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Abstract

We study hedonic coalition formation problems with friend-oriented preferences; that is,
each agent has preferences over his coalitions based on a partition of the set of agents,
except himself, into “friends” and “enemies” such that (E) adding an enemy makes him
strictly worse off and (F) adding a friend together with a set of enemies makes him strictly
better off. Friend-oriented preferences induce a so-called friendship graph where vertices
are agents and directed edges point to friends.

We show that the partition associated with the strongly connected components (SCC)
of the friendship graph is in the strict core. We then prove that the SCC mechanism, which
assigns the SCC partition to each hedonic coalition formation problem with friend-oriented
preferences, satisfies a strong group incentive compatibility property: group strategy-
proofness. Our main result is that on any “rich” subdomain of friend-oriented prefer-
ences, the SCC mechanism is the only mechanism that satisfies core stability and strategy-
proofness.
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1 Introduction

Hedonic coalition formation problems are used to model economic and political environments
such as the provision of public goods in local communities or the formation of teams and or-
ganizations. Banerjee et al. (2001) and Bogomolnaia and Jackson (2002) introduce the formal
model of hedonic coalition formation. A hedonic coalition formation problem consists of a finite
set of agents, each of whom has preferences over the potential coalitions he can be a member of.1

The “hedonic” aspect of preferences refers to the dependence of an agent’s utility on the identity
of members of his coalition (Drèze and Greenberg, 1980). An outcome of a hedonic coalition
formation problem is a partition of the set of agents. The main concerns in the literature of
hedonic coalition formation are the existence of stable partitions (for various stability concepts)
and the existence and characterizations of mechanisms that assign stable partitions.2

In this paper, we consider hedonic coalition formation problems with friend-oriented pref-
erences. To illustrate this class of hedonic coalition formation problems, consider a group of
researchers that should divide themselves into research teams; e.g., at the workshops organized
by the Leibniz Center for Informatics, working groups to initiate new research are formed (see,
for instance, https://www.dagstuhl.de/20301). Each researcher, based on a partition of col-
leagues into those he would like to work with and those he would not want to work with, has
preferences over the research teams he can be a member of. More generally, we suppose that
at each problem and for each agent, the set of agents other than himself is partitioned into a
set of “friends” and a set of “enemies.” We say that an agent’s preferences are friend-oriented
if for each of his potential coalitions, (E) adding an enemy makes him strictly worse off and
(F) adding a friend together with a set of enemies makes him strictly better off. Each profile
of friend-oriented preferences induces a so-called friendship graph in which the vertices are the
agents and the directed edges point to the agents’ friends. The strongly connected components
of the friendship graph induce a partition of the agents, the SCC partition, which plays a key
role in our paper.

The terminology of “friends” and “enemies” has been used in various economic models before;
e.g., Hiller (2017) considers network formation problems and Amorós (2019) considers problems
where a group of jurors must choose a winner from a group of contestants. For hedonic coali-
tion formation, Dimitrov and Sung (2004) introduce two preference domains; one based on the
“appreciation” of friends and the other based on the “aversion” to enemies. Their appreciation
of friends preference domain is a strict subset of our friend-oriented preference domain and their
aversion to enemies preference domain is a strict subset of the enemy-oriented preference do-

1Marriage problems and roommate problems (Gale and Shapley, 1962; Roth and Sotomayor, 1990) are special
cases of hedonic coalition formation problems with coalitions of size at most two.

2We refer to Hajduková (2006) and Sung and Dimitrov (2007) for reviews of the literature on stability in
hedonic coalition formation. Hajduková (2006) analyzes for which preference domains the existence of a stable
partition is guaranteed (for various stability concepts). Sung and Dimitrov (2007) present a taxonomy of stability
concepts and discuss the existence of stable partitions for various stability concepts.
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main that we consider when discussing the robustness of our results (Appendix B). Dimitrov
and Sung (2004) prove that there exists an individually stable partition in both their domains;
a Nash stable partition exists when mutuality (of being friends or being enemies) is imposed.
Moreover, they show that the corresponding algorithms to find individually stable and Nash
stable partitions induce strategy-proof mechanisms. Dimitrov et al. (2006) show that if agents’
preferences are based on the appreciation of friends, then a strictly core stable partition exists
and can be found in polynomial time. They also show that if agents’ preferences are based on
the aversion to enemies, then there exists a core stable partition and the problem of finding a
core stable partition is NP-hard.

We first consider core stable and strictly core stable partitions. A partition is core stable (and
in the core) if there does not exist a coalition such that each member of the coalition strictly
prefers it to his current coalition. A partition is strictly core stable (and in the strict core) if
there does not exist a coalition such that each member of the coalition weakly prefers it to his
current coalition and some member strictly prefers it to his current coalition.

We first prove a necessary condition for the core stability of partitions of hedonic coalition
formation problems with friend-oriented preferences: any coalition in a core partition induces a
strongly connected subgraph in the friendship graph (Proposition 1). This necessary condition for
core stability implies that any core stable partition equals the SCC partition or is a refinement of
the SCC partition (Corollary 1). We furthermore show that for each hedonic coalition formation
problem with friend-oriented preferences, the SCC partition is in the strict core (Theorem 1).3

We then focus on mechanisms that assign a partition to each hedonic coalition formation
problem with friend-oriented preferences. A mechanism is (strictly) core stable if it only assigns
(strictly) core stable partitions. A mechanism is group strategy-proof if no coalition of agents can
misreport their preferences so that all its members are weakly better off and at least one member
is strictly better off. A mechanism is strategy-proof if no agent can misreport his preferences
and be better off.

We first show that the SCC mechanism, which assigns the SCC partition to each hedonic
coalition formation problem with friend-oriented preferences, is group strategy-proof (Proposi-
tion 3). Hence, the SCC mechanisms satisfies a strong stability notion (strict core stability) as
well as a strong incentive compatibility property (group strategy-proofness). The main result of
our paper is that no other mechanism satisfies these properties, or even the weaker properties
of core stability and strategy-proofness: on any “rich” subdomain of friend-oriented problems,

3We refer readers to Banerjee et al. (2001), Cechlárová and Romero-Medina (2001), Bogomolnaia and Jackson
(2002), Burani and Zwicker (2003), Alcalde and Revilla (2004), Alcalde and Romero-Medina (2006), Dimitrov
and Sung (2007), and Iehlé (2007) for studies investigating the existence of (strictly) core stable partitions in
domains of preferences that are independent of the domain of friend-oriented preferences. Other stability concepts
than (strict) core stability have been considered: Karakaya and Özbilen (2023) surveys stability concepts related
to deviations of single agents, i.e., Nash stability, while Karakaya (2011) deals with more complex deviations,
e.g., strong Nash stability.
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the SCC mechanism is the only mechanism that satisfies core stability and strategy-proofness
(Theorem 3).4 Corollary 4 lists variations of this characterization result by strengthening core
stability to strict core stability or strategy-proofness to group strategy-proofness.

Finally, we study an extension of friend-oriented problems where each agent partitions the
set of other agents into a set of friends, enemies, and neutrals such that preferences still sat-
isfy preference conditions (E) and (F) and, in addition, (N) adding or removing neutrals does
not change the agent’s welfare. For each friend-oriented problem with neutrals, we show that
the SCC mechanism always yields a core stable partition (Theorem 2), but, in contrast with
Theorem 1, the non-emptiness of the strict core is not guaranteed (Example 4). Next, we show
that Proposition 3 and Corollary 4 (for core stability and group strategy-proofness) cannot be
generalized to this setting: on any “very rich” subdomain of friend-oriented problems with neu-
trals, there is no mechanism that is core stable and group strategy-proof (Theorem 4). On
the positive side, on each subdomain of friend-oriented problems with neutrals, the SCC mech-
anism satisfies weak group strategy-proofness (Proposition 5), and hence, strategy-proofness.
However, the SCC mechanism is not the unique mechanism for friend-oriented problems with
neutrals that is core stable and weakly group strategy-proof (Example 7). Thus, Theorem 3
cannot be generalized to this setting.

The rest of the paper is organized as follows. In Section 2, we present the hedonic coalition
formation model, friend-oriented preferences, and the graph-theoretic definitions that are neces-
sary for our analysis. In Section 3, we present our results on the (strict) core and its structure.
In Section 4, we present our main result: on each “rich” subdomain of friend-oriented preferences,
the SCC mechanism is the unique (strictly) core stable and (group) strategy-proof mechanism.
At the end of Sections 3 and 4, we discuss how our results change for model variations, e.g.,
when allowing agents to partition the set of other agents into friends, enemies, and neutrals.

2 Model

Hedonic coalition formation problems, partitions, and the (strict) core

Let N = {1, 2, . . . , n} be a finite set of agents with n ≥ 3. A coalition is a non-empty subset of
agents S ⊆ N (S ̸= ∅). Each agent i ∈ N has complete and transitive preferences ⪰i over the set
of coalitions he belongs to, denoted by Ci ≡ {S ⊆ N : i ∈ S}. Thus, for all coalitions S, T ∈ Ci,
if S ⪰i T then i weakly prefers S to T . Let Ri denote the set of (possible) preferences over
Ci. Let ≻i and ∼i denote the strict preference and indifference relation associated with ⪰i. Let
R ≡

∏
i∈N Ri denote the set of all preference profiles. A (hedonic coalition formation) problem

4Strategy-proof mechanisms for hedonic coalition formation have been studied for various other preference
domains, e.g., Alcalde and Revilla (2004), Pápai (2004), Rodríguez-Álvarez (2004), Barberà and Gerber (2007),
Rodríguez-Álvarez (2009), Takamiya (2010), Takamiya (2013), and Leo et al. (2021).
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is a pair (N,⪰) with ⪰∈ R. Since the set of agents N is fixed throughout, we often denote a
problem simply by its preference profile ⪰.

An outcome for a problem ⪰∈ R is a partition of N . For each partition π of N and each
i ∈ N , let πi denote the unique coalition in π that contains agent i. To simplify notation, in
examples, we denote a coalition using parentheses (instead of brackets) and removing commas,
e.g., coalition {i, j, k} is denoted by (ijk). In preference tables we use a further simplification to
ijk.

We assume that agents only care about the coalition they are a member of. Then, each agent
i’s preferences over coalitions in Ci induces the following preferences over partitions: for each
i ∈ N and each pair of partitions π, π′,

π ⪰i π
′ if and only if πi ⪰i π

′
i.

First, we introduce two well-known properties for partitions, a voluntary participation prop-
erty and an efficiency property. A partition π is individually rational if for each i ∈ N , πi ⪰i {i}.
A partition π is Pareto-optimal if there is no partition π′ such that for each i ∈ N , π′ ⪰i π and
for some j ∈ N , π′ ≻j π. Let IR(⪰) and PO(⪰) denote the set of individually rational partitions
and the set of Pareto-optimal partitions of problem ⪰, respectively.

Second, we introduce two solutions that represent the idea of “stability” based on the absence
of coalitions that can improve their situation by breaking up a partition to form a new coalition.

Definition 1 ((Strict) core stability). A partition is weakly blocked by coalition S if for each
i ∈ S, S ⪰i πi and for some j ∈ S, S ≻j πj. A partition π is strictly core stable if it is not
weakly blocked by any coalition. Let SC(⪰) denote the set of strictly core stable partitions of
problem ⪰, or the strict core for short. A partition π is blocked by a coalition S ⊆ N if for each
i ∈ S, S ≻i πi. A partition π is core stable if it is not blocked by any coalition. Let C(⪰) denote
the set of core stable partitions of problem ⪰, or the core for short. ⋄

Note that each strictly core stable partition is individually rational, Pareto-optimal, and core
stable. For each ⪰∈ R, it holds that

SC(⪰) ⊆ PO(⪰) and SC(⪰) ⊆ C(⪰) ⊆ IR(⪰).

These set inclusions can be strict, even on the restricted domain of friend-oriented preferences,
which we will discuss next.5

It is well-known that for the unrestricted domain of problems, the core may be empty (Baner-
jee et al., 2001). Here, we propose a new type of preference restriction that will guarantee a
non-empty strict core and that is based on the ability of each agent to partition the set of agents

5Example 2 shows that SC(⪰) ⊊ C(⪰) is possible and Example 6 shows that SC(⪰) ⊊ PO(⪰) and C(⪰) ⊊
IR(⪰) are possible.
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(except himself) into “friends” and “enemies.” Loosely speaking, friend-oriented preferences also
express the “lexicographic principle” that being together with friends is more important than
having enemies around as well.

Friend-oriented preferences

Let i ∈ N and ⪰i ∈ Ri. Then, agent i’s preferences are friend-oriented if the set N\{i} can be
partitioned into a set of friends F (⪰i) and a set of enemies E(⪰i) such that for each coalition
S ∈ Ci, (E) adding an enemy makes agent i strictly worse off and (F) adding a friend, possibly
together with a set of enemies, makes agent i strictly better off. Note that Condition (F) embeds
the lexicographic principle that to improve a coalition, adding friends is strictly more important
than removing enemies. Formally, let i ∈ N . Preferences ⪰i ∈ Ri are friend-oriented if

(E) for each S ∈ Ci and each e ∈ E(⪰i) \ S,

S ≻i S ∪ {e};

and

(F) for each S ∈ Ci, each f ∈ F (⪰i) \ S, and each E ⊆ E(⪰i) \ S,

S ∪ {f} ∪ E ≻i S;

or equivalently, for each S ∈ Ci, each f ∈ F (⪰i) \ S, and each E ⊆ E(⪰i) ∩ S,

S ∪ {f} ≻i S \ E.

Clearly, at any friend-oriented problem, adding an enemy to a coalition is bad and adding a
friend to a coalition is good. However, Condition (F) also expresses a lexicographic preference
for friends over enemies: adding a friend is always beneficial, even if at the same time enemies are
joining the coalition. At the end of Section 3, by means of an example (Example 8), we discuss
why we cannot weaken Condition (F) to just require that adding friends is good (without the
lexicographic aspect of friends being more important than enemies). In Appendix B, we discuss
how our results change when preferences are “enemy-oriented” instead of friend-oriented (by
switching the lexicographic roles of friends and enemies).

Note that if agent i’s preferences ⪰i ∈ Ri are friend-oriented, then

• F (⪰i) = {j ∈ N : {i, j} ≻i {i}};

• E(⪰i) = {j ∈ N : {i} ≻i {i, j}}; and

• for all j ∈ N \ {i}, {i, j} ̸∼i {i}.
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For each i ∈ N , when no confusion is possible, we write Fi and Ei instead of F (⪰i) and E(⪰i).
Let Rf

i denote the set of preferences over Ci that are friend-oriented.

Let ⪰i ∈ Rf
i . Then, Fi ∪ {i} is the unique most preferred coalition for agent i and Ei ∪ {i}

is the unique least preferred coalition for agent i. Note that being friends does not need to be
reciprocal, i.e., it is possible that for ⪰i ∈ Rf

i and ⪰j ∈ Rf
j , j ∈ Fi and i ∈ Ej.

We are using the terms “friends” and “enemies” to define our new preference restriction for
two reasons. First, the polarizing terminology of friends and enemies clearly represents the
desirability of one type of agent (friend) versus the preference for the absence of the other type
of agent (enemy). However, while “friend” and “enemy” clearly represent the good versus the
bad type of agent, we should keep in mind interpretations that are less emotional, such as
“productive” and “unproductive” agents or “good” and “bad” agents according to other criteria.

Second, a smaller domain of friend-oriented preferences using the terminology of “friends”
and “enemies” has been introduced by Dimitrov et al. (2006). Their preference domain is based
on the number of friends versus the number of enemies in a coalition: agent i’s preferences ⪰i

satisfy appreciation of friends if agent i, when comparing two coalitions, prefers the one with
more friends. If two coalitions have the same number of friends, then agent i prefers the one with
fewer enemies. If the number of friends and the number of enemies in each of the two coalitions
are the same, then agent i is indifferent between the two coalitions. Let Raf

i denote the set of
preferences over Ci that satisfy appreciation of friends. Formally, ⪰i ∈ Raf

i if for all S, T ∈ Ci,

• if |S ∩ Fi| > |T ∩ Fi|, then S ≻i T ;

• if |S ∩ Fi| = |T ∩ Fi| and |S ∩ Ei| < |T ∩ Ei|, then S ≻i T ; and

• if |S ∩ Fi| = |T ∩ Fi| and |S ∩ Ei| = |T ∩ Ei|, then S ∼i T .

It is easy to see that if an agent’s preferences ⪰i satisfy appreciation of friends, then they are
friend-oriented, i.e., Raf

i ⊊ Rf
i .6

The above subdomain of friend-oriented preferences allows for indifferences between coali-
tions. Our next subdomain of friend-oriented preferences extends a strict ranking over all agents
lexicographically to a strict ranking over coalitions: agent i’s preferences ⪰i are lexicographically
friend-oriented based on agent i’s strict ranking of all agents (including himself) if the follow-
ing holds. Comparing two coalitions, agent i first considers the highest ranked agent in each
coalition and strictly prefers the coalition where the highest ranked agent is ranked higher (e.g.,
because the coalition contains a higher ranked best friend). If the highest ranked agent in both
coalitions is the same, agent i next considers the second highest ranked agent in each coalition
and strictly prefers the coalition where the second highest ranked agent is ranked higher, etc.

6Hedonic coalition formation models related to the appreciation of friends preference domain have been the
topic of various theoretical computer science papers, e.g., Nguyen et al. (2016), Ota et al. (2017), Rothe et al.
(2018), Kerkmann et al. (2020), Flammini et al. (2022), and Chen et al. (2023).
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Formally, let i ∈ N and ▷i be a strict ranking of all agents in N . To lexicographically
compare sets based on ranking ▷i, even if they are of different cardinality, we introduce the
following notion. Let S ∈ Ci such that S = {sf1 , . . . , s

f
k , i, s

e
1, . . . , s

e
l }, {s

f
1 , . . . , s

f
k} ⊆ F (⪰i),

{se1, . . . , sel } ⊆ E(⪰i), |S| = k + l + 1, and sf1 ▷i · · · ▷i s
f
k ▷i i ▷i s

e
1 ▷i · · · ▷i sel . Then, set S’s

(lexicographically) ordered representation based on ▷i equals

ℓ(▷i, S) ≡ (

friends︷ ︸︸ ︷
sf1 , . . . , s

f
k ,

n− k − l copies of i︷ ︸︸ ︷
i, . . . . . . , i ,

enemies︷ ︸︸ ︷
se1, . . . , s

e
l ).

Let ℓr(▷i, S) denote the r-th coordinate of vector ℓ(▷i, S).
Preferences ⪰i ∈ Ri are lexicographically friend-oriented based on ▷i if for all S, T ∈ Ci,

• if ℓ1(▷i, S) ▷i ℓ1(▷i, T ), then S ≻i T ;

• if ℓ1(▷i, S) = ℓ1(▷i, T ) and ℓ2(▷i, S) ▷i ℓ2(▷i, T ), then S ≻i T ;

• . . .

• if ℓ1(▷i, S) = ℓ1(▷i, T ), ℓ2(▷i, S) = ℓ2(▷i, T ), . . ., ℓn−1(▷i, S) = ℓn−1(▷i, T ), and ℓn(▷i, S) ▷i

ℓn(▷i, T ), then S ≻i T .

Note that for all S, T ∈ Ci, we have S ≻i T , T ≻i S, or S = T .
Let i ∈ N and ⪰i ∈ Ri. Then, agent i’s preferences are lexicographically friend-oriented if

there exists a strict ranking ▷i such that ⪰i are lexicographically friend-oriented based on ▷i.
Note that each ranking of agents ▷i produces a unique strict lexicographically friend-oriented
preference relation over Ci.

Let Rlf
i denote the set of preferences over Ci that are lexicographically friend-oriented. It is

easy to see that if an agent’s preferences ⪰i are lexicographically friend-oriented, then they are
friend-oriented, i.e., Rlf

i ⊊ R
f
i . Clearly, the subdomains of lexicographically friend-oriented and

appreciation of friends preferences are disjoint, i.e.,

Rlf
i ∩R

af
i = ∅.

The next example illustrates the possible friend-oriented preferences for an agent who has
two friends and one enemy.

Example 1 (Examples of friend-oriented preferences).
Let N = {1, 2, 3, 4} and ⪰∈ Rf such that F1 = {2, 3} and E1 = {4}. Agent 1’s 13 possible
friend-oriented preference relations are depicted below.
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⪰af
1 ⪰w1

1 ⪰w2
1 ⪰w3

1 ⪰w4
1 ⪰w5

1 ⪰w6
1 ⪰lf1

1 ⪰lf2
1 ⪰s1

1 ⪰s2
1 ⪰s3

1 ⪰s4
1

123 123 123 123 123 123 123 123 123 123 123 123 123

1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234

12 ∼ 13 12 ∼ 13 12 ∼ 13 12 13 12 13 12 13 12 12 13 13

124 ∼ 134 124 134 13 12 13 ∼ 124 12 ∼ 134 124 134 13 13 12 12

1 134 124 124 ∼ 134 124 ∼ 134 134 124 13 12 124 134 124 134

14 1 1 1 1 1 1 134 124 134 124 134 124

14 14 14 14 14 14 1 1 1 1 1 1

14 14 14 14 14 14

It is easy to verify that all 13 preference relations satisfy friend-orientation. In order to see that
there are no other friend-oriented preference relations, note that friend-orientation requires that

• the coalition with all friends, i.e., (123), is the unique most preferred coalition;

• the coalition with his unique enemy, i.e., (14), is the unique least preferred coalition;

• coalition (1234) is ranked below (123) by Condition (E) and is ranked above any other
coalition by Condition (F);

• coalition (1) is ranked above (14) by Condition (E) and is ranked below any other coalition
by Condition (F); and

• coalition (12) is ranked above (124) by Condition (E), and similarly, coalition (13) is ranked
above (134).

The only preference relations that satisfy these five requirements are the 13 preference relations
depicted above.

The first 7 of the 13 preference relations are not strict (i.e., they contain at least one indif-
ference between two coalitions). The last 6 of the 13 preference relations are strict (i.e., they do
not contain any indifferences).

One easily verifies that ⪰af
1 is the unique preference relation that satisfies appreciation of

friends and ⪰lf1
1 and ⪰lf2

1 are the only two preference relations that are lexicographically friend-
oriented. ⋄

Next, we focus on the set of (strict) core partitions for friend-oriented problems and illustrate
that the strict core can be a strict subset of the core (Example 2) and that there can be multiple
(strict) core partitions (Example 3). In the next section, we furthermore show that for friend-
oriented problems, the (strict) core is always non-empty.

Example 2 (The strict core can be a strict subset of the core).
Let N = {1, 2, 3} and ⪰∈ Rf such that F1 = {2}, F2 = {1, 3}, and F3 = {2}; furthermore,
agent 2 is indifferent between friend 1 and friend 3, i.e., (12) ∼2 (23). The corresponding
friend-oriented preferences are

9



⪰1 ⪰2 ⪰3

12 123 23

123 12 ∼ 23 123

1 2 3

13 13

One easily verifies that SC(⪰) = {{(123)}} ⊊ {{(12), (3)}, {(1), (23)}, {(123)}} = C(⪰). ⋄

Example 3 (The (strict) core needs not be a singleton).
Let N = {1, 2, 3} and ⪰∈ Rf such that F1 = {2}, F2 = {1, 3}, and F3 = {1}. The corresponding
friend-oriented preferences are

⪰1 ⪰2 ⪰3

12 123 13

123
... 123

1 2 3

13 23

Here,
... in the second column indicates the unspecified preferences (12) ≻2 (23), (23) ≻2 (12),

or (12) ∼2 (23). One easily verifies that there are two (strictly) core stable partitions, namely
{(123)} and {(12), (3)}. ⋄

We are interested in the structure and non-emptiness of the (strict) core for friend-oriented
problems. In the sequel, we use some graph theoretical tools that were first used for problems
satisfying appreciation of friends (Dimitrov et al., 2006).

Directed graphs induced by friend-oriented preferences

A directed graph is a pair G = (V,A) where V is a finite set of vertices and A ⊆ {(i, j) ∈ V ×V :

i ̸= j} is a set of directed edges. For each a = (v, w) ∈ A, edge a is an outgoing edge for v and an
incoming edge for w. A subgraph G′ = (V ′, A′) of G is a directed graph such that V ′ ⊆ V and
A′ ⊆ (V ′ × V ′) ∩ A. An induced graph G′ = (V ′, A′) of G is a directed graph such that V ′ ⊆ V

and A′ = (V ′ × V ′) ∩ A.

A path from a vertex v1 to a vertex vm is an ordered sequence (v1, v2, . . . , vm) ofm ≥ 2 vertices
in V such that for each k with 1 ≤ k ≤ m − 1, (vk, vk+1) ∈ A. A path (v1, v2, . . . , vm−1, v1) is
called a cycle. A cycle (v1, v2, . . . , vm−1, v1) is simple if for all k, l ∈ {1, . . . ,m − 1} with k ̸= l,
vk ̸= vl. In other words, a simple cycle is a cycle with no repeated vertices (except for the first
and last vertex). An acyclic graph is a graph without cycles.

A graph G = (V,A) is strongly connected if for each pair of vertices v, w ∈ V there is a
cycle that contains v and w. A subgraph G′ = (V ′, A′) of G is a strongly connected component
(SCC) of G if it is strongly connected, and maximal with this property, i.e., there is no strongly
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connected subgraph G′′ = (V ′′, A′′) of G with V ′ ⊊ V ′′. If a subgraph G′ = (V ′, A′) of G is a
strongly connected component, then we refer to V ′ as an SCC coalition.

For each directed graph G = (V,A) and each v ∈ V there exists a unique strongly connected
component of G that contains v (Harary et al., 1965, Theorem 3.2). Thus,

• the strongly connected components (uniquely) partition the set V and

• each strongly connected subgraph ofG is a subgraph of some strongly connected component
of G.7

There exist linear-time algorithms that compute the strongly connected components of a given
directed graph, e.g., Tarjan’s Algorithm (Tarjan, 1972). Figure 1 provides an example of the
partition of V induced by the strongly connected components.

1 2

3

4

5 6

78

9

1011

12 13

Figure 1: Strongly connected components are encircled and induce SCC coalitions {1, 2, 3}, {4},
{5, 6, 7, 8}, {9, 10, 11}, and {12, 13}.

Let G1, . . . , GK be the strongly connected components of a directed graph G = (V,A). For
each k with 1 ≤ k ≤ K, let Gk = (Vk, Ak). The condensation graph of G is the directed graph
Ḡ = (V̄ , Ā) with vertices V̄ = {G1, . . . , GK} and edges Ā = {(Gk, Gl) ∈ V̄ ×V̄ : there exist vk ∈
Vk and vl ∈ Vl with (vk, vl) ∈ A}. Condensation graphs are acyclic (see, e.g., Harary et al., 1965,
Theorem 3.6).8 Figure 2 depicts the condensation graph induced by the graph in Figure 1.

7Suppose to the contrary that a strongly connected subgraph G′ = (V ′, A′) is not a subgraph of any strongly
connected component of G. Then, there exists a collection of strongly connected components {G1, . . . , Gm} (with
m ≥ 2) of G such that for each l with 1 ≤ l ≤ m, Gl = (Vl, Al), V ′

l := V ′ ∩ Vl ̸= ∅, and V ′ = V ′
1 ∪ · · · ∪ V ′

m. Let
i1 ∈ V ′

1 . Then, for each l with 2 ≤ l ≤ m, there exists il ∈ V ′
l such that there exists a cycle in G that contains

both i1 and il. Then, G has a subgraph Ḡ = (V1 ∪ · · · ∪ Vm , Ā) that is strongly connected. This contradicts the
fact that each Gl = (Vl, Al) is a strongly connected component.

8If G′ = (V ′, A′) and G′′ = (V ′′, A′′) with V ′ ̸= V ′′ are two strongly connected components of G, then
there can be edges from V ′ to V ′′ or the other way around, but not both (otherwise, G would have a subgraph
Ḡ = (V ′ ∪ V ′′, Ā) that is strongly connected, contradicting the fact that G′ = (V ′, A′) and G′′ = (V ′′, A′′) with
V ′ ̸= V ′′ are two strongly connected components of G).
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G2 G3

G1

G5

G4

Figure 2: Condensation graph induced by the graph in Figure 1.

Each problem ⪰∈ Rf and each coalition S ⊆ N induce a directed friendship graph Γ(⪰S) =

(S,AS) with AS = {(i, j) ∈ S × S : j ∈ Fi}. We write ⪰ for ⪰N , i.e., when S = N .
Let G1, . . . , GK be the strongly connected components of Γ(⪰). For each 1 ≤ k ≤ K, let

Gk = (Vk, Ak). Let πSCC(⪰) = {V1, . . . , VK} denote the SCC partition that consists of the SCC
coalitions of Γ(⪰).

Fact 1. Since the condensation graph of Γ(⪰) is acyclic, without loss of generality, we can choose
the labels of the SCC coalitions (or the associated strongly connected components) such that
for all l, l′ ∈ {1, . . . , K} with l < l′, there is no edge from any vertex in Vl′ to any vertex in Vl in
Γ(⪰). In particular, there is no edge from any vertex in VK to any vertex in any Vl with l < K.
See, e.g., Figure 2.

From now on, we assume that the labeling of strongly connected components G1 =

(V1, A1), . . . , GK = (VK , AK) of Γ(⪰) complies with Fact 1. Note that this labeling is not
necessarily unique.9

Fact 2. Fact 1 implies that for each l ∈ {1, . . . , K} and each i ∈ Vl,

Fi = (Fi ∩ (V1 ∪ · · · ∪ Vl−1))︸ ︷︷ ︸
=∅

∪
K⋃
k=l

(Fi ∩ Vk) =
K⋃
k=l

(Fi ∩ Vk).

Ei = (Ei ∩ (V1 ∪ · · · ∪ Vl−1))︸ ︷︷ ︸
=(V1∪···∪Vl−1)

∪
K⋃
k=l

(Ei ∩ Vk) =
l−1⋃
k=1

Vk ∪
K⋃
k=l

(Ei ∩ Vk).

3 The Structure of the Core

3.1 Friend-oriented preferences and core stability

Our first result establishes a necessary condition for any core partition: any coalition in a core
partition induces a strongly connected subgraph in the friendship graph.

Proposition 1. Let ⪰ ∈ Rf and π ∈ C(⪰). Then, for each S ∈ π, the induced friendship graph
Γ(⪰S) is strongly connected.

9For instance, in Figure 2, we could swap the labels of G4 and G5.

12



Proof. Let ⪰ ∈ Rf , π ∈ C(⪰), and S ∈ π. Suppose to the contrary that the induced friendship
graph Γ(⪰S) = (S,AS) is not strongly connected. Then, there exist i, j ∈ S with i ̸= j such that
there is no path from j to i. Let S ′ be the subset of vertices in S from which i is not reachable,
i.e., S ′ = {k ∈ S : there is no path from k to i in Γ(⪰S)}. Note that j ∈ S ′ and i ∈ S \ S ′. So,
S ′ ̸= ∅ and S \ S ′ ̸= ∅.

Next, we prove that for each k ∈ S ′, S \S ′ ⊆ Ek. Suppose that for some k ∈ S ′, S \S ′ ̸⊆ Ek.
Then, (S \S ′)∩Fk ̸= ∅. Let l ∈ (S \S ′)∩Fk. Since l ∈ Fk, there is an edge from k to l and since
l ∈ S \ S ′, there is a path from l to i. Hence, there is a path from k to i in Γ(⪰S), contradicting
k ∈ S ′. So, for each k ∈ S ′, S \ S ′ ⊆ Ek.

It follows from Condition (E) of friend-oriented preferences that for each k ∈ S ′, S ′ ≻k

S ′ ∪ (S \ S ′) = S = πk. Hence, S ′ ̸= ∅ blocks π, which contradicts the fact that π ∈ C(⪰).

Recall that Example 3 shows that there are friend-oriented problems with multiple core stable
partitions. An important corollary to Proposition 1 is that any core stable partition equals the
SCC partition or is a refinement of the SCC partition.

Corollary 1. Let ⪰∈ Rf , πSCC(⪰) = {V1, . . . , VK}, and π ∈ C(⪰). Then, for each S ∈ π,
there is a Vk ∈ πSCC(⪰) such that S ⊆ Vk.

Proof. Let ⪰∈ Rf , πSCC(⪰) = {V1, . . . , VK}, π ∈ C(⪰), and S ∈ π. It follows from Propo-
sition 1 that the induced graph Γ(⪰S) is strongly connected. Hence, there exists a strongly
connected component Gk = (Vk, Ak) that contains Γ(⪰S) (see Footnote 7). In particular,
S ⊆ Vk.

A result for problems with strongly connected components that equal simple cycles now
follows easily.

Proposition 2. Let ⪰∈ Rf and consider a strongly connected component of Γ(⪰) denoted by
G̃ = (Ṽ , Ã). Suppose G̃ consists of a simple cycle. Then, for each π ∈ C(⪰), Ṽ ∈ π.

Proof. Let π ∈ C(⪰). Let S ∈ π such that S ∩ Ṽ ̸= ∅. From Corollary 1 it follows that S ⊆ Ṽ .
Suppose S ⊊ Ṽ . Then, since G̃ is a cycle, there exists i ∈ S such that S\{i} ⊆ Ei. It follows
from Condition (E) of friend-oriented preferences that {i} ≻i S = πi, contradicting π ∈ C(⪰).
Hence, Ṽ = S ∈ π.

Next, we state and prove our first main result: for any problem with friend-oriented prefer-
ences, the SCC partition is strictly core stable and hence, the strict core is non-empty.

Theorem 1. For each ⪰∈ Rf , πSCC(⪰) ∈ SC(⪰). In particular, SC(⪰) ̸= ∅.

On the smaller appreciation of friends preference domain, Dimitrov et al. (2006, Theorem 5)
showed that “when ⪰∈ Raf

i , a strictly core stable coalition structure can be found in polynomial
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time.” Theorem 1 extends this result to the larger preference domain of friend-oriented prefer-
ences. Both results use the fact that the strongly connected components of the friendship graph
determine a strict core partition that can be computed in polynomial time by, e.g., Tarjan’s
Algorithm (Tarjan, 1972).

Proof. Let ⪰∈ Rf . We prove that no coalition S ⊆ N weakly blocks partition πSCC(⪰). Using
the labeling convention of Fact 1, let πSCC(⪰) = {V1, . . . , VK}. The claim is immediate if for
some k with 1 ≤ k ≤ K, S = Vk.

For some k with 1 ≤ k ≤ K, let S ⊊ Vk. Since S ̸= Vk, Vk \ S ̸= ∅. Since Vk is strongly
connected in Γ(⪰) = (N,A), there is an edge a = (i, j) ∈ A from some i ∈ S to some j ∈ Vk \S.
Let F = Fi ∩ (Vk \ S) and E = Ei ∩ (Vk \ S). Then, Vk = S ∪ (E ∪ F ) and S ∩ (E ∪ F ) = ∅.
Note that j ∈ F . So, F ̸= ∅. Hence, from Condition (F) of friend-oriented preferences it follows
that πSCC

i (⪰) = Vk = S ∪ (E ∪ F ) ≻i S. Hence, S does not weakly block πSCC(⪰).
Next, we can assume that for each k with 1 ≤ k ≤ K, S ̸⊆ Vk. Then, there exists m with

2 ≤ m ≤ K such that S = S ∩ (V1 ∪ · · · ∪ Vm), S ∩ (V1 ∪ · · · ∪ Vm−1) ̸= ∅, and

S ∩ Vm ̸= ∅. (1)

Since we use the labeling convention of Fact 1, for any l < m, there is no edge from any vertex in
Vm to any vertex in Vl. Hence, Fact 2 implies that for each i ∈ Vm, ∅ ≠ S∩(V1∪· · ·∪Vm−1) ⊆ Ei.

Suppose Vm ⊊ S. Let i ∈ Vm. Since ∅ ̸= S ∩ (V1 ∪ · · · ∪ Vm−1) ⊆ Ei, it follows from
Condition (E) of friend-oriented preferences that πSCC

i (⪰) = Vm ≻i Vm∪ [S∩(V1∪· · ·∪Vm−1)] =

[S ∩ Vm] ∪ [S ∩ (V1 ∪ · · · ∪ Vm−1)] = S (the penultimate equality follows from Vm ⊊ S). Hence,
S does not weakly block πSCC(⪰). Thus, Vm ̸⊆ S. So, Vm\S ̸= ∅.

We have established that S ∩ Vm ̸= ∅ (see (1)) and Vm\S ̸= ∅. Hence, since

Vm = (S ∩ Vm) ∪ (Vm\S)

is strongly connected in Γ(⪰) = (N,A), there is an edge a = (i, j) ∈ A from some i ∈ S ∩ Vm to
some j ∈ Vm \ S. Let F = Fi ∩ (Vm \ S) and E = Ei ∩ (Vm \ S). Then,

Vm = (S ∩ Vm) ∪ (E ∪ F ) and (S ∩ Vm) ∩ (E ∪ F ) = ∅. (2)

Note that j ∈ F . So, F ̸= ∅. From Condition (F) of friend-oriented preferences it follows that
πSCC
i (⪰) = Vm ≻i Vm\(E∪F ). Since ∅ ≠ S∩(V1∪· · ·∪Vm−1) ⊆ Ei, it follows from Condition (E)

of friend-oriented preferences that Vm \ (E ∪F ) ≻i [Vm \ (E ∪F )]∪ [S ∩ (V1 ∪ · · · ∪Vm−1)]. From
(2),

[Vm \ (E ∪ F )] ∪ [S ∩ (V1 ∪ · · · ∪ Vm−1)] = [S ∩ Vm] ∪ [S ∩ (V1 ∪ · · · ∪ Vm−1)] = S.
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Thus, πSCC
i (⪰) ≻i S. Hence, S does not weakly block πSCC(⪰).

Theorem 1 and Proposition 2 imply the following.

Corollary 2. Let ⪰∈ Rf such that Γ(⪰) consists of a simple cycle. Then, {N} is the unique
(strictly) core stable partition.

Remark 1 (Model variations and core stability). Recall that friend-oriented preferences
are based on (1) the partition of other agents into friends and enemies, (2) the assumption
that adding friends and removing enemies is good, and (3) the lexicographic aspect that adding
friends is more important than removing enemies. In Appendix A, we remove the lexicographic
aspect (3) and show that then, core stable partitions need not exist (Example 8).

In Appendix B we switch the lexicographic aspect (3) from adding friends being more im-
portant to removing enemies being more important. For a subclass of the thus defined enemy-
oriented preferences, the class of preferences that satisfy aversion to enemies, Dimitrov et al.
(2006, Example 4) show that the strict core can be empty and they establish the non-emptiness
of the core (Dimitrov et al., 2006, Theorem 3). In Appendix B, we demonstrate that for the
larger domain of enemy-oriented preferences, also the core can be empty (Example 10). ⋄

3.2 Friend-oriented preferences with neutrals and core stability

Some of our results can be generalized to a setting where each agent partitions the set of other
agents in a set of friends, a set of enemies, and a set of “neutrals:” adding / removing a neutral
does not make any coalition better or worse. In particular, we drop the assumption that for all
i, j ∈ N with i ̸= j, {i, j} ̸∼i {i}.

Let i ∈ N and ⪰i ∈ Ri. Then, agent i’s preferences are friend-oriented with neutrals if the
set N\{i} can be partitioned into a set of friends F (⪰i), a set of enemies E(⪰i), and a set of
neutrals N(⪰i) such that for each coalition S ∈ Ci, (E) adding an enemy makes agent i strictly
worse off, (F) adding a friend, possibly together with a set of enemies, makes agent i strictly
better off, and (N) adding a neutral does not change agent i’s welfare. Formally, let i ∈ N .
Preferences ⪰i ∈ Ri are friend-oriented with neutrals if they satisfy (E), (F), and

(N) for each S ∈ Ci and each j ∈ N(⪰i) \ S,

S ∪ {j} ∼i S.

Let Rfn
i denote the set of preferences over Ci that are friend-oriented with neutrals. Obviously,

Rf
i ⊊ R

fn
i . For each i ∈ N , when no confusion is possible, we write Fi, Ei, and Ni instead of

F (⪰i), E(⪰i), and N(⪰i).
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Example 4 (Ota et al. (2017, Example 3), the strict core can be empty when pref-
erences are friend-oriented with neutrals). Let N = {1, 2, 3} and ⪰∈ Rfn such that
F1 = {2}, E1 = {3}, N1 = ∅, F2 = E2 = ∅, N2 = {1, 3}, F3 = {2}, E3 = {1}, and N3 = ∅. Then,
from conditions (E), (F), and (N), the friend-oriented preferences with neutrals are as follows,

⪰1 ⪰2 ⪰3

12 2 ∼ 12 ∼ 23 ∼ 123 23

123 123

1 3

13 13

One easily verifies that the core contains all partitions except {(13), (2)}. So, C(⪰) ̸= ∅. Further-
more, for each partition in the core, there exists a weak blocking coalition. Hence, SC(⪰) = ∅. ⋄

Note that similarly to problems with friend-oriented preferences, each problem ⪰∈ Rfn

induces a directed friendship graph Γ(⪰). The only difference now is that if for any two distinct
agents i, j ∈ N we have (i, j) ̸∈ Γ(⪰), then there are two possibilities: agent j is either an enemy
of or a neutral to agent i. While the above example shows that in the presence of neutrals the
SCC partition needs not be strictly core stable, we show that it is always core stable.

Theorem 2. For each ⪰∈ Rfn, πSCC(⪰) ∈ C(⪰). In particular, C(⪰) ̸= ∅.

Proof. Let ⪰∈ Rfn. We prove that no coalition blocks partition π ≡ πSCC(⪰). Suppose to
the contrary that π is blocked by a coalition S ⊆ N . Then, for each i ∈ S, S ≻i πi. Let
π = {V1, . . . , VK}. Without loss of generality (here, we are not using the labeling convention of
Fact 1), we now assume that for some m with 1 ≤ m ≤ K, S = S ∩ (V1 ∪ · · · ∪ Vm) and for each
ℓ with 1 ≤ ℓ ≤ m, S ∩ Vℓ ̸= ∅.

Claim. For each ℓ with 1 ≤ ℓ ≤ m, there is some agent i ∈ S ∩ Vℓ with a friend f ∈ S ∩Fi that
is not a member of Vℓ, i.e., f ̸∈ Vℓ.

Proof of the claim. Suppose to the contrary that the claim is not true for some ℓ with 1 ≤ ℓ ≤ m,
that is, for each agent j ∈ S ∩ Vℓ all of his friends that are in S are also members of Vℓ, i.e.,
S ∩ Fj ⊆ Vℓ.

Let i ∈ S ∩ Vℓ. Since S ≻i πi = Vℓ and S ∩ Fi ⊆ Vℓ, it follows from conditions (E), (F), and
(N) that there is an enemy e ∈ Vℓ∩Ei that is not a member of S. Since Vℓ is strongly connected
and i, e ∈ Vℓ, there is a path (i = i1, i2, . . . , ik = e) from i to e in Γ(⪰) that only uses edges
between agents in Vℓ. Since i ∈ S but e ̸∈ S, the path contains an edge (iq, iq+1) with iq ∈ S and
iq+1 ̸∈ S. By definition of Γ(⪰), iq+1 ∈ Fiq . Hence, agent iq ∈ S ∩ Vℓ no longer has his friend
iq+1 ∈ Vℓ in coalition S (of which iq is a member). Since nonetheless S ≻iq πiq = Vℓ, it follows
from conditions (E), (F), and (N) that agent iq ∈ S ∩ Vℓ has another friend f ∈ S ∩ Fiq that is
not a member of Vℓ. This contradiction proves the claim. ■
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The claim implies that for each ℓ with 1 ≤ ℓ ≤ m, there is some agent i ∈ Vℓ with a friend
f ∈ Vℓ′ for some 1 ≤ ℓ′ ≤ m with ℓ′ ̸= ℓ. But then there is a cycle in Γ(⪰) that traverses at
least two components in {V1, . . . , Vm}, which contradicts the fact that the condensation graph
of Γ(⪰) is acyclic. This contradiction completes the proof.

Note that the above proof can also be used to show the non-emptiness of the core for problems
with friend-oriented preferences. However, showing the non-emptiness of the strict core for
problems with friend-oriented preferences (Theorem 1) requires some proof steps that do not
work in the presence of neutrals.

4 Core Stability and Strategy-Proofness

4.1 Friend-oriented preferences: A characterization

For each i ∈ N , let R̃i ⊆ Ri. Let R̃ ≡
∏

i∈N R̃i. A mechanism on R̃ is a function φ that
associates with each problem ⪰∈ R̃ a partition φ(⪰). For each i ∈ N , let φi(⪰) denote agent
i’s coalition at ⪰∈ R̃ under mechanism φ. A mechanism φ is individually rational / Pareto
optimal / (strictly) core stable if for each ⪰∈ R̃, φ(⪰) is individually rational / Pareto optimal
/ (strictly) core stable at ⪰.

The next two properties are incentive properties that model that no agent / coalition can
benefit from misreporting his / their preferences. We use the standard notation⪰−i = (⪰j)j∈N\{i}

to denote the list of all agents’ preferences, except for agent i’s preferences. Similarly, for each
S ⊆ N we define ⪰−S = (⪰j)j∈N\S to be the list of preferences of the members of N\S.

Definition 2 ((Group) strategy-proofness). A mechanism is strategy-proof if no agent gets
strictly better off by misreporting his preferences. Formally, mechanism φ is strategy-proof if for
each problem ⪰∈ R̃, each i ∈ N , and each ⪰i

′ ∈ R̃i,

φi(⪰) ⪰i φi(⪰i
′,⪰−i).

A mechanism is group strategy-proof if there exists no problem where some coalition of agents
can misreport their preferences so that all its members get weakly better off and at least one
member gets strictly better off. Formally, a mechanism φ is group strategy-proof if for each
problem ⪰∈ R̃, there do not exist S ⊆ N and ⪰′

S ∈
∏

i∈S R̃i such that

(g1) for each i ∈ S, φi(⪰′
S,⪰−S) ⪰i φi(⪰) and

(g2) for some j ∈ S, φj(⪰′
S,⪰−S) ≻j φj(⪰). ⋄

It is easy to see that if a mechanism φ is group strategy-proof, then it is strategy-proof.
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For each i ∈ N , let R̃f
i ⊆ R

f
i be a generic subdomain of friend-oriented preferences. Let

R̃f ≡
∏

i∈N R̃
f
i be the corresponding subdomain of friend-oriented problems. From now on, we

assume that mechanisms are defined on subdomains of friend-oriented problems.

Definition 3 (SCC mechanism). The mechanism on R̃f that associates the partition πSCC(⪰)
with each ⪰ ∈ R̃f is called the SCC mechanism (on R̃f ); we denote it by φSCC . ⋄

Theorem 1 implies that the SCC mechanism is strictly core stable.

Corollary 3. The SCC mechanism on R̃f is strictly core stable.

We next show that the SCC mechanism is group strategy-proof.

Proposition 3. The SCC mechanism on R̃f is group strategy-proof.

We prove Proposition 3 in Appendix C.

We are now ready to state and prove our main result (Theorem 3), which shows that if agents’
preferences are sufficiently “rich,” then the SCC mechanism is, in fact, the only core stable and
strategy-proof mechanism. We call an agent’s friend-oriented preference domain rich if for each
set of other agents, there is a preference relation that declares these agents as friends.

Definition 4 (Rich preference domains). Let i ∈ N . A subdomain of friend-oriented pref-
erences R̃f

i ⊆ R
f
i is rich if for each set S ⊆ N\{i}, there are preferences ⪰i ∈ R̃f

i such that
F (⪰i) = S; thus, E(⪰i) = N\(S ∪{i}). We say that the subdomain of friend-oriented problems
R̃f ≡

∏
i∈N R̃

f
i is rich if for each i ∈ N , R̃f

i is rich. ⋄

Examples of rich subdomains of friend-oriented preferences for i ∈ N include the set of
preferences that satisfy appreciation of friends, Raf

i , and the set of preferences that are lexico-
graphically friend-oriented, Rlf

i .

Theorem 3. On each rich subdomain of friend-oriented problems R̃f , a mechanism φ is core
stable and strategy-proof if and only if φ = φSCC.

From Theorems 1 and 3 and Proposition 3 we immediately obtain the following corollary.

Corollary 4. On each rich subdomain of friend-oriented problems R̃f ,

• a mechanism φ is strictly core stable and strategy-proof if and only if φ = φSCC;
• a mechanism φ is core stable and group strategy-proof if and only if φ = φSCC;
• a mechanism φ is strictly core stable and group strategy-proof if and only if φ = φSCC.

Remark 2. It follows immediately from Theorem 3 that in the class of mechanisms that only
require each agent to state his set of friends (instead of the complete underlying friend-oriented
preferences), there is a unique mechanism (namely φSCC) that is core stable and strategy-proof. ⋄
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Let R̃f be a rich subdomain of friend-oriented problems. Then, by Theorem 1 and Propo-
sition 3, the SCC mechanism is (strictly) core stable and (group) strategy-proof. To complete
the proof of Theorem 3, we will prove Proposition 4 which states that the SCC mechanism on
R̃f is the unique mechanism satisfying core stability and strategy-proofness.

Proposition 4. On each rich subdomain of friend-oriented problems R̃f , if φ is core stable and
strategy-proof, then φ = φSCC.

Proof of Proposition 4

Let R̃f be a rich subdomain of friend-oriented problems. Let φ be a core stable and strategy-
proof mechanism on R̃f . We will show that for each ⪰∈ R̃f , φ(⪰) = φSCC(⪰). The proof uses
two lemmas: the friend-reduction lemma (Lemma 1) and the SCC-minimality lemma (Lemma 2),
both of which are discussed below.

In order to state the friend-reduction lemma (Lemma 1) we first observe that if for some
⪰̃ ∈ R̃f , φ(⪰̃) ̸= φSCC(⪰̃), then, by Corollary 1, for each agent i who is in different coalitions
at φSCC and φ, i.e., φi(⪰̃) ̸= φSCC

i (⪰̃), we have that φi(⪰̃) ⊊ φSCC
i (⪰̃). The friend-reduction

lemma states that if such an agent i at ⪰̃ reduces his set of friends by one friend such that SCC
coalitions do not change, then agent i is still in different coalitions at φSCC and φ; more precisely,
after the change, agent i’s coalition at φ is still a proper subset of his coalition at φSCC .

Lemma 1 (Friend-reduction lemma). Let ⪰̃ ∈ R̃f and i ∈ N such that φi(⪰̃) ⊊ φSCC
i (⪰̃).

Let ⪰′
i ∈ R̃

f
i and ⪰′≡ (⪰′

i, ⪰̃−i) such that

• ⪰′
i are preferences with one less friend than ⪰̃i, i.e., for some f ∈ F (⪰̃i), F (⪰′

i) =

F (⪰̃i)\{f}; and

• the SCC coalition of agent i does not change, i.e., φSCC
i (⪰′) = φSCC

i (⪰̃) [note that then
none of the other SCC coalitions changes either].

Then, φi(⪰′) ⊊ φSCC
i (⪰′).

Proof. Let ⪰̃ ∈ R̃f and i ∈ N such that φi(⪰̃) ⊊ φSCC
i (⪰̃). Let agent i change his preferences

at ⪰̃ such that they have one less friend and his SCC coalition does not change, i.e., let ⪰′
i ∈ R̃

f
i

and ⪰′≡ (⪰′
i, ⪰̃−i) such that

• for some f ∈ F (⪰̃i), F (⪰′
i) = F (⪰̃i)\{f};10 and

• φSCC
i (⪰′) = φSCC

i (⪰̃).
10Here we use the richness of R̃f

i .
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By Corollary 1, we have φi(⪰′) ⊆ φSCC
i (⪰′).

Suppose, by contradiction, that φi(⪰′) = φSCC
i (⪰′). Then, together with φi(⪰̃) ⊊

φSCC
i (⪰̃) = φSCC

i (⪰′), it follows that

φi(⪰̃) ⊊ φi(⪰′). (3)

Thus,
F (⪰̃i) ∩ φi(⪰̃) ⊆ F (⪰̃i) ∩ φi(⪰′).

However, F (⪰̃i) ∩ φi(⪰̃) ⊊ F (⪰̃i) ∩ φi(⪰′) would mean that by reporting ⪰′
i instead of ⪰̃i, at

mechanism φ, agent i could be in a coalition with more friends and, by Condition (F) of friend-
oriented preferences, be better off; contradicting strategy-proofness of φ. Hence, agent i is in a
coalition with the same set of friends he had at ⪰̃i, i.e.,

F (⪰̃i) ∩ φi(⪰̃) = F (⪰̃i) ∩ φi(⪰′). (4)

Equation (4) and F (⪰′
i) = F (⪰̃i)\{f} imply that then agent i is also in a coalition with the

same set of friends he has at ⪰′
i, i.e.,

F (⪰′
i) ∩ φi(⪰̃) = F (⪰′

i) ∩ φi(⪰′).

But then, (3) implies that when moving from ⪰′
i to ⪰̃i, agent i loses some enemies, i.e.,

E(⪰′
i) ∩ φi(⪰̃) ⊊ E(⪰′

i) ∩ φi(⪰′)

and, by Condition (E) of friend-oriented preferences, is better off; contradicting strategy-
proofness of φ.

Next, in order to discuss the SCC-minimality lemma (Lemma 2) we have to introduce a
particular type of preference profiles. Specifically, starting from any ⪰∈ R̃f and any SCC
coalition V at ⪰, we can (step by step) reduce the friend sets of agents in V (as in Lemma 1)
until any further reduction would break the SCC coalition V apart. Note that by richness of
R̃f , there is a preference profile associated with the (final) reduced friend sets that is still in R̃f .
Such a preference profile is called SCC-minimal with respect to SCC coalition V .

Definition 5 (SCC-minimal preference profile). We call a preference profile ⪰∈ R̃f SCC-
minimal with respect to an SCC coalition V ∈ φSCC(⪰) if no agent in V can delete a friend
without changing the SCC coalition, i.e., for each ⪰′ ∈ R̃f and for each i ∈ V , if

• F (⪰′
i) ⊊ F (⪰i) and

• for each j ∈ N\{i}, F (⪰′
j) = F (⪰j),

20



then φSCC
i (⪰′) ̸= V . ⋄

Let ⪰∈ R̃f . To obtain a SCC-minimal profile ⪰′ ∈ R̃f from ⪰ with respect to an SCC
coalition V ∈ φSCC(⪰), we consider the friendship graph Γ(⪰). For each i ∈ V , we delete, one
at a time, edges (i, k) ∈ Γ(⪰) until removing any additional edge would break agent i’s strongly
connected component into multiple components. At the end of this process, the obtained graph
is SCC-minimal with respect to V and, by the richness of R̃f , an associated SCC-minimal
profile that has the friend sets associated with the SCC-minimal graph can be selected. Figure 3
illustrates friendship graphs (zooming in on SCC coalition V ) at the original preference profile
⪰ and at a preference profile ⪰′ that is SCC-minimal with respect to V . It is easy to see that,
starting from ⪰, depending on the choice of friends that are deleted, one can obtain different
graphs Γ(⪰′) / profiles ⪰′ that are SCC-minimal with respect to V .

⪰

⪰′

Figure 3: Incoming and outgoing edges of the vertices in the encircled SCC coalition V at the
original preference profile ⪰ (top) and at an SCC-minimal preference profile ⪰′ (bottom) that
is obtained from ⪰ by trimming the set of edges within V and removing all edges leaving V .

The following lemma is key. Its rather long proof is relegated to Appendix D.
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Lemma 2 (SCC-minimality lemma). Let ⪰∈ R̃f and V ∈ φSCC(⪰). If ⪰ is SCC-minimal
with respect to V , then for each i ∈ V , φi(⪰) = φSCC

i (⪰).

Equipped with the friend-reduction lemma (Lemma 1) and the SCC-minimality lemma
(Lemma 2), the proof of Proposition 4 is straightforward. Assume, by contradiction, that
for some ⪰̃ ∈ R̃f , φ(⪰̃) ̸= φSCC(⪰̃). Recall that by Corollary 1 for each i ∈ N with
φi(⪰̃) ̸= φSCC

i (⪰̃), φi(⪰̃) ⊊ φSCC
i (⪰̃). Now, let V ∈ φSCC(⪰̃) be an SCC coalition for which

there exists an agent i ∈ V with φi(⪰̃) ⊊ φSCC
i (⪰̃) = V . Then, in fact, for each j ∈ V ,

φj(⪰̃) ⊊ φSCC
j (⪰̃) = V . Starting from profile ⪰̃, let agents in V reduce their friend sets, step

by step, as long as it does not break up their SCC coalition V . By the friend-reduction lemma
(Lemma 1), at each reduction step (i.e., at each adjusted preference profile), the coalitions that
φ assigns to members of V still constitute a proper refinement of the SCC coalition V at φSCC .
Thus, when the friend-reduction process stops at a preference profile ⪰̃′

that is SCC-minimal
with respect to V , for each j ∈ V , φj(⪰̃

′
) ⊊ φSCC

j (⪰̃′
) = V ; contradicting Lemma 2. This

contradiction completes the proof of Proposition 4.

Independence of the properties in Theorem 3 and Corollary 4

The following two examples show the logical independence of the two properties in Theorem 3
and Corollary 4. Let R̃f be a rich subdomain of friend-oriented problems.

The mechanism in our first independence example is strictly core stable but not strategy-
proof.

Example 5 (A mechanism that is strictly core stable but not strategy-proof ). Let
N = {1, 2, 3}. Since R̃f is rich, there exists ⪰∈ R̃f such that F1 = {2}, F2 = {1, 3}, and
F3 = {1} (see Example 3). One easily verifies that φSCC(⪰) = {(123)} and {(12), (3)} ∈ SC(⪰).

Let mechanism φ¬SP assign {(12), (3)} to problem ⪰ and the SCC partition to any other
problem. Obviously, mechanism φ¬SP is strictly core stable. To see that φ¬SP is not strategy-
proof, let agent 2 report preferences ≻′

2 with F (≻′
2) = {3} and consider ⪰′≡ (⪰′

2,⪰−2). Then,
φ¬SP
2 (⪰′) = φSCC

2 (⪰′) = (123) ≻2 (12) = φ¬SP
2 (⪰). Therefore, φ¬SP is not strategy-proof. ⋄

The mechanism in our next example is group strategy-proof but not core stable. Moreover,
the example shows that in the statements of Theorem 3 and Corollary 4, (strict) core stability
cannot be replaced by [individual rationality and Pareto-optimality ].

Example 6 (A mechanism that is individually rational, Pareto-optimal, and group
strategy-proof but not core stable). For each ⪰∈ R̃f , let mechanism φ¬C assign the
partition that is obtained in three steps:

Step 1. if an agent has no friends, then he is left alone;
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Step 2. each of the remaining agents that no longer has (available) friends is also left alone
[repeat Step 2 until each remaining agent has some friend that is still present]; and

Step 3. each of the remaining agents is recursively gathered with his friends that are still present
[the order of this recursive procedure is inconsequential].

The following example illustrates mechanism φ¬C . Let ⪰ ∈ R̃f such that N = {1, 2, 3, 4, 5},
F1 = {2}, F2 = {3}, F3 = {2, 4}, F4 = {5}, and F5 = ∅. The algorithm to compute φ¬C(⪰)
proceeds as follows.

Step 1. Since agent 5 has no friends, he forms a singleton coalition;

Step 2. now agent 4 no longer has (available) friends and he also forms a singleton coalition;
and

Step 3. the remaining agents 1, 2, and 3 still have available friends, and recursively gathering
the friends of these three agents yields the unique coalition (123) (see right hand side of
Figure 4).

Thus, φ¬C assigns the partition {(123), (4), (5)}, which differs from the partition assigned by
φSCC (see left hand side of Figure 4).

1 2 3

45

1 2 3

45

φSCC(⪰) φ¬C(⪰)

Figure 4: φSCC and φ¬C yield different partitions at ⪰, namely φSCC(⪰) = {(1), (23), (4), (5)}
and φ¬C(⪰) = {(123), (4), (5)}.

In order to discuss and prove the properties that mechanism φ¬C satisfies, it is convenient to
state the following three facts.

Fact A. Steps 1 and 2 to compute φ¬C(⪰) only assign singleton coalitions.

Fact B. Step 3 to compute φ¬C(⪰) assigns each agent to a non-singleton coalition that contains
the non-empty set of still present friends.

Fact C. Let T be a coalition assigned at Step 3 to compute φ¬C(⪰). Then, for each T ′ ⊊ T

with T ′ ̸= ∅, there is some agent ℓ′ ∈ T ′ and some agent in ℓ ∈ T\T ′ such that ℓ is a friend
of ℓ′ or ℓ′ is a friend of ℓ, i.e., ℓ ∈ Fℓ′ or ℓ′ ∈ Fℓ.
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Mechanism φ¬C is individually rational because each agent’s coalition is either a singleton
(Fact A) or contains at least one friend (Fact B). We prove Pareto-optimality and group strategy-
proofness of mechanism φ¬C in Appendix E.

Finally, we show that φ¬C is not core stable. Let N = {1, 2, 3}. Since R̃f is rich, there exists
⪰∈ R̃f such that F1 = {2}, F2 = {3}, and F3 = {2}. One easily verifies that φ¬C(⪰) = {(123)}.
Since coalition (23) blocks {(123)}, φ¬C is not core stable. ⋄

4.2 Friend-oriented preferences with neutrals and (weak) group
strategy-proofness

Remark 1 discussed the impact of model variations on the existence of core stable partitions.
Specifically, we have seen that removing the lexicographic aspect of friend-oriented preferences
may lead to an empty core (Appendix A). Similarly, we have seen that switching orientation,
i.e., focusing on enemy-oriented preferences may lead to an empty core as well (Appendix B).
The only model variation (generalization) that guarantees a non-empty core is that of adding
neutrals (Subsection 3.2).11 In particular, Theorem 2 implies that the straightforward extension
of the SCC mechanism φSCC to the domain of friend-oriented preferences with neutrals is core
stable.

For each i ∈ N , let R̃fn
i ⊆ R

fn
i be a generic subdomain of friend-oriented preferences with

neutrals. Let R̃fn ≡
∏

i∈N R̃
fn
i be the corresponding subdomain of friend-oriented problems with

neutrals. From now on, we assume that mechanisms are defined on subdomains of friend-oriented
problems with neutrals.

Corollary 5. The SCC mechanism on R̃fn is core stable.

Proposition 3 shows that the SCC mechanism is group strategy-proof on each subdomain
of friend-oriented problems (without neutrals). Then, a natural question is whether the SCC
mechanism is group strategy-proof on each subdomain of friend-oriented problems with neutrals.
We show that this is not the case for “very rich” subdomains of friend-oriented problems with
neutrals. In fact, we prove a stronger impossibility result (Theorem 4).

We call an agent’s friend-oriented preference domain very rich if for each pair of disjoint sets
of other agents, there is a preference relation that declares these two sets as friends and enemies
(so that the (possibly empty) set of remaining agents are neutrals).

Definition 6 (Very rich preference domains). Let i ∈ N . A subdomain of friend-oriented
preferences with neutrals R̃fn

i ⊆ R
fn
i is very rich if for each pair of sets S, T ⊆ N\{i} with

S ∩ T = ∅, there are preferences ⪰i ∈ R̃fn
i such that F (⪰i) = S and E(⪰i) = T ; thus, N(⪰i) =

N\(S ∪ T ∪ {i}). We say that the subdomain of friend-oriented problems with neutrals R̃fn ≡∏
i∈N R̃

fn
i is very rich if for each i ∈ N , R̃fn

i is very rich. ⋄
11Example 4 shows that in the presence of neutrals, the strict core can be empty.
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Theorem 4. On each very rich subdomain of friend-oriented problems with neutrals R̃fn, no
mechanism is core stable and group strategy-proof.

Theorem 4 also shows that the characterization of the SCC mechanism (in the absence of
neutrals) by core stability and group strategy-proofness (Corollary 4) cannot be generalized to
friend-oriented problems with neutrals.

Proof. We prove the theorem for N = {1, 2, 3}.12 Let R̃fn be a very rich subdomain of friend-
oriented problems with neutrals. Suppose that there is a core stable and group strategy-proof
mechanism φ on R̃fn.

By the very richness of R̃fn, consider ⪰∈ R̃fn such that F1 = {2}, E1 = {3}, N1 = ∅,
F2 = E2 = ∅, N2 = {1, 3}, F3 = {2}, E3 = {1}, and N3 = ∅ (as in Example 4). In Example 4 we
have seen that C(⪰) = {{(1), (2), (3)}, {(1), (23)}, {(12), (3)}, {(123)}}. We show that for each
possible candidate partition φ(⪰) ∈ C(⪰), there is a successful group manipulation by some
coalition.

Suppose that φ(⪰) = {(1), (2), (3)}, φ(⪰) = {(1), (23)}, or φ(⪰) = {(123)}. Then, by the
very richness of R̃fn

2 , agent 2 can report preferences ⪰′
2 where agent 1 is his (unique) friend and

agent 3 is his (unique) enemy so that for⪰′≡ (⪰1,⪰′
2,⪰3) the unique core partition is {(12), (3)}.

Then, φ(⪰′) = {(12), (3)} and (⪰1,⪰′
2) is a successful group manipulation by coalition (12).

Suppose that φ(⪰) = {(12), (3)}. Then, by the very richness of R̃fn
2 , agent 2 can report

preferences ⪰′′
2 where agent 3 is his (unique) friend and agent 1 is his (unique) enemy so that

for ⪰′′≡ (⪰1,⪰′′
2,⪰3) the unique core partition is {(1), (23)}. Then, φ(⪰′′) = {(1), (23)} and

(⪰′′
2,⪰3) is a successful group manipulation by coalition (23).
We conclude that there is no core stable and group strategy-proof mechanism on any very

rich subdomain of friend-oriented problems with neutrals.

The assumption of preferences being very rich in Theorem 4 is rather strong because the proof
only requires the existence of a problem where some agent has at least two neutrals (Example 4).
In Appendix F we provide two stronger impossibility results and two examples that illustrate
why it is difficult to clearly separate subdomains of friend-oriented problems with neutrals into
those where core stability and group strategy-proofness are compatible and those where they
are incompatible.

While Theorem 4 implies that the SCC mechanism is not group strategy-proof for very rich
subdomains of friend-oriented problems with neutrals, we show that the SCC mechanism still
satisfies the following weaker notion of group strategy-proofness.

Definition 7 (Weak group strategy-proofness). A mechanism is weakly group strategy-proof
if there exists no problem where some coalition of agents can misreport their preferences so that

12To extend the proof to more agents, one can add agents with preferences where all other agents are enemies.
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all its members get strictly better off. Formally, a mechanism φ is weakly group strategy-proof if
for each problem ⪰∈ R̃, there do not exist S ⊆ N and ⪰′

S ∈
∏

i∈S R̃i such that for each i ∈ S,

φi(⪰′
S,⪰−S) ≻i φi(⪰). ⋄

Proposition 5. The SCC mechanism on R̃fn is weakly group strategy-proof.

The proof of Proposition 5 is similar to that of Proposition 3; it is relegated to Appendix G.

Corollary 5 and Proposition 5 show that the SCC mechanism on R̃fn is core stable and
weakly group strategy-proof.

Can we characterize the SCC mechanism on R̃fn with these two properties (as in
Theorem 3)?

The answer is in the negative: Example 7 for the domain of friend-oriented problems with
neutrals Rfn shows that apart from the SCC mechanism there are other core stable and weakly
group strategy-proof mechanisms.

Example 7 (Another mechanism that is core stable and weakly group strategy-proof
when preferences are friend-oriented with neutrals). Let ψ be the mechanism on Rfn

obtained from φSCC such that at each problem, if agent 1 does not have any enemies, then
all his neutrals are turned into friends and mechanism φSCC is applied to the adjusted sets
of friends; otherwise ψ yields the SCC partition directly. Formally, let ⪰1 ∈ Rfn

1 such that
F (⪰1) = N\{1}.13 Let ⪰∈ Rfn. Then, ψ(⪰) is defined as follows. If F (⪰1)∪N(⪰1) = N\{1},
then ψ(⪰) ≡ φSCC(⪰1,⪰−1); otherwise, ψ(⪰) ≡ φSCC(⪰). In Appendix H we show that
mechanism ψ satisfies core stability and weak group strategy-proofness. ⋄

Appendices

A Appendix: Removing the lexicographic aspect and core
stability (Remark 1)

The following example illustrates that the core can be empty if we remove the lexicographic
aspect incorporated in the definition of friend-oriented preferences; i.e., we only require that
adding friends and removing enemies is good. Thus, we impose Condition (E) and weaken
Condition (F) to only require

(F̄) for each S ∈ Ci and each f ∈ F (⪰i) \ S, S ∪ {f} ≻i S.

13Note that the particular choice of ⪰1 is irrelevant because the only relevant input for φSCC are the sets of
friends.
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Thus, (E) adding any enemy to any coalition yields a less preferred coalition and (F̄) adding
any friend to any coalition yields a more preferred coalition. In particular, additive preferences
constitute a subdomain of preferences that satisfy (E) and (F̄). Formally, let i ∈ N . Agent i’s
preferences ⪰i are additive if there exists a utility function ui : N → R\{0} such that

for all S, T ∈ Ci,

[
S ⪰i T if and only if

∑
j:j∈S

ui(j) ≥
∑
j:j∈T

ui(j)

]
. (5)

Example 8 (Removing the lexicographic aspect from friend-oriented preferences can
lead to an empty core). Let N = {1, 2, 3, 4, 5} with friend sets F1 = {2, 5}, F2 = {1, 3},
F3 = {2, 4}, F4 = {3, 5}, and F5 = {1, 4}. Each agent has a best and a second-best friend
such that the associated friendship graph Γ(⪰) (see Figure 5) has a particular circular structure:
the edges induced by the best friends constitute a cycle, and the edges induced by the second-
best friends yield the same cycle in the opposite direction. Furthermore, each agent has a strong
aversion to his enemies and even in the presence of his friends, would like to be alone rather than
in a coalition with an enemy. This aspect of agents’ preferences violates the assumption that
friends are lexicographically more important than enemies that was present in our friend-oriented
preference assumptions (E) and (F).

1

2

34

5

Figure 5: Friendship graph in Example 8. The continuous edges point to the best friends, while
the discontinuous edges point to the second-best friends.

The agents’ preferences ⪰ are listed in the following table (agents’ enemies are underlined).
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⪰1 ⪰2 ⪰3 ⪰4 ⪰5

125 123 234 345 145

12 23 34 45 15

15 12 23 34 45

1 2 3 4 5

1235 1234 2345 1345 1245

1245 1235 1234 2345 1345

123 234 345 145 125

124 235 134 245 135

135 124 235 134 245

145 125 123 234 345

13 24 35 14 25

14 25 13 24 35

12345 12345 12345 12345 12345

1234 2345 1345 1245 1235

1345 1245 1235 1234 2345

134 245 135 124 235

One can verify that preferences are additive. For instance, for each i ∈ N , let ui(i) = 0.25,
ui(i + 1) = 2, ui(i + 2) = −3.5, ui(i + 3) = −4, and ui(i + 4) = 1 (modulo 5). Then, for
all S, T ∈ Ci, S ⪰i T if and only if

∑
j:j∈S ui(j) ≥

∑
j:j∈T ui(j). One can easily check that

Conditions (E) and (F̄) are satisfied.

Next, we show that the core is empty. Suppose to the contrary that the core is non-empty.
Let π be a core partition. By individual rationality of π, each coalition in π is “fully connected”
in the sense that there is an edge from each agent to each of the other agents in the same
coalition. Hence, π consists of singletons and / or pairs of neighbors. Since there is an odd
number of agents, there is at least one singleton in π. Since the preference profile is “circular,”
we can assume, without loss of generality, that agent 1 is single at π, i.e., (1) ∈ π. Then, for
agent 5, either π5 = (5) or π5 = (45). Thus, (15) ≻5 π5. Since also (15) ≻1 (1) = π1, coalition
(15) blocks π. Hence, the core is empty. ⋄

B Appendix: Enemy-oriented preferences and core stabil-
ity (Remark 1)

Recall that friend-oriented preferences are based on the partition of other agents into friends
and enemies, the assumption that adding friends and removing enemies is good, and the lexico-
graphic aspect that adding friends is more important than removing enemies. By switching the
lexicographic aspect from adding friends being more important to removing enemies being more
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important, we obtain the following preference restriction.

Agent i’s preferences are enemy-oriented if the set N\{i} can be partitioned into a set of
friends F (⪰i) and a set of enemies E(⪰i) such that for each coalition S ∈ Ci, (F’) adding a
friend, makes agent i strictly better off and (E’) adding an enemy, possibly together with a set of
friends, makes agent i strictly worse off. Note that Condition (E’) now embeds the lexicographic
principle that to improve a coalition, removing enemies is strictly more important than adding
friends. Formally, let i ∈ N . Preferences ⪰i ∈ Ri are enemy-oriented if

(F’) for each S ∈ Ci and each f ∈ F (⪰i) \ S,

S ∪ {f} ≻i S;

and

(E’) for each S ∈ Ci, each e ∈ E(⪰i) \ S, and each F ⊆ F (⪰i) \ S,

S ≻i S ∪ {e} ∪ F.

Let Re
i denote the set of preferences over Ci that are enemy-oriented. For each i ∈ N , when no

confusion is possible, we write Fi and Ei instead of F (⪰i) and E(⪰i).

A smaller domain of enemy-oriented preferences has been introduced by Dimitrov et al.
(2006). Their preference domain is based on the number of friends versus the number of enemies
in a coalition: agent i’s preferences ⪰i satisfy aversion to enemies if agent i, when comparing
two coalitions, prefers the one with fewer enemies. If two coalitions have the same number of
enemies, then agent i prefers the one with more friends. If the number of enemies and the
number of friends in each of the two coalitions are the same, then agent i is indifferent between
the two coalitions. Let Rae

i denote the set of preferences over Ci that satisfy aversion to enemies.
Formally, ⪰i ∈ Rae

i if for all S, T ∈ Ci,

• if |S ∩ Ei| < |T ∩ Ei|, then S ≻i T ;

• if |S ∩ Ei| = |T ∩ Ei| and |S ∩ Fi| > |T ∩ Fi|, then S ≻i T ; and

• if |S ∩ Ei| = |T ∩ Ei| and |S ∩ Fi| = |T ∩ Fi|, then S ∼i T .

It is easy to see that if an agent’s preferences ⪰i satisfy aversion to enemies, then they are
enemy-oriented, i.e., Rae

i ⊊ Re
i .

Dimitrov et al. (2006, Example 4) showed that when preferences satisfy aversion to enemies,
then a strictly core stable partition needs not exist.
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Example 9 (Dimitrov et al. (2006, Example 4), the strict core can be empty when
preferences satisfy aversion to enemies).
Let N = {1, 2, 3} and ⪰∈ Rae such that F1 = {2}, F2 = {1, 3}, and F3 = {2}; furthermore,
agent 2 is indifferent between friend 1 and friend 3, i.e., (12) ∼2 (23). Note that the sets of
friends are exactly as those in Example 2 (where, in contrast, we assume that ⪰∈ Rf ). The
corresponding preferences that satisfy aversion to enemies are

⪰1 ⪰2 ⪰3

12 123 23

1 12 ∼ 23 3

123 2 123

13 13

One easily verifies that SC(⪰) = ∅ ⊊ {{(12), (3)}, {(1), (23)}} = C(⪰). ⋄

In Example 9, the core is non-empty. Dimitrov et al. (2006) showed how to find a core stable
partition for any problem with preferences that satisfy aversion to enemies. We define a clique
of the friendship graph Γ(⪰S) = (S,AS) as a coalition T ⊆ S such that for all i, j ∈ T with
i ̸= j, (i, j) ∈ AS.

Theorem 5 (Dimitrov et al., 2006, Theorem 3). Let ⪰∈ Rae. Starting with the empty
collection of coalitions, recursively adding a clique of maximal cardinality yields a core stable
partition.

Dimitrov et al. (2006, Lemma 6) showed that any core stable partition contains a clique of
maximal cardinality in Γ(⪰). Since finding a clique of maximal cardinality is NP-hard, finding
a core stable partition is also NP-hard (Dimitrov et al., 2006, Theorem 4).

In view of Theorem 5, a natural question is whether the existence of core stable partitions
can be extended from the domain of preferences that satisfy aversion to enemies Rae to the
domain of preferences that are enemy-oriented Re. The next example answers this question in
the negative.

Example 10 (The core can be empty when preferences are enemy-oriented).
Consider again the problem exhibited in Example 8. It is easy to check that each agent’s
preferences satisfy conditions (F’) and (E’). Hence, preferences are enemy-oriented and the core
is empty (see Example 8). ⋄

C Appendix: Proof of Proposition 3

We prove that the SCC mechanism on R̃f is group strategy-proof (Proposition 3).
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Proof. Suppose that φSCC is not group strategy-proof. Then, there exists a problem ⪰∈ R̃f

and a coalition S ⊆ N with preferences ⪰′
S ∈ R̃

f
S such that

(a) for each i ∈ S, φSCC
i (⪰′

S,⪰−S) ⪰i φ
SCC
i (⪰) and

(b) for some j ∈ S, φSCC
j (⪰′

S,⪰−S) ≻j φ
SCC
j (⪰).

For each i ∈ N , let Fi and Ei denote the set of friends and enemies of agent i at ⪰. Let
G1, . . . , GK be the strongly connected components of graph Γ(⪰). For each l ∈ {1, . . . , K}, the
associated strongly connected component equals Gl = (Vl, Al). Based on the labeling of strongly
connected components G1, . . . , GK according to Fact 1, for all l, l′ ∈ {1, . . . , K} with l < l′,
graph Γ(⪰) contains no edge from any vertex in Vl′ to any vertex in Vl. By definition of φSCC ,
for each l ∈ {1, . . . , K} and each i ∈ Vl, φSCC

i (⪰) = Vl.
Let ⪰′≡ (⪰′

S,⪰−S). We will prove that for each l ∈ {1, . . . , K} and each i ∈ Vl, φSCC
i (⪰′) =

Vl, which contradicts (b). First we consider VK .

Case K.1. Suppose that S∩VK = ∅. Graph Γ(⪰) contains no edge from VK to V1∪· · ·∪VK−1,
see Figure 6.

V1

Vl′

Vl

VK−1

VK

Figure 6: Case K.1 (S ∩ VK = ∅). Set S is the union of dotted areas in sets Vl, Vl′ , . . ., VK−1.

Since S ∩ VK = ∅, ⪰′
VK

= ⪰VK
. Thus, VK is an SCC coalition of graph Γ(⪰′). Then, for each

i ∈ VK , φSCC
i (⪰′) = VK .

Case K.2. Suppose that S ∩ VK ̸= ∅. It follows from Fact 2 that each agent i ∈ S ∩ VK is
together with all his friends in coalition φSCC

i (⪰), i.e.,

Fi ⊆ VK = φSCC
i (⪰). (6)

Then, from (a) and by Condition (F) of friend-oriented preferences, each agent i ∈ S ∩ VK in
coalition φSCC

i (⪰′) is still together with all his friends, i.e.,

Fi ⊆ φSCC
i (⪰′). (7)
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Next, we prove that for each agent i ∈ S ∩ VK , if agent i in coalition φSCC
i (⪰) is together

with an enemy e, then that enemy is also in his coalition φSCC
i (⪰′), i.e.,

Ei ∩ φSCC
i (⪰) ⊆ Ei ∩ φSCC

i (⪰′). (8)

Suppose, by contradiction, that some agent i ∈ S ∩VK in coalition φSCC
i (⪰) is together with

an enemy e who is not in his coalition φSCC
i (⪰′), i.e., e ∈ Ei ∩ (φSCC

i (⪰) \ φSCC
i (⪰′)). Since

φSCC
i (⪰) = VK , e ∈ VK . By definition of φSCC(⪰′),

agents i and e are in distinct SCC coalitions of Γ(⪰′). (9)

For each h ∈ VK , let V ′(h) denote the SCC coalition of Γ(⪰′) that contains agent h. By defini-
tion of V ′(h), V ′(h)∩VK ̸= ∅. Moreover, from i, e ∈ VK and (9) it follows that |{V ′(h)}h∈VK

| ≥ 2.
Since the condensation graph of Γ(⪰′) is acyclic, let V ′ ∈ {V ′(h)}h∈VK

be an SCC coalition with-
out an outgoing edge to any of the other SCC coalitions in {V ′(h)}h∈VK

\ {V ′}.14 Hence, there
is no edge from any vertex in V ′ to any vertex in [

⋃
h∈VK

V ′(h)] \ V ′. In particular, in Γ(⪰′),
there is no edge from any vertex in V ′ ∩ VK to any vertex in[ ⋃

h∈VK

(V ′(h) ∩ VK)

]
\ (V ′ ∩ VK) = VK \ (V ′ ∩ VK).

However, since
[V ′ ∩ VK ] ∪ [VK \ (V ′ ∩ VK)] = VK

is an SCC coalition of Γ(⪰), there is an edge from some vertex in V ′ ∩ VK to some vertex in
VK \ (V ′ ∩ VK).15 Let (i∗, j∗) be an edge from V ′ ∩ VK to VK \ (V ′ ∩ VK) in Γ(⪰), see left hand
side of Figure 7.

VK

j∗ i∗i∗i∗

⪰

V ′ ∩ VK

⪰′

j∗ i∗i∗i∗

S ∩ (V ′ ∩ VK)

Figure 7: Case K.2 (S ∩ VK ̸= ∅). Sets V ′ ∩ VK (at ⪰, left) and S ∩ (V ′ ∩ VK) (at ⪰′, right)
indicated as dotted areas.

14Note that since |{V ′(h)}h∈VK
| ≥ 2, |{V ′(h)}h∈VK

\ {V ′}| ≥ 1.
15If Ṽ is an SCC coalition of a graph, then for each T ⊊ Ṽ with T ̸= ∅, there is an edge from some vertex in

T to some vertex in Ṽ \ T .
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In particular,
j∗ ̸∈ V ′. (10)

Since (i∗, j∗) is an edge in Γ(⪰),
j∗ ∈ Fi∗ . (11)

Since there is no edge from any vertex in V ′ ∩ VK to any vertex in VK \ (V ′ ∩ VK) in Γ(⪰′),
(i∗, j∗) is not an edge in Γ(⪰′). Then, since the only agents that possibly change preferences
from ⪰ to ⪰′ are in S, we conclude that i∗ ∈ S. Thus,

i∗ ∈ S ∩ VK , (12)

see right hand side of Figure 7. From (7), (11), and (12), j∗ ∈ φSCC
i∗ (⪰′). However, since by

definition of V ′, φSCC
i∗ (⪰′) = V ′, we obtain j∗ ∈ V ′; contradicting (10). This proves (8).

Hence, through (6), (7), and (8), we have now shown that each agent i ∈ S ∩ VK in coalition
φSCC
i (⪰′) is still together with all his friends and together with the same enemies as before. Thus,

(a), together with Condition (E) of friend-oriented preferences, implies that for each i ∈ S ∩VK ,
φSCC
i (⪰′) = φSCC

i (⪰) = VK . Hence, for each i ∈ VK , φSCC
i (⪰′) = VK . In particular, VK is an

SCC coalition of Γ(⪰′).

Next, let l ∈ {1, . . . , K − 1}. Previous Cases K,K − 1, . . . , l + 1 imply that

VK , VK−1, . . . , Vl+1 are SCC coalitions of graph Γ(⪰′). (13)

Consider Vl.
Case l.1. Suppose that S ∩ Vl = ∅. Graph Γ(⪰) contains no edge from Vl to V1 ∪ · · · ∪ Vl−1.
Since S ∩ Vl = ∅, ⪰′

Vl
= ⪰Vl

. Thus, from (13), Vl is an SCC coalition of graph Γ(⪰′). Then, for
each i ∈ Vl, φSCC

i (⪰′) = Vl.

Case l.2. Suppose that S∩Vl ̸= ∅. It follows from Fact 2 that each agent i ∈ S∩Vl in coalition
φSCC
i (⪰) is together with all his friends that did not join previously considered SCC coalitions

Vl+1, . . . , VK , i.e.,

φSCC
i (⪰) ∩

⋃
l′∈{l+1,...,K}

(Fi ∩ Vl′) = ∅ and
⋃

l′∈{1,...,l}

(Fi ∩ Vl′) = Fi ∩ Vl ⊆ φSCC
i (⪰). (14)

Then, from (13), (a), and by Condition (F) of friend-oriented preferences, each agent i ∈ S ∩ Vl
in coalition φSCC

i (⪰′) is together with all his friends that did not join previously considered SCC
coalitions Vl+1, . . . , VK , i.e.,

φSCC
i (⪰′) ∩

⋃
l′∈{l+1,...,K}

(Fi ∩ Vl′) = ∅ and
⋃

l′∈{1,...,l}

(Fi ∩ Vl′) = Fi ∩ Vl ⊆ φSCC
i (⪰′). (15)
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Next, we prove that for each agent i ∈ S∩Vl, if agent i in coalition φSCC
i (⪰) is together with

an enemy e, then that enemy is also in his coalition φSCC
i (⪰′), i.e.,

Ei ∩ φSCC
i (⪰) ⊆ Ei ∩ φSCC

i (⪰′). (16)

Suppose, by contradiction, that some agent i ∈ S ∩ Vl in coalition φSCC
i (⪰) is together with

an enemy e who is not in his coalition φSCC
i (⪰′), i.e., e ∈ Ei ∩ (φSCC

i (⪰) \ φSCC
i (⪰′)). Since

φSCC
i (⪰) = Vl, e ∈ Vl. By definition of φSCC(⪰′),

agents i and e are in distinct SCC coalitions of Γ(⪰′). (17)

For each h ∈ Vl, let V ′(h) denote the SCC coalition of Γ(⪰′) that contains agent h. By defini-
tion of V ′(h), V ′(h)∩Vl ̸= ∅. Moreover, from i, e ∈ Vl and (17) it follows that |{V ′(h)}h∈Vl

| ≥ 2.
Since the condensation graph of Γ(⪰′) is acyclic, let V ′ ∈ {V ′(h)}h∈Vl

be an SCC coalition with-
out an outgoing edge to any of the other SCC coalitions in {V ′(h)}h∈Vl

\ {V ′}.16 Hence, there is
no edge from any vertex in V ′ to any vertex in [

⋃
h∈Vl

V ′(h)] \ V ′. In particular, in Γ(⪰′), there
is no edge from any vertex in V ′ ∩ Vl to any vertex in[⋃

h∈Vl

(V ′(h) ∩ Vl)

]
\ (V ′ ∩ Vl) = Vl \ (V ′ ∩ Vl).

However, since
[V ′ ∩ Vl] ∪ [Vl \ (V ′ ∩ Vl)] = Vl

is an SCC coalition of Γ(⪰), there is an edge from some vertex in V ′ ∩ Vl to some vertex in
Vl \ (V ′ ∩ Vl). Let (i∗, j∗) be an edge from V ′ ∩ Vl to Vl \ (V ′ ∩ Vl) in Γ(⪰). In particular,

j∗ ̸∈ V ′. (18)

Since (i∗, j∗) is an edge in Γ(⪰),
j∗ ∈ Fi∗ . (19)

Since there is no edge from any vertex in V ′ ∩ Vl to any vertex in Vl \ (V ′ ∩ Vl) in Γ(⪰′),
(i∗, j∗) is not an edge in Γ(⪰′). Then, since the only agents that possibly change preferences
from ⪰ to ⪰′ are in S, we conclude that i∗ ∈ S. Thus,

i∗ ∈ S ∩ Vl. (20)

From (15), (19), and (20), j∗ ∈ φSCC
i∗ (⪰′). However, since by definition of V ′, φSCC

i∗ (⪰′) = V ′,
we obtain j∗ ∈ V ′; contradicting (18). This proves (16).

16Note that since |{V ′(h)}h∈Vl
| ≥ 2, |{V ′(h)}h∈Vl

\ {V ′}| ≥ 1.
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Hence, through (14), (15), and (16), we have now shown that each agent i ∈ S ∩ Vl in
coalition φSCC

i (⪰′) is together with all his friends that did not join previously considered SCC
coalitions Vl+1, . . . , VK and together with the same enemies as before. Thus, (a), together with
Condition (E) of friend-oriented preferences, implies that for each i ∈ S ∩ Vl, φSCC

i (⪰′) =

φSCC
i (⪰) = Vl. Hence, for each i ∈ Vl, φSCC

i (⪰′) = Vl. In particular, Vl is an SCC coalition of
Γ(⪰′).

We have recursively shown that for each l ∈ {1, . . . , K} and each i ∈ Vl, φSCC
i (⪰′) = Vl.

Hence, for each i ∈ N , φSCC
i (⪰) = φSCC

i (⪰′), which contradicts (b). Therefore, φSCC is group
strategy-proof.

D Appendix: Proof of Lemma 2

Let R̃f be a rich subdomain of friend-oriented problems and mechanism φ be core stable and
strategy-proof. Let ⪰∈ R̃f and i ∈ N such that ⪰ is SCC-minimal with respect to an SCC
coalition V ≡ φSCC

i (⪰). Then, showing that φi(⪰) = V proves the SCC-minimality lemma
(Lemma 2).

Proof. We prove that φi(⪰) = V by induction on |V |, i.e., the number of agents in V .

Vertex-induction basis. Let |V | = 1, i.e., φSCC
i (⪰) = V = {i}. Since ⪰ is SCC-minimal with

respect to V , agent i at ⪰ has no friends. Thus, by core stability of φ, φi(⪰) = {i} = V .

Vertex-induction hypothesis. For each ⪰∗ ∈ R̃f and each i∗ ∈ N such that ⪰∗ is SCC-
minimal with respect to V ∗ ≡ φSCC

i∗ (⪰∗) with |V ∗| ≤ ℓ− 1, we have φi∗(⪰∗) = V ∗.

Since φ refines φSCC (Corollary 1), it follows from the friend-reduction lemma (Lemma 1)
that the vertex-induction hypothesis also applies without requiring SCC-minimality of ⪰∗ with
respect to V ∗.

Vertex-induction hypothesis*. For each ⪰∗ ∈ R̃f and each i∗ ∈ N with V ∗ ≡ φSCC
i∗ (⪰∗) and

|V ∗| ≤ ℓ− 1, we have φi∗(⪰∗) = V ∗.

Vertex-induction step. In this step we will prove that, when |V | = ℓ, then φi(⪰) = V .

The proof is by induction on the number of edges in the induced friendship graph Γ(⪰V ) =

(V,AV ) with AV = {(j, k) ∈ V × V : k ∈ F (⪰j)}. Note that by SCC-minimality of ⪰ with
respect to V , agents in V do not have any friends outside V . Formally, let ϵ(⪰V ) ≥ |V | = ℓ

denote the number of edges in Γ(⪰V ).17

17Note that, by definition, Γ(⪰V ) only contains edges that start from some vertex in V and end in some
other vertex in V . Since Γ(⪰V ) is strongly connected, each vertex in V has at least one outgoing edge. Hence,
ϵ(⪰V ) ≥ |V |. Note that ϵ(⪰V ) = |V | if Γ(⪰V ) consists of a simple cycle.
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Edge-induction basis. Let ϵ(⪰V ) = ℓ. Then, Γ(⪰V ) consists of a simple cycle.18 It follows
immediately from Proposition 2 that φi(⪰) = V .

Edge-induction hypothesis. Let ϵ ≥ ℓ + 1. Then, for each ⪰∗ ∈ R̃f and each i∗ ∈ N such
that ⪰∗ is SCC-minimal with respect to V ∗ ≡ φSCC

i∗ (⪰∗) with |V ∗| = ℓ and ϵ((⪰∗)V
∗
) ≤ ϵ − 1,

we have that φi∗(⪰∗) = V ∗.

Since φ refines φSCC (Corollary 1), it follows from the friend-reduction lemma (Lemma 1)
that the edge-induction hypothesis also applies without requiring SCC-minimality of ⪰∗ with
respect to V ∗.19

Edge-induction hypothesis*. Let ϵ ≥ ℓ + 1. Then, for each ⪰∗ ∈ R̃f and each i∗ ∈ N with
V ∗ ≡ φSCC

i∗ (⪰∗), |V ∗| = ℓ, and ϵ((⪰∗)V
∗
) ≤ ϵ− 1, we have that φi∗(⪰∗) = V ∗.

Edge-induction step. In this step we will prove that, when ϵ(⪰V ) = ϵ, then φi(⪰) = V .
Assume, by contradiction, that φi(⪰) ̸= V . Then, by Corollary 1,

φi(⪰) ⊊ V. (21)

We distinguish between two cases.

Case 1. Γ(⪰V ) contains two distinct simple cycles that have exactly one vertex in common,
i.e., there are simple cycles c1 = (v1, v2, . . . , vm, v1) and c2 = (w1, w2, . . . , wp, w1) with c1 ̸= c2

and |{v1, v2, . . . , vm} ∩ {w1, w2, . . . , wp}| = 1.
Denote the set of vertices in the two simple cycles c1 and c2 by

Z ≡ {v1, . . . , vm, w1, . . . , wp}.

Note that |Z| = m+p−1 ≤ ℓ and Z ⊆ V . If Z = V , then by SCC-minimality of ⪰ with respect
to V , Γ(⪰V ) is composed of cycles c1 and c2. Otherwise, Z ⊊ V and cycles c1 and c2 constitute
a strict subgraph of Γ(⪰V ) and additional vertices and edges are contained in Γ(⪰V ).

Without loss of generality we can assume that {i} = {v1, v2, . . . , vm} ∩ {w1, w2, . . . , wp} and
i = v1 = w1. Let j ≡ vm and b ≡ v2 be the predecessor and successor, respectively, of i in cycle
c1. Let k ≡ wp and a ≡ w2 be the predecessor and successor, respectively, of i in cycle c2. Then,
agent i has agents a and b as friends, i.e., {a, b} ⊆ F (⪰i). See Figure 8 for an illustration. Note

18Since Γ(⪰V ) is strongly connected, any two vertices in V are connected by a cycle. Hence, each of the ℓ
vertices in V has at least one incoming edge and at least one outgoing edge. Since there are only ℓ edges, each
of the ℓ vertices in V has in fact exactly one incoming edge; and similarly, each of the ℓ vertices in V has in fact
exactly one outgoing edge. But then there is a simple cycle c that traverses all vertices in V and Γ(⪰V ) consists
of c.

19Note that in particular the definition of the number of edges ϵ does not require SCC-minimality of ⪰∗ with
respect to V ∗. More precisely, ϵ((⪰∗)

V ∗
) in the edge-induction hypothesis* is the number of edges in Γ((⪰∗)

V ∗
),

i.e., ignoring any edges that leave V ∗ or enter V ∗.
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that a ̸= b,20 but b = j or a = k is possible.

v1 = i = w1

w3

wp−1

v3

vm−1

b = v2

j = vm

a = w2

k = wp

Figure 8: The set of vertices Z ⊆ V and the two simple cycles c1 and c2 which are part of
Γ(⪰V ). By SCC-minimality of ⪰ with respect to V , the displayed edges are the only edges
between vertices in Z at Γ(⪰V ).

Next, using the richness of R̃f , let

• ⪰′
k ∈ R̃

f
k such that F (⪰′

k) = (F (⪰k)\{i}) ∪ {b} [note that b ∈ F (⪰′
k)];

• ⪰j ∈ R̃f
j such that F (⪰j) = (F (⪰j)\{i}) ∪ {a} [note that a ∈ F (⪰j)];

• ⪰′
i ∈ R̃

f
i such that F (⪰′

i) = F (⪰i)\{b} [note that a ∈ F (⪰′
i)]; and

• ⪰i ∈ R̃f
i such that F (⪰i) = F (⪰i)\{a} [note that b ∈ F (⪰i)].

Using these four individual preferences together with preference profile ⪰, we introduce the
following four preference profiles in R̃f :

• ⪰′≡ (⪰′
k,⪰−k);

• ⪰ ≡ (⪰j,⪰−j);

• ⪰′′≡ (⪰′
i,⪰′

k,⪰−{i,k}); and

• ⪰ ≡ (⪰i,⪰j,⪰−{i,j}).

Figure 9 shows how we can move between the above defined profiles and ⪰ by changing one
preference relation at a time (the agent above the transition arrow ←→ is the one who changes
his preferences).

20If a = b, then, since a ̸= i and b ̸= i, we would have that c1 and c2 have more than one vertex in common,
which contradicts the assumption of Case 1.
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⪰′′ ⪰′ ⪰ ⪰ ⪰
i k j i

Figure 9: Unilateral preference transitions between five preference profiles.

Using Figure 8 and the definition of the four new preference profiles, one easily verifies that
Figures 10 and 11 depict all edges between vertices in Z at ⪰′ and ⪰ (Figure 10) as well as ⪰′′

and ⪰ (Figure 11).

j i a

kb

b i k

aj

⪰′ ⪰

Figure 10: The set of vertices Z and all edges between vertices in Z at Γ(⪰′) and Γ( ⪰ ).

j i a

kb

b i k

aj

⪰′′ ⪰

Figure 11: The set of vertices Z and all edges between vertices in Z at Γ(⪰′′) and Γ( ⪰ ).

Claim 1. V is an SCC coalition of Γ(⪰′′) and Γ(⪰). Moreover, φi(⪰′′) = V = φi(⪰).

Proof of Claim 1. (a) If Z = V , then the agents in V at each of the graphs Γ(⪰′′) and Γ(⪰)
form a simple cycle (see Figure 11). Moreover, by SCC-minimality of ⪰ with respect to V , none
of the vertices in V has an outgoing edge to a vertex outside V . Thus, V is an SCC coalition of
Γ(⪰′′) and Γ(⪰) and, by Proposition 2, φi(⪰′′) = V = φi(⪰).
(b) If Z ⊊ V , then Proposition 2 cannot be applied and it is in this part of the proof that we
will use the edge-induction hypothesis*.

We first prove that V is an SCC coalition of Γ(⪰′′). To see this, first recall that V is an
SCC coalition of Γ(⪰). Transforming Γ(⪰) into Γ(⪰′′) consists of the removal of the edges (i, b)
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and (k, i) and the addition of the edge (k, b). Since i, b, k ∈ Z = {v1, . . . , vm, w1, . . . , wp} and
since (w1, . . . , wp, v2, . . . , wm, v1) is a cycle in Γ(⪰′′) that contains all vertices in Z, it follows
that for each pair of vertices x, y ∈ V there is a cycle in Γ(⪰′′) that contains x and y. Since ⪰ is
SCC-minimal with respect to V , there are no edges that leave V in Γ(⪰). Then, no edges leave
V in Γ(⪰′′). Hence, V is an SCC coalition of Γ(⪰′′). Similar arguments show that V is an SCC
coalition of Γ(⪰).

Since ϵ((⪰′′)V ) = ϵ((⪰)
V
) = ϵ − 1, the edge-induction hypothesis* implies that φi(⪰′′) =

V = φi(⪰). ■

Claim 2. V is an SCC coalition of Γ(⪰′) and Γ(⪰). Moreover, φi(⪰′) = V = φi(⪰).

Proof of Claim 2. Since Γ(⪰′) is obtained from Γ(⪰′′) by adding the edge (i, b) and since i, b ∈ V ,
it follows from Claim 1 that V is an SCC coalition of Γ(⪰′). Similarly, V is an SCC coalition of
Γ(⪰).

Suppose, by contradiction, φi(⪰′) ̸= V . Then, since i ∈ V and V ∈ φSCC(⪰′), it follows
from Corollary 1 that φi(⪰′) ⊊ V .

Recall that ⪰′= (⪰i,⪰′
k,⪰−i,k) and ⪰′′ = (⪰′

i,⪰′
k,⪰−{i,k}). Hence, when moving from ⪰′

to ⪰′′, agent i has one less friend but his SCC coalition does not change. Then, by the friend-
reduction lemma (Lemma 1), φi(⪰′′) ⊊ V ; contradicting Claim 1. Thus, φi(⪰′) = V . Similar
arguments show that φi(⪰) = V . ■

Recall that, by (21), φi(⪰) ⊊ V = φSCC
i (⪰). Thus, φ(⪰) is a refinement of φSCC(⪰) such

that there are (non-empty) coalitions U1, . . . , UL ∈ φ(⪰) with L ≥ 2 and U1 ∪ · · · ∪ UL = V .
Let U ∈ {U1, . . . , UL} such that i ∈ U = φi(⪰).

Claim 3. a, b ̸∈ U = φi(⪰) ⊊ V .

Proof of Claim 3. Since U = φi(⪰) ⊊ V follows immediately, we only have to prove that a, b ̸∈
U .

Since k ∈ V , it follows from Claim 2 that φk(⪰′) = V . Since ⪰ is SCC-minimal with respect
to V , F (⪰k) ⊆ V . So, F (⪰k) ⊆ φk(⪰′).

Then, it follows from strategy-proofness of φ and Condition (F) of friend-oriented preferences
that F (⪰k) ⊆ φk(⪰) (because otherwise, agent k, at profile ⪰, could report ⪰′

k to move to
profile ⪰′, at which he is matched with all his friends). Since i ∈ F (⪰k), i ∈ φk(⪰). Then,
φk(⪰) = φi(⪰) = U . So, k ∈ U and F (⪰k) ⊆ φk(⪰) = U ⊊ V = φk(⪰′).

Suppose b ∈ φk(⪰). Then, since F (⪰′
k) = (F (⪰k)\{i}) ∪ {b} we obtain a contradiction with

strategy-proofness of φ and Condition (E) of friend-oriented preferences (because otherwise,
agent k, at profile ⪰′, could report ⪰k to move to profile ⪰, at which he is still matched with
all his friends but with fewer enemies). Hence, b ̸∈ φk(⪰).
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Using Claim 2 for profile ⪰′, we have shown that k ∈ U and b ̸∈ φk(⪰). Using Claim 2 for
profile ⪰, and applying similar arguments, yields j ∈ U and a ̸∈ φj(⪰). Thus, U = φk(⪰) =
φj(⪰) and a, b ̸∈ U . ■

Next, using the richness of R̃f , let

• ⪰̃i ∈ R̃f
i such that F (⪰̃i) = F (⪰i)\{a}

and define the following preference profile in R̃f :

• ⪰̃ ≡ (⪰̃i,⪰−i).

Furthermore, let Ṽ ≡ φSCC
i (⪰̃).

Claim 4. φi(⪰̃) = Ṽ .

Proof of Claim 4. Recall that i ∈ φSCC
i (⪰) = V and ⪰ is SCC-minimal with respect to V .

Hence, by removing the edge (i, a) to obtain Γ(⪰̃) from Γ(⪰), V is broken into multiple SCC
coalitions. In other words, V is not an SCC coalition of Γ(⪰̃). Moreover, at Γ(⪰̃), agents i
and a are in different SCC coalitions, i.e., φSCC

i (⪰̃) ̸= φSCC
a (⪰̃) (otherwise ⪰ would not be

SCC-minimal with respect to V because the edge (i, a) would be “redundant”). Hence, a ∈ V \Ṽ
and |Ṽ | < |V | = ℓ. Thus, the vertex-induction hypothesis* implies that φi(⪰̃) = Ṽ . ■

Claim 5. F (⪰̃i) ⊆ Ṽ .

Proof of Claim 5. Note that F (⪰i) = F (⪰̃i) ∪ {a}. We first show that for each friend f ∈
F (⪰i)\{a}, there is a cycle cf in Γ(⪰) that

(1) only contains vertices in V = φSCC
i (⪰);

(2) contains both i and f ; and

(3) does not contain the edge (i, a).

To see this, first note that there is a cycle in Γ(⪰) that satisfies (1) and (2) because V is an SCC
coalition in Γ(⪰) and F (⪰i) ⊆ V (because ⪰ is SCC-minimal with respect to V ). Next, each
such cycle must contain edge (i, f); otherwise ⪰ would not be SCC-minimal with respect to V
(the edge (i, f) would be “redundant”). But then each such cycle consists of (i, f) and a path
back to i. Cutting the path when it returns to i for the first time yields a cycle cf that satisfies
(1), (2), and (3).

Thus, for each friend f ∈ F (⪰i)\{a}, cf is a cycle in Γ(⪰̃). Hence, by definition of φSCC ,
F (⪰̃i) = F (⪰i)\{a} ⊆ φSCC

i (⪰̃) = Ṽ . ■
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By Claim 3, a, b ̸∈ φi(⪰), i.e., at profile ⪰, agent i is not matched with his friends a and
b. By Claims 4 and 5, F (⪰̃i) ⊆ φi(⪰̃). Since b ∈ F (⪰i) = F (⪰̃i) ∪ {a} and b ̸= a ̸∈ F (⪰̃i), it
follows that agent i by moving from ⪰ to ⪰̃ will become member of a coalition that includes all
his F (⪰i)–friends (in particular friend b), except possibly for friend a. Thus, by moving from ⪰
to ⪰̃, agent i is matched with a superset of friends, contradicting strategy-proofness of φ and
Condition (F) of friend-oriented preferences. This completes the proof of Case 1.

Fact 3. Let ⪰∗ ∈ R̃f and i∗ ∈ N . Let V ∗ ≡ φSCC
i∗ (⪰∗). From the friend-reduction lemma

(Lemma 1), the edge-induction hypothesis*, and Case 1, it follows that if Γ((⪰∗)V
∗
) contains

two distinct simple cycles that have exactly one vertex in common, |V ∗| = ℓ, and ϵ((⪰∗)V
∗
) ≤ ϵ,

then φi∗(⪰∗) = V ∗. ⋄

Case 2. Γ(⪰V ) does not contain two distinct simple cycles that have exactly one vertex in
common.

Since ϵ(⪰V ) = ϵ > ℓ = |V |, there is some agent in V whose outdegree in Γ(⪰V ) is larger
or equal to 2. Without loss of generality, we can assume that agent i has outdegree ≥ 2.
Thus, there are at least two other, distinct agents in V , say v2 and w2 with v2 ̸= w2, so that
(i, v2) and (i, w2) are edges in Γ(⪰V ). Since V is an SCC coalition, there is a simple cycle
c1 ≡ (v1, v2, . . . , vm, v1) with v1 = i. Moreover, w2 ̸∈ {v1, v2, . . . , vm}; otherwise ⪰ would not
be SCC-minimal with respect to V (because the edge (i, w2) would be “redundant”). Since V
is an SCC coalition, there exists a path from w2 to i in Γ(⪰V ) that, without loss of generality,
does not have repeated vertices. Let (w2, w3, . . . , wp, i) be such a path. It contains some vertex
in {v2, . . . , vm}; otherwise, c1 and (i, w2, w3, . . . , wp, i) would be two distinct simple cycles that
have exactly one vertex in common (namely i), which contradicts the assumption of Case 2. Let
ws+1 with s ≥ 1 be the first vertex in (w2, w3, . . . , wp) that is contained in {v2, . . . , vm}, say vr.
Let c2 ≡ (w1 = i, w2, . . . , ws, vr, vr+1, . . . , vm, v1 = i). Denote the set of vertices in the two simple
cycles c1 and c2 by

Z ≡ {v1, . . . , vm, w2, . . . , ws}.

Note that Z ⊆ V . If Z = V , then by SCC-minimality of ⪰ with respect to V , Γ(⪰V ) is composed
of cycles c1 and c2. Otherwise, Z ⊊ V and cycles c1 and c2 constitute a strict subgraph of Γ(⪰V )

and additional vertices and edges are contained in Γ(⪰V ).

Note that v2 and w2 are the successors of agent i in cycles c1 and c2, respectively. Let j ≡ vr

and let a ≡ vr−1 and b ≡ ws be the predecessors of agent j in cycles c1 and c2, respectively. See
Figure 12 for an illustration.
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i = v1 = w1

v2

vr = j

vr+1vm

w2

vr−1 = a

ws = b

Figure 12: The set of vertices Z ⊆ V and the two simple cycles c1 and c2 which have vertices
j, vr+1, . . . , vm, i in common and are part of Γ(⪰V ). By SCC-minimality of ⪰ with respect to V ,
the displayed edges are the only edges between vertices in Z at Γ(⪰V ).

Note that agents i, v2, and w2 are three distinct agents (agent i has outdegree ≥ 2). If v2 = j,
then we obtain a contradiction with ⪰ being SCC-minimal with respect to V (because the direct
edge (i, j) would be “redundant”). Hence, v2 ̸= j. Similarly it follows that w2 ̸= j. Furthermore,
i ̸= j (i = j is in Case 1). Thus, i, j, v2, w2 are four distinct agents. This implies that i, j, a, b
are four distinct agents as well.

Next, note that agent i is an enemy of agent a, i.e., i ∈ E(⪰a). To see this, suppose
i ̸∈ E(⪰a). Then, since a ̸= i, i ∈ F (⪰a), which yields a contradiction with ⪰ being SCC-
minimal with respect to V (because the edge (a, j) would be “redundant”). Hence, i ∈ E(⪰a).
Similarly it follows that agent i is an enemy of agent b, i.e., i ∈ E(⪰b).

Next, using i ∈ E(⪰a), i ∈ E(⪰b), and the richness of R̃f , let

• ⪰′
a ∈ R̃f

a such that F (⪰′
a) = (F (⪰a)\{j}) ∪ {i} and

• ⪰′′
b ∈ R̃

f
b such that F (⪰′′

b ) = (F (⪰b)\{j}) ∪ {i}.

Using these two preferences together with preference profile ⪰, we introduce the following two
preference profiles in R̃f :

• ⪰′≡ (⪰′
a,⪰−a) and

• ⪰′′≡ (⪰′′
b ,⪰−b).

Using Figure 12 and the definition of the two new preference profiles, one easily verifies that
Figure 13 depicts all edges between vertices in Z at ⪰′ and ⪰′′.
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i

v2
a

j

w2
b

i

v2
a

j

w2
b

⪰′ ⪰′′

Figure 13: The set of vertices Z and all edges between vertices in Z at Γ(⪰′) and Γ(⪰′′).

Since V is an SCC coalition of Γ(⪰), it follows that V is also an SCC coalition of both Γ(⪰′)

and Γ(⪰′′). Also, note that Γ((⪰′)V ) and Γ((⪰′′)V ) each contain two distinct simple cycles that
have vertex i in common (Case 1 applies). Furthermore, |V | = ℓ and ϵ((⪰′)V ) = ϵ = ϵ((⪰′′)V ).
Hence, by Fact 3, we know that φi(⪰′) = V = φi(⪰′′). Note that since a, b ∈ V , φa(⪰′) =

φb(⪰′) = V .
Since F (⪰a) ⊆ V (because ⪰ is SCC-minimal with respect to V ), it follows from φa(⪰′) = V ,

strategy-proofness of φ, and Condition (F) of friend-oriented preferences that F (⪰a) ⊆ φa(⪰)
(because otherwise, agent a, at profile ⪰, could report ⪰′

a to move to profile ⪰′, at which he is
matched with all his friends). It follows similarly that F (⪰b) ⊆ φb(⪰).

We now show that i ̸∈ φa(⪰). Suppose i ∈ φa(⪰). Then, since F (⪰′
a) = (F (⪰a)\{j}) ∪ {i}

and F (⪰a) ⊆ φa(⪰), F (⪰′
a) ⊆ φa(⪰). Recall that by (21), φa(⪰) ⊊ V = φa(⪰′), which

contradicts strategy-proofness of φ and Condition (E) of friend-oriented preferences (because
agent a, at profile ⪰′, can report ⪰a to move to profile ⪰, at which he is still matched with all
his friends but with fewer enemies). Hence, i ̸∈ φa(⪰). Similar arguments for agent b and profile
⪰′′ show that i ̸∈ φb(⪰).

Recall that, by (21), φi(⪰) ⊊ V = φSCC
i (⪰). Thus, φ(⪰) is a refinement of φSCC(⪰) such

that there are (non-empty) coalitions U1, . . . , UL ∈ φ(⪰) with L ≥ 2 and U1 ∪ · · · ∪ UL = V .
Let U ∈ {U1, . . . , UL} such that i ∈ U = φi(⪰). Then,

a, b ̸∈ φi(⪰) = U. (22)

Since j ∈ F (⪰a) ⊆ φa(⪰) and j ∈ F (⪰b) ⊆ φb(⪰), it follows that

a, b ∈ φj(⪰). (23)

Consider the path (v1 = i, v2, . . . , vr−1 = a, vr = j) in Γ(⪰); see Figure 14 for an illustration.
Recall that i ∈ U and a ̸∈ U . Let q, 1 ≤ q ≤ r− 2, be the smallest integer such that vq ∈ U and
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vq+1 ̸∈ U . Let v ≡ vq and v′ ≡ vq+1. Note that v′ ∈ F (⪰v) and v′ ̸∈ U = φi(⪰) = φv(⪰).

i = v1 v2 vq

= v

∈ U

vq+1

= v′

/∈ U

vr−1

= a

vr = j

Figure 14: Path (v1 = i, v2, . . . , vr−1 = a, vr = j) in Γ(⪰).

Using the richness of R̃f , let

• ⪰̃v ∈ R̃f
v such that

F (⪰̃v) =

 F (⪰v)\{v′} if v = i;

(F (⪰v)\{v′}) ∪ {i} if v ̸= i.

When v = i, ⪰̃v are preferences with one less friend (namely v′) than preferences ⪰v. When
v ̸= i, note that i ̸∈ F (⪰v); otherwise ⪰ would not be SCC-minimal with respect to V (because
the edge (v, i) would be “redundant”). In this case, ⪰̃v are preferences with the same number of
friends.

Using these preferences together with preference profile ⪰, we introduce the following pref-
erence profile in R̃f :

• ⪰̃ ≡ (⪰̃v,⪰−v).

Using Figure 12 and the definition of the new preference profiles, one easily verifies that
Figure 15 depicts all edges between vertices in Z at ⪰̃.

i = v

v′
a

j

w2
b

i

v v′
a

j

w2
b

⪰̃ when v = i ⪰̃ when v ̸= i

Figure 15: The set of vertices Z and all edges between vertices in Z at Γ(⪰̃).

Claim 6. φv(⪰̃) = φSCC
v (⪰̃) ⊊ V .
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Proof of Claim 6. Note that v′ ̸∈ φSCC
i (⪰̃); otherwise, ⪰ would not be SCC-minimal with re-

spect to V (because the edge (v, v′) would be “redundant”). Hence, φSCC
i (⪰̃) ⊊ V = φSCC

i (⪰)
and |φSCC

i (⪰̃)| < |φSCC
i (⪰)| = ℓ. Then, the vertex-induction hypothesis* implies that

φi(⪰̃) = φSCC
i (⪰̃). Since v ∈ φSCC

i (⪰̃), φv(⪰̃) = φSCC
v (⪰̃) ⊊ V . ■

Claim 7. i ∈ φv(⪰) ⊆ φv(⪰̃).

Proof of Claim 7. Note that i ∈ φv(⪰) follows immediately from v ∈ U = φi(⪰).
Suppose φv(⪰) ̸⊆ φv(⪰̃). Let y ∈ φv(⪰)\φv(⪰̃) ̸= ∅. Note that y ̸= v. Since v ∈ U = φi(⪰),

y ∈ φv(⪰) = U .
By Proposition 1, the graph Γ(⪰U) is strongly connected. Since v, y ∈ U and v′ ̸∈ U , there

is a cycle c̃ in Γ(⪰U) that contains v and y but not v′. So, cycle c̃ does not use the edge (v, v′).
Hence, c̃ is also a cycle in Γ(⪰̃). Hence, y ∈ φSCC

v (⪰̃). Then, from Claim 6, y ∈ φv(⪰̃), which
contradicts y ∈ φv(⪰)\φv(⪰̃). Hence, φv(⪰) ⊆ φv(⪰̃). ■

Claim 8. F (⪰v)\{v′} ⊆ φv(⪰̃) and F (⪰v)\{v′} ⊆ φv(⪰).

Proof of Claim 8. We first show that for each friend f ∈ F (⪰v)\{v′}, there is a cycle cf in Γ(⪰)
that

(1) only contains vertices in V = φSCC
i (⪰) = φSCC

v (⪰);

(2) contains both v and f ; and

(3) does not contain the edge (v, v′).

To see this, note first that there is a cycle in Γ(⪰) that satisfies (1) and (2) because V is an SCC
coalition in Γ(⪰) and F (⪰v) ⊆ V (because ⪰ is SCC-minimal with respect to V ). Next, each
such cycle must contain edge (v, f); otherwise ⪰ would not be SCC-minimal with respect to V
(the edge (v, f) would be “redundant”). But then each such cycle consists of (v, f) and a path
back to v. Cutting the path when it returns to v for the first time yields a cycle cf that satisfies
(1), (2), and (3).

For each friend f ∈ F (⪰v)\{v′}, cf is a cycle in Γ(⪰̃). Hence, by definition of φSCC ,
(F (⪰v)\{v′}) ⊆ φSCC

v (⪰̃).
From Claim 6, φSCC

v (⪰̃) = φv(⪰̃). Hence, (F (⪰v)\{v′}) ⊆ φv(⪰̃). Since v′ ̸∈ U = φv(⪰),
it follows from strategy-proofness of φ and Condition (F) of friend-oriented preferences that
(F (⪰v)\{v′}) ⊆ φv(⪰) (because otherwise, agent v, at profile ⪰, could report ⪰̃v to move to
profile ⪰̃, at which he is matched with all his friends, except friend v′ whom he neither is matched
with at φv(⪰)). ■

Claim 9. φv(⪰) = φv(⪰̃).
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Proof of Claim 9. From Claim 7, φv(⪰) ⊆ φv(⪰̃). Suppose φv(⪰) ⊊ φv(⪰̃). Then, Claim 8,
together with i ∈ φv(⪰) ⊆ φv(⪰̃) (Claim 7), yields a violation of strategy-proofness of φ and
Condition (E) of friend-oriented preferences (because agent v, at profile ⪰̃, can report ⪰v to
move to profile ⪰, at which he is still matched with all his ⪰̃v friends but with fewer enemies).
Hence, φv(⪰) = φv(⪰̃). ■

Recall that c2 = (w1 = i, w2, . . . , ws, vr = j, vr+1, . . . , vm, v1 = i) is a cycle in Γ(⪰V ). Since
1 ≤ q ≤ r− 2, c2 does not contain the edge (v, v′) = (vq, vq+1). Hence, c2 is a cycle in Γ(⪰̃). So,
j ∈ φSCC

i (⪰̃).
Next, note that either v = i or [v ̸= i and (v1 = i, v2, . . . , vq = v, v1 = i) is a cycle in Γ(⪰̃)].

Hence, v ∈ φSCC
i (⪰̃). Then, from j ∈ φSCC

i (⪰̃) it follows that j ∈ φSCC
v (⪰̃). Hence, from

Claim 6 (φSCC
v (⪰̃) = φv(⪰̃)) and Claim 9 (φv(⪰̃) = φv(⪰)), we conclude that j ∈ φv(⪰). So,

v ∈ φj(⪰).
By definition, v = vq ∈ U = φi(⪰). Since v ∈ φi(⪰) and v ∈ φj(⪰), it follows that

φi(⪰) = φj(⪰). From (23), we have that a, b ∈ φj(⪰). Hence, a, b ∈ φi(⪰), which contradicts
(22). This contradiction completes the proof.

E Appendix: φ¬C is Pareto-optimal and group strategy-
proof (Example 6)

Proof of Pareto-optimality of φ¬C. Suppose, by contradiction, that for some ⪰∈ R̃f ,
π¬C ≡ φ¬C(⪰) is Pareto dominated by a partition π. Then, there is some j ∈ N such that
πj ≻j π

¬C
j . The next claim (taking S = πj) shows that there is an enemy e ∈ Ej in agent j’s

coalition π¬C
j that is no longer present in his coalition πj at the Pareto dominating partition π.

Since the claim is applied a second time, it is formulated slightly more generally.
Let {N1, N2, N3} be the partition of N such that for each k = 1, 2, 3, Nk is the (possibly

empty) set of agents in N that are assigned at Step k to compute π¬C .

Claim. Let S ⊆ N be a non-empty coalition such that

for each i ∈ S, S ⪰i π
¬C
i and S ̸= π¬C

i . (24)

Then, S ∩ (N1 ∪ N2) = ∅. Moreover, for each j ∈ S ∩ N3 with S ≻j π
¬C
j , there is an enemy

e ∈ Ej such that e ∈ π¬C
j and e ̸∈ S.

Proof of the claim. We first show that S ∩ N1 = ∅. Suppose, by contradiction, that S ∩ N1 ̸=
∅. Since being alone is the most preferred coalition for each of the agents in N1, individual
rationality of φ¬C implies that for each i ∈ S ∩N1, π¬C

i = {i}. Hence, from (24), |S| = 1. Let
S = S ∩N1 = {i}. Then, S = π¬C

i , which contradicts (24). This proves that S ∩N1 = ∅.
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Next, we show that S∩N2 = ∅. Suppose, by contradiction, that S∩N2 ̸= ∅. Let i ∈ S∩N2.
From Fact A and (24) it follows that S ⪰i π

¬C
i = {i} and S ̸= π¬C

i . Thus, since agent i’s
preferences are friend-oriented, coalition S contains at least one friend of agent i, say ℓ ∈ Fi∩S.
Since agent i was removed at some iteration of Step 2 to compute π¬C , his friend ℓ was removed
earlier: either at Step 1 or at some earlier iteration of Step 2.21 In particular, by Fact A,
π¬C
ℓ = {ℓ}. Since ℓ ∈ S, (24) implies that S ⪰ℓ π

¬C
ℓ = {ℓ}. By i ∈ S, S ̸= {ℓ}. Thus, since

agent ℓ’s preferences are friend-oriented, coalition S contains at least one friend of agent ℓ, say
ℓ′ ∈ Fℓ ∩ S. Since agent ℓ was removed at (i) Step 1 or (ii) some iteration of Step 2, his friend
ℓ′ was removed at Step 1 (possible in both cases (i) and (ii)) or at an even earlier iteration of
Step 2 (only possible in case (ii)). Therefore, in either case, ℓ′ ̸= i. Since the number of agents is
finite, there is a finite number of iterations of Step 2. Hence, repeating the previous arguments
eventually identifies a “Step 1 agent” in coalition S; contradicting S ∩N1 = ∅. This proves that
S ∩N2 = ∅ and thus the first part of the claim (S ∩ (N1 ∪N2) = ∅).

To prove the second part of the claim, let j ∈ S ∩ N3 with S ≻j π
¬C
j . It follows from

Fact B that Step 3 to compute π¬C assigns agent j to a non-singleton coalition that contains
the non-empty set of all still present friends (but not any friends that were assigned at Steps 1
and 2), i.e.,

Fj ∩ (N1 ∪N2) ∩ π¬C
j = ∅ and Fj ∩N3 ⊆ π¬C

j .

Then, since S ≻j π
¬C
j and agent j has friend-oriented preferences,

(1) there is a friend f ∈ Fj ∩N1 such that f ∈ S; or

(2) there is a friend f ∈ Fj ∩N2 such that f ∈ S; or

(3) there is an enemy e ∈ Ej such that e ∈ π¬C
j and e ̸∈ S.

From the first part of the Claim, S ∩N1 = ∅ and S ∩N2 = ∅. Hence, (1) and (2) do not hold.
So, (3) holds. This completes the proof of the second part of the claim. ■

Applying the claim to S ≡ πj, it follows that there exists an enemy e ∈ Ej such that e ∈ π¬C
j

and e ̸∈ S.
Let T ≡ π¬C

j and T ′ ≡ π¬C
j ∩ S. Then, since e ̸∈ S, T ′ ⊊ T . Since j ∈ T ′, T ′ ̸= ∅. Since

e, j ∈ T , |T | > 1, so that T = π¬C
j is a coalition assigned at Step 3 to compute π¬C . From

Fact C, it follows that there is some agent ℓ′ ∈ T ′ and some agent in ℓ ∈ T\T ′ such that ℓ ∈ Fℓ′

or ℓ′ ∈ Fℓ. Note that since ℓ, ℓ′ ∈ T and T is assigned at Step 3 to compute π¬C , ℓ, ℓ′ ∈ N3.
Thus,

ℓ′ ∈ Fℓ ∩N3 or ℓ ∈ Fℓ′ ∩N3. (25)
21By definition of φ¬C , at the moment that an agent is removed at Step 2, none of his friends is present.
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Since ℓ′ ∈ T ′ ⊆ S = πj and ℓ ̸∈ S = πj, agents ℓ and ℓ′ are in different coalitions of partition π.
Hence,

ℓ′ ̸∈ πℓ and ℓ ̸∈ πℓ′ . (26)

From (25) and (26),
Fℓ ∩N3 ̸⊆ πℓ or Fℓ′ ∩N3 ̸⊆ πℓ′ . (27)

Since ℓ, ℓ′ ∈ T = π¬C
j , π¬C

ℓ = T = π¬C
ℓ′ . But then, since also πℓ ̸= πℓ′ , it follows that πℓ ̸= π¬C

ℓ

and πℓ′ ̸= π¬C
ℓ′ . Thus, from the claim (applied to coalitions πℓ and πℓ′),

πℓ ∩ (N1 ∪N2) = ∅ and πℓ′ ∩ (N1 ∪N2) = ∅.

In particular,
Fℓ ∩ πℓ ∩ (N1 ∪N2) = ∅ and Fℓ′ ∩ πℓ′ ∩ (N1 ∪N2) = ∅. (28)

It follows from Fact B that Step 3 to compute π¬C assigns agent ℓ (agent ℓ′, respectively) to a
non-singleton coalition that contains the non-empty set of all still present friends (but not any
friends that were assigned at Steps 1 and 2), i.e.,

Fℓ ∩N3 ⊆ π¬C
ℓ and Fℓ′ ∩N3 ⊆ π¬C

ℓ′ . (29)

Assume that in (27), Fℓ ∩ N3 ̸⊆ πℓ. Since N1, N2, and N3 partition the set of agents N ,
Fℓ ⊆ N1 ∪N2 ∪N3. By (27), πℓ does not contain all of ℓ’s friends in N3. Furthermore, by (28),
πℓ does not contain any of ℓ’s friends in N1∪N2. Next, by (29), π¬C

ℓ contains all of ℓ’s friends in
N3 and by definition of φ¬C , π¬C

ℓ does not contain any of ℓ’s friends in N1 ∪N2. Thus, the set
of friends assigned to ℓ at πℓ is a strict subset of the set of friends assigned to ℓ at π¬C

ℓ . Then,
Condition (F) of friend-orientated preferences implies that π¬C

ℓ ≻ℓ πℓ. If in (27), Fℓ′ ∩N3 ̸⊆ π′
ℓ,

then it similarly follows that π¬C
ℓ′ ≻ℓ′ πℓ′ . Hence,

π¬C
ℓ ≻ℓ πℓ or π¬C

ℓ′ ≻ℓ′ πℓ′ ;

contradicting that π¬C is Pareto dominated by partition π. This completes the proof of Pareto-
optimality of mechanism φ¬C .

Proof of group strategy-proofness of φ¬C. Suppose, by contradiction, that there exists a
problem ⪰∈ R̃f and a coalition S ⊆ N with preferences ⪰′

S ∈
∏

i∈S R̃
f
i such that

(g1). for each i ∈ S, φ¬C
i (⪰′

S,⪰−S) ⪰i φ
¬C
i (⪰) and

(g2). for some j ∈ S, φ¬C
j (⪰′

S,⪰−S) ≻j φ
¬C
j (⪰).

Let ⪰′≡ (⪰′
S,⪰−S). Let π ≡ φ¬C(⪰) and π′ ≡ φ¬C(⪰′).

We will show that φ¬C(⪰) = φ¬C(⪰′), which contradicts (g2) and hence completes the proof.
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Let {N1, N2, N3} be the partition of N such that for each k = 1, 2, 3, Nk is the (possibly
empty) set of agents in N that are assigned at Step k to compute π.

For each k = 1, 2, 3, let Sk ⊆ S be the agents in S that are assigned to a coalition at Step k
to compute π. Similarly, for each k = 1, 2, 3, let S̄k ⊆ N\S be the agents in N\S that are
assigned to a coalition at Step k to compute π. Note that for each k = 1, 2, 3, Nk = Sk ∪ S̄k.

We first show that

for each i ∈ N1 = S1 ∪ S̄1, π′
i = πi = {i}. (30)

By definition of N1, for each i ∈ N1, agent i’s set of friends at ⪰ is empty and πi = {i}. Hence,
for each agent i ∈ N1, the (unique) most preferred coalition at ⪰ is the singleton {i}. Thus, it
follows from (g1) that for each i ∈ S1, π′

i = {i}. For each i ∈ S̄1, ⪰′
i =⪰i, so that from Step 1

to compute π′, π′
i = {i}. This completes the proof of (30).

Next, we show that

for each i ∈ N2 = S2 ∪ S̄2, π′
i = πi = {i}. (31)

Suppose to the contrary that (31) does not hold. Then, at ⪰′, φ¬C assigns some agent in N2

to a non-singleton coalition. Step 2 to compute π consists of possibly multiple iterations where
exactly all agents in N2 are assigned (specifically, they become singleton coalitions, see Fact A).
Consider the first iteration t∗ of Step 2 to compute π where some agent j ∈ N2 is assigned to
the singleton coalition πj = {j} but π′

j ̸= {j}. By definition of φ¬C , each (true) friend h ∈ Fj

of agent j is “removed from problem ⪰,” i.e., not assigned to agent j, either (a) at Step 1 to
compute π or (b) at some iteration t < t∗ of Step 2 to compute π. In Case (a), h ∈ N1 and (30)
implies that π′

h = {h}. In Case (b), h ∈ N2 and, by definition of iteration t∗, π′
h = {h}. Hence,

π′
j ∩ Fj = ∅. Since π′

j ̸= {j}, φ¬C
j (⪰) = πj = {j} ≻j π

′
j = φ¬C

j (⪰′); which contradicts (g1) if
j ∈ S2 and individual rationality of π′ = φ¬C(⪰′) if j ∈ S̄2. This contradiction completes the
proof of (31).

Finally, we show that
for each i ∈ N3 = S3 ∪ S̄3, π′

i = πi. (32)

We first consider S3. It follows from Fact B that at π each agent i ∈ S3 is in a coalition that
contains all friends that are still present at Step 3 to compute π, i.e.,

for each i ∈ S3, ∅ ≠ Fi ∩N3 ⊆ πi. (33)

Then, from (30), (31), (g1), and by Condition (F) of friend-oriented preferences, at π′ each agent
i ∈ S3 is still in a coalition with all of these friends, i.e.,

for each i ∈ S3, ∅ ≠ Fi ∩N3 ⊆ π′
i. (34)
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In particular, for each i ∈ S3, since Fi∩N3 ̸= ∅, coalition π′
i contains at least one agent different

from i, which by Fact B implies that agent i is assigned to a (non-singleton) coalition at Step 3
to compute π′. Furthermore, for each i ∈ S3, (30) and (31) imply that πi and π′

i do not contain
any of i’s true friends in N1 ∪ N2 while (33) and (34) imply that both πi and π′

i contain all of
i’s true friends in N3.

Next, we consider S̄3. It follows from Fact B that at π each agent i ∈ S̄3 is in a coalition
that contains all friends that are still present at Step 3 to compute π, i.e.,

for each i ∈ S̄3, ∅ ≠ Fi ∩N3 ⊆ πi. (35)

Since S̄3 ⊆ N\S,
for each i ∈ S̄3, ⪰′

i =⪰i . (36)

From (30), (31), (34), (35), and (36), it follows that each agent i ∈ S̄3 is assigned to a coalition
at Step 3 to compute π′ and

for each i ∈ S̄3, ∅ ≠ Fi ∩N3 ⊆ π′
i. (37)

Note that for each i ∈ S̄3, (30) and (31) imply that πi and π′
i do not contain any of i’s true

friends in N1 ∪N2 while (35) and (37) imply that both πi and π′
i contain all of i’s true friends

in N3.
Equations (34) and (37) imply that at Step 3 to compute π′, each of the remaining agents

(which by (30) and (31) is the set N3 = S3 ∪ S̄3) is assigned to a coalition that contains his
coalition at π. In other words,

for each i ∈ N3 = S3 ∪ S̄3, πi ⊆ π′
i. (38)

Let i ∈ S3 and assume that πi ⊊ π′
i. As mentioned after equation (34), both πi and π′

i

contain all of i’s true friends in N3. Hence, by (38), the only difference between πi and π′
i is that

πi contains fewer enemies than π′
i and by Condition (E) of friend-oriented preferences, agent i

strictly prefers πi to π′
i; contradicting (g1). Hence,

for each agent i ∈ S3, πi = π′
i. (39)

Let i ∈ S̄3. If πi ∩S3 ̸= ∅, then (39) implies πi = π′
i. If πi ∩S3 = ∅, then (36) together with (39)

imply πi = π′
i. Hence,

for each agent i ∈ S̄3, πi = π′
i. (40)

Equations (39) and (40) complete the proof of (32).
From (30), (31), and (32), φ¬C(⪰) = π = π′ = φ¬C(⪰′), which contradicts (g2). This

completes the proof of group strategy-proofness of mechanism φ¬C .
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F Appendix: (Non-)existence of a [core stable and group
strategy-proof ] mechanism on subdomains of friend-
oriented preferences with neutrals

We already observed that the assumption of preferences being very rich in Theorem 4 is rather
strong because the proof only requires the existence of a problem where some agent has at least
two neutrals (Example 4). Formally, the proof of Theorem 4 implies the following proposition.

Proposition 6. Let R̃fn be a domain of friend-oriented problems with neutrals such that

(i) R̃fn ∩Rf is rich and

(ii) it contains a problem where some agent has at least two neutrals.

Then, no mechanism on R̃fn is core stable and group strategy-proof.

The following proposition shows that condition (ii) in Proposition 6 can be replaced by the
requirement that the domain of friend-oriented problems with neutrals contains a problem where
some agent has exactly one neutral and at least one friend.

Proposition 7. Let R̃fn be a domain of friend-oriented problems with neutrals such that

(i) R̃fn ∩Rf is rich and

(ii)’ it contains a problem where some agent has exactly one neutral and at least one friend.

Then, no mechanism on R̃fn is core stable and group strategy-proof.

Proof. We prove the proposition for N = {1, 2, 3}.22 Suppose that there is a core stable and
group strategy-proof mechanism φ on R̃fn.

From conditions (i) and (ii)’, it follows without loss of generality that there exists ⪰∈ R̃fn

such that F1 = {2}, E1 = {3}, N1 = ∅, F2 = 1, E2 = ∅, N2 = {3}, F3 = {1}, E3 = {2}, and
N3 = ∅. Then, from conditions (E), (F), and (N), the friend-oriented preferences with neutrals
are as follows,

⪰1 ⪰2 ⪰3

12 12 ∼ 123 13

123 2 ∼ 23 123

1 3

13 23

22To extend the proof to more agents, one can add agents with preferences where all other agents are enemies.
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One easily verifies that SC(⪰) = {{(12), (3)}} and C(⪰) = {{(12), (3)}, {(123)}}.
We show that for each possible candidate partition φ(⪰) ∈ C(⪰), there is a successful group

manipulation by some coalition.
Suppose that φ(⪰) = {(12), (3)}. Then, by condition (i), agent 2 can report preferences ⪰′

2

where agent 3 is his (unique) friend and agent 1 is his (unique) enemy so that for⪰′≡ (⪰1,⪰′
2,⪰3)

the unique core partition is {(123)}. Then, φ(⪰′) = {(123)} and (⪰′
2,⪰3) is a successful group

manipulation by coalition (23).
Suppose that φ(⪰) = {(123)}. Then, by condition (i), agent 2 can report preferences

⪰′′
2 where agent 1 is his (unique) friend and agent 3 is his (unique) enemy so that for
⪰′′≡ (⪰1,⪰′′

2,⪰3) the unique core partition is {(12), (3)}. Then, φ(⪰′′) = {(12), (3)} and
(⪰1,⪰′′

2) is a successful group manipulation by coalition (12).
We conclude that there is no core stable and group strategy-proof mechanism on R̃fn.

Next, we discuss (im)possibilities for a domain of friend-oriented problems with neutrals
such that neither condition (ii) nor condition (ii)’ holds. Let R̃fn be a domain of friend-oriented
problems with neutrals such that

(i) R̃fn ∩Rf is rich.

Assume that R̃fn contains some problem where some agent has a neutral, i.e., R̃fn ̸⊆ Rf .23

Suppose that neither condition (ii) of Proposition 6 nor condition (ii)’ of Proposition 7 holds.
Then, for each problem in R̃fn where some agent has a neutral, for each agent with a neutral,
the neutral is unique and all other agents are enemies. Formally,

(ii)” for each problem ⪰∈ R̃fn and for each agent i such that N(⪰i) ̸= ∅, |N(⪰i)| = 1 and
|E(⪰i)| = n− 2 (i.e., |F (⪰i)| = 0).

Now, a natural question to ask is:

Under conditions (i) and (ii)”, does there exist a core stable and group strategy-proof
mechanism?

As the following two examples show, the answer depends on the specific domain R̃fn.

Example 11 (Adding preferences with one neutral and no friends to the domain of
lexicographically friend-oriented preferences). Let N = {1, 2, 3}.24 Let R̃fn ≡

∏
i∈N R̃

fn
i

be a domain of problems such that

• for each agent i = 1, 2, 3, Rlf
i ⊆ R̃

fn
i and

23Note that if R̃fn ⊆ Rf , then Theorem 3 and Corollary 4 can be applied, i.e., φSCC is the unique core stable
and group strategy-proof mechanism on R̃fn.

24To extend the discussion to more agents, one can add agents with preferences where all other agents are
enemies.
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• ⪰∗
3 ∈ R̃

fn
3 ,

where ⪰∗
3 are preferences such that for agent 3, agent 2 is a neutral and agent 1 is an enemy

(i.e., agent 3 has no friends). Formally, we define ⪰∗ ∈ R̃fn such that

⪰∗
1 ⪰∗

2 ⪰∗
3

12 123 3 ∼ 23

123 23 13 ∼ 123

1 12

13 2

One easily verifies that SC(⪰∗) = {{(1), (23)}} and C(⪰∗) = {{(12), (3)}, {(1), (23)}}.
Note that since Rlf ⊆ R̃fn and since Rlf is rich, R̃fn ∩ Rf is rich. Hence, R̃fn satisfies (i)

and (ii)”. Suppose that there is a core stable and group strategy-proof mechanism φ on R̃fn.
Suppose that φ(⪰∗) = {(12), (3)}. Then, agents 2 and 3 can report preferences (⪰′

2,⪰′
3)

such that they are each other’s unique friend (and agent 1 is their common enemy). Then,
⪰′≡ (⪰∗

1,⪰′
2,⪰′

3) ∈ Rlf ⊆ R̃fn. Since the unique core partition at ⪰′ is {(1), (23)}, we have
that φ(⪰′) = {(1), (23)} and (⪰′

2,⪰′
3) is a successful group manipulation by coalition (23).

Suppose that φ(⪰∗) = {(1), (23)}. Then, agent 2 can report lexicographical preferences ⪰′′
2:

123, 12, 23, 2 (i.e., he switches coalitions (12) and (23) in ⪰∗
2). Then, ⪰′′≡ (⪰∗

1,⪰′′
2,⪰∗

3) ∈ R̃fn.
Since the unique core partition at ⪰′′ is {(12), (3)}, we have that φ(⪰′′) = {(12), (3)} and ⪰′′

2 is
a successful manipulation by agent 2.

Hence, there is no core stable and group strategy-proof mechanism φ on R̃fn. ⋄

Example 12 (Adding preferences with one neutral and no friends to the domain
of preferences that satisfy appreciation of friends). Let N = {1, 2, 3}.25 Let R̃fn ≡∏

i∈N R̃
fn
i be the domain of problems such that

• for each i = 1, 2, R̃fn
i = Raf

i and

• R̃fn
3 = Raf

3 ∪ {⪰∗
3},

where, as in Example 11, ⪰∗
3 are preferences such that for agent 3, agent 2 is a neutral and agent

1 is an enemy (i.e., agent 3 has no friends). Note that since Raf ⊆ R̃fn and since Raf is rich,
R̃fn ∩Rf is rich. Hence, R̃fn satisfies (i) and (ii)”.

Is φSCC a core stable and group strategy-proof mechanism on R̃fn? It follows immediately
from Theorem 2 that mechanism φSCC on R̃fn is core stable. However, φSCC is not group
strategy-proof on R̃fn. This can be easily seen as follows. Let ⪰∈ R̃fn such that agent 1
reports no friends, agent 2 reports that agent 3 is a friend, and agent 3 reports ⪰∗

3. Formally,
F (⪰1) = ∅, 3 ∈ F (⪰2), and ⪰3=⪰∗

3. Then, φSCC(⪰) = {(1), (2), (3)}. Similarly to Example 11,
25To extend the discussion to more agents, one can add agents with preferences where all other agents are

enemies.
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agents 2 and 3 can report preferences (⪰′
2,⪰′

3) such that they are each other’s unique friend
(and agent 1 is their common enemy). Then, ⪰′≡ (⪰1,⪰′

2,⪰′
3) ∈ R̃fn. Since the unique core

partition at ⪰′ is {(1), (23)}, we have that φSCC(⪰′) = {(1), (23)} and (⪰′
2,⪰′

3) is a successful
group manipulation by coalition (23). Hence, φSCC is not group strategy-proof on R̃fn.

Next, we show the existence of a mechanism that is core stable and group strategy-proof on
R̃fn. Specifically, we slightly adjust the SCC mechanism: if agent 1 reports no friends, agent 2
reports that agent 3 is a friend, and agent 3 reports ⪰∗

3, then we turn agent 3’s neutral (agent 2)
into a friend and apply the SCC mechanism; otherwise, the SCC mechanism is applied directly.
Formally, let φ∗ be the mechanism that is defined as follows. For each ⪰∈ R̃fn,

φ∗(⪰) ≡

φSCC(⪰1,⪰2, ⪰̄3) = {(1), (23)} if F (⪰1) = ∅, 3 ∈ F (⪰2), and ⪰3=⪰∗
3;

φSCC(⪰) otherwise,

where ⪰̄3 ∈ Raf
3 are preferences of agent 3 such that agent 2 is the unique friend and agent 1 is

the unique enemy.
We prove that φ∗ is core stable. Let ⪰∈ R̃fn. If F (⪰1) = ∅, 3 ∈ F (⪰2), and ⪰3=⪰∗

3, then
one easily verifies that φ∗(⪰) ∈ C(⪰). Otherwise, it follows from Theorem 2 that φ∗(⪰) ∈ C(⪰).
Hence, φ∗ is core stable on R̃fn.

Finally, we prove that φ∗ is group strategy-proof on R̃fn. Suppose that φ∗ is not group
strategy-proof. Then, there exists a problem R̃fn and a coalition S ⊆ N with preferences
⪰′

S ∈ R̃
fn
S such that

(a) for each i ∈ S, φ∗
i (⪰′

S,⪰−S) ⪰i φ
∗
i (⪰) and

(b) for some j ∈ S, φ∗
j(⪰′

S,⪰−S) ≻j φ
∗
j(⪰).

Case 1. F (⪰1) = ∅, 3 ∈ F (⪰2), and ⪰3=⪰∗
3.

Then, at φ∗(⪰) each agent is assigned to a most preferred coalition. This contradicts condition
(b).

Case 2. F (⪰1) ̸= ∅, 3 ̸∈ F (⪰2), or ⪰3 ̸=⪰∗
3.

Suppose F (⪰′
1) ̸= ∅, 3 ̸∈ F (⪰′

2), or ⪰′
3 ̸=⪰∗

3. Then, we have both φ∗(⪰) = φSCC(⪰) and
φ∗(⪰′) = φSCC(⪰′). Then, conditions (a) and (b) yield a contradiction with group strategy-
proofness of the SCC mechanism on R̃fn (Proposition 3).

Now suppose F (⪰′
1) = ∅, 3 ∈ F (⪰′

2), and ⪰′
3=⪰∗

3. Then, φ∗(⪰′) = {(1), (23)}.
We first prove that agents 2 and 3 are mutual friends at ⪰. Since ⪰′

3 ̸=⪰3, agent 3 changes
his strategy from ⪰ to ⪰′ and hence is member of coalition S. From condition (a) it follows that
(23) = φ∗

3(⪰′) ⪰3 φ
∗
3(⪰) ⪰3 (3). Then, since agent 3 has no neutrals at ⪰3, it follows that agent

2 is a friend of agent 3 at ⪰3.
Finally, we show that agent 3 is a friend of agent 2 at ⪰2. In fact, if agent 2 is member of

coalition S, then the same arguments as before can be applied. Now suppose agent 2 is not a
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member of S. Then, ⪰′
2=⪰2 and {(1), (23)} = φ∗(⪰′) = φSCC(⪰′

1,⪰2,⪰∗
3). Thus, {2, 3} is a

strongly connected component at (⪰′
1,⪰2,⪰∗

3). Hence, agent 3 is a friend of agent 2 at ⪰2.
From condition (b) it follows that φ∗(⪰′) ̸= φ∗(⪰). Since φ∗

2(⪰′) = (23), it follows that
φ∗
2(⪰) = (123), φ∗

2(⪰) = (12), or φ∗
2(⪰) = (2). However, since agents 2 and 3 are mutual friends

at ⪰ and φ∗(⪰) = φSCC(⪰), we have 3 ∈ φ∗
2(⪰). Thus, φ∗

2(⪰) ̸= (12) and φ∗
2(⪰) ̸= (2). Hence,

φ∗
2(⪰) = (123). Since φ∗(⪰) = φSCC(⪰), φSCC

1 (⪰) = (123). Hence, agent 1 has at least one
friend at ⪰1. Then, φ∗

1(⪰) = (123) ≻1 (1) = φ∗
1(⪰′). From condition (a) it follows that agent 1

is not member of coalition S. Then, ⪰′
1=⪰1. Since F (⪰1) ̸= ∅, F (⪰′

1) ̸= ∅, which contradicts
the assumption that F (⪰′

1) = ∅. This completes the proof of group strategy-proofness of φ∗ on
R̃fn.

We conclude that φ∗ is a core stable and group strategy-proof mechanism on R̃fn. ⋄

G Appendix: Proof of Proposition 5

We prove that on each subdomain R̃fn of friend-oriented preferences with neutrals, the SCC
mechanism is weakly group strategy-proof (Proposition 5).

Proof. Suppose that φSCC is not weakly group strategy-proof on some subdomain R̃fn of friend-
oriented preferences with neutrals. Then, there exist a problem ⪰∈ R̃fn, a coalition S ⊆ N ,
and ⪰′

S ∈
∏

j∈S R̃i such that for each j ∈ S,

φSCC
j (⪰′

S,⪰−S) ≻j φ
SCC
j (⪰). (41)

For each i ∈ N , let Fi and Ei denote the set of friends and enemies of agent i at ⪰. Let
G1, . . . , GK be the strongly connected components of graph Γ(⪰). For each 1 ≤ k ≤ K, let
Gk = (Vk, Ak). Based on the labeling of strongly connected components G1, . . . , GK according
to Fact 1, for all l, l′ ∈ {1, . . . , K} with l < l′, graph Γ(⪰) contains no edge from any vertex
in Vl′ to any vertex in Vl. By definition of φSCC , for each l ∈ {1, . . . , K} and each i ∈ Vl,
φSCC
i (⪰) = Vl.

We will complete the proof by showing that for each l ∈ {1, . . . , K}, S ∩ Vl = ∅, which
contradicts ∅ ≠ S = S ∩N = S ∩

⋃K
l=1 Vl. Let ⪰′≡ (⪰′

S,⪰−S). First we consider VK .

Case K. We will prove that S ∩ VK = ∅ and that for each i ∈ VK , φSCC
i (⪰′) = VK .

Let j ∈ S. Suppose to the contrary that j ∈ VK . We will obtain a contradiction with
assumption (41). It follows from Fact 2 that agent j in coalition φSCC

j (⪰) is together with all
his friends, i.e.,

Fj ⊆ VK = φSCC
j (⪰). (42)

Then, from (41) and by Condition (F) of friend-oriented preferences with neutrals, agent j in
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coalition φSCC
j (⪰′) is still together with all his friends, i.e.,

Fj ⊆ φSCC
j (⪰′). (43)

Next, we prove that if agent j in coalition φSCC
j (⪰) is together with an enemy e, then that

enemy is also in his coalition φSCC
j (⪰′), i.e.,

Ej ∩ φSCC
j (⪰) ⊆ Ej ∩ φSCC

j (⪰′). (44)

Suppose, by contradiction, that agent j in coalition φSCC
j (⪰) is together with an enemy e

who is not in his coalition φSCC
j (⪰′), i.e., e ∈ Ej ∩ (φSCC

j (⪰) \φSCC
j (⪰′)). Since φSCC

j (⪰) = VK ,
e ∈ VK . By definition of φSCC(⪰′),

agents j and e are in distinct SCC coalitions of Γ(⪰′). (45)

For each h ∈ VK , let V ′(h) denote the SCC coalition of Γ(⪰′) that contains agent h. By defini-
tion of V ′(h), V ′(h)∩VK ̸= ∅. Moreover, from j, e ∈ VK and (45) it follows that |{V ′(h)}h∈VK

| ≥
2. Since the condensation graph of Γ(⪰′) is acyclic, let V ′ ∈ {V ′(h)}h∈VK

be an SCC coalition
without an outgoing edge to any of the other SCC coalitions in {V ′(h)}h∈VK

\ {V ′}.26 Hence,
there is no edge from any vertex in V ′ to any vertex in [

⋃
h∈VK

V ′(h)] \ V ′. In particular, in
Γ(⪰′), there is no edge from any vertex in V ′ ∩ VK to any vertex in[ ⋃

h∈VK

(V ′(h) ∩ VK)

]
\ (V ′ ∩ VK) = VK \ (V ′ ∩ VK).

However, since
[V ′ ∩ VK ] ∪ [VK \ (V ′ ∩ VK)] = VK

is an SCC coalition of Γ(⪰), there is an edge from some vertex in V ′ ∩ VK to some vertex in
VK \ (V ′ ∩ VK).27 Let (i∗, j∗) be an edge from V ′ ∩ VK to VK \ (V ′ ∩ VK) in Γ(⪰).

In particular,
j∗ ̸∈ V ′. (46)

Since (i∗, j∗) is an edge in Γ(⪰),
j∗ ∈ Fi∗ . (47)

Since there is no edge from any vertex in V ′ ∩ VK to any vertex in VK \ (V ′ ∩ VK) in Γ(⪰′),
(i∗, j∗) is not an edge in Γ(⪰′). Then, since only agents in S change preferences from ⪰ to ⪰′,

26Note that since |{V ′(h)}h∈VK
| ≥ 2, |{V ′(h)}h∈VK

\ {V ′}| ≥ 1.
27If Ṽ is an SCC coalition of a graph, then for each T ⊊ Ṽ with T ̸= ∅, there is an edge from some vertex in

T to some vertex in Ṽ \ T .
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we conclude that
i∗ ∈ S ∩ VK .

Then, we can use arguments similar to those that established (42) and (43) to obtain Fi∗ ⊆
φSCC
i∗ (⪰′). From (47), j∗ ∈ φSCC

i∗ (⪰′). However, since by definition of V ′, φSCC
i∗ (⪰′) = V ′, we

obtain j∗ ∈ V ′; contradicting (46). This proves (44).
Hence, through (42), (43), and (44), we have now shown that in coalition φSCC

j (⪰′) agent
j is still together with all his friends and together with the same enemies as before. Thus,
Conditions (E) and (N) of friend-oriented preferences with neutrals imply that φSCC

j (⪰) ⪰j

φSCC
j (⪰′) which contradicts (41). We conclude that j ̸∈ VK . Hence, S ∩ VK = ∅.

Finally, note that graph Γ(⪰) contains no edge from VK to V1 ∪ · · · ∪ VK−1. Furthermore,
since S ∩ VK = ∅, ⪰′

VK
= ⪰VK

. Thus, VK is an SCC coalition of graph Γ(⪰′). Then, for each
i ∈ VK , φSCC

i (⪰′) = VK . This completes the proof of Case K.

Next, let l ∈ {1, . . . , K − 1}. Previous Cases K,K − 1, . . . , l + 1 imply that

S ∩
⋃

l′∈{l+1,...,K}

Vl′ = ∅ and Vl+1, Vl+2, . . . , VK are SCC coalitions of graph Γ(⪰′). (48)

Consider Vl.

Case l. We will prove that S ∩ Vl = ∅ and that for each i ∈ Vl, φSCC
i (⪰′) = Vl.

Let j ∈ S. Suppose to the contrary that j ∈ Vl. We will obtain a contradiction with
assumption (41). It follows from Fact 2 that agent j in coalition φSCC

j (⪰) is together with all
his friends that did not join previously considered SCC coalitions Vl+1, . . . , VK , i.e.,

φSCC
j (⪰) ∩

⋃
l′∈{l+1,...,K}

(Fj ∩ Vl′) = ∅ and
⋃

l′∈{1,...,l}

(Fj ∩ Vl′) = Fj ∩ Vl ⊆ φSCC
j (⪰). (49)

Then, from (48), (41), and by Condition (F) of friend-oriented preferences with neutrals, agent
j in coalition φSCC

j (⪰′) is together with all his friends that did not join previously considered
SCC coalitions Vl+1, . . . , VK , i.e.,

φSCC
j (⪰′) ∩

⋃
l′∈{l+1,...,K}

(Fj ∩ Vl′) = ∅ and
⋃

l′∈{1,...,l}

(Fj ∩ Vl′) = Fj ∩ Vl ⊆ φSCC
j (⪰′). (50)

Next, we prove that if agent j in coalition φSCC
j (⪰) is together with an enemy e, then that

enemy is also in his coalition φSCC
j (⪰′), i.e.,

Ej ∩ φSCC
j (⪰) ⊆ Ej ∩ φSCC

j (⪰′). (51)

Suppose, by contradiction, that agent j in coalition φSCC
j (⪰) is together with an enemy e

who is not in his coalition φSCC
j (⪰′), i.e., e ∈ Ej ∩ (φSCC

j (⪰) \ φSCC
j (⪰′)). Since φSCC

j (⪰) = Vl,
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e ∈ Vl. By definition of φSCC(⪰′),

agents j and e are in distinct SCC coalitions of Γ(⪰′). (52)

For each h ∈ Vl, let V ′(h) denote the SCC coalition of Γ(⪰′) that contains agent h. By defini-
tion of V ′(h), V ′(h)∩Vl ̸= ∅. Moreover, from j, e ∈ Vl and (52) it follows that |{V ′(h)}h∈Vl

| ≥ 2.
Since the condensation graph of Γ(⪰′) is acyclic, let V ′ ∈ {V ′(h)}h∈Vl

be an SCC coalition with-
out an outgoing edge to any of the other SCC coalitions in {V ′(h)}h∈Vl

\ {V ′}.28 Hence, there is
no edge from any vertex in V ′ to any vertex in [

⋃
h∈Vl

V ′(h)] \ V ′. In particular, in Γ(⪰′), there
is no edge from any vertex in V ′ ∩ Vl to any vertex in[⋃

h∈Vl

(V ′(h) ∩ Vl)

]
\ (V ′ ∩ Vl) = Vl \ (V ′ ∩ Vl).

However, since
[V ′ ∩ Vl] ∪ [Vl \ (V ′ ∩ Vl)] = Vl

is an SCC coalition of Γ(⪰), there is an edge from some vertex in V ′ ∩ Vl to some vertex in
Vl \ (V ′ ∩ Vl). Let (i∗, j∗) be an edge from V ′ ∩ Vl to Vl \ (V ′ ∩ Vl) in Γ(⪰). In particular,

j∗ ̸∈ V ′. (53)

Since (i∗, j∗) is an edge in Γ(⪰),
j∗ ∈ Fi∗ . (54)

Since there is no edge from any vertex in V ′ ∩ Vl to any vertex in Vl \ (V ′ ∩ Vl) in Γ(⪰′),
(i∗, j∗) is not an edge in Γ(⪰′). Then, since only agents in S change preferences from ⪰ to ⪰′,
we conclude that

i∗ ∈ S ∩ Vl. (55)

Then, we can use arguments similar to those that established (49) and (50) to obtain Fi∗ ∩ Vl ⊆
φSCC
i∗ (⪰′). From (54), j∗ ∈ φSCC

i∗ (⪰′). However, since by definition of V ′, φSCC
i∗ (⪰′) = V ′, we

obtain j∗ ∈ V ′; contradicting (53). This proves (51).
Hence, through (49), (50), and (51), we have now shown that in coalition φSCC

j (⪰′) agent j is
together with all his friends that did not join previously considered SCC coalitions Vl+1, . . . , VK

and together with the same enemies as before. Thus, Conditions (E) and (N) of friend-oriented
preferences with neutrals implies that φSCC

j (⪰) ⪰j φ
SCC
j (⪰′) which contradicts (41). We con-

clude that j ̸∈ Vl. Hence, S ∩ Vl = ∅.
Finally, note that graph Γ(⪰) contains no edge from Vl to V1∪ · · · ∪Vl−1. Furthermore, since

S ∩ Vl = ∅, ⪰′
Vl
= ⪰Vl

. Thus, from (48), Vl is an SCC coalition of graph Γ(⪰′). Then, for each

28Note that since |{V ′(h)}h∈Vl
| ≥ 2, |{V ′(h)}h∈Vl

\ {V ′}| ≥ 1.
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i ∈ Vl, φSCC
i (⪰′) = Vl. This completes the proof of Case l.

We have recursively shown that for each l ∈ {1, . . . , K}, S ∩ Vl = ∅, which contradicts
∅ ̸= S = S ∩ N = S ∩

⋃K
l=1 Vl. Therefore, φSCC is weakly group strategy-proof on each

subdomain R̃fn of friend-oriented preferences with neutrals.

H Appendix: ψ is core stable and weak group strategy-
proof (Example 7)

Let ⪰1 ∈ Rfn
1 such that F (⪰1) = N\{1}. Then, mechanism ψ is defined as follows. For each

⪰∈ Rfn, if F (⪰1)∪N(⪰1) = N\{1}, then ψ(⪰) ≡ φSCC(⪰1,⪰−1); otherwise, ψ(⪰) ≡ φSCC(⪰).

Proof of core stability of ψ. Let⪰∈ Rfn. If F (⪰1)∪N(⪰1) ̸= N\{1}, then by core stability
of φSCC (Theorem 2), ψ(⪰) = φSCC(⪰) ∈ C(⪰).

Now let F (⪰1)∪N(⪰1) = N\{1}. Then, ψ(⪰) = φSCC(⪰1,⪰−1). We show that ψ(⪰) is not
blocked by any coalition S at ⪰. Let S ⊆ N with S ̸= ∅. If S ⊆ N\{1}, then by core stability
of φSCC , S does not block ψ(⪰) at ⪰. Now let 1 ∈ S. Suppose to the contrary that S blocks
ψ(⪰) at ⪰. Then,

for each j ∈ S, S ≻j ψj(⪰). (56)

In particular, S ≻1 ψ1(⪰). Since F (⪰1) ∪ N(⪰1) = N\{1}, it follows that S ̸⊆ ψ1(⪰). Hence,
there exists some k ∈ N\{1} such that k ∈ S and k ̸∈ ψ1(⪰). Then, it is easy to see that there
exist lexicographically friend-oriented preferences ⪰̂1 ∈ Rlf

1 with F (⪰̂1) = N\{1} and

S ≻̂1 ψ1(⪰).29 (57)

Since F (⪰̂1) = N\{1} = F (⪰1), it follows that ψ(⪰) = φSCC(⪰1,⪰−1) = φSCC(⪰̂1,⪰−1). Thus,
from (56) it follows that

for each j ∈ S\{1}, S ≻j φ
SCC
j (⪰̂1,⪰−1);

and from (57) it follows that
S ≻̂1 φ

SCC
1 (⪰̂1,⪰−1).

Hence, S blocks φSCC(⪰̂1,⪰−1) at (⪰̂1,⪰−1), which contradicts core stability of φSCC . Hence,
ψ is core stable.

29Lexicographically friend-oriented preferences with these properties can be obtained by letting k be the highest
ranked individual agent.
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Proof of weak group strategy-proofness of ψ. Consider ⪰∈ Rfn, a coalition S ⊆ N , ⪰′
S

∈
∏

i∈SR
fn
i , and ⪰′≡ (⪰′

S,⪰−S). We will show that

for some j ∈ S, ψj(⪰) ⪰j ψj(⪰′). (58)

Suppose 1 ̸∈ S. Then, there exists ⪰1 ∈ Rfn
1 (possibly ⪰1 =⪰1) such that ψ(⪰) =

φSCC(⪰1,⪰−1) and ψ(⪰′) = φSCC(⪰1,⪰′
S,⪰−S∪{1}). Then, (58) follows from weak group

strategy-proofness of φSCC (Proposition 5).
Suppose 1 ∈ S. We distinguish among three cases.

Case 1. Suppose F (⪰1) ∪ N(⪰1) ̸= N\{1}. Then, ψ(⪰) = φSCC(⪰). By definition of ψ,
there exists ⪰′′

1 ∈ R
fn
1 (possibly ⪰′′

1=⪰′
1) such that ψ(⪰′) = φSCC(⪰′′

1,⪰′
S\{1},⪰−S). Then, (58)

follows from weak group strategy-proofness of φSCC .

Case 2. Suppose F (⪰1) ∪N(⪰1) = F (⪰′
1) ∪N(⪰′

1) = N\{1}. Then, ψ(⪰) = φSCC(⪰1,⪰−1)

and ψ(⪰′) = φSCC(⪰1,⪰′
S\{1},⪰−S). Thus, if S = {1}, then ψ(⪰) = ψ(⪰′) so that (58) holds

trivially. If S ̸= {1}, then from weak group strategy-proofness of φSCC , there exists k ∈ S\{1}
with ψk(⪰) ⪰k ψk(⪰′), and (58) follows.

Case 3. Suppose F (⪰1) ∪ N(⪰1) = N\{1} and F (⪰′
1) ∪ N(⪰′

1) ̸= N\{1}. Suppose to the
contrary that (58) does not hold. Then,

for each j ∈ S, ψj(⪰′) ≻j ψj(⪰). (59)

Then,
ψ(⪰) = φSCC(⪰1,⪰−1) and ψ(⪰′) = φSCC(⪰′

1,⪰′
S\{1},⪰−S). (60)

Since F (⪰1)∪N(⪰1) = N\{1} and ψ1(⪰′) ≻1 ψ1(⪰) (from (59)), it follows that ψ1(⪰′) ̸⊆ ψ1(⪰).
Hence, there exists some k ∈ N\{1} such that k ∈ ψ1(⪰′) and k ̸∈ ψ1(⪰). Then, there exist
lexicographically friend-oriented preferences ⪰̂1 ∈ Rlf

1 with F (⪰̂1) = N\{1} and

ψ1(⪰′) ≻̂1 ψ1(⪰).30 (61)

Since F (⪰̂1) = N\{1} = F (⪰1), it follows that ψ(⪰) = φSCC(⪰1,⪰−1) = φSCC(⪰̂1,⪰−1). Thus,
from (60) and (61),

φSCC
1 (⪰′

1,⪰′
S\{1},⪰−S) ≻̂1 φ

SCC
1 (⪰̂1,⪰−1).

Moreover, from (59) it follows that

for each j ∈ S\{1}, φSCC
j (⪰′

1,⪰′
S\{1},⪰−S) ≻j φ

SCC
j (⪰̂1,⪰−1).

30Lexicographically friend-oriented preferences with these properties can be obtained by letting k be the highest
ranked individual agent.
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Thus, coalition S strictly improves by misreporting (⪰′
1,⪰′

S\{1},⪰−S) at (⪰̂1,⪰−1), which con-
tradicts weak group strategy-proofness of φSCC . Hence, (58) does hold and ψ satisfies weak
group strategy-proofness.
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