀′
θ1{‖˜̀θ‖ ≤M}1{‖ ˙̀

θ‖ ≤M} dGθ

=

∫
˜̀
θ

˙̀′
θ1{‖˜̀θ‖ > M}dG+

∫
˜̀
θ

˙̀′
θ1{‖˜̀θ‖ > M}1{‖ ˙̀

θ‖ > M}dGθ.

Additionally, for E taken under Pnθ , define

EMn,3 :=
1

n

n∑
t=1

˜̀
θn1{‖˜̀θn‖ ≤M} ˙̀′

θ1{‖ ˙̀
θ‖ ≤M} − E

[
˜̀
θn1{‖˜̀θn‖ ≤M} ˙̀′

θ1{‖ ˙̀
θ‖ ≤M}

]
;

EMn,4 := E
1

n

n∑
t=1

˜̀
θn1{‖˜̀θn‖ ≤M} ˙̀′

θ1{‖ ˙̀
θ‖ ≤M} −

∫
˜̀
θ

˙̀′
θ1{‖˜̀θ‖ ≤M}1{‖ ˙̀

θ‖ ≤M}dGθ.

Since ‖˜̀θ ˙̀′
θ1{‖˜̀θ‖ > M}‖ ≤ ‖˜̀θ ˙̀′

θ‖, ‖˜̀θ ˙̀′
θ1{‖˜̀θ‖ > M}1{‖ ˙̀

θ‖ > M}‖ ≤ ‖˜̀θ ˙̀′
θ‖ and ‖˜̀θ ˙̀′

θ‖ is

Gθ–integrable by Lemma S2.3, by the dominated convergence theorem, for any δ > 0 there is

an M such that EM
′

2 < δ for M ′ ≥ M . For any M > 0, by Theorem 3 in Saikkonen (2007),

Theorem 14.1 in Davidson (1994) and Theorem 2 in Kanaya (2017) one has (cf. Lemma S2.14

below)

EMn,3 = OPnθ (M2/
√
n).

For EMn,4 we introduce a new measure: define µn as

µn(A) :=

∫
A
cnpθn(x, y)1/2pθ(x, y)1/2 d(λ(y)⊗Qn(x)).

By Lemma S3.2 one has that µn → G, as well as Gn,θ → G, in TV. Then, by Cauchy – Schwarz

and Lemma S2.3

c−1n

∫
˜̀
θn1{‖˜̀θn‖ ≤M} ˙̀′

θ1{‖ ˙̀
θ‖ ≤M} dµn −

∫
˜̀
θ1{‖˜̀θ‖ ≤M} ˙̀′

θ1{‖ ˙̀
θ‖ ≤M}dGn,θ

=

∫ (
˜̀
θn1{‖˜̀θn‖ ≤M}p

1/2
θn
− ˜̀

θ1{‖˜̀θ‖ ≤M}p
1/2
θ

)
˙̀′
θ1{‖ ˙̀

θ‖ ≤M}p
1/2
θ d(λ⊗Qθ,n)

=

∫ (
˜̀
θn1{‖˜̀θn‖ > M}p1/2θn

− ˜̀
θ1{‖˜̀θ‖ > M}p1/2θ

)
˙̀′
θ1{‖ ˙̀

θ‖ ≤M}p
1/2
θ d(λ⊗Qθ,n)

+

∫ (
˜̀
θnp

1/2
θn
− ˜̀

θp
1/2
θ

)
˙̀′
θ1{‖ ˙̀

θ‖ ≤M}p
1/2
θ d(λ⊗Qθ,n)

. o(1) + sup
n∈N

Eθn
[
‖˜̀θn‖21{‖˜̀θn‖ > M}

]
+ sup
n∈N

Eθ
[
‖˜̀θ‖21{‖˜̀θ‖ > M}

]
.

The last two right hand side terms can be made arbitrarily small, uniformly in n, by taking M
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large enough; the o(1) term follows from (S12) and is uniform in M . Now, by Gn,θ
TV−−→ Gθ,∣∣∣∣∫ ˜̀

θ1{‖˜̀θ‖ ≤M} ˙̀′
θ1{‖ ˙̀

θ‖ ≤M}dGθ,n −
∫

˜̀
θ1{‖˜̀θ‖ ≤M} ˙̀′

θ1{‖ ˙̀
θ‖ ≤M} dGθ

∣∣∣∣
≤M2‖Gn,θ −Gθ‖TV .

Since µn → Gθ and Gn,θ → Gθ in total variation, one has that ‖µn − Gn,θ‖TV → 0. Since

˜̀
θn1{‖˜̀θn‖ ≤M} ˙̀′

θ1{‖ ˙̀
θ‖ ≤M} is uniformly bounded, one has that

∣∣∣∣∫ ˜̀
θn1{‖˜̀θn‖ ≤M} ˙̀′

θ1{‖ ˙̀
θ‖ ≤M}dµn −

∫
˜̀
θn1{‖˜̀θn‖ ≤M} ˙̀′

θ1{‖ ˙̀
θ‖ ≤M} dGn,θ

∣∣∣∣
≤M2‖µn −Gn,θ‖TV .

As c−1n − 1 = −an → 0, it follows that

EMn,4 ≤M2 [‖µn −Gn,θ‖TV + ‖Gn,θ −Gθ‖TV ] + en +M2|an|+ r(M),

where 0 ≤ r(M) := supn∈N EPnθn
[
‖˜̀θn‖21{‖˜̀θn‖ > M}

]
+ supn∈N EPnθ

[
‖˜̀θ‖21{‖˜̀θ‖ > M}

]
→ 0

as M → ∞ and r does not depend on n and en = o(1). For EMn,1 note that since ‖ ˙̀
θ‖2 is

uniformly Pnθ –integrable (Lemma S2.3), 1
n

∑n
t=1 ‖ ˙̀

θ‖2 = OPnθ (1). By Markov’s inequality, for

any δ > 0

Pnθn

(∣∣∣∣∣ 1n
n∑
t=1

‖˜̀θn‖21{‖˜̀θn‖ > M}

∣∣∣∣∣ > δ

)
≤ δ−1 E

[∣∣∣∣∣ 1n
n∑
t=1

‖˜̀θn‖21{‖˜̀θn‖ > M}

∣∣∣∣∣
]

≤ δ−1 sup
n∈N

E ‖˜̀θn‖21{‖˜̀θn‖ > M}

≤ δ−1r(M).

Thus by taking M →∞, the probability on the left hand side of the preceding display vanishes.

Therefore, the same is true of

Pnθ

(∣∣∣∣∣ 1n
n∑
t=1

‖˜̀θn‖21{‖˜̀θn‖ > M}

∣∣∣∣∣ > δ

)
,

by contiguity. That is, we can take a large enough M such that the probability in the display

above is arbitrarily small (for all large enough n ∈ N).

Now, fix ε > 0, δ > 0. By Lemma S2.3, 1
n

∑n
t=1 ‖˜̀θ‖2 = OPnθ (1) and also 1

n

∑n
t=1 ‖˜̀θn‖2 =
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OPnθn
(1). By this and contiguity, we can choose R > 0 be such that for all n ≥ N1,

Pnθ

(
1

n

n∑
t=1

‖˜̀θ‖2 > R

)
< ε/4, Pnθ

(
1

n

n∑
t=1

‖˜̀θn‖2 > R

)
< ε/4.

Take M large enough that ‖EM2 ‖ < δ, r(M) < δ and for all n ≥ N2

Pnθ

(∣∣∣∣∣ 1n
n∑
t=1

‖˜̀θn‖21{‖˜̀θn‖ > Mn}

∣∣∣∣∣ > δ/R

)
< ε/4

Pnθ

(∣∣∣∣∣ 1n
n∑
t=1

‖ ˙̀
θ‖21{‖ ˙̀

θ‖ > Mn}

∣∣∣∣∣ > δ/R

)
< ε/4

where Mn ≥ M and Mn →∞ slowly. This ensures that ‖EMn
2 ‖ < δ, Pnθ (‖EMn

n,1 ‖ > 2δ) < ε for

all n ≥ max{N1, N2}. Then, let N be large enough such that N ≥ max{N1, N2}, and for all

n ≥ N , Pnθ (‖EMn
n,3 ‖ > δ) < ε and ‖EMn

n,4 ‖ ≤ 3δ.S11 Combining these ensures that for all such n,

Pnθ

(∥∥∥∥∥ 1

n

n∑
t=1

˜̀
θn

˙̀′
θ − Ĩθ

∥∥∥∥∥ > 7δ

)
< 2ε.

In conjunction with (S14) this establishes (S13).

We next show that R2,n converges to zero in Pnθ –probability. Define

Zn,t := ˜̀
θn(Yt, Xt)

pθn(Yt, Xt)
1/2

pθ(Yt, Xt)1/2
, mn(Xt) :=

∫
˜̀
θn(y,Xt)pθn(y,Xt)

1/2pθ(y,Xt)
1/2dy,

and note that mn(Xt) = E[Zn,t|Xt] (Pnθ –a.s.). Since E[˜̀θn(Yt, Xt)|Xt] = 0 under Pnθn (which is

clear from its form),

mn(Xt) =

∫
˜̀
θn(y,Xt)pθn(y,Xt)

1/2pθ(y,Xt)
1/2 dy

=

∫
˜̀
θn(y,Xt)pθn(y,Xt)

1/2
[
pθ(y,Xt)

1/2 − pθn(y,Xt)
1/2
]

dy.

(S15)

Using (S11), (S12) and Cauchy-Schwarz yields

lim
n→∞

∣∣∣∣〈˜̀
θnp

1/2
θn
q̄
1/2
θ,n ,
√
n
(
p
1/2
θ − p1/2θn

)
q̄
1/2
n,θ

〉
λ
−
〈

˜̀
θp

1/2
θ q̄

1/2
n,θ , −

1

2
g′ ˙̀θp

1/2
θ q̄

1/2
n,θ

〉
λ

∣∣∣∣ = 0,

which implies that
1√
n

n∑
t=1

mn(Xt) +
1

2
Ĩn,θg

Pnθ−−→ 0,

S11I.e. n such that M2
n|an| < δ, |en| < δ, M2

n [‖µn −Gn,θ‖TV + ‖Gn,θ −Gθ‖TV ] < δ. Here one needs to take
Mn →∞ slowly enough that these sequences still converge to zero and M2

n/
√
n→ 0.
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given the representation of mn in (S15). In consequence it remains to show that

R∗2,n :=
1√
n

n∑
t=1

Zt,n −mn(Xt)− ˜̀
θ(Yt, Xt)

Pnθ−−→ 0.

Put Fn,t = σ(Yt, Xt). Then, as is straightforward to verify, (Zt,n−mn(Xt)−˜̀
θ(Yt, Xt),Fn,t)n∈N,1≤t≤n

forms a martingale difference array. Hence it suffices to show that

1

n

n∑
i=1

E
∥∥∥Zt,n −mn(Xt)− ˜̀

θ(Yt, Xt)
∥∥∥2 Pnθ−−→ 0.

The left hand side of this display can be written as

∫ ∥∥∥∥∥˜̀
θn

p
1/2
θn

p
1/2
θ

−mn − ˜̀
θ

∥∥∥∥∥
2

pθ q̄n,θ dλ ≤ 2

∫ ∥∥∥˜̀
θnp

1/2
θn
q̄
1/2
n,θ − ˜̀

θp
1/2
θ q̄

1/2
n,θ

∥∥∥2 dλ+ 2

∫
‖mn‖2 dQn,θ,

and so, given (S12) it suffices to show that the second term on the right hand side converges to

zero. For this note that by Fubini’s theorem and the Cauchy-Schwarz inequality

∫
‖mn‖2 dQn,θ ≤

∫ ∥∥∥˜̀
θnp

1/2
θn

[
p
1/2
θ − p1/2θn

]∥∥∥2 q̄n,θ dλ

≤
∫ ∥∥∥˜̀

θnp
1/2
θn
q̄
1/2
n,θ

∥∥∥2 dλ

∫ [(
p
1/2
θn
− p1/2θ

)
q̄
1/2
n,θ

]2
dλ.

The first term on the right hand side is O(1) by equation (S10), whilst the second converges to

zero by (S11) and the uniform Gθ,0,n – integrability of g′ ˙̀θ as established in Lemma S2.6.

S2.4.1 Estimation

Lemma S2.14: Suppose that Assumption 2.1 holds and gn are % – integrable functions for some

% > 2 such that maxt=1,...,n ‖gn(Yt, Xt)‖L% ≤Mn (all under Pnθ ). Then,

1

n

n∑
t=1

gn(Yt, Xt)− E [gn(Yt, Xt)] = OPθ(Mn/
√
n).

Proof. Let αn(m) be the α – mixing coefficients of the array {gn(Yt, Xt) − E[gn(Yt, Xt)] : n ∈

N, 1 ≤ t ≤ n}. By (the proof of) Theorem 14.1 in Davidson (1994), αn(m) ≤ α̃(m − p) (for

m ≥ p) where α̃(m) are the mixing coefficients of {Yt : t ∈ N}. By Theorem 3 in Saikkonen

(2007) and Proposition 1.1.1 in Doukhan (1994) α̃(m) = O(am) for some a ∈ (0, 1). Condition

A1 in Kanaya (2017) then holds (with ∆ = 1) with β > %/(%− 2). To see this note that for all
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m ≥M1 we have α̃(m− p) ≤ Cam whilst Cam ≤ Am−β whenever

β ≤ log(A)− log(C) +m| log(a)|
log(m)

.

As the right hand side diverges as m→∞, for all m larger than some M ≥M1, the inequality

will hold for some β > %/(% − 2). Noting that the inequality above continues to hold if we

increase A, we may then choose A such that each α̃(m) ≤ Am−β for all 1 ≤ m ≤M . The result

then follows by Theorem 2 in Kanaya (2017).

Lemma S2.15: Suppose that Assumptions 2.1 and 2.2 hold. Then

(i) If Zn,1 := 1√
n

∑n
t=1

˜̀
θ(Yt, Xt) and Zn,2 := Λnθn(g,h)(Y

n), then under Pnθ ,

Zn  Z ∼ N

 0

−1
2σ

2
g,h

 ,

 Ĩθ Ĩθg

g′Ĩθ σ2g,h

 .

Additionally, let θn := θn(gn, 0) = (γ + gn/
√
n, η) for gn → g ∈ RL. Then

(ii) We have that

1

n

n∑
t=1

(
ˆ̀
θn(Yt, Xt)− ˜̀

θn(Yt, Xt)
)

= oPnθn
(n−1/2).

(iii) ‖În,θn − Ĩθ‖ = oPnθn
(ν

1/2
n ) where νn is defined in Assumption 2.2, and Ĩθ := Gθ ˜̀

θ
˜̀′
θ with

Gθ as in the proof of Lemma S2.5.

Proof. For part (i), let zt be

zt :=

(
˜̀
θ(Yt, Xt)

′, g′ ˙̀θ(Yt, Xt) +

K∑
k=1

hk(Ak•Vθ,t)

)′
,

and Ft := σ(ε1, . . . , εt). Under Pnθ , {zt,Ft : t ∈ N} is a martingale difference sequence such that

1

n

n∑
t=1

E
[
ztz
′
t

]
=

 Ĩn,θ Ĩθ,θg

g′Ĩn,θ σ2g,h,n

→
 Ĩθ Ĩθg

g′Ĩθ σ2g,h

 ,
noting Lemma 3.1 and Theorem 12.14 of Rudin (1991). That σ2g,h,n converges to a σ2g,h is part

of the conclusion of Proposition A.1. That Ĩθ,n → Ĩθ follows by combining Lemma S2.3, the

fact that Gθ,0,n as defined in the proof of Lemma S2.5 converges in total variation to Gθ (cf.

Lemma S3.2), and Corollary 2.9 in Feinberg et al. (2016). Lindeberg’s condition is satisfied

since {‖zt‖2 : t ∈ N} is uniformly Pnθ -integrable (by Lemma S2.3 and the fact that each hk
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is bounded) and the variance convergence in the preceding display. Part (i) then follows from

Proposition A.1 and the central limit theorem for martingale differences.

Define An := A(θn), Bn := B(θn), and ζxn,l,k,j := ζxl,k,j(θn) for each triple (l, j, k) of indicies

and x ∈ {α, σ}. Note that each An,k(Yt −BnXt) h εk,t ∼ ηk under Pnθn . Hence

˜̀
θn,αl(Yt, Xt) h

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφk(εk,t)εj,t +
K∑
k=1

ζαn,l,k,k [τk,1εk,t + τk,2κ(εk,t)] (S16)

˜̀
θn,σl(Yt, Xt) h

K∑
k=1

K∑
j=1,j 6=k

ζσn,l,k,jφk(εk,t)εj,t +

K∑
k=1

ζσl,k,k [τk,1εk,t + τk,2κ(εk,t)] (S17)

˜̀
θn,bl(Yt, Xt) h

K∑
k=1

−An,k•Db,l [φk(εk,t)(Xt − EXt)− EXt (ςk,1εk,t + ςk,2κ(εk,t))] (S18)

By Assumption 2.1(iii), ζxn,l,k,j → ζα∞,l,k,j := [Dxl(α, σ)]k•A(α, σ)−1•j for x ∈ {α, σ}. Note that

the entries of Db,l are all zero except for entry l (corresponding to bl) which is equal to one.

We verify (ii) for each component of the efficient score (S16) – (S18). For components (S16)

and (S17), we define for x either of α, σ

ϕ1,n,t :=

K∑
k=1

K∑
j=1,j 6=k

ζxl,k,j,nφk(An,k•Vn,t)An,j•Vn,t ,

and

ϕ̂1,n,t :=

K∑
k=1

K∑
j=1,j 6=k

ζxl,k,j,nφ̂k,n(An,k•Vn,t)An,j•Vn,t ,

with Vn,t = Yt − BnXt, and let ζn := maxl∈[L],j∈[K],k∈[K] |ζxl,j,k,n| which converges to ζ :=

maxl∈[L],j∈[K],k∈[K] |ζxl,j,k,∞| <∞. We have that

1√
n

n∑
t=1

(ϕ̂1,n,t−ϕ1,n,t) ≤
√
n

K∑
k=1

K∑
j=1,j 6=k

ζn

∣∣∣∣∣ 1n
n∑
t=1

φ̂k,n(An,k•Vn,t)An,j•Vn,t − φk(An,k•Vn,t)An,j•Vn,t

∣∣∣∣∣ ,
Each

∣∣∣ 1n∑n
t=1 φ̂k,n(An,k•Vn,t)An,j•Vn,t − φk(An,k•Vn,t)An,j•Vn,t

∣∣∣ = oPθn (n−1/2) by applying Lemma

A.1 with Wn,t = An,j•Vn,t (noting that An,k•Vn,s ' εk,s and An,j•Vn,t ' εj,t with are indepen-

dent for any s, t with Eθn(An,j•Vn,t)
2 = 1 by Assumption 2.1(ii)), and the outside summations

are finite, it follows that
1√
n

n∑
t=1

(ϕ̂1,n,t − ϕ1,n,t) = oPn
θ̃n

(1) . (S19)
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That τ̂k,n
Pnθn−−→ τk follows from Lemma S2.16. Now, consider ϕ2,τ,n,t defined by

ϕ2,τ,n,t :=
K∑
k=1

ζzn,l,k,k [τk,1An,k•Vn,t + τk,2κ(An,k•Vn,t)] ,

for x equal to either α or σ. Since sum is finite and each |ζxn,l,k,k| → |ζx∞,l,k,k| <∞ it is sufficient

to consider the convergence of the summands. In particular we have that

1√
n

n∑
t=1

[τ̂k,n,1 − τk,1]An,k•Vn,t = [τ̂k,n,1 − τk,1]
1√
n

n∑
i=1

An,k•Vn,t → 0,

1√
n

n∑
t=1

[τ̂k,n,2 − τk,2]κ(An,k•Vn,t) = [τ̂k,n,2 − τk,2]
1√
n

n∑
i=1

κ(An,k•Vn,t)→ 0,

in probability, since An,k•Vn,t h εk,t ∼ ηk and (εk,t)t≥1 and (κ(εk,t))t≥1 are i.i.d. mean-zero

sequences with finite second moments such that the central limit theorem holds.

Together these yield that

1√
n

n∑
t=1

(ϕ2,τ̂n,n,t − ϕ2,τ,n,t)
Pnθn−−→ 0. (S20)

Combination of (S19) and (S20) yields (ii) for components of the type (S16), (S17).

For components (S18) let an,k,l := −An,k•Dbl , ς̃k,n := ς̂k,n − ςk, cn,t := Eθn Xt and c̄n :=

1
n

∑n
t=1 cn,t. Since an,k,l → a∞,k,l := A(α, σ)k•Dbl(α, σ), it suffices to show that

(i) 1
n

∑n
t=1

[
φk(An,k•Vn,t)− φ̂k,n(An,k•Vn,t)

]
(Xt − cn,t) = oPnθn

(n−1/2);

(ii) 1
n

∑n
t=1

[
φk(An,k•Vn,t)− φ̂k,n(An,k•Vn,t)

] (
X̄n − c̄n

)
= oPnθn

(n−1/2);

(iii) 1
n

∑n
t=1

[
φk(An,k•Vn,t)− φ̂k,n(An,k•Vn,t)

]
(c̄n − cn,t) = oPnθn

(n−1/2);

(iv) 1
n

∑n
t=1 φk(An,k•Vn,t)

(
X̄n − c̄n

)
= oPnθn

(n−1/2);

(v) 1
n

∑n
t=1 φk(An,k•Vn,t) (c̄n − cn,t) = oPnθn

(n−1/2);

(vi) 1
n

∑n
t=1 X̄n [ς̃k,n,1An,k•Vn,t + ς̃k,n,2κ(An,k•Vn,t)] = oPnθn

(n−1/2);

(vii) 1
n

∑n
t=1(X̄n − c̄n) [ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t)] = oPnθn

(n−1/2);

(viii) 1
n

∑n
t=1(c̄n − cn,t) [ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t)] = oPnθn

(n−1/2)

(i) follows by (the first part of) Lemma A.1 applied with Wn,t = Xt−cn,t. This is mean-zero,

independent of all An,k•Vn,s with s ≥ t and has uniformly bounded second moments (cf. (S6)).
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(ii) follows by Jensen’s inequality, (the second part of) Lemma A.1 applied with Wn,t = 1,

(S6), Lemma S2.14 and Corollary 3.1.

(iii) follows by Cauchy – Schwarz, (the second part of) Lemma A.1 applied with Wn,t = 1

and Lemma S2.17.

For (iv), 1√
n

∑n
t=1 φk(An,k•Vn,t) = OPnθn

(1) by the central limit theorem and X̄n − c̄n =

1
n

∑n
t=1[Xt − cn,t]

Pθn−−→ 0, which follows by (S6), Lemma S2.14 and Corollary 3.1.

(v) follows by Cauchy – Schwarz, the fact that Eφk(An,k•Vn,t)2 = Eφk(εk,t)2 is uniformly

bounded hence 1
n

∑n
t=1 φk(An,k•Vn,t)

2 = OPnθn
(1) by Markov’s inequality and Lemma S2.17.

For (vi), X̄n = OPθn (1) by e.g. Markov’s inequality and (S6). By the central limit theorem

also 1√
n

∑n
t=1 Ut = OPnθn (1)

for Ut equal to either An,k•Vn,t or κ(An,k•Vn,t). The result therefore

follows from Lemma S2.16.

For (vii), as for (vi), 1√
n

∑n
t=1 Ut = OPnθn (1)

for Ut equal to either An,k•Vn,t or κ(An,k•Vn,t).

Therefore it suffices to note that X̄n − c̄n
Pθn−−→ 0, as noted for (iv).

For (viii), for Ut equal to either ςk,1An,k•Vn,t or ςk,2κ(An,k•Vn,t), by Markov’s inequality

Pnθn

(∥∥∥∥∥ 1√
n

n∑
t=1

(c̄n − cn,t)Ut

∥∥∥∥∥ > ε

)
≤ ε−2 EU2

t

1

n

n∑
t=1

‖c̄n − cn,t‖2 .
1

n

n∑
t=1

‖c̄n − cn,t‖2 → 0,

by Lemma S2.17.

To verify (iii) we note that

∥∥∥În,θn − Ĩθ∥∥∥
2
≤
∥∥∥În,θn − Ĭn,θn∥∥∥

2
+
∥∥∥Ĭn,θn − Ĩn,θn∥∥∥

2
+
∥∥∥Ĩn,θn − Ĩθ∥∥∥

2
(S21)

where Ĩθ := E[˜̀θ(Yt, Xt)˜̀
θ(Yt, Xt)

′] = 1
n

∑n
t=1 E[˜̀θ(Yt, Xt)˜̀

θ(Yt, Xt)
′] with the expectation taken

under Gθ, În,θ := 1
n

∑n
t=1

ˆ̀
θ(Yt, Xt)ˆ̀

θ(Yt, Xt)
′ and Ĭn,θ := 1

n

∑n
t=1

˜̀
θ(Yt, Xt)˜̀

θ(Yt, Xt)
′. We will

show each right hand side term is oPnθn
(ν

1/2
n ).

For the first right hand side term in (S21) let r ∈ {α, σ, b} and let l denote an index, we

write Ûn,t,rl := ˆ̀
θn,rl(Yt, Xt), Ũt,rl := ˜̀

θn,rl(Yt, Xt) and Dn,t,rl := ˆ̀
θn,rl(Yt, Xt)− ˜̀

θn,rl(Yt, Xt).

Since it is the absolute value of the (r, l)− (s,m) component of În,θn − Ĭn,θn , it is sufficient

to show that
∣∣∣ 1n∑n

t=1 Ûn,t,rlDn,t,sm + 1
n

∑n
t=1Dn,t,rlŨt,sm

∣∣∣ = oPnθn
(ν

1/2
n ) as n→∞ for any r, s ∈

{α, σ, b} and l,m. By Cauchy-Schwarz and Lemma S2.19

∣∣∣∣∣ 1n
n∑
t=1

Dn,t,rlŨt,sm

∣∣∣∣∣ ≤
(

1

n

n∑
t=1

Ũ2
t,sm

)1/2(
1

n

n∑
t=1

D2
n,t,rl

)1/2

= OPnθn
(1)×oPnθn (ν1/2n ) = oPnθn

(ν1/2n ),

∣∣∣∣∣ 1n
n∑
t=1

Ûn,t,rlDn,t,sm

∣∣∣∣∣ ≤
(

1

n

n∑
t=1

Û2
n,t,rl

)1/2(
1

n

n∑
t=1

D2
n,t,sm

)1/2

= OPnθn
(1)×oPnθn (ν1/2n ) = oPnθn

(ν1/2n ),
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for any (r, l)− (s,m). It follows that

[
1

n

n∑
t=1

Ûn,t,rlDn,t,sm +Dn,t,rlŨt,sm

]2
≤ 2

[
1

n

n∑
t=1

Ûn,t,rlDn,t,sm

]2
+2

[
1

n

n∑
t=1

Dn,t,rlŨt,sm

]2
= oPnθn

(νn)

and hence ‖În,θn − Ĭn,θn‖2 ≤ ‖În,θn − Ĭn,θn‖F = oPnθn
(ν

1/2
n )

For the second right hand side term in (S21), Let Qr,lsl,m,t,n = ˜̀
θn,rl(Yt, Xt)˜̀

θn,sm(Yt, Xt),

where r, s ∈ {α, σ, b} and l,m denote the indices of the components of the efficient scores. Fix

any r, s and l,m and note that by the fact that ˜̀
θn has uniformly bounded 2 + δ/2 moments

under Pnθn , Theorem 3 of Saikkonen (2007) and Theorem 1 of Kanaya (2017) together imply

that (cf. Lemma S2.14)

1

n

n∑
t=1

Qr,sl,m,t,n − Eθn Q
r,s
l,m,t,n = OPnθn

(
n(1/p−1)/2

)
= oPnθn

(ν1/2n ), p ∈ (1, 1 + δ/4],

hence ‖Ĭn,θn − Ĩn,θn‖2 = oPnθn
(ν

1/2
n ).

That the last right hand side term in (S21) is o(ν
1/2
n ) follows from the assumed local Lipschitz

continuity of the map defining the ζ’s, that of each β 7→ A(α, σ)k•, Theorem 11.11 of Kallenberg

(2021) and Lemma S2.18.

Lemma S2.16: If assumption 2.1 holds, then ‖%̂k,n − %k,n‖2 = oPn
θ̃n

(νn,p) = oPnθn
(ν

1/2
n ), where θ̃n

is as in Lemma S2.15 and % ∈ {τ, ς}.

Proof. Under Pnθn , An,k•Vn,t h εk,t ∼ ηk, for Vn,t := Yt − BnXt and An := A(θn). Let w ∈

{(0,−2)′, (1, 0)′} Since the map M 7→ M−1 is Lipschitz at a positive definite matrix M0, then

for large enough n, with probability approaching one

‖%̂k,n − %k,n‖2 = ‖(M̂−1k,n −M
−1
k )w‖2 ≤ 2‖M̂−1k,n −M

−1
k ‖2 ≤ 2C‖M̂k,n −Mk‖2, (S22)

for some positive constant C. By Theorem 2.5.11 in Durrett (2019)

1

n

n∑
t=1

[(An,k•Vn,t)
3 − E(An,k•Vn,t)

3] = oPnθn

(
n

1−p
p

)
1

n

n∑
t=1

[(An,k•Vn,t)
4 − E(An,k•Vn,t)

4] = oPnθn

(
n

1−p
p

)
.

These together imply that

‖M̂k,n −Mk‖2 ≤ ‖M̂k,n −Mk‖F = oPnθn

(
n

1−p
p

)
= oPnθn

(νn,p).
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Combining these convergence rates with equation (S22) yields the result.

Lemma S2.17: In the setting of Lemma S2.15, let cn,t := Eθn Xt and c̄n := 1
n

∑n
t=1 cn,t. Then

1

n

n∑
t=1

‖c̄n − cn,t‖2 = O(n−1).

Proof. Since Xt = (1, Z ′t−1)
′, it suffices to show that 1

n

∑n
t=1

∥∥c̃n,t − 1
n

∑n
t=1 c̃n,t

∥∥2 = O(n−1)

for c̃n,t := Eθn Zt−1. Let c̃n,∞ :=
∑∞

j=0 B
j
θn
Cθn . This converges uniformly in n since under

Assumption 2.1 parts (i) & (iii), the sets {‖Bθn‖2 : n ∈ N} ∪ {‖Bθ‖2} and {‖Cθn‖2 : n ∈

N} ∪ {‖Cθ‖2} are bounded above by ρ? < 1 and C? <∞ respectively. By Jensen’s inequality

1

n

n∑
t=1

∥∥∥∥∥c̃n,t − 1

n

n∑
t=1

c̃n,t

∥∥∥∥∥
2

.
1

n

n∑
t=1

‖c̃n,t − c̃n,∞‖2 +
1

n

n∑
t=1

∥∥∥∥∥ 1

n

n∑
t=1

[c̃n,∞ − c̃n,t]

∥∥∥∥∥
2

≤ 2

n

n∑
t=1

‖c̃n,t − c̃n,∞‖2

so it suffices to show that n/2 times the last term is uniformly bounded above. One has:

n∑
t=1

‖c̃n,t − c̃n,∞‖2 =

n∑
t=1

∥∥∥∥∥∥
∞∑

j=t−1
BjθnCθn − Bt−1θn

Z0

∥∥∥∥∥∥
2

.
n∑
t=1

∥∥∥∥∥∥
∞∑

j=t−1
BjθnCθn

∥∥∥∥∥∥
2

+
n∑
t=1

∥∥Bt−1θn
Z0

∥∥2

≤
n∑
t=1

 ∞∑
j=t−1

‖Bθn‖
j
2‖Cθn‖2

2

+

n∑
t=1

‖Bθn‖
2(t−1)
2 ‖Z0‖2

≤ C2
?

n∑
t=1

[
ρt−1?

1− ρ?

]2
+ ‖Z0‖2

n∑
t=1

ρ
2(t−1)
?

≤
[

C2
?

(1− ρ?)2
+ ‖Z0‖2

]
1

1− ρ2?
.

Lemma S2.18: In the setting of Lemma S2.15, let X̃t = (1, Ỹ ′t−1, . . . , Ỹ
′
t−p)

′ where Ỹt is a sta-

tionary solution to (1). Then,

(i) 1
n

∑n
t=1 Eθn Xt − Eθ X̃t = o(ν

1/2
n ),

(ii) 1
n

∑n
t=1[Eθn Xt][Eθn Xt]

′ − [Eθ X̃t][Eθ X̃t]
′ = o(ν

1/2
n ).

(iii) 1
n

∑n
t=1 Eθn [Xt − Eθn Xt][Xt − Eθn Xt]

′ − Eθ[Xt − EθXt][Xt − EθXt]
′ = o(ν

1/2
n ).

Proof. Note that ‖Eθn Xt −Eθn X̃t‖2 ≤ ‖c̃n,t − c̃n,∞‖2 in the notation of (the proof of) Lemma
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S2.17, which shows that 1
n

∑n
t=1 ‖c̃n,t − c̃n,∞‖2 = O(n−1). Hence by Jensen’s inequality,

1

n

n∑
t=1

‖Eθn Xt − Eθn X̃t‖ = O(n−1/2) = o(ν1/2n ),

Since β 7→ Eθ X̃t = vec(ιK , (ιp ⊗ (IK −B1 − . . .−Bp)−1c)) is locally Lipschitz,

1

n

n∑
t=1

‖Eθn X̃t − Eθ X̃t‖ = ‖Eθn X̃t − Eθ X̃t‖ = O(n−1/2) = o(ν1/2n ).

Combination of the above two displays yields that 1
n

∑n
t=1 ‖Eθn Xt − Eθ X̃t‖ = O(n−1/2) =

o(ν
1/2
n ) which implies (i). Moreover, combined with the uniform moment bounds given in (S6)

and Lemma S2.1 this yields

1

n

n∑
t=1

‖[Eθn Xt][Eθn Xt]
′ − [Eθ X̃t][Eθ X̃t]

′‖ . 1

n

n∑
t=1

‖Eθn Xt − Eθ X̃t‖ = O(n−1/2) = o(ν1/2n ),

which implies (ii).

For (iii) let Uϑ,t := Xt − EϑXt and Ũϑ,t := X̃t − Eϑ X̃t. Note that as Uϑ,t =
∑t−2

j=0 B
j
ϑDϑεt−j

and Ũϑ,t =
∑∞

j=0 B
j
ϑDϑεt−j , Uθn,t−Ũθn,t and Uθn,t are independent. Additionally by Assumption

2.1 parts (i) and (iii) the sets the sets {‖Bθn‖2 : n ∈ N} and {‖Dθn‖2 : n ∈ N} are bounded

above by ρ? < 1 and D? <∞ respectively. Hence

1

n

n∑
t=1

∥∥∥Eθn [Uθn,tU ′θn,t − Ũθn,tŨ ′θn,t]∥∥∥
≤ 1

n

n∑
t=1

∥∥∥Eθn [(Uθn,t − Ũθn,t)U ′θn,t]∥∥∥+
1

n

n∑
t=1

∥∥∥Eθn [(Uθn,t − Ũθn,t) Ũ ′θn,t]∥∥∥
≤ 1

n

n∑
t=1

∥∥∥∥∥∥Eθn
∞∑
k=0

∞∑
j=t−1

BjθnDθnεt−jε
′
t−kD

′
θn(Bjθn)′

∥∥∥∥∥∥
≤ 1

n

n∑
t=1

∞∑
j=t−1

‖Bθn‖
2j
2 ‖Dθn‖

2
2

≤ D2
? ×

1

n

n∑
t=1

∞∑
j=t−1

ρ2j?

≤ D2
?

1− ρ2?
× 1− ρ2n?

1− ρ2?
× 1

n

= O(n−1).

Additionally, we can write vec(Eϑ Ũϑ,tŨ ′ϑ,t) = (I − Bϑ ⊗ Bϑ)−1 vec(DϑD
′
ϑ), which is locally
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Lipschitz in β at θ. This implies that

1

n

n∑
t=1

Eθn Ũθn,tŨ ′θn,t − Eθ Ũθ,tŨ ′θ,t = O(n−1/2) = o(ν1/2n ).

The previous two displays suffice for (iii).

Lemma S2.19: In the setting of Lemma S2.15, for each r ∈ {α, σ, b} and l

1

n

n∑
t=1

(
ˆ̀̃
θn,rl

(Yt, Xt)− ˜̀̃
θn,rl

(Yt, Xt)
)2

= oPn
θ̃n

(νn).

Proof. We start by considering elements in 1
n

∑n
t=1

(
ˆ̀̃
θn,αl

(Yt, Xt)− ˜̀̃
θn,αl

(Yt, Xt)
)2

. Define

τ̃k,n,q := τ̂k,n,q − τk,q and Vn,t = Yt −BnXt. Since each |ζαn,l,k,j | <∞ and the sums over k, j are

finite, it is sufficient to demonstrate that for every k, j,m, s ∈ [K], with k 6= j and s 6= m,

1

n

n∑
t=1

[
φ̂k,n(An,k•Vn,t)− φk(An,k•Vn,t)

] [
φ̂s,n(An,s•Vn,t)− φs(An,s•Vn,t)

]
An,j•Vt,nAn,m•Vn,t

(S23)

1

n

n∑
t=1

[
φ̂k,n(An,k•Vn,t)− φk(An,k•Vn,t)

]
An,j•Vn,t [τ̃s,n,1An,s•Vn,t + τ̃s,n,2κ(An,s•Vn,t)] (S24)

1

n

n∑
t=1

[τ̃s,n,1An,s•Vn,t + τ̃s,n,2κ(An,s•Vn,t)] [τ̃k,n,1An,k•Vn,t + τ̃k,n,2κ(An,k•Vn,t)] (S25)

are each oPn
θ̃n

(νn).

For (S25), let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 4 parts, each of

which has the following form for some q, w ∈ {1, 2}

1

n

n∑
t=1

τ̃s,n,q τ̃k,n,wξq(An,s•Vn,t)ξw(An,k•Vn,t) = τ̃s,n,q τ̃k,n,w
1

n

n∑
t=1

ξq(An,s•Vn,t)ξw(An,k•Vn,t) = oPn
θ̃n

(νn),

since we have that each τ̃s,n,q τ̃k,n,w = oPn
θ̃n

(νn) by lemma S2.16.S12 For (S24) we can argue

similarly. Again let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 2 parts, each

S12The fact that 1
n

∑n
t=1 ξq(An,s•Vn,t)ξw(An,k•Vn,t) = OPn

θ̃n
(1) can be seem to hold using the moment and i.i.d.

assumptions from assumption 2.1 and Markov’s inequality, noting once more that An,k•Vn,t ' εk,t under Pn
θ̃n

.
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of which has the following form for some q ∈ {1, 2}

1

n

n∑
t=1

[
φ̂k,n(An,k•Vn,t)− φk(An,k•Vn,t)

]
An,j•Vn,tτ̃s,n,qξq(An,s•Vn,t)

≤ τ̃s,n,q

(
1

n

n∑
t=1

[
φ̂k,n(An,k•Vn,t)− φk(An,k•Vn,t)

]2
(An,j•Vn,t)

2

)1/2(
1

n

n∑
t=1

ξq(An,s•Vn,t)
2

)1/2

= oPn
θ̃n

(νn).

by Lemma A.1 applied with Wn,t = An,j•Vn,t and τ̃s,n,q = oPn
θ̃n

(ν
1/2
n ).S13 For (S23) use Cauchy-

Schwarz with Lemma A.1

1

n

n∑
t=1

[
φ̂k,n(An,k•Vn,t)− φk(An,k•Vn,t)

] [
φ̂s,n(An,s•Vn,t)− φs(An,s•Vn,t)

]
An,j•Vn,tAn,m•Vn,t

≤

(
1

n

n∑
t=1

[
φ̂k,n(An,k•Vn,t)− φk(An,k•Vn,t)

]2
(An,j•Vn,t)

2

)1/2

×

(
1

n

n∑
t=1

[
φ̂s,n(An,s•Vn,t)− φs(An,s•Vn,t)

]2
(An,m•Vn,t)

2

)1/2

= oPn
θ̃n

(νn).

This completes the proof for the components corresponding to αl. We note that the components

corresponding to σl follow analogously.

Finally, we consider the elements in 1
n

∑n
t=1

(
ˆ̀
θn,bl(Yt, Xt)− ˜̀

θn,bl(Yt, Xt)
)2

. Let an,k,l :=

−An,k•Dbl , ς̃k,n := ς̂k,n − ςk, cn,t := Eθn Xt and c̄n := 1
n

∑n
t=1 cn,t. Since an,k,l → a∞,k,l :=

A(α, σ)k•Dbl(α, σ), it suffices to show that

(i) 1
n

∑n
t=1

[
φk(An,k•Vn,t)− φ̂k,n(An,k•Vn,t)

]2
‖Xt − cn,t‖2 = oPnθn

(νn);

(ii) 1
n

∑n
t=1

[
φk(An,k•Vn,t)− φ̂k,n(An,k•Vn,t)

]2 ∥∥X̄n − c̄n
∥∥2 = oPnθn

(νn);

(iii) 1
n

∑n
t=1

[
φk(An,k•Vn,t)− φ̂k,n(An,k•Vn,t)

]2
‖c̄n − cn,t‖2 = oPnθn

(νn);

(iv) 1
n

∑n
t=1 φk(An,k•Vn,t)

2
∥∥X̄n − c̄n

∥∥2 = oPnθn
(νn);

(v) 1
n

∑n
t=1 φk(An,k•Vn,t)

2 ‖c̄n − cn,t‖2 = oPnθn
(νn);

(vi) 1
n

∑n
t=1 ‖X̄n‖2 [ς̃k,n,1An,k•Vn,t + ς̃k,n,2κ(An,k•Vn,t)]

2 = oPnθn
(νn);

(vii) 1
n

∑n
t=1 ‖X̄n − c̄n‖2 [ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t)]

2 = oPnθn
(νn);

(viii) 1
n

∑n
t=1 ‖c̄n − cn,t‖2 [ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t)]

2 = oPnθn
(νn).

S13See footnote S12.
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(i) follows from repeated application of Lemma A.1 with Wn,t = e′j(Xt − cn,t).

(ii) follows from application of Lemma A.1 with Wn,t = 1 and X̄n − c̄n = 1
n

∑n
t=1[Xt −

cn,t]
Pθn−−→ 0, which follows by (S6), Lemma S2.14 and Corollary 3.1.

(iii) follows by Lemma A.1 applied repeatedly with Wn,t = e′j(c̄n − cn,t).S14

For (iv), 1
n

∑n
t=1 φk(An,k•Vn,t)

2 = OPnθn
(1) since φk(An,k•Vn,t)

2 has uniformly bounded sec-

ond moments and X̄n − c̄n = OPnθn
(n−1/2), by (S6), Lemma S2.14 and Corollary 3.1.

For (v) use Markov’s inequality and Lemma S2.17 to conclude

Pnθn

(
1

n

n∑
t=1

φk(An,k•Vn,t)
2 ‖c̄n − cn,t‖2 > νnε

)
≤ ν−1n ε−1 E

[
φk(εk)

2
] 1

n

n∑
t=1

‖c̄n − cn,t‖2 → 0.

For (vi), X̄n = OPθn (1) by e.g. Markov’s inequality and (S6). Similarly, 1
n

∑n
t=1 Ut,iUt,j =

OPnθn (1)
for i, j ∈ {1, 2} with Ut,1 = An,k•Vn,t and Ut,2 = κ(An,k•Vn,t). The result then follows

from Lemma S2.16.

For (vii), 1
n

∑n
t=1 Ut,iUt,j = OPnθn (1)

for i, j ∈ {1, 2} with Ut,1 and Ut,2 as in the preceding

paragraph. Therefore it suffices to note that X̄n − c̄n = OPθn (n−1/2), as noted for (iv).

For (viii), for Ut,1 and Ut,2 as in the preceding paragraph and i, j ∈ {1, 2},

Pnθn

(∣∣∣∣∣ 1n
n∑
t=1

‖c̄n − cn,t‖2ςk,iUt,iςk,jUt,j

∣∣∣∣∣ > νnε

)
≤ ν−1n ε−1|ςk,iςk,j |[EU2

t,i]
1/2[EU2

t,j ]
1/2 1

n

n∑
t=1

‖c̄n − cn,t‖2

. ν−1n
1

n

n∑
t=1

‖c̄n − cn,t‖2 → 0,

by Markov’s inequality and Lemma S2.17.

S2.5 Assumption 2.1-(ii)-(b)

We provide a sufficient condition under which Assumption 2.1 part (ii)-(b) holds, given part

(ii)-(a). For convenience recall that part (ii) reads as

(ii) Conditional on the initial values (Y ′−p+1, . . . , Y
′
0)′, εt = (ε1,t, . . . , εK,t)

′ is independently and

identically distributed across t, with independent components εk,t. Each η = (η1, . . . , ηK) ∈

H is such that each ηk is nowhere vanishing, dominated by Lebesgue measure on R, con-

tinuously differentiable with log density scores denoted by φk(z) := ∂ log ηk(z)/∂z, and

for all k = 1, . . . ,K

(a) Eεk,t = 0, Eε2k,t = 1, Eε4+δk,t < ∞, E(ε4k,t) − 1 > E(ε3k,t)
2, and Eφ4+δk (εk,t) < ∞ (for

some δ > 0);

S14That this is uniformly bounded follows from (S6).
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(b) Eφk(εk,t) = 0, Eφ2k(εk,t) > 0, Eφk(εk,t)εk,t = −1, Eφk(εk,t)ε2k,t = 0 and Eφk(εk,t)ε3k,t =

−3;

In this assumption part (a) is standard — only imposes that the shocks are mean zero with unit

variance, and that certain 4 + δ moments are finite —. In contrast, part (b) may seem strong

at first sight.

An important observation is that (b) should not be understood independently from (a).

Indeed, the following lemma shows that given (a), condition (b) follows if the structural shocks

have densities that decays to zero at a polynomial rate.

Lemma S2.20: Let ak = inf{x ∈ R ∪ {−∞} : ηk(x) > 0} and bk = sup{x ∈ R ∪ {∞} : ηk(x) >

0}. Suppose that, for r = 0, 1, 2, 3: (i) if ak = −∞ then ηk(x) = o(x−3) as x → −∞, else

ark limx↓ak ηk(x) = 0, and (ii) if bk =∞ then ηk(x) = o(x−3) as x→∞, else brk limx↑bk ηk(x) = 0.

Then, if part (a) of assumption 2.1-(ii) holds, part (b) is also satisfied.

Proof. Let r ∈ {0, 1, 2, 3}, bk = sup{x ∈ R : ηk(x) > 0} and ak = inf{x ∈ R : ηk(x) > 0}. We

have, by integration by parts, with Gk denoting the measure on R corresponding to ηk,∫
φk(z)z

r dGk =

∫
η′k(z)

ηk(z)
ηk(z)z

r dz =

∫
η′k(z)z

r dz = ηk(z)z
r

∣∣∣∣bk
ak

−
∫
ηk(z)

dzr

dz
dz.

Our hypothesis ensures that zrηk(z)
∣∣bk
ak

= 0. Therefore we have Gkφk(z)z
r = −Gk d

dz z
r. For

r = 0 this equals zero as d
dz z

0 = d
dz1 = 0. For r ∈ {1, 2, 3} we have dzr

dz = rzr−1 and hence

Gkφk(z)z
r = −rGkzr−1. Since Gk1 = 1, Gkz = 0, and Gkz

2 = 1, the result follows.

We now provide two examples. The first is a mixture of normals. We directly verify the

moment conditions in (a) and (b) are satisfied.

The second example is a normalised χ2
2 distribution. We show that this does satisfy the

moment conditions in (a) but not those in (b) (nor the conditions of Lemma S2.20).S15

Example S2.1 (Normal mixtures): Suppose that εk has the density function

ηk(z) =
M∑
m=1

pmfm(z, µm, σ
2
m), pm ≥ 0,

M∑
m=1

pm = 1,
M∑
m=1

pmµm = 0,
M∑
m=1

pm(σ2m + µ2m) = 1,

where fm(z, µm, σ
2
m) is the density function of a em ∼ N (µm, σ

2
m).

εk has mean zero and unit variance. We first establish that each of the conditions in (a) are

S15Additionally, the (normalised) χ2
2 distribution does not have a nowhere vanishing Lebesgue density.
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satisfied. In particular we first note that E [|εk|r] is finite for any positive integer r as

E [|εk|r] =

M∑
m=1

pm E [|em|r] <∞, (S26)

since the Normal distribution has finite moments of all orders. To establish that E[ε3k]
2 <

E[ε4k]− 1 note that this is equivalent to the linear independence in L2 of 1, εk, ε
2
k (e.g. Horn and

Johnson, 2013, Theorem 7.2.10). This is equivalent to the condition that

a21 + 2a1a3 + a22 + a23 E[ε4k] = 0 =⇒ a1 = a2 = a3 = 0.

This holds since E[ε4k] ≥ 1 = E[ε2k] by the fact that Lp norms are increasing and so

a21 + 2a1a3 + a22 + a23 E[ε4k] ≥ a21 + 2a1a3 + a23 = (a1 + a3)
2 ≥ 0,

where equality is possible only if a1 = a2 = a3 = 0. Next, note that

φk(z) = −
∑M

m=1 pmσ
−2
m (z − µm)fm(z, µm, σ

2
m)

ηk(z)
, (S27)

and for any integer r and some µ ∈ R

|φk(z)|r . |φk(z)|r−1
∣∣∣∣∣ηk(z)−1(|z|+ |µ|)

M∑
m=1

pmfm(z, µm, σ
2
m)

∣∣∣∣∣ = |φk(z)|r−1(|z|+ |µ|).

Recursively using this inequality from r = 0, yields (for some constant Cr ∈ (0,∞))

|φk(z)|r ≤ Cr(|z|r + |µ|r).

That E |φ(εk)|r <∞ for any integer r then follows from (S26).

For the conditions in (b), note that by (S27),

E [φk(εk)ε
r
k] = −

M∑
m=1

pm

∫
zr
σ−2m (z − µm)fm(εk, µm, σ

2
m)

ηk(z)
ηk(z) dz

= −
M∑
m=1

pmσ
−2
m

∫
zr(z − µm)fm(εk, µm, σ

2
m) dz

= −
M∑
m=1

pmσ
−2
m

(
E
[
er+1
m

]
− E [erm]µm

)
.
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Taking r = 0, 1, 2, 3 in the right hand expression respectively gives:

E[φk(εk)] = −
M∑
m=1

pmσ
−2
m (µm − µm) = 0 ,

E[φk(εk)εk] = −
M∑
m=1

pmσ
−2
m

(
σ2m + µ2m − µ2m

)
= −1 ,

E[φk(εk)ε
2
k] = −

M∑
m=1

pmσ
−2
m

(
µ3m + 3µmσ

2
m − (σ2m + µ2m)µm

)
= 0 ,

E[φk(εk)ε
3
k] = −

M∑
m=1

pmσ
−2
m

(
µ4m + 6µ2mσ

2
m + 3σ4m − µ4m − 3µ2mσ

2
m

)
= −3 .

Example S2.2 (The normalised χ2
2 distribution): Suppose that ε̃k ∼ χ2

2 and let εk = (ε̃k − 2)/2.

Then εk has mean zero, variance one and density function ηk(z) = exp(−z − 1) on its support

[−1,∞) on which we also have that φk(z) = −1. The χ2
2 distribution has finite moments of all

orders and has moment generating function (e.g. Johnson et al., 1995, p. 420)

Mε̃(t) = (1− 2t)−1, t < 1/2.

Hence εk has finite moments of all orders. The same is evidently true of φk(εk) = −1. Using

the above display, we have

Mε(t) = e−t(1− t)−1, t < 1,

and therefore may directly calculate E[ε3k] = 2 and E[ε4k] = 9, hence E[ε3k]
2 < E[ε4k] − 1 holds.

The moment conditions in part (a) are therefore all satisfied.

However, Eφk(z) = −1 6= 0, hence part (b) does not hold. Note also that this example does

not satisfy the requirements of Lemma S2.20: we have ak = −1, bk =∞ and

lim
z↓ak

ηk(x) = lim
z↓−1

exp(−z − 1) = 1 6= 0,

and hence the required condition is violated for r = 0.

S3 Technical tools

This section records some technical tools used in the proofs for ease of reference.

Lemma S3.1 (Discretisation): Suppose that Pn is a sequence of probability measures and fn :
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Γ→ R , Γ ⊂ RL, is a sequence of functions which satisfy

fn(γn)
Pn−−→ 0 (S28)

for any γn := γ + gn/
√
n, gn → g ∈ RL. Suppose that the estimator sequence γ̄n satisfies

√
n‖γ̄n− γ‖ = OPn(1) and γ̄n takes values in Sn := {CZ/

√
n : Z ∈ RL} for some L×L matrix

C. Then

fn(γ̄n)
Pn−−→ 0.

Proof. Since γ̄n is
√
n-consistent there is an M > 0 such that Pn (

√
n‖γ̄n − γ‖ > M) < ε. If

√
n‖γ̄n−γ‖ ≤M then γ̄ is equal to one of the values in the finite set S c

n = {γ∗ ∈ Sn : ‖γ∗−γ‖ ≤

n−1/2M}. For each M this set has finite number of elements bounded independently of n, call

this upper bound B. For any υ > 0

Pn (|fn(γ̄n)| > υ) ≤ ε+
∑

γn∈S c
n

Pn ({|fn(γn)| > υ} ∩ {γ̄n = γn})

≤ ε+
∑

γn∈S c
n

Pn (|fn(γn)| > υ)

≤ ε+BPn(|fn(γ?n)| > υ),

where γ?n ∈ S c
n maximises γ 7→ Pn (|fn(γ)| > υ). As γ?n ∈ S c

n , ‖γ? − γ‖ ≤ n−1/2M . Hence

letting gn :=
√
n(γ?n−γ), ‖gn‖ ≤M . Arguing along subsequences if necessary, we may therefore

assume that gn → g ∈ RL and hence fn(γ?n)
Pn−−→ 0 by (S28). The proof is complete on combining

this with the previously established bound on Pn (|fn(γ̄n)| > υ).

Lemma S3.2: Let (X,B(X)) be a measurable space, and Qn a sequence of probability measures

on (X,B(X)) which converges to a probability measure Q in total variation. Let (Y,B(Y ), λ)

be a measure space and suppose that pn : X × Y → [0,∞) is a sequence of functions and

p : X × Y → [0,∞) a function such that (i)
∫
pn(x, y) dλ(y) = 1 =

∫
p(x, y) dλ(y) for each

n ∈ N and each x ∈ X and (ii) pn → p pointwise. Then, if Gn and Gn are defined according to

Gn(A) :=

∫
A
pn(x, y) d(λ(y)⊗Qn(x));

G(A) :=

∫
A
p(x, y) d(λ(y)⊗Q(x)),

it follows that Gn
TV−−→ G.

Proof. For any x, pn(x, ·) → p(x, ·) pointwise and since each pn(·, x), p(·, x) has integral one
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under λ, by Proposition 2.29 in van der Vaart (1998),

Qn(x) :=

∫
|pn(x, y)− p(x, y)|dλ(y)→ 0,

pointwise. Let (ψn)n∈N be a sequence of measurable functions on X ×Y with ψn ∈ [0, 1]. Then

∣∣∣∣∫ ∫ ψn(x, y)(pn(x, y)− p(x, y)) dλ(y) dQn(x)

∣∣∣∣ ≤ ∫ Qn(x) dQn(x).

Since Qn(x) ≤
∫
pn(x, y) dλ(y) +

∫
p(x, y) dλ(y) = 2, the Qn(x) are uniformly Qn – integrable

and uniformly Q – integrable. By Theorem 2.8 of Serfozo (1982),
∫

Qn(x) dQn(x)→ 0.

Lemma S3.3: Suppose that Pn and Qn are probability measures (each pair (Pn, Qn) is defined

on a common measurable space) with corresponding densities pn and qn (with respect to some

σ-finite measure νn). Let ln = log qn/pn be the log-likelihood ratio.S16 If

ln = oPn(1),

then dTV (Pn, Qn)→ 0.

Proof. By the continuous mapping theorem

qn
pn

= exp (ln)
Pn−−→ 1.

Le Cam’s first lemma (e.g. van der Vaart, 1998, Lemma 6.4) then implies that Qn / Pn. Let φn

be arbitrary measurable functions valued in [0, 1]. Since the φn are uniformly tight, Prohorov’s

theorem ensures that for any arbitrary subsequence (nj)j∈N there exists a further subsequence

(nm)m∈N such that φnm  φ ∈ [0, 1] under Pnm . Therefore,

(φnm , exp(lnm)) (φ, 1) under Pnm .

By Le Cam’s third Lemma (e.g. van der Vaart, 1998, Theorem 6.6), under Qmn the law of φnm

converges weakly to the law of φ. Since each φn ∈ [0, 1]

lim
m→∞

[Qnmφnm − Pnmφnm ] = 0.

As (nj)j∈N was arbitrary, the preceding display holds also along the original sequence.

S16ln may be defined arbitrarily when pn = 0.

38



Proposition S3.1 (Cf. Proposition 2.29 in van der Vaart, 1998): Suppose that on a mea-

sureable space (S,S), (µn)n∈N is a sequence of measures and µ a measure such that µ(A) ≤

lim infn→∞ µn(A) for each A ∈ S. If (fn)n∈N and f are (real-valued) measurable functions such

that fn → f in µ-measure and lim supn→∞
∫
|fn|p dµn ≤

∫
|f |p dµ < ∞ for some p ≥ 1, then∫

|fn − f |p dµn → 0.

Proof. (a+ b)p ≤ 2p(ap + bp) for any a, b ≥ 0 and hence, under our hypotheses,

0 ≤ 2p|fn|p + 2p|f |p − |fn − f |p → 2p+1|f |p in µ - measure.

By Lemma 2.2 of Serfozo (1982) and lim supn→∞
∫
|fn|p dµn ≤

∫
|f |p dµ <∞,

∫
2p+1|f |p dµ ≤ lim inf

n→∞

∫
2p|fn|p + 2p|f |p − |fn − f |p dµn

≤ 2p+1

∫
|f |p dµ− lim sup

n→∞

∫
|fn − f |p dµn.

Remark S3.1: The condition that µ(A) ≤ lim infn→∞ µn(A) for each A ∈ S in Propositions

S3.1 is clearly satisfied if µn → µ setwise or in total variation.

S4 Log density score estimation and optimal knot selection

In this section we provide more details for the estimation of the log density scores. Further, we

discuss a data-driven way for selecting the number of knots following the approach of Chen and

Bickel (2006). We evaluate the size and power of the test under optimal knot selection in some

additional simulations that are presented below.

S4.1 B-spline based log density score estimation

For ξ1 < · · · < ξN a knot sequence, the first order B-splines are defined according to b
(1)
i (x) :=

1[ξi,ξi+1)(x). Subsequent order B-splines can be computed according to the recurrence relation

b
(l)
i (x) =

x− ξi
ξi+l−1 − ξi

b
(l−1)
i (x) +

ξi+l − x
ξi+l − ξi+1

b
(l−1)
i+1 (x), (S29)

for l > 1 and i = 1, . . . , N − l. A l-th order B-spline is l − 2 times differentiable in x with first

derivative

c
(l)
i (x) =

l − 1

ξi+l−1 − ξi
b
(l−1)
i (x)− l − 1

ξi+l − ξi+1
b
(l−1)
i+1 (x). (S30)

See de Boor (2001) for more details on B-splines.
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Let bk,n = (bk,n,1, . . . , bk,n,Bk,n)′ be a collection of Bk,n cubic (i.e. 4-th order) B-splines

and let ck,n = (ck,n,1, . . . , ck,n,Bk,n)′ be their derivatives: ck,n,i(x) :=
dbk,n,i(x)

dx for each i ∈

{1, . . . , Bk,n}. The knots of the splines, ξk,n = (ξk,n,i)
Kk,n
i=1 are equally spaced in [ΞLk,n,Ξ

U
k,n] with

δk,n := ξk,n,i+1 − ξk,n,i > 0.S17 For each (k, n) pair the relationships between the number of

knots (Kk,n), the number of spline functions (Bk,n) and δk,n are given by Bk,n = Kk,n − 4 and

Kk,n = 1 + (ΞUk,n − ΞLk,n)/δk,n.

Since the B-splines vanish at infinity for any n ∈ N, integration by parts gives that∫
(φk(z)− ψ′k,nbk,n(z))2ηk(z) dz

=

∫
φk(z)

2ηk(z) dz +

∫
(ψ′k,nbk,n)2ηk(z) dz + 2

∫
ψ′k,nck,n(z)ηk(z) dz

= Eφk(εk)2 + ψ′k,n E[bk,n(εk)bk,n(εk)
′]ψk,n + 2ψ′k,n E ck,n(εk),

(S31)

where we integrate over the support of φk,n (which is also the support of bk,n and ck,n). This

mean-squared error is minimized by:S18

ψk,n := −E[bk,n(εk)bk,n(εk)
′]−1 E[ck,n(εk)]. (S32)

Replace the population expectations with sample counterparts to define the estimator of ψk,n

ψ̂k,n := −

[
1

n

n∑
t=1

bk,n(Ak•Vγ,t)bk,n(Ak•Vγ,t)
′

]−1
1

n

n∑
t=1

ck,n(Ak•Vγ,t) .

Our estimate for the log density score φk is given by

φ̂k,n(z) := ψ̂′k,nbk,n(z) . (S33)

As discussed in the main text, the knots of the splines, ξk,n = (ξk,n,i)
Kk,n
i=1 are taken as equally

spaced in [ΞLk,n,Ξ
U
k,n]. In practice we take these points as the 95th and 5th percentile of the

samples {Ak•Vt}ni=1 adjusted by log(log(n)), where A = A(α, σ) and Vt = Yt −BXt for a given

parameter choice γ = (α, β). In our main simulations we used Bk,n = 12 splines.

S4.2 Data driven B-spline selection

The number of B-spline basis functions Bk,n is a tuning parameter. In practice we can use

cross-validation to choose Bk,n for each k. A possible approach is as follows

S17For each k = 1, . . . ,K the sequences (ΞLk,n)n∈N, (ΞUk,n)n∈N, (Bk,n)n∈N and (δk,n)n∈N are deterministic.
S18This differs from the expression in Chen and Bickel (2006) by a factor of −1 as they estimate −φk.
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(i) Split the sample Ak•Vγ,t randomly into two halves, say n1 and n2.

(ii) For Bk,n = 1, 2, . . ., use n1 to estimate γ based on (S33), say φ̂k,n1(z), and use n2 to eval-

uate (S31) empirically, but omitting the first term Eφk(εk)2, say cn2|n1
(Bk,n). Similarly

calculate cn1|n2
(Bk,n).

(iii) Select the optimal Bk,n as the largest value such that 1
2(cn2|n1

(Bk,n)+cn1|n2
(Bk,n)) strictly

decreases until Bk,n.

This method is taken from Jin (1992) and Chen and Bickel (2006). Jin (1992) proved its validity

under an iid assumption. In the additional simulations of Section S5 we experiment with this

cross-validation algorithm.

S5 Additional simulation results

S5.1 Alternative parametrizations

We show that the parametrization of A(α, σ) does not affect the size of the score test nor

the alternative tests considered. Specifically, we repeat Tables 2 and 3 from the main text,

respectively, for an upper triangular parameterization of A. Tables S1 and S2 below show that

rejection rates are not affected by the change in parameterization.

S5.2 Data driven B-spline selection

In this section we evaluate the performance of the score test when the number of B-splines is

selected using cross-validation following the approach of Jin (1992), see the discussion in Section

S4. All specifications are the same as in the main text and we use the one-step efficient estimates

to estimate the nuisance parameters β. The results are shown in Table S3.

We find that with cross validation the test becomes closer to the nominal size. The empirical

rejection frequencies for n = 200, 500 are nearly always close to the nominal level. Only when

n = 200, K = 3 and p = 12 the test over-rejects. A possible route for improving this result is

by adjusting the selection criteria from Jin (1992); Chen and Bickel (2006) — which is based

on minimizing the mean squared error of the log density score estimate — to directly target the

size of the test.

S5.3 Size for larger SVARs

In the main text we presented simulation results for SVAR models of dimensions K = 2 and

K = 3. Here we explore higher dimensional SVAR models. In such settings two bottlenecks
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Table S1: Empirical rejection frequencies: Triangular A

K p n N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

One-Step Efficient Estimates

2 1 200 5.0 5.8 5.8 6.0 5.2 7.2 4.2 4.6 4.6 4.6
2 1 500 7.2 5.8 6.0 5.9 5.1 6.1 4.8 5.1 6.2 5.0
2 1 1000 6.9 6.2 6.1 6.2 4.8 5.3 4.8 4.8 5.2 5.3

2 4 200 4.7 4.8 5.4 5.8 5.7 5.8 4.9 5.6 4.8 3.8
2 4 500 7.0 5.6 6.8 6.1 4.6 5.2 4.0 4.7 4.6 4.6
2 4 1000 6.1 6.5 6.4 5.8 5.0 5.1 4.3 4.6 4.5 5.3

2 12 200 6.1 5.6 5.2 6.4 5.8 4.5 4.4 4.7 4.7 4.2
2 12 500 6.6 7.0 6.2 7.1 6.2 5.3 4.7 5.1 5.6 4.6
2 12 1000 7.0 6.0 5.8 6.4 5.4 5.5 4.6 5.8 6.2 4.9

3 1 200 5.6 6.8 7.0 8.0 7.2 9.9 5.1 5.5 6.1 4.6
3 1 500 7.6 6.8 7.0 7.1 5.9 6.6 4.2 5.1 6.0 4.9
3 1 1000 7.5 7.2 6.1 6.2 5.0 6.2 4.8 5.2 4.9 5.2

3 4 200 5.4 7.4 8.2 8.9 7.1 6.8 4.1 4.6 5.7 3.8
3 4 500 8.0 6.4 7.2 8.8 6.8 7.7 6.4 6.1 5.8 4.9
3 4 1000 7.9 6.6 8.0 6.7 5.8 6.2 6.0 5.8 5.3 6.3

3 12 200 3.1 3.9 3.0 4.2 2.5 3.6 3.0 2.0 2.8 2.6
3 12 500 8.5 9.4 8.8 10.2 9.6 6.2 3.8 4.1 6.0 2.3
3 12 1000 8.8 7.8 8.2 8.7 7.4 6.6 5.4 5.5 6.2 4.7

OLS Estimates

2 1 200 3.6 4.2 4.2 6.5 4.8 7.2 3.2 2.8 5.6 3.2
2 1 500 4.4 4.1 4.5 6.3 4.7 7.5 3.7 4.1 5.6 4.3
2 1 1000 4.5 5.0 4.8 6.0 4.8 6.2 4.2 4.1 5.0 5.1

2 4 200 3.6 5.4 6.1 6.4 5.2 4.6 3.6 2.9 5.0 3.1
2 4 500 4.8 4.5 5.5 6.6 4.8 4.6 3.4 3.2 4.3 3.5
2 4 1000 4.1 5.2 5.2 5.2 5.3 4.8 3.1 3.2 4.8 4.7

2 12 200 7.2 7.4 8.4 9.4 6.4 4.8 4.5 3.0 6.6 4.4
2 12 500 5.6 7.3 6.1 8.3 6.9 3.7 4.3 3.3 4.9 3.8
2 12 1000 5.2 5.1 5.2 6.4 8.2 4.2 3.4 2.6 5.5 3.4

3 1 200 3.6 5.2 6.0 9.5 6.0 7.4 2.8 2.4 6.0 2.5
3 1 500 3.8 5.0 5.3 9.4 5.2 6.8 3.2 3.0 5.5 3.2
3 1 1000 3.6 4.9 4.5 7.6 5.9 7.1 3.6 3.6 4.4 3.9

3 4 200 7.1 8.8 8.4 12.2 7.0 5.0 2.8 0.8 4.9 2.2
3 4 500 5.0 5.4 6.7 10.9 7.0 4.9 2.2 1.4 5.6 1.2
3 4 1000 4.7 4.8 6.0 7.8 7.6 4.7 3.6 2.8 4.2 2.8

3 12 200 15.6 14.6 17.1 21.6 11.1 10.7 8.2 6.3 14.4 6.7
3 12 500 9.7 10.4 11.5 16.0 11.0 3.5 2.8 1.5 7.5 2.8
3 12 1000 6.4 6.8 8.2 10.5 10.4 3.3 3.2 1.6 5.4 3.3

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
H0 : α = α0 vs. H1 : α 6= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameter
estimates β̂ are either one-step efficient or OLS estimates. The columns correspond to the dimension K, the
number of lags p, the sample size n and the different choices for the distributions of the structural shocks, εk,t
for k = 1, . . . ,K. The distributions are reported in Table 1. Rejection rates are computed based on M = 2, 500
Monte Carlo replications.
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Table S2: Empirical rejection frequencies for alternative tests: Triangular A

Test N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

ε1,t ∼ ε2,t
Ŝols 4.8 4.9 5.4 7.1 4.2 7.1 3.7 3.9 6.3 4.7

Ŝonestep 8.0 6.7 6.9 6.9 4.7 6.3 4.9 5.5 7.1 5.3
SDW 4.2 3.8 4.0 6.6 4.7 3.7 3.2 3.8 4.1 4.0
BKRDW 4.4 4.1 4.4 4.2 5.8 28.4 5.1 5.7 6.5 5.2

LMPML,t 5.1 4.9 4.9 6.5 9.1 8.3 66.7 81.4 5.9 85.0
LMGMM,LL 1.7 1.6 3.6 11.1 6.9 7.2 6.4 6.1 1.9 5.1
LMGMM,Kew 1.4 2.1 3.8 17.2 9.9 8.0 6.1 5.9 1.2 5.2

LRPML,t 25.9 11.3 6.5 4.8 4.9 1.6 100.0 100.0 11.5 100.0
LRGMM,LL 3.5 7.4 8.9 15.9 12.4 9.8 5.9 5.8 7.5 4.6
LRGMM,Kew 6.3 7.7 12.3 22.2 16.3 12.9 6.4 6.2 6.8 4.9

WPML,t 4.5 7.4 9.2 10.4 11.2 8.0 66.2 69.9 8.3 69.6
WGMM,LL 12.0 17.9 18.8 22.5 17.5 14.6 6.6 6.8 15.3 5.6
WGMM,Kew 19.3 21.8 25.1 23.0 16.5 15.8 7.1 7.0 19.1 5.8

Note: The table reports empirical rejection frequencies for tests of the hypothesis H0 : α = α0 vs. H1 : α 6= α0

with 5% nominal size for the SVAR(1) model with K = 2 and T = 500, and α0 = 0.5594. Ŝols denotes the semi-
parametric score test using OLS estimates for β, Ŝonestep uses one-step efficient estimates. LMPML,t, WPML,t and
LRPML,t denote the pseudo-maximum likelihood tests based on Gouriéroux et al. (2017), assuming t-distributed
shocks. LMGMM,LL, WGMM,LL and LRGMM,LL denote the GMM-based tests based on Lanne and Luoto (2021)
with one co-kurtosis condition based on ε31tε2t. LMGMM,Kew, WGMM,Kew and LRGMM,Kew denote the correspond-
ing GMM-based tests of Keweloh (2021) using both co-kurtosis conditions. Finally, SDW and BKRDW denote
the bootstrapped GMM-based and non-parametric test of Drautzburg and Wright (2023), respectively. The
columns correspond to different choices for the distributions of the structural shocks, εk,t for k = 1, . . . ,K. The
distributions are reported in Table 1. The tests of Drautzburg and Wright (2023) use 500 bootstrap replications
to simulate the null distribution of the test statistics. Rejection rates are computed based on M = 1, 000 Monte
Carlo replications.
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Table S3: Empirical rejection frequencies: optimal knot selection

K p n N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

2 1 200 5.2 4.6 5.8 6.1 4.4 5.5 5.9 6.6 5.0 7.3
2 1 500 4.7 4.1 5.0 5.7 4.7 5.6 5.5 6.4 4.9 7.5
2 1 1000 4.6 4.9 4.4 3.7 4.6 5.7 5.3 6.7 4.6 8.3

2 4 200 5.0 5.9 5.7 5.6 3.7 5.1 4.6 4.6 4.6 5.3
2 4 500 4.8 4.8 4.8 5.6 4.4 5.7 5.8 5.8 4.2 6.0
2 4 1000 4.2 5.0 5.0 4.5 4.8 5.2 5.1 6.1 4.8 6.4

2 12 200 7.0 6.5 7.4 7.8 5.2 4.8 4.6 4.0 6.8 3.5
2 12 500 5.7 6.6 6.4 6.2 4.6 4.9 4.1 4.8 5.3 4.5
2 12 1000 5.4 5.2 5.5 5.0 5.6 4.9 4.3 4.7 5.7 5.4

3 1 200 5.3 6.5 7.1 9.8 7.6 6.9 4.8 5.2 4.9 5.6
3 1 500 5.0 5.3 5.9 7.3 5.0 6.1 5.8 7.6 5.2 6.8
3 1 1000 5.0 5.8 5.3 5.9 4.7 5.8 6.3 9.1 4.9 9.0

3 4 200 6.1 8.4 9.2 11.0 6.2 6.0 2.9 2.3 5.8 3.1
3 4 500 5.7 5.7 6.8 8.6 5.6 5.0 4.6 4.7 4.6 3.9
3 4 1000 5.4 5.2 5.7 5.7 5.2 5.2 5.0 6.1 4.4 6.1

3 12 200 13.0 14.0 14.8 15.6 12.7 8.3 7.0 5.5 12.8 5.8
3 12 500 9.4 10.3 10.2 12.4 8.3 4.5 3.3 2.5 6.8 3.2
3 12 1000 6.8 7.3 7.7 8.2 7.3 5.1 4.2 4.3 5.6 4.4

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
H0 : α = α0 vs. H1 : α 6= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameter
estimates β̂ are OLS estimates. For each density score the number of B-splines is determined by cross-validation.
The columns correspond to the dimension K, the number of lags p, the sample size n and the different choices
for the distributions of the structural shocks, εk,t for k = 1, . . . ,K. The distributions are reported in Table 1.
Rejection rates are computed based on M = 2, 500 Monte Carlo replications.

44



can arise. First, the computational costs for constructing the confidence sets in Algorithm

1 increase substantially as one must evaluate the test at each point of the grid. Even in the

most parsimonious specification for K = 5 such a grid is 10 dimensional. We note that this

bottleneck is not specific to our approach but arises for most weak identification robust tests

when constructing confidence sets.

Second the number of finite dimensional nuisance parameters β increases rapidly when the

dimension of the SVAR model increases. For instance for K = 5 and p = 12 the number

of nuisance parameters Lβ is around 300. This has several consequences. First, when n is

smaller than the number of nuisance parameters the test does not exist anymore as the inverse

of În,γ,ββ is not defined. Second, even when the number of nuisance parameters is proportional

(but smaller) than the sample size the asymptotic theory of our paper may not provide a good

approximation to the finite sample performance. The reason is that our theory is developed for

Lβ fixed (hence Lβ/n→ 0). Extending the theory to the case where Lβ may increase with n is

an interesting topic for future work.

That said, it is of interest to explore the finite sample performance of the test in these

settings. Table S4 reports the empirical rejection frequencies for the score test for larger SVARs

with K = 5. All other settings for the simulation design are similar as above. We exclude

n = 200 as the test is not defined for all specifications for this sample size. We find that the

test generally behaves poorly and we recommend keeping the dimensions and lag length modest

when evaluating the test based on asymptotic critical values; similar to other SVAR studies,

a bootstrap implementation of our test is likely to be preferable for higher dimensional SVAR

models.

S5.4 Coverage and length of confidence sets

In this section, we consider evaluating our methodology for constructing confidence sets for

smooth functions of the SVAR parameters as discussed in Section 5. We focus on evaluating

the coverage and length of the confidence sets for structural impulse response functions, see

Example 5.1 for the details.

We consider a similar simulation set up as above and discuss the results for the SVAR(1)

model with K = 2, T = 500, and two independent shocks drawn from the same distribution,

as listed in Table 1. In each case, the confidence set is calculated using Algorithm 2 for the

structural impulse response of the first variable to the second shock and we report the coverage

rate and length for horizons 0-12. Further, we compare our approach to the identification robust

methods of Drautzburg and Wright (2023), for which we change step (i) in Algorithm 2 and
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Table S4: Empirical rejection frequencies for larger SVARs

K p n N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

One-Step Efficient Estimates

5 1 500 14.1 14.6 14.0 13.6 7.8 8.7 6.2 5.5 7.0 4.4
5 1 1000 10.9 10.9 11.2 10.7 6.0 7.4 6.3 5.3 5.5 4.5

5 4 500 14.9 18.2 17.2 17.9 9.8 8.4 5.0 4.0 7.0 2.3
5 4 1000 14.3 14.9 14.9 12.8 6.8 8.9 6.4 5.6 7.6 5.1

5 12 500 0.4 0.3 0.4 0.5 0.6 0.4 0.0 0.0 0.4 0.0
5 12 1000 17.6 18.8 18.6 15.1 9.1 7.1 2.8 1.9 5.6 1.1

OLS Estimates

5 1 500 9.4 11.2 11.7 16.1 6.6 4.5 1.9 1.0 4.0 1.2
5 1 1000 6.8 8.3 9.1 12.4 6.1 4.8 3.2 2.0 4.2 1.7

5 4 500 16.4 20.7 21.1 25.2 7.4 1.6 0.5 0.0 4.2 0.0
5 4 1000 11.8 13.5 14.7 13.6 7.2 2.4 1.1 0.3 3.2 0.6

5 12 500 56.4 60.5 59.9 55.0 16.4 8.6 2.2 0.2 26.7 0.6
5 12 1000 28.5 27.8 30.7 27.6 10.8 2.3 0.9 0.1 5.5 0.4

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
H0 : α = α0 vs. H1 : α 6= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameters
β are estimated using either one-step efficient estimates or OLS. For each density score the number of B-splines
is fixed at B = 6. The columns correspond to different choices for the distributions of the structural shocks, εk,t
for k = 1, . . . ,K. The distributions are reported in Table 1. Rejection rates are computed based on M = 2, 500
Monte Carlo replications.

replace the efficient score test by the tests of Drautzburg and Wright (2023).

Figure S1 shows the empirical coverage rates. Not surprising we generally find that the two-

step Bonferroni approach is conservative; all empirical coverage rates are above the nominal

90% level. This holds for all horizons, densities and methods considered.

That said, we find that if the efficient score test, based on one-step efficient estimates, is

used as the first step in the Bonferroni method the coverage becomes much closer to the nominal

size. This holds for nearly all densities, the exception being the t densities that are very close

to Gaussian, where there is generally very low power.

Figure S2 shows the length of the confidence intervals. We find that efficient score approach

gives the smallest length among all procedures considered and for all densities. The differences

between the methods varies; for some densities all methods give comparable intervals, but for

others the efficient score approach can give intervals that are up to 30% shorter in length. This

holds especially at longer horizons.

We conclude that the two-step Bonferroni method, where the first step is based on the effi-

cient score test, gives substantial efficiency improvements when compared to existing methods.
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Figure S1: Coverage rates of Ĉn,g,α,0.9
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Note: The figure reports empirical coverage rates of confidence intervals at individual horizons for the impulse
response of the first variable to the second shock with 90% nominal coverage for the SVAR(1) model with K = 2
and T = 500. Ŝols denotes the semi-parametric score test using OLS estimates for β, Ŝonestep uses one-step
efficient estimates. GMMDW denotes the GMM-based test of Drautzburg and Wright (2023) and BKRDW

denotes the non-parametric test of Drautzburg and Wright (2023). The tests of Drautzburg and Wright (2023)
use 500 bootstrap replications to obtain critical values. Coverage is computed using M = 1, 000 Monte Carlo
replications.
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Figure S2: Average length of Ĉn,g,α,0.9
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Note: The figure reports average length of confidence intervals at individual horizons for the impulse response
of the first variable to the second shock with 90% nominal coverage for the SVAR(1) model with K = 2 and
T = 500. Ŝols denotes the semi-parametric score test using OLS estimates for β, Ŝonestep uses one-step efficient
estimates. GMMDW denotes the GMM-based test of Drautzburg and Wright (2023) and BKRDW denotes
the non-parametric test of Drautzburg and Wright (2023). The tests of Drautzburg and Wright (2023) use 500
bootstrap replications to obtain critical values. Average length is computed using M = 1, 000 Monte Carlo
replications.
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S5.5 Point estimation results

Table S5 shows the Root Mean Squared Errors (RMSEs) for parameter estimates α̂ in the

K-variable SVAR(1) model with K = 2, T = 500. We compare the performance of different

estimators and their one-step efficient counterparts as discussed in Section 6. Specifically, we

consider the psuedo maximum likelihood estimator of Gouriéroux et al. (2017) and the moment

estimators of Lanne and Luoto (2019) and Keweloh (2021) as initial estimators. For each of

these we compute the corresponding one-step efficient estimate from (29).

The results show that if the true density is Gaussian or close to Gaussian there is no

advantage in doing a one-step efficient update. Intuitively, in these settings the efficient scores

are noisy and add little additional information to the initial estimate, implying that the mean

squared errors do not improve. In contrast, when the underlying density is away from the

Gaussian (as imposed asymptotically by Assumption 6.1) the one-step efficient estimates always

have lower RMSEs. The gains can be large, and appear to outweigh the small relative losses

that are sometimes incurred for densities close to Gaussian.

Table S5: Efficiency of one-step updated estimates α̂

PMLt GMMLL GMMKew

η α̂n α̂onestepn α̂n α̂onestepn α̂n α̂onestepn

N(0,1) 0.207 0.235 0.188 0.194 0.194 0.194
t(15) 0.137 0.146 0.156 0.147 0.154 0.148
t(10) 0.103 0.108 0.129 0.113 0.120 0.114
t(5) 0.051 0.056 0.082 0.061 0.070 0.061
SKU 0.042 0.032 0.071 0.037 0.058 0.035
KU 0.041 0.026 0.082 0.041 0.068 0.038
BM 0.250 0.070 0.030 0.016 0.016 0.015
SPB 0.250 0.090 0.027 0.012 0.013 0.012
SKB 0.138 0.067 0.163 0.074 0.160 0.074
TRI 0.250 0.113 0.025 0.012 0.012 0.012

Note: The table reports Root Mean Squared Errors (RMSEs) for parameter estimates α̂ in the K-variable
SVAR(1) model with K = 2, T = 500. The rows correspond to different choices for the distributions of the
structural shocks, εk,t for k = 1, . . . ,K. The distributions are reported in Table 1. RMSEs are computed based
on M = 2, 500 Monte Carlo replications.
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S6 Additional empirical results

S6.1 Alternative parametrization of Baumeister and Hamilton (2015) model

This section presents results from an alternative parametrization of the Baumeister and Hamil-

ton (2015) model where A−1 is expressed as follows:

A−1(ξ, σ) =

A−111 A−112

A−121 A−122

 =

σ1 0

σ2 σ3

cos(ξ) − sin(ξ)

sin(ξ) cos(ξ)

 , ξ ∈ [0, 2π) (S34)

The sign restrictions of the original model, which are formulated on demand and supply

elasticities as well as scaling parameters (see Example S1.1), imply that A−111 ≥ 0, A−112 ≤

0, A−121 ≥ 0 and A−122 ≥ 0. The parametrization in (S34) translates the sign restrictions into

constraints imposed on (ξ, σ). For the alternative parameterization, we assume that σ1, σ2, σ3 >

0, which corresponds to imposing the identification restriction ξ ∈ (0, π/2).S19 Hence, for

Algorithm 1, we set up a grid of 500 grid-points in ξ ∈ (0, π/2). Note that there is a direct

mapping between the two parametrizations that given (ξ, σ) lets us recover the elasticities

(αd, αs) from the main parametrization discussed in the paper. Specifically, we can define

g(ξ, σ) as the following (smooth) vector-valued function which recovers the structural elasticities

(αd, αs) from the rotation angle α.

g(ξ, σ) =
(
αd, αs

)′
:=
(
σ2·sin(ξ)−σ3·cos(ξ)

σ1·sin(ξ) , σ2·cos(ξ)+σ3·sin(ξ)
σ1·cos(ξ)

)′
(S35)

Since g(ξ, σ) is a smooth function, we can use Algorithm 2 to recover confidence sets for

the structural elasticities (αd, αs). To this purpose, we define a grid with 250,000 equally-spaced

grid points for (αd, αs) ∈ [−3, 0)× (0, 3], similar to the grid used in the main parametrisation.

Similarly, we can use Algorithm 2 to directly recover confidence bands for the impulse response

functions.

Figures S3 and S4 report the confidence sets for labor demand and labor supply elasticities,

as well as confidence bands for the impulse response functions, respectively, obtained using the

alternative parametrization. Overall, the results are very close to the ones reported for the main

parametrization. Due to the Bonferroni procedure of Algorithm 2, the confidence set for the

elasticites is slightly wider than the one reported in the main text of the paper based on the

alternative parametrization. For the IRF bands, there are also slight differences in the widths

of the impulse response bands.

S19σ1, σ3 > 0 is trivial, since these capture standard deviations of the reduced form SVAR residuals. σ2 > 0 can
be verified from a Cholesky decomposition of the estimated reduced-form errors of the SVAR.
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Figure S3: Confidence Sets for Labor Demand and Supply Elasticities
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Note: 95% (light blue) and 67% (dark blue) confidence regions for labor demand and supply elasticities obtained
using Algorithm 2 with 250,000 equally-spaced grid points for (αd, αs) ∈ [−3, 0)× (0, 3].

Figure S4: IRF confidence bands for labor demand and supply shocks
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Note: 95% (light blue) and 67% (dark blue) confidence bands for impulse responses to labor supply and labor
demand shocks, obtained using using Algorithm 2 with 500 equally-spaced grid points for ξ ∈ [0, π/2].

51



S6.2 Distributions of recovered structural shocks

In this section, we present kernel density estimates for the structural errors recovered from the

empirical studies in the paper. To obtain estimates of the structural shocks, we require an

estimate of α, which we obtained using a GMM estimator employing the moment conditions

of Keweloh (2021). Using the estimate, we can recover the structural shocks ε̂k,t(α̂, β̂) for

k = 1, . . . ,K. We plot histograms of the structural errors in Figure S6.2 for the model of

Baumeister and Hamilton (2015) and on Figure S6.2 for the model of Kilian and Murphy

(2012), together with their kernel density estimates and an overlaid standard gaussian density.

Figure S5: Distributions of Shocks – Baumeister and Hamilton (2015) model
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Note: Histogram (light gray) and kernel density estimates (black solid) of the recovered structural shocks ε̂k,t for
k = 1, 2 from the Baumeister and Hamilton (2015) model, overlaid with a standard normal density (red dashed).

Figure S6: Distributions of Shocks – Kilian and Murphy (2012) model
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Note: Histogram (light gray) and kernel density estimates (black solid) of the recovered structural shocks ε̂k,t for
k = 1, 2, 3 from the Kilian and Murphy (2012) model, overlaid with a standard normal density (red dashed).
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