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Abstract

This paper studies how cities’ industrial structure shapes their life and death.

Our analysis exploits the large heterogeneity in the early composition of English

and Welsh cities. We extract built-up clusters from early historical maps, identify

settlements at the onset of the nineteenth century, and isolate exogenous variation

in the nature of their rise during the transformation of the economy by the end of

the nineteenth century. We then estimate the causal impact of cities’ population

and industrial specialization on their later dynamics. We find that cities specializ-

ing in a small number of industries decline in the long run. We develop a dynamic

spatial model of cities to isolate the forces which govern their life and death. In-

tratemporally, the model captures the role of amenities, land, local productivity and

trade in explaining the distribution of economic activity across industries and cities.

Intertemporally, the model can disentangle the role of aggregate industry dynamics

from city-specific externalities. We find that the long-run dynamics of English and

Welsh cities is explained to a large extent by such dynamic externalities à la Jacobs.

Keywords: specialization; cities over time; quantitative economic geography.

JEL codes: F63, N93, O14, R13

∗Heblich: University of Toronto, CESifo, IfW Kiel, NBER; stephan.heblich@utoronto.ca;
Nagy: CREi, Universitat Pompeu Fabra and BSE; dnagy@crei.cat; Trew: University of Glasgow;
alex.trew@glasgow.ac.uk; Zylberberg: University of Bristol, CEPR; yanos.zylberberg@bristol.ac.uk. We
thank Fabian Eckert, Miklos Koren, Javier Quintana and Lin Tian, as well as participants in seminars and
conferences, e.g., at Boston University, Chicago Fed, CRED, CREI, CURE, FREIT, McGill, Philadelphia Fed,
Princeton, Richmond Fed, SED, UEA, Universitat Pompeu Fabra, University of Bologna, University of
Oslo, University of Southern California, University of Virginia and Warwick for very useful comments and
suggestions. We would also like to thank the Cambridge Group for the History of Population and Social
Structure, the British Library, Alexis Litvine and Gethin Rees for their help with data. We acknowledge
support of the ANR/ESRC/SSHRC, through the ORA grant ES/V013602/1 (MAPHIS: Mapping History).



Many of the great cities that drove the industrial transformation of the nineteenth

century have declined in the twentieth century. The formerly thriving mining towns

of south Wales, the rust belt cities in the northeastern United States, or the Ruhr valley

in Germany once employed generations of workers but now struggle to find renewed

economic success. Both the initial rise of those cities and the possible reversal of fortune

may be tied to the dynamics of their industries. First, there are external, macroeconomic
factors driving the aggregate dynamics of industries within a country, and the dynamics

of cities might be tied to the aggregate dynamics of industries in which they have a com-

parative advantage. Second, internal factors might also matter for how a city’s industrial

portfolio affects its long-run development. For instance, Glaeser et al. (1992) discuss the

role of dynamic, between-industry “Jacobs” externalities in driving city productivity—as

motivated by the seminal work of Jacobs (1969) describing the “Death and Life of Great

American Cities”.

This paper studies how cities’ local industrial structure shapes their life and death.

We rely on unique data characterizing the spatial distribution of industries in England

and Wales over the course of two centuries. More specifically, (i) we observe the set-

tlements of the early nineteenth century in historical maps, which allows us to isolate

clusters of built-up areas to delineate the locations of cities; (ii) we can follow their pop-

ulation and industrial composition using censuses (1801–1911) and a quasi-census based

on baptism records (1817) during the rapid industrialization of Britain in the nineteenth

century; and (iii) we can measure their long-run economic performance using an array

of contemporary high-quality data. This helps us characterize the death and life of Great

British cities.

Britain is an ideal setting for our analysis. Its economic geography was transformed

by the invention of new technologies in key sectors in the eighteenth century, which led

to rapid industrialization and urbanization in the nineteenth century after the conclusion

of wars against France. Rapid growth in technology and international trade, and the

resulting shift to large-scale, steam-powered industrial production, transformed both

the scale and location of industries that underpinned the sustained increase in aggregate

growth. Alongside this growth, the mostly small settlements of the early nineteenth

century gave way to a dense network of cities by the end of the nineteenth century. Some

cities specialized in a few industries; others were more diverse. The large heterogeneity

in population and the industrial composition of English and Welsh cities at that time

induced contrasting local dynamics during the twentieth century.

To estimate the causal impact of cities’ population and specialization on their long-

run dynamics, we need to isolate observable, exogenous variation in the nature of their

rise during the industrialization wave of the nineteenth century. We do so in two steps.
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In a first step, we collect unique historical county maps from around 1790–1820, develop

a machine-learning algorithm to identify built-up areas, and select urban settlements

as sufficiently large clusters of built-up areas. The output of this procedure is a set of

settlements—with their boundaries in the early nineteenth century—that have the poten-

tial to develop into cities by the late nineteenth century. In a second step, we construct

two exogenous predictors of a city’s economic structure at the end of the nineteenth

century: a predictor for city population; and a predictor for city specialization.

To predict late-nineteenth century city population, we borrow insights from the his-

torical literature and conjecture that the fragmentation of land ownership in the im-

mediate fringe of cities affected the pace at which they could grow in response to in-

dustrialization. The underlying argument is at the heart of the land assembly problem

(see, e.g., Eckart, 1985; Strange, 1995): a higher degree of land ownership fragmentation

in the city’s fringe makes negotiations to acquire additional land for urban use more

costly. To isolate exogenous variation in land fragmentation over cities’ initial fringe

(1790–1820), we exploit plausibly exogenous breaks in terrain characteristics including

elevation, ruggedness, persistent soil attributes and water bodies (controlling for the av-
erage ruggedness around city boundaries, see Saiz, 2010; Harari, 2020). We develop an

algorithm to predict the natural delineation of fields from multidimensional breaks in

these natural characteristics.1 One may think of this algorithm as identifying natural

fault lines between potential agricultural land parcels. Importantly, while the local char-

acteristics of city fringes at the beginning of the nineteenth century did influence city

growth in the following decades, they did not directly affect the later evolution of cities

during the twentieth century. This is because all cities grew out of this narrow ring and

were thus subject to another topography at their now expanded borders. To predict the

potential for city specialization, we rely on a measure of initial location advantages—the

industrial composition of early settlements in 1817—and create a “shift-share Herfindahl

index” that combines initial sectoral shares with the aggregate employment growth of

sectors. By the end of the nineteenth century, cities of England and Wales have markedly

different economic structures: some cities have grown large, while others have not; some

cities have developed a diverse industrial base, while others have specialized in a narrow

set of industries.

We find that cities which specialize in a small number of industries at the end of

the nineteenth century experience a decline in the long run. By contrast, we do not

find city size at that time to be a significant predictor of future growth—consistent with

1We validate the predictive power of this measure of land fragmentation by comparing it with the
actual observed concentration of ownership from land tax registers, Tithe records and later micro-census
records where land acreage is reported by landowners.
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Gibrat’s law. We subject these results to an array of robustness checks that include

controlling for agricultural productivity, agricultural mechanization, and differences in

institutions related to land ownership. Crucially, the results are also robust to controlling

for aggregate industry dynamics captured by the nationwide employment growth of

industries, both during the nineteenth and during the twentieth century.

To interpret these stylized facts, we develop a multi-sector dynamic spatial model and

study the mechanisms behind the evolution of industries across cities and over time. The

model features a finite set of cities that trade the products of a finite set of industries.

At any point in time, cities can differ in their sectoral productivities, their amenities,

their land supply elasticity, and their trade costs with other cities. Population mobility is

subject to frictions across cities. City population and industrial structure can influence

future productivity in a flexible way. In particular, the model allows for both dynamic

Marshall–Romer and Jacobs externalities, which have been discussed as important de-

terminants of city growth and industrial structure in the literature (see Carlino and Kerr,

2015, for a review).2

The model offers the following rationale behind (i) the distribution of economic ac-

tivity at the end of the nineteenth century and (ii) the subsequent dynamics. By the end

of the nineteenth century, trade costs are low, leading to a specialization of cities in their

comparative advantage sectors. This increased specialization is particularly pronounced

in the most centrally-located cities, which experience the largest gains from trade. The

availability of land (as captured by the city-specific land supply elasticity) disciplines the

degree to which population reallocates towards these cities. With dynamic externalities

and aggregate industry trends, this initial distribution of employment across industries

and cities leads to markedly different city dynamics across space. First, industries that

were successful earlier may turn into a period of decline over their life-cycle, e.g., be-

cause of an aggregate structural change of the economy (Ngai and Pissarides, 2007) or

because of international competition and exposure to trade (Pierce and Schott, 2016).

The model then shows how cities with a location advantage in floundering industries

appear to suffer from their initial specialization. Second, dynamic Jacobs externalities,

generating larger productivity gains in historically more diverse cities, might direct pop-

ulation and economic activity away from cities that were highly specialized in the past,

irrespective of aggregate trends in these areas of specialization. We illustrate the model’s

ability to disentangle these two mechanisms by simulating the model on a simple (linear)

geography. In the last part of the paper, we offer a strategy of taking the full model to

2Marshall–Romer externalities operate within industry, implying that cities specialized in a narrow
set of industries are the ones primarily benefiting from these externalities. By contrast, Jacobs externalities
operate across industries and hence favor cities with a diverse industrial base.
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the data to conduct this decomposition.

We contribute to several strands of existing research. First, we relate to the literature

on industries as drivers of urban growth (Duranton, 2007; Hanlon and Miscio, 2017), and

specifically to contributions that discuss the negative effects of specialization on city

development (Glaeser et al., 1992; Duranton and Puga, 2001; Faggio et al., 2017; Heblich et

al., 2019). One feature of our model, responsible for the negative effect of specialization,

is the crucial role played by externalities à la Jacobs (1969) as drivers of development

in the long run (Carlino and Kerr, 2015). The closest paper to ours in this literature is

Henderson et al. (1995), which discusses the life-cycle of industries and cities. In a more

specific application, Glaeser (2005) studies Boston over nearly four centuries and points

to the important role of human capital in reinventing Boston after periods of crisis and

decline. Alternative mechanisms behind the rise and fall of cities could be distortion in

the acquisition of human capital (see, e.g., Franck and Galor, 2021) or the life cycle of

industries (Henderson et al., 1995). The key advantage of our empirical strategy is that

it allows us to quantify the long-run causal impact of specialization on city outcomes,

while accounting for the life cycle of industries.

Second, we connect to a quantitative literature studying the dynamic evolution of

the spatial distribution of economic activity. The closest contributions in this literature

are Allen and Donaldson (2020), Berkes et al. (2021), Caliendo et al. (2019), Nagy (2023),

Eckert and Peters (2023) and Fajgelbaum and Redding (2021).3 Our main contribution to

this literature lies in proposing a multi-sector dynamic model with various dimensions of

heterogeneity (trade costs, sectoral productivities, amenities and land supply elasticities)

that can be taken to the data in a computationally tractable way.

Third, we contribute to the literature on the drivers of the industrial revolution (for a

survey, see Clark, 2014). Stokey (2001) showed the quantitative importance of trade for

structural transformation at a macroeconomic level, while Allen (2009) has argued that

the mechanism at work is via the impact of trade on relative prices. We suggest another

potential channel, i.e., that trade induced the growth of manufacturing in cities, accel-

erating the transition to large-scale, export-oriented growth in the nineteenth century.

Lastly, the focus on the first structural transformation and the second transition away

from industry in the twentieth century also links to the macroeconomic literature on

growth and structural transformation summarized in Herrendorf et al. (2014).

The remainder of the paper is organized as follows. Section 1 presents some historical

context. Section 2 describes our data sources, data construction, and empirical strategy.

3For a more comprehensive survey of the quantitative spatial literature, we refer the interested reader
to Redding and Rossi-Hansberg (2017), and to Nagy (2022) who focuses on the use of quantitative spatial
models to address historical questions.
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Section 3 establishes a series of empirical facts which motivate the structure of the model

(Section 4). Finally, Section 5 takes the model to the data to disentangle the mechanisms

behind the long-run dynamics of cities, and Section 6 concludes.

1 Context

This section provides a brief overview of Britain’s historical development over the past

three centuries, focusing on aggregate and more local factors that led to the sustained

increase in economic growth in the short- and also the long-run.

Figure 1. The industrial revolution in Britain.

1700–1750 1750–1800 1800–1850 1850–1900

1

2

G
ro

w
th

ra
te

(%
)

GDP per capita GDP

(a) GDP

1400 1500 1600 1700 1800 1900 2000

20

40

60

80

primary mining/energy secondary tertiary

(b) Employment share

1780 1800 1820 1840 1860 1880 1900

0.1

0.2

0.3

(c) Trade openness

1800 1820 1840 1860 1880 1900 1920

20

40

60

80

(d) Urbanization

Notes: in Panel (a), growth figures are from Broadberry et al. (2015). In Panel (b), employment shares are classified according to
the PST system described in Wrigley (2010). We report the available data for male adults in England and Wales (Shaw-Taylor and
Wrigley, 2014). In Panel (c), openness is defined as the sum of imports and exports as a share of GDP, using Hills et al. (2010) and
Broadberry et al. (2015). In Panel (d), urbanization is defined as the share of total population in cities over 5,000 (Bairoch and Goertz,
1986).
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The industrial revolution in Britain The industrial revolution can be broadly char-

acterized by four stylized facts: (a) the emergence of new technologies in key sectors

leading to sustained increases in growth rates of income per capita; (b) a declining share

of employment in agriculture; (c) the growth in domestic and international trade; and,

(d) an increasing share of the population living in cities. How each of these fit together,

and which are the causal elements in the context of the industrial revolution that first

emerged in England, is not completely settled (see, for example, the survey in Clark,

2014).

Figure 1 depicts trends of these four dimensions. While many of the key industrial

technologies emerged in the mid-eighteenth century, growth in per capita output ac-

celerated only in the early nineteenth century (panel a). A further puzzle is presented

by the share of employment in the secondary sector, which is high as early as 1710 and

grows only marginally until the mid-nineteenth century (panel b). Most striking are

the dramatic changes in openness, which accelerates after 1820 (panel c), and urbaniza-

tion, which grows by nearly fifty percentage points over the century (panel d). Over the

course of the nineteenth century, Britain grows from a rural economy to urbanization

levels that are quite similar to contemporary ones.

Two highly influential hypotheses on the causes of the industrial revolution are for-

mulated in Mokyr (2009) and Allen (2009). For Mokyr, the industrial revolution was

driven by the emergence of “attitudes and aptitudes” (Mokyr, 2021)—a respect for en-

trepreneurs and inventors, and the growth of useful human capital—that begat the en-

richment of society. Kelly et al. (2020) further makes the case that the distribution of

useful human capital—mechanical workers—across counties in England was key. Hanlon

(2021) corroborates this view with a specific focus on the professionalization of invention

through the emergence of engineers. Allen, in contrast, emphasizes the demand for new

technologies—high wages and low energy costs induced the capital-biased (and labor-

saving) technical change that drove the growth in the export-oriented industries (Allen,

2021). Those high wages arose as a result of globalization and the increasing external

demand for manufactured goods in which England had a comparative advantage.

The growing external demand for manufactured output caused a shift in modes of

production away from partly rural, low-scale, domestic-oriented and water-powered

production to urban, specialized, export-oriented and large-scale factories in which steam

power dominated.4 Stokey (2001) quantifies the potential role of trade, energy cost and

technical change, and finds that trade explains all the decline in agricultural production,

4As Crafts (1989) made clear, the majority of industrial employment in the early nineteenth century
industry was small-scale production for local markets. Growth in export-oriented industry was key to the
eventual rise in the average standard of living.
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over a quarter of the increase in manufacturing, and half of the increase in real wages (a

finding qualitatively supported by Harley and Crafts, 2000; Clark et al., 2014).5

As a summary, the early nineteenth century sees a huge transformation of the British

economy, with: a sharp increase in GDP per capita, a sharp increase in openness to

trade, (some) structural change, and mass urbanization. We shed additional light on the

patterns of urbanization in the next section.

Protoindustrialization, the urbanization of Britain and the rise of cities The

shift of industrial production from a rural to an urban setting has been studied exten-

sively, most notably with the hypothesis that rural “protoindustrialization” constituted

an important stage in the progress to more general industrialization (Mendels, 1972).

That such protoindustrialization caused the industrial revolution has not sustained later

analysis (Ogilvie, 2008), but the existence of extensive proto-industries suggests a way to

explain the high share of employment in the secondary sector seen in Figure 1 (panel b)

in spite of low urbanization levels. In between the low-scale artisanal home-production

of finished manufactures and the large-scale, city-centered factory production that typi-

fies late-industrialization are the extensive and well-organized rural industries, some of

which exported beyond the locality (Hudson, 2004; Goose, 2014). Early factory produc-

tion was also frequently rural, relying on water power and with rural workers housed by

entrepreneurs around production facilities (Trinder, 2000). While steam engines began

to proliferate in the eighteenth century (Nuvolari et al., 2011), the transition to steam

engines as the predominant motive power, and the “triumph of the factory system” that

went along with it, was not complete until the mid-nineteenth century (Musson, 1976).

One illustration of the swift concentration of manufacturing production over the

nineteenth century is Oldham, in the North-East of Manchester. At the onset of the

nineteenth century, Oldham does not exist yet as a town: there are numerous hamlets

where cottage industry takes place, including one called Oldham, and only a few textile

mills appear between 1790–1820. By the end of the nineteenth century, Oldham is a

factory town of about 140,000 inhabitants which produces a very significant share of the

whole country’s textile output (almost a quarter of cotton production in 1911). Figure 2

provides an illustration of such rapid urbanization.

The example of Oldham is emblematic of a widespread, but local, phenomenon whereby

smaller settlements would consolidate into towns, small towns would grow fast into

5There are other explanations for the change in demand for manufactured output. For instance,
Voigtländer and Voth (2013) considers a model in which urbanization and manufacturing demand re-
sult from non-homothetic preferences. In the presence of a non-monotonic relationship between income
and death rates, the demographic shock of the Black Death causes the economy to shift to a high income
(urbanized and industrialized) steady state which prefigured the industrial revolution in Europe.
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Figure 2. The urbanization of Oldham.

Notes: The underlying map is a county map of Lancashire around 1790–1810 where built-up is indicated by darker blue rectangles.
The lighter blue area shows the urban boundaries of Oldham around 1880–1900, as defined by areas of contiguous built-up.

cities with a high concentration of manufactured industries. This pattern is visible within

each county of England and Wales. There is, however, a more aggregate geography of

employment and growth that is worth discussing. As shown in panel (a) of Figure 3,

employment (or population) is highly concentrated in a few regions in the early nine-

teenth century: Lancashire, North Yorkshire, the West Midlands, Northumberland, Lon-

don and a few isolated cities (e.g., Bristol, Plymouth). The geography of employment

growth closely follows that of initial employment, with a few exceptions (panel (b) of

Figure 3). While Lancashire, North Yorkshire, the West Midlands, Northumberland and

London grow substantially into large, densely populated regions, the South of Wales also

grow significantly (due to a location advantage and proximity to coal).6 In other regions,

growth is more unevenly distributed with a few cities concentrating most of the (new)

workforce.

Settlements of the early nineteenth century give way to a dense network of cities by

the end of the nineteenth century. We shed some light on the nature of these growth

patterns in Figure 4. In panel (a), we show the distribution of employment across cities in

1817 and in 1881 and we see that there is a massive population increase: cities grow by a

factor of 3 on average. In panel (b), we show the distribution of specialization, as captured

by a 2-digit industry-based Herfindahl index of employment. Cities are mechanically

6Shaw-Taylor and Wrigley (2014) suggested that the 19th century shift of manufacturing production
into towns outside of London was key to the success in the 19th century.
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Figure 3. The geography of employment and growth in Britain.

(a) Employment density (1817) (b) Employment growth (1817–1881)

Notes: These two maps represent employment density in 1817 (panel a, as computed from a quasi-census of baptism records con-
ducted between 1813–1820) and employment growth between 1817–1881 (panel b, where population in 1881 is calculated using
micro-census records). The geographic unit is a parish (see Section 2).

more specialized than the overall economy, but there exists large variation in the degree

to which they specialize. We will see later that this variation is tied to the portfolio of

location advantages that they hold across the different product varieties. In particular,

the trade shock induced a specialization in products where cities hold a comparative

advantage, especially so in cities that are most exposed to (internal and external) trade.

Land supply and the local geography of urbanization So far, we have discussed

the determinants of urbanization and growth without discussing possible geographic

constraints. Industrialization led to rising demand for space within, then around, cities:

“Land inside the older towns was acquiring a scarcity value [...] Open spaces inside the

older towns vanished rapidly...” (Hoskins, 1988, p.185); “Manufactures ran up their mills,

factories and works on the edge of existing towns[...]” (Hoskins, 1988, p.183).

While factory production using new technologies concentrated in growing cities (see,

e.g., Trew, 2014) and met the accelerating external demand after the 1820s, the interaction

between the growing demand for scale that resulted from trade, and the spatial limits on
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Figure 4. Specialization and growth in cities.

(a) Employment (b) Specialization

Notes: These two figures represent the distribution of employment (panel a) and specialization (panel b) across potential cities of
England and Wales (see Section 2 for a definition of these potential cities and their boundaries). The distributions are shown in 1817
(blue) and in 1881 (orange). Specialization is captured by a Herfindahl index calculated as the difference between the city-specific
Herfindahl index and a national one:

ℎ̃𝑐 = ∑

𝑖

𝑠
2
𝑖𝑐 −∑

𝑖

𝑠
2
𝑖

where 𝑠𝑖𝑐 is the employment share in city 𝑐 and industry 𝑖 and 𝑠𝑖 is the nationwide employment share in industry 𝑖. Industries are
captured at the 2-digit level.

industrial expansion was key (as Hennessy, 2006, p.103, suggests),

When size brought economies of scale with the growth of world markets ...

a steelworks high up in a south Wales valley or a shipyard crammed into the

narrow banks of the lower Tyne experienced increasing disadvantage. Take

the great plant at Dowlais ... Tucked between the hills above Merthyr Tydfil

almost into the uplands of the Brecon Beacons, its site was hopeless...

Such constraints could be geographic or could be the remnants of historical property

rights over land that persisted (Denman, 1958; Hoskins, 1988; Neeson, 1996; Hudson,

2004). In particular, land ownership patterns at the city’s fringe shaped the potential

for urban expansion. In discussing the constraints on attaining scale in the smelting of

iron in South Wales, Trinder (2000) notes that “[p]atterns of housing were dispersed,

following patterns set by pre-existing fields and property boundaries rather than those

of order and convenience” (p.820).

2 Data

This paper combines data on the evolving geography of England and Wales, the bound-

aries of cities and the characteristics of their fringe, the transportation network, with

about 200 years of data on city composition. In this section, we present our data sources
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and describe data construction, most notably, the identification of early settlements and

of land fragmentation within their fringe.

2.1 Data sources

Historical county maps of England and Wales In the early nineteenth century, the

population of Britain mostly lives in rural settlements or small towns. This allows for

a significant overhaul of the urban network during the century, with the rise of new

cities sprawling around existing hamlets. This also represents a challenge: how can we

identify consistent boundaries of potential cities from these early settlements?

Our approach exploits early county maps, drawn between 1790–1820 and covering

the whole territory of England and Wales, which we digitize, geo-reference and process

through computer vision. We provide an example of these county maps in Figure 5 cen-

tered around Wigton (Cumberland) and York (Yorkshire). Identifying objects of interest

on these maps is challenging (see, e.g., Combes et al., 2022, for a discussion of map dig-

itization through machine learning). In what follows, we briefly describe our approach

to identifying (a) built-up, (b) forests and uncultivated lands, (c) textual information and

(d) roads of different size/use.

Figure 5. A rich set of historical county maps (1790–1820) displaying built-up.

(a) Wigton (Cumberland) (b) York (Yorkshire)
Note: This Figure displays the surroundings of Wigton in Cumberland (panel a) and York in Yorkshire (panel b).

To identify land use and textual information, we use a standard image segmentation

algorithm, called “Quickshift”, which groups pixels by their proximity in actual space

(i.e., along the physical distance) and in the space as defined by colors. The procedure

is disciplined by three parameters: a scale parameter (calibrated on the size of the min-

imal object of interest, e.g., one farm), a maximum physical distance which disciplines

the extent to which the algorithm looks for neighbors, and a relative weight between

distance in the multi-bands-space and physical distance. This first step produces a set of

superpixels with different shapes and colors. The second step consists in characterizing
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the color, texture and shape of these superpixels with a set of variables: average R/G/B

intensities, within-standard deviation in R/G/B intensities (e.g., to capture stripes), the

compactness, area, perimeter and complexity of the superpixel. The third step consists

in producing a training sample, i.e., a small set of labeled superpixels (in a few categories:

text, forest, sparse trees, built-up, etc.). The fourth step trains a random forest algorithm

on the few labeled superpixels and predicts land use for all other non-labeled superpixels

(Combes et al., 2022). Our procedure leads to a very precise classification of built-up (our

main object of interest), with a precision of about 0.95.

To identify roads, we rely on a less standard approach: thin, non-straight lines are

notoriously difficult to detect using computer vision. Our approach will rely on the

nature of roads: they are black lines on the map, but, in practice, they are designed to

best facilitate transportation across space. In that respect, they markedly differ from all

other black lines on the maps, e.g., the text or gradient lines in mountainous terrain.7

We exploit this discriminatory feature as follows: (i) we create a “stylized travel cost”

matrix for each map, penalizing travel outside of darker, black pixels (see Appendix B.1);

(ii) we draw many random departure points from black pixels on the image and compute

the least cost paths to each other pixels of the image for each draw; (iii) for each draw,

we then randomize many arrival points and start drawing the actual minimum paths

between departure and arrival pixels. The resulting picture shows the intensity to which

each pixel is used along the many, different travel routes. As shown in Appendix B.1,

this algorithm does not only identify roads, but also their respective importance within

the network.

Census of England and Wales The main data source is the Census of England and

Wales, which provides a unique characterization of population and industrial composi-

tion at the level of about 11,500 parishes over the course of two centuries (1801–1911,

1971–2011). The census provides population counts from 1801 onward, but a precise

decomposition of the labor force across occupations only after 1851 (when the micro-

census records become available). We thus rely on a quasi-census based on (adult male)

Anglican baptism records collected between 1813 and 1820 (referred to below as 1817)

in order to retrieve consistent industrial composition at the parish level before the time

of rapid industrialization (Shaw-Taylor and Wrigley, 2014). One issue with census data

is that the lowest administrative units—the parishes—are regularly redefined, merged or

split over the course of the nineteenth century. We thus apply an “envelope” algorithm

which considers the union of the different parishes covering the same points over time

7Rivers and county boundaries may satisfy similar properties as roads. We can however clean these
false positives using other sources of data cataloging them separately.
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(see Appendix B.1).

Geography and land ownership To characterize the immediate neighborhood of

cities and the local, temporary drivers of urban land supply, we gather high-quality raster

maps at a disaggregated level: elevation (OpenLandMap, 30m resolution); soil organic

carbon content (OpenLandMap, 250m resolution); soil bulk density (Soil bulk density,

250m resolution); a detailed soil classification (National Soil Resources Institute); and a

dataset of all rivers and smaller streams in England and Wales.

A crucial component of the empirical analysis consists in the construction of an ex-

ogenous measure of land fragmentation based on topography and soil characteristics

(i.e., natural breaks between possible agricultural land parcels). One channel through

which exogenous land fragmentation might put a strain on city growth is that it might

contribute to fragmented land ownership and thus make the land harder to assemble. To

validate this channel, we collect actual measures of land ownership fragmentation at the

beginning of the nineteenth century (from land tax registers) and in 1851, 1861 and 1881

from micro-census records where land acreage is reported by landowners. Inferring land

ownership fragmentation from micro-census records requires a systematic text analysis

as the information has not been coded by the I-CeM project.

Transportation We complement the previous data on early settlements, population,

occupation and geography with the transportation infrastructure (main roads, navigable

waterways, train lines and train stations), as provided by the Cambridge Group for the

History of Population and Social Structure. This dynamic characterization of transporta-

tion allows us to measure access to resources through the transportation network and

trading costs across different cities (see Appendix B.1).

2.2 Data construction

Our empirical strategy exploits two sources of variation to predict late-nineteenth cen-

tury population and industrial specialization. We first describe how we construct a pre-

dictor 𝜁𝑐 for the population of city 𝑐 that is exogenous to later city dynamics. The idea

is to identify (i) the historical boundaries of an urban settlement, 𝑐, before the time of

rapid industrialization, and (ii) land fragmentation at its immediate fringe as induced by

local gradients in soil conditions.

Urban settlements at the onset of rapid industrialization In Section 2.1, we de-

scribe how we identify built-up areas around 1790–1820, at the onset of rapid industri-

alization. At the time, however, isolated built-up is a frequent occurrence and there are
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many very small settlements (see, for instance, the surroundings of Oldham in Figure 2).

The settlements that would consolidate into towns and grow into cities are large, dense

or spread across contiguous hamlets. To identify future cities and their early bound-

aries, we develop a procedure to select urban settlements as sufficiently large clusters of

built-up areas.

Figure 6. Clustering procedure.

(a) Raw map (b) Detecting built-up

(c) Clusters and city boundaries (d) Predicted sprawl

Note: the blue rectangles in panels b and c are built-up areas detected by our algorithm (see Section B.1); the blue area in panel c
is the outcome of our clustering algorithm adapting De Bellefon et al. (2021). In panel (d), the lighter blue area is predicted urban
sprawl based on average urban sprawl across all towns.

Figure 6 illustrates our approach on the county map of Lancashire drawn by G.

Hennet—we display this raw map around the city of Blackburn in panel (a). We first

detect built-up with the previous algorithm (panel b). We then follow the procedure de-

veloped in De Bellefon et al. (2021) to identify nucleus of high density and contiguous

areas of excess building density. We illustrate the outcome of this procedure in panel (c)
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of Figure 6.8 We then construct predicted boundaries for these cities at the end of the

nineteenth century by assuming that towns and cities all grow at the same proportional

rate across the country and do so homogeneously in any direction (panel d). In prac-

tice, towns and cities all expand to some degree, but this expansion is not homogeneous

across all directions and not homogenous across cities. We discuss next how we predict

the extent of such expansion, and therefore cities’ late-nineteenth century population,

with land ownership fragmentation.

Land fragmentation around city boundaries Land ownership fragmentation across

different parts of England and Wales was not only instrumental to the development of

agriculture, as illustrated by the effect of enclosures (Neeson, 1996), but it was also crucial

in disciplining city growth during the era of rapid industrialization.

Indeed, when land markets are not perfectly competitive and land parcels and their

rights of use cannot be split arbitrarily, developing land at the fringe of cities may be a

challenge. For instance, a textile mill requires a large parcel of flat land to construct a

factory, but also possible access to water sources. When a suitable location spans multi-

ple land parcels, the possible buyer needs to engage in multilateral bargaining in which

the value of the marginal parcel increases as the buyer acquires rights to use for other

parcels. The number of different parties then matters. This issue is a “standard” hold-up

problem, which has been labeled as the land assembly problem in this specific context

(see, e.g., Eckart, 1985; Strange, 1995). The consequences for city growth are straightfor-

ward: high land fragmentation at the fringe of the city makes negotiations to develop the

land for urban use costly. As a result, cities with fragmented ownership in their immedi-

ate fringe have a less elastic land supply in the short run and may be worse at responding

to sudden bursts in land demand. The rapid industrialization induced by technological

progress and a surge in external trade in the mid-19th century, as evidenced in Section 1,

is one such shock.

A major issue with land ownership fragmentation in the immediate fringe of cities is

that it may reflect past and future city dynamics. The relationship between land owner-

ship fragmentation and city growth may thus be “contaminated” by omitted variation—

the relative productivity of land between urban and rural use inducing different struc-

ture of ownership—but also reverse causality—land owners less willing to own large

plots around cities most likely to expand. For these reasons, we would like to consider

a measure of land ownership fragmentation with the following characteristics: (i) the

measure, as evaluated within a neighborhood of city boundaries at the beginning of the

nineteenth century, should predict city growth in the following decades; (ii) the measure

8An alternative procedure is described in Arribas-Bel et al. (2021).
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should not directly affect the later evolution of cities during the twentieth century, when

conditioned on the right control variables (e.g., the elasticity of land supply in later peri-

ods, once cities have expanded beyond the narrow ring and are thus subject to another

topography at their borders).

We construct a plausibly exogenous measure of land fragmentation by exploiting

fine-grained terrain characteristics including elevation, ruggedness, time-invariant soil

attributes and water bodies. We leave the details of the procedure to Appendix B.2 and

only summarize its main steps below. First, we combine these different dimensions of

characteristics into a multi-band raster covering England and Wales at a resolution of

30m (see the left panels of Appendix Figure B5 around Darlington and Barnard Castle).

Topography and soil display local breaks which we illustrate in Appendix Figure B5

with yellow lines. Second, we use, again, our unsupervised segmentation algorithm

which isolates homogeneous (and contiguous) color zones. In our previous application,

the multi-band raster was constituted of three bands (R: red, G: green, B: blue). In the

present one, the raster may contain many more bands, but the principle is the same: the

algorithm maximizes a weighted sum of target distances within constituted superpixels,

with a weight allocated to physical distance relative to the “value distance.” A superpixel

with similar values is, here, a patch of land with homogeneous topography and soil

characteristics: a typical agricultural parcel, e.g., as delineated by enclosures in some

parts of England and Wales.9 Third, we compute the density of predicted farms in the

fringe of cities by drawing buffers of different widths (e.g., 1, 2, 3, 5 kms) around city

boundaries at the onset of rapid industrialization. One can think about the narrow rings

as predicting the propensity for cities to grow over the nineteenth century and the wider

rings as controlling for later land supply elasticities. The quantitative model developed

in Section 4 will allow for cities to face varying land supply elasticities over time, in part

to capture the previous intuition.

Validating our measure of land fragmentation The predicted measure of land

fragmentation should be correlated with the actual fragmentation of land ownership.

We validate the predicted measure of land fragmentation by comparing it with actual

farm density as collected from micro-census records in 1851 across all parishes of Eng-

land and Wales (see Figure 7, panel a). We also provide a test based on the actual and

predicted concentrations of farm ownership (panel b).

While this exercise shows that our measure of land fragmentation does predict land

9Within the class of local mode-seeking algorithms able to perform this classification, we opt for
Quickshift and we calibrate: the scale parameter and the maximum physical distance to capture the size
of a typical farm; and the relative weight between distance in the multi-bands-space and physical distance
to discipline how compact the predicted farms will be.
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Figure 7. Validation of the predicted measure of land fragmentation.

(a) Density (b) Land concentration

Notes: The left panel displays the measure of predicted fragmentation versus actual farm density as collected from micro-census
records in 1851 across all parishes of England and Wales. We create 20 bins of density and the dots represent the average actual
farm density within each bin. The lines are locally weighted regressions on all observations. Note that the conditional correlation
between the two measures is 0.25 (once conditioned on the separate topographic and soil characteristics). The right panel repeats
the same exercise with the actual and predicted concentration of farm ownership.

ownership fragmentation, it does not rule out that the measure is related to city dynam-

ics before industrialization. Thus, we further validate the land fragmentation measure

by comparing urban settlements with different degrees of land fragmentation in their

“external crusts,” as calculated at the onset of the nineteenth century (1817). Appendix

Figure B8 provides the equivalent of a balance test comparing population density and

industrial specialization (calculated as a Herfindahl index across 3-digit occupations) for

settlements with above- and below-median predicted land fragmentation in their imme-

diate fringe. We do not find marked differences, suggesting that settlements with differ-

ent degrees of land fragmentation were similar in their population density and industrial

specialization before the era of rapid industrialization.

Shift-share predictions of industrialization and specialization To predict indus-

trial specialization in city 𝑐, we rely on city-specific employment shares across 2-digit

sectors 𝑖 ∈ {1,… , 𝐼 } in 1817, 𝑠𝑖𝑐, and aggregate employment growth across sectors, 𝑔𝑖 > 0.

We first construct a predictor for urban employment growth, �̂�𝑐,

�̂�𝑐 = ∑

𝑖

𝑠𝑖𝑐𝑔𝑖

based on aggregate industry-specific shifts and the initial composition of employment

within the predicted urban area. We then construct a predictor for industrial specializa-

tion ℎ̂𝑐, as a Herfindahl index using predicted employment shares based on aggregate
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industry trends:

ℎ̂𝑐 =
∑𝑖 (𝑠𝑖𝑐𝑔𝑖)

2

(∑𝑖 𝑠𝑖𝑐𝑔𝑖)
2

These shift-share predictions constitute one building block of our empirical approach.

We describe the empirical strategy next.

3 Empirical facts

In this section, we document the following empirical facts: 1. By the end of the nine-

teenth century, there are many cities, and they are very heterogeneous in their industrial

mix; 2. Land fragmentation around initial city boundaries and our shift-share predictor

of specialization, respectively, predict population and industrial specialization at the end

of the nineteenth century; 3. Specialization leads to poor city performance in the long

run.

3.1 The rise of (different) cities

We first provide a few descriptive statistics illustrating the heterogeneous rise of Great

British cities, experiencing very different population growth and industrial specializa-

tion.

Figure 8. Fast-growing cities and slow-growing cities grow more or less specialized.

(a) Employment growth (b) Specialization

Notes: The left panel displays the distribution of employment growth within the (larger) boundaries of about 500 towns. The top
decile of growing settlements are highlighted in purple. In the right panel, we show the relationship between employment growth
and the evolution of industrial specialization across urban areas.

The heterogeneous rise of Great British cities By the end of the nineteenth cen-

tury, urbanization is slowing down in Britain and some cities are specialized in a few
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industries while others were more diverse, a process disciplined by geography, trade

and the distribution of their location advantages. We now shed some light on the het-

erogeneous rise of Great British cities.

Our procedure to detect urban settlements around 1790–1820 (see Section 2.2) iden-

tifies more than 500 potential cities, their initial boundaries, and their predicted bound-

aries by the end of the nineteenth century. One issue is that urban settlements change in

their area during the period and they do so endogenously. To strike a balance between

comparing employment numbers between similar areas across time and dealing with en-

dogenous urban sprawl, we associate employment within each 2-digit industry in 1817

and in 1851–1911 (and in 1971–2011) to a city 𝑐 by intersecting the predicted boundaries

around 1880–1900 with parish boundaries, allocating employment using the area share

of the intersection. In summary, we construct all our employment/population variables

within expanded cities (i.e., with a buffer around the delineation presented in Figure 6).10

Figure 8 shows the distribution of employment growth across our urban settlements.

We see that the median settlement grows by a factor of about 3. The growth rate for the

top decile (in purple) is above 300% (panel a). The large heterogeneity in employment

growth is also reflected in a large heterogeneity in industrial specialization. The fastest-

growing cities become very specialized (panel b), an effect which is entirely explained

by the fact that fast-growing cities are initially specialized across a few key sectors that

flourish over the course of the nineteenth century (see Appendix B.3).

The overall role of geography, trade and initial conditions By the end of the In-

dustrial Revolution, cities of England and Wales have widely different economic struc-

tures. A key factor of specialization is the initial industrial mix interacted with the grad-

ual opening of the economy to (internal and external) trade: some cities have initial

conditions that lead to more specialization, others remain structurally more diverse. In

what follows, we further restrict the sample to the top-50% larger cities of our sample in

1817—this leaves us with about 285 cities.

We illustrate the role of initial industries, as proxies for initial location advantages,

in Figure 9 where we compare the actual employment growth, 𝑔𝑐, and industrial special-

ization, ℎ𝑐, in 1881 with their predictions, �̂�𝑐 and ℎ̂𝑐, as computed using a “shift-share”

design based on initial industries in 1817.

Figure 9 shows that the initial industrial mix strongly predicts employment growth

within urban areas but also, and mostly, industrial specialization. While the measure

of predicted employment growth, �̂�𝑐, explains 8% of the variation in actual growth, pre-

10Throughout the empirical analysis, we use “city employment” and “city population” interchangeably.
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Figure 9. The role of the initial industrial mix.

(a) Employment growth (1881) (b) Specialization (1881)

Notes: The left panel displays the measure of predicted employment growth, �̂�𝑐 , against the actual employment growth. The top
decile of growing settlements are highlighted in purple. The line is a locally weighted regression on all observations. The right panel
repeats the same exercise with the actual and predicted industrial concentration.

dicted specialization, ℎ̂𝑐, explains 25% of the variation in actual specialization.11

To better illustrate the respective role of initial conditions and geography in explain-

ing urban dynamics across urban settlements, we run simple regressions with employ-

ment growth and specialization by 1881, adding sequentially controls for initial condi-

tions (employment levels and specialization), shift-share predictors (constructed from

the initial industrial mix and based on 2-digit industries), and a set of geographic indi-

cators.

Table 1 shows that initial conditions, as captured by initial employment and the

Herfindahl index in 1817 and by the industry-based shift-shares, are important in ex-

plaining the heterogeneous rise of Great British cities. However, geography is also in-

strumental and explains a similar share of the overall variation. There are three types

of geographic factors which predict urban development: (i) market access and connec-

tivity; (ii) local agricultural conditions (see, e.g., Coeurdacier et al., 2022; Heblich et al.,

2020); and (iii) local topography and other factors which could influence land supply

at the fringe of existing urban settlements. In particular, some cities are constrained in

their growth, others are not. Next, we describe the predictive power of our instruments,

including a measure of land fragmentation to capture the latter effect.

11Both our actual and predicted indices of specialization are based on 2-digit industries. We provide
insights about the respective role of specialization across 1-digit industries (such as manufacturing and
services) versus specialization within 1-digit industries in Appendix B.3. The latter explains about 60% of
the relationship between actual and predicted specialization. In unreported robustness checks, we verify
that our main results of Section 3.3 are robust to controlling for a Herfindahl index computed at the 1-digit
level.
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Table 1. The role of geography, trade and initial conditions.

Adjusted R-squared Employment growth (1881) Specialization (1881)

Initial conditions (1817) 0.234 0.319

+ Prediction (industry) 0.336 0.470

+ Geography 0.609 0.756

Observations 285 285
Notes: Initial conditions are initial employment and Herfindahl in 1817; the predictions are industry-based shift-shares; and geogra-
phy includes: slope, elevation, bulk density, carbon content, latitude/longitude, travel time to coal, travel time to London, distance
to/density of roads (1830), distance to/density of stations (1846), distance to waterways distance to the shore, share of arable, suit-
ability to grow wheat and grass.

3.2 Exogenous variation in population and specialization (1881)

To establish a causal link between cities’ population and specialization and their sub-

sequent dynamics, we need to isolate exogenous variation among the numerous fac-

tors shaping the transformation of British cities during the nineteenth century (geogra-

phy, trade and initial conditions). We do so by focusing on two dimensions character-

izing nineteenth-century urban settlements which (i) were instrumental in explaining

the swift rise of cities during the mid-nineteenth century, and (ii) are unlikely to act as

significant constraints for later economic development.

To isolate exogenous variation in cities’ late-nineteenth century population, we use

our exogenous proxy for land ownership fragmentation in the immediate fringe of ur-

ban settlements, 𝜁𝑐.12 As already discussed in Section 2.2, urban settlements were grow-

ing rapidly during the era of mid-19th century industrialization, leading to a massive

increase in demand for urban land. A high degree of ownership fragmentation could

slow down negotiations to acquire additional land for urban use.13 To isolate exogenous

variation in cities’ late-nineteenth century specialization, we exploit our “shift-share”

predictor for specialization (ℎ̂𝑐), while always controlling for the predictor for growth

(�̂�𝑐).

12The role of agricultural hinterlands in fueling urban growth has been discussed in Matsuyama (1992),
and more recently in Coeurdacier et al. (2022), Heblich et al. (2020) and Nagy (2023). Our instrument relies
on another theoretical mechanism, the land assembly problem, and we show in a robustness check that
we can control for local agricultural productivity (Turner, 1982) and the modernization of agriculture in
hinterlands (Caprettini and Voth, 2020).

13A recent contribution discusses the role of enclosure acts on crop yields and land inequality (Heldring
et al., 2022). Our source of variation to explain land fragmentation is, in essence, orthogonal to the one
used in their analysis. However, we do control for the specific role of enclosures in a robustness check.
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Table 2. Predicting cities’ late-nineteenth century population and specialization.

Herfindahl (1881) Population (1881)
(1) (2)

Predicted Herfindahl (ℎ̂𝑐) 0.262 -3.456
(0.052) (1.780)

Land fragmentation (𝜁𝑐) 0.006 -0.630
(0.005) (0.152)

Observations 285 285
Notes: The set of baseline controls include initial employment and Herfindahl in 1817, and: slope, elevation, bulk density, carbon
content, latitude/longitude, travel time to coal, travel time to London, distance to/density of roads (1830), distance to/density of
stations (1846), distance to waterways, distance to the shore, share of arable, suitability to grow wheat and grass, and the “shift-
share” predictor of urban employment growth (�̂�𝑐) defined in Section 2.2. Population (1881) is cities’ (log) employment in 1881.
Herfindahl index (1881) is based on 2-digit industries (sample mean: .14). The predicted Herfindahl index in 1881 is the industry-
based “shift-share” defined in Section 2.2 (sample mean: .15).

We explain urban development in city 𝑐, 𝐲81𝑐 , with these two exogenous predictors,

𝐩𝑐, as well as a large set of controls, 𝐗𝑐,

𝐲
81
𝑐 = 𝛼 + 𝛽𝐩𝑐 + 𝛾𝐗𝑐 + 𝜀𝑐

and we report the main estimates of interest in Table 2. First, and consistent with Fig-

ure 9, predicted specialization does induce more industrial specialization in 1881. The

passthrough between the predicted Herfindahl index (ℎ̂𝑐) and the actual one (ℎ𝑐) is around

0.26. Second, we find that predicted land fragmentation impacts the capacity of cities to

grow during the era of industrialization, and hence their population in the late nine-

teenth century. We find that one standard deviation in land fragmentation (about 0.32),

𝜁𝑐, decreases 1881 city population by about 20% (0.32 × 0.63)—an effect that is far from

negligible.

3.3 Specialization, long-run dynamics and the death of (some) cities

We now use the previous exogenous variation to estimate how cities’ population and spe-

cialization influence their long-run dynamics. We regress the share of unskilled workers

in 1971 in city 𝑐, 𝑠71𝑐 , on urban development in 1881, 𝐲81𝑐 , conditioning on a large set of

controls, 𝐗𝑐,

𝑠
71
𝑐 = 𝛼 + 𝛽𝐲

81
𝑐 + 𝛾𝐗𝑐 + 𝜀𝑐
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and instrumenting 𝐲81𝑐 with our exogenous predictors 𝐩𝑐.14

Table 3 reports the results, and confirms that industrial specialization is detrimental

in the long run. In column (1), we control for a wide set of confounders and find that

cities with a one standard deviation higher value of the Herfindahl index in 1881 have

a 1.415 standard deviations higher share of unskilled workers in 1971. Larger cities in

1881 also tend to have slightly worse economic outcomes in the long run. However,

the coefficient on population is only marginally significant, and the magnitude of the

standardized coefficient is only about 60% of the effect of specialization (0.918). Over-

all, we conclude that industrial specialization is a key driver of British cities’ long run

performance.

Table 3. The long-run effect of city population and specialization.

Unskilled workers (1971)
(1) (2) (3)

Herfindahl (1881) 0.762 0.779 0.580
(0.277) (0.275) (0.342)
[1.415] [1.447] [1.078]

Population (1881) 0.018 0.017 0.018
(0.009) (0.011) (0.013)
[0.918] [0.850] [0.913]

Observations 285 285 278
Growth shift-share (1817–1881) Yes Yes Yes
Growth shift-share (1881–1971) No Yes Yes
County fixed-effects No No Yes
Notes: The set of baseline controls include initial employment and Herfindahl in 1817, and: slope, elevation, bulk density, carbon
content, latitude/longitude, travel time to coal, travel time to London, distance to/density of roads (1830), distance to/density of
stations (1846), distance to waterways, distance to the shore, share of arable, suitability to grow wheat and grass, and the “shift-
share” predictor of urban employment growth (�̂�𝑐) defined in Section 2.2. Population (1881) is cities’ (log) employment in 1881.
Herfindahl index (1881) is based on 2-digit industries (sample mean: .14). The predicted Herfindahl index in 1881 is an industry-
based “shift-share” (sample mean: .15). Unskilled workers is the share of unskilled workers in 1971 (sample mean: .88). Standardized
coefficients are reported in brackets.

The effect of specialization on long-run city performance might reflect two distinct

forces. First, nationwide industry decline might hurt cities specialized in the declining

industries. Second, specialization might have a direct effect on future city growth, à la

Jacobs (1969). In column (2), we aim at cleaning our estimates from the former effect

by controlling for aggregate industry trends between 1881–1971 in a shift-share design.

Our findings are robust to such industry trends. They are also robust to controlling

14We consider the share of unskilled workers in 1971 (derived following Heblich et al., 2021), before
the swift decrease in manufacturing employment accompanying Thatcher’s reforms.
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for county fixed-effects (column 3), thereby exploiting the heterogeneous rise of cities

within each of the more than 50 counties covering England and Wales.

Robustness checks We provide a series of robustness checks to support our main

empirical findings. First, our identification narrative is that land fragmentation affects

urban development only through land supply at the fringe of early urban settlements;

this narrative rules out the existence of competing mechanisms arising, e.g., from agri-

cultural productivity (Coeurdacier et al., 2022) or agricultural mechanization at the fringe

of cities (see Caprettini and Voth, 2020, with the use of threshing machines) or from the

emergence of different informal institutions in places with different structure of land

ownership. To alleviate concerns about the first competing channel, we control for the

share of arable in local production (which defines the exposure to the repeal of the Corn

Laws; see Heblich et al., 2020) and for the potential yield of the most common crops in

our baseline specification. We further control for agricultural productivity (using data

from Turner, 1982) and agricultural mechanization in parishes surrounding the city. To

alleviate concerns about the second competing channel, we control for proxies of local

institutional change (Heldring et al., 2022) and provide detailed balance tests in 1817

across cities with different land fragmentation in their fringe, comparing their density

and industrial structure (Section B.3). Section B.5 presents the results of these checks

and confirms that they all leave our headline empirical finding, the detrimental long-run

effect of specialization, unchanged.

Second, one might wonder whether the results are driven by any of the large nineteenth-

century industries. If that were the case, that would affect the interpretation of our re-

sults, suggesting that it is primarily specialization in that particular industry, rather than

overall industrial specialization, that hurts long-run growth. To address this question,

Section B.5 re-runs the empirical specification of column (2) in Table 3 after dropping

each of the major industries, one by one. We find that the long-run effect of industrial

specialization remains positive in all of these specifications, suggesting that none of the

major industries are driving the estimates.

Third, the validity of our instrument requires that it has no direct effect on urban

development after 1881. In unreported checks, we show that the vast majority of cities

grow out of this narrow ring by the end of the nineteenth century, that we can control for

the marginal land supply from the end of the nineteenth century onward, and that there

are no differential zoning policies at the fringe of cities—depending on their initial land

fragmentation (e.g., green belts, or social housing policies). We also control for access to

resources in our baseline specification to reduce concerns that energy is the main factor

explaining the rise and then fall of Great British cities.
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Finally, we conduct a large number of unreported robustness checks around the base-

line specification(s): with different buffers around the city; with different inference to

account for spatial correlation; and with different cut-offs to define urban settlements.

The stylized facts presented in this section provide evidence about the joint dynam-

ics of urbanization and specialization in cities, showing that the fate of cities is tightly

related to that of their industries. The next section provides a more structural approach,

by developing a quantitative model of cities and their industries over time which cap-

tures both the spatial linkages across cities and their industries in a given period, as well

as possible intertemporal externalities.

4 A multi-sector dynamic spatial model

To provide a framework in which we can study the determinants and long-run con-

sequences of local specialization and development, we develop a spatial, multi-sector,

dynamic model of cities. We offer an algorithm to solve the model efficiently and sim-

ulate the model on a stylized geography to illustrate how it can replicate the empirical

facts documented in Section 3.

4.1 Setup

The model involves a finite number of cities 𝑐 ∈ {1,… , 𝐶} and industries 𝑖 ∈ {1,… , 𝐼 }. Time

is discrete and is indexed by 𝑡. Within each industry, every city produces its own variety

that consumers view as different from the varieties produced in other cities. There is

an exogenous number �̄� of workers in the economy. Each worker lives for one period,

maximizing her utility from the consumption of varieties. Each worker is endowed with

one unit of labor. The worker decides which industry to work for and which city to live

in.

In what follows, we describe the four main building blocks of the model: workers’

preferences, the production technology, the equilibrium within a time period 𝑡, and the

dynamic process that links subsequent periods to each other.

Preferences If a worker 𝑚 who lives at time 𝑡 decides to work in industry 𝑖 and to live

in city 𝑐, she chooses her consumption levels to maximize her utility,

𝑈
𝑚
𝑖𝑐𝑡 = max 𝑎

𝑚
𝑐𝑡

⎡
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subject to the budget constraint,

𝐼

∑

𝑗=1

𝐶

∑

𝑑=1

𝑝𝑗𝑑𝑡𝑞
𝑚
𝑗𝑑𝑡 ≤ 𝑤𝑖𝑐𝑡 + 𝑅𝑐𝑡 , (2)

where 𝑎𝑚𝑐𝑡 denotes the level of amenities enjoyed by the worker in city 𝑐, while the rest of

the worker’s utility is drawn from her consumption of industry-varieties. More precisely,

𝑞𝑚𝑗𝑑𝑡 denotes the worker’s consumption of the city-𝑑 variety in industry 𝑗 , 𝑝𝑗𝑑𝑡 denotes

the price of this variety, 𝑤𝑖𝑐𝑡 is the wage that prevails in the city-industry, and 𝑅𝑐𝑡 is

the worker’s share of land rents.15 When choosing her city, industry and consumption,

the worker takes amenities, prices and wages as given. We assume that varieties are

substitutes, and they are more substitutable within than across industries, implying 𝜖 >

𝜎 > 1.

The worker’s amenity level in a given city is a combination of three factors:

𝑎
𝑚
𝑐𝑡 = �̄�𝑐𝐿

−𝜆
𝑐𝑡 𝜀

𝑚
𝑐𝑡 . (3)

�̄�𝑐 is the fundamental amenity level of city 𝑐, which may stem from natural characteristics

such as climate. 𝐿−𝜆𝑐𝑡 is a congestion externality that makes cities with a larger population

𝐿𝑐𝑡 less pleasant places to live. Finally, 𝜀𝑚𝑐𝑡 is an idiosyncratic taste shock for city 𝑐 that is

drawn from a Fréchet distribution,

𝑃𝑟 [𝜀
𝑚
𝑐𝑡 ≤ 𝑧] = 𝑒

−𝑧−1/𝜂 , (4)

independently across workers, cities and time periods. If 𝜂 is high, then workers’ utility is

influenced to a large extent by their idiosyncratic tastes for cities. As a consequence, they

are likely to settle in a city they like, rather than in a city that offers them good economic

opportunities. The same would be true if workers faced high costs of moving across

cities. Thus, 𝜂 can also be interpreted as a parameter driving the severity of mobility

frictions across cities.

Technology Varieties are produced by perfectly competitive firms. The representative

firm producing the city-𝑐 variety in industry 𝑖 at time 𝑡 faces the production function

𝑌𝑖𝑐𝑡 = �̃�𝑇𝑖𝑐𝑡𝐿
𝛾

𝑖𝑐𝑡𝐻
1−𝛾

𝑖𝑐𝑡 , (5)

where 𝑇𝑖𝑐𝑡 is the TFP of industry 𝑖 in city 𝑐 at time 𝑡, 𝐿𝑖𝑐𝑡 is the number of workers hired

by the firm, and 𝐻𝑖𝑐𝑡 is the amount of land used by the firm. We define the constant
15We assume that rents are redistributed to workers living in the city.
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�̃� = 𝛾−𝛾 (1 − 𝛾)
−(1−𝛾) in order to simplify the subsequent formulas.

Varieties can be traded across cities, but they are subject to iceberg trade costs. We

denote the iceberg trade cost prevailing between cities 𝑐 and 𝑑 in industry 𝑖 at time 𝑡 by

𝜏𝑖𝑐𝑑𝑡 . Naturally, we assume that trade costs are always non-negative, which amounts to

𝜏𝑖𝑐𝑑𝑡 ≥ 1.

Land is supplied in each city according to the supply function

𝐻𝑐𝑡 = 𝑟
𝜁𝑐𝑡−1
𝑐𝑡 , (6)

such that 𝑟𝑐𝑡 is the land rent and 𝜁𝑐𝑡 −1 is the land supply elasticity. We let the exogenous

parameter driving this elasticity, 𝜁𝑐𝑡 , vary both across cities and over time—this feature

is essential to mirror the heterogeneity across cities uncovered in the empirical analysis.

It is natural to assume that 𝜁𝑐𝑡 ≥ 1, i.e., the supply function is never downward-sloping.

Land rents are fully redistributed to workers who live in the city.

Within-period equilibrium Before we turn to presenting the dynamic evolution of

sectoral TFP levels, we set up the equilibrium within a given time period 𝑡 for given TFP

levels in that period. In this within-period equilibrium, we impose that the labor market

clears in each city, the land market clears in each city,

𝐼

∑

𝑖=1

1 − 𝛾

𝛾
𝑤𝑖𝑐𝑡𝐿𝑖𝑐𝑡 = 𝑟𝑐𝑡𝐻𝑐𝑡 , (7)

markets clear for each variety,

(𝑤𝑖𝑐𝑡 + 𝑅𝑐𝑡) 𝐿𝑖𝑐𝑡 =

𝐶

∑

𝑑=1
(

𝑃𝑖𝑑𝑡

𝑃𝑑𝑡 )

1−𝜎

(

𝑝𝑖𝑐𝑡𝜏𝑖𝑐𝑑𝑡

𝑃𝑖𝑑𝑡 )

1−𝜖 𝐼

∑

𝑗=1

(𝑤𝑗𝑑𝑡 + 𝑅𝑑𝑡) 𝐿𝑗𝑑𝑡 , (8)

where 𝑃𝑖𝑑𝑡 is the CES price index of industry-𝑖 varieties in city 𝑑,

𝑃𝑖𝑑𝑡 =
[

𝐶

∑

𝑐=1

𝑝
1−𝜖
𝑖𝑐𝑡 𝜏

1−𝜖
𝑖𝑐𝑑𝑡

]

1
1−𝜖

, (9)

𝑃𝑑𝑡 is the CES price index of all consumption goods in city 𝑑,

𝑃𝑑𝑡 =
[

𝐼

∑

𝑖=1

𝑃
1−𝜎
𝑖𝑑𝑡

]

1
1−𝜎

(10)
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and each worker chooses the combination of city and industry that offers them the high-

est utility.

Dynamic evolution of TFP We now present the assumptions on how sectoral TFP

levels evolve over time. We allow the TFP of each industry to be influenced by agglom-

eration externalities. In particular, externalities in period 𝑡 can take the form

𝑇𝑖𝑐𝑡 = 𝑇𝑖𝑐𝑡𝐿
𝛼
𝑐𝑡𝑓𝑖 (

𝐿𝑐,𝑡−1,
{
𝐿𝑗𝑐,𝑡−1

}

𝑗∈𝐼)
, (11)

where 𝑇𝑖𝑐𝑡 is the exogenous fundamental productivity of industry 𝑖 in city 𝑐 at time 𝑡.

That is, agglomeration externalities may not only depend on the current population of

city 𝑐 (as standard in the literature) as well as on its past population (as in Allen and

Donaldson, 2020), but also on the city’s sectoral composition in the past. This process,

which links the productivity of city-industries to the spatial and sectoral distribution of

employment in the previous period, is responsible for the dynamics of the model and,

crucially, underlies the joint evolution of cities and industries.

Equation (11) is a flexible formulation of externalities that allows for dynamic within-

industry (Marshall–Romer) and cross-industry (Jacobs) externalities. It is a generaliza-

tion of the dynamic TFP process in the one-sector model of Allen and Donaldson (2020).

4.2 Solving the model

In this section, we propose an algorithm to solve for the equilibrium of the model. This

algorithm relies on reducing the within-period equilibrium conditions to a system of 3𝐼𝐶

equations (as shown in Appendix C.1),

𝑥
1
𝑖𝑐𝑡 =

𝐼

∑

𝑗=1

𝐶

∑

𝑑=1

(𝑥
2
𝑗𝑑𝑡)

𝛼+𝛾

𝜅𝑑𝑡

𝜖−1
𝜎−1

(𝑥
3
𝑗𝑑𝑡)

−
(
1−

1+𝜆+𝜂

𝜅𝑑𝑡 ) 𝐾
1
𝑖𝑐𝑗𝑑𝑡

𝑥
2
𝑖𝑐𝑡 =

𝐼

∑

𝑗=1

𝐶

∑

𝑑=1

(𝑥
1
𝑗𝑑𝑡)

𝜎−1
𝜖−1

𝐾
2
𝑖𝑐𝑗𝑑𝑡

𝑥
3
𝑖𝑐𝑡 =

𝐼

∑

𝑗=1

𝐶

∑

𝑑=1

(𝑥
1
𝑗𝑑𝑡)

− 𝜖−𝜎
𝜖−1

(𝑥
2
𝑗𝑑𝑡)

−
(
1−

𝛼+𝛾

𝜅𝑑𝑡

𝜖−1
𝜎−1)

(𝑥
3
𝑗𝑑𝑡)

1+𝜆+𝜂

𝜅𝑑𝑡 𝐾
3
𝑖𝑐𝑗𝑑𝑡

(12)

where

𝜅𝑑𝑡 = 1 + 𝜆 + 𝜂 +
[

1 − 𝛾

𝜁𝑑𝑡
− 𝛼 +

(
𝛾 +

1 − 𝛾

𝜁𝑑𝑡 )
(𝜆 + 𝜂)

]
(𝜖 − 1) (13)

is a combination of structural parameters, and the 3× 𝐼 ×𝐶 unknowns 𝑥1
𝑖𝑐𝑡 , 𝑥

2
𝑖𝑐𝑡 and 𝑥3

𝑖𝑐𝑡 can

be obtained from equilibrium prices, wages and population levels through the following
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change in variables:

𝑥
1
𝑖𝑐𝑡 = 𝑃

1−𝜖
𝑖𝑐𝑡

𝑥
2
𝑖𝑐𝑡 = 𝑤

1−𝜎
𝑖𝑐𝑡 𝐿

(𝜆+𝜂)(𝜎−1)
𝑐𝑡

𝑥
3
𝑖𝑐𝑡 = 𝑤

1+
(
𝛾+

1−𝛾

𝜁𝑐𝑡 )
(𝜖−1)

𝑖𝑐𝑡 𝐿
1+

(
1−𝛾

𝜁𝑐𝑡
−𝛼

)(
𝜖−1)

𝑐𝑡

(14)

and 𝐾 1
𝑖𝑐𝑗𝑑𝑡 , 𝐾

2
𝑖𝑐𝑗𝑑𝑡 and 𝐾 3

𝑖𝑐𝑗𝑑𝑡 are the following functions of exogenous variables:

𝐾
1
𝑖𝑐𝑗𝑑𝑡 =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(
1−𝛾

𝛾 )

−
1−𝛾

𝜁𝑑𝑡
(𝜖−1)

�̂� 𝜖−1
𝑗𝑑𝑡 𝜏

1−𝜖
𝑗𝑑𝑐𝑡 if 𝑖 = 𝑗

0 otherwise

𝐾
2
𝑖𝑐𝑗𝑑𝑡 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(𝛾�̄�𝑡)
1−𝜎

�̄�𝜎−1𝑐 if 𝑐 = 𝑑

0 otherwise

𝐾
3
𝑖𝑐𝑗𝑑𝑡 = (𝛾�̄�𝑡)

1−𝜎

(

1 − 𝛾

𝛾 )

−
1−𝛾

𝜁𝑑𝑡
(𝜖−1)

�̂�
𝜖−1
𝑗𝑐𝑡 �̄�

𝜎−1
𝑑 𝜏

1−𝜖
𝑗𝑐𝑑𝑡

such that

�̂�𝑖𝑐𝑡 = 𝑇𝑖𝑐𝑡𝑓𝑖 (
𝐿𝑐,𝑡−1,

{
𝐿𝑗𝑐,𝑡−1

}

𝑗∈𝐼)
(15)

is the part of TFP that is exogenous in period 𝑡.

The solution algorithm consists of guessing an initial distribution of 𝑥1
𝑖𝑐0, 𝑥

2
𝑖𝑐0 and 𝑥3

𝑖𝑐0

in period 0. This is followed by inserting the guesses on the right-hand side of system

(12), obtaining an updated guess of 𝑥1
𝑖𝑐0, 𝑥

2
𝑖𝑐0 and 𝑥3

𝑖𝑐0, and iterating on (12) until conver-

gence. With the equilibrium values of 𝑥1
𝑖𝑐0, 𝑥

2
𝑖𝑐0 and 𝑥3

𝑖𝑐0 in hand, one can express period-0

price indices, wages, population and sectoral employment levels by inverting the sys-

tem (14). Finally, one can obtain period-1 TFP levels from equation (15) and repeat the

procedure for the next period.

4.3 An illustration in a linear economy

In this section, we simulate the model on a simple geography to illustrate how it can

rationalize: 1. The rise of (different) cities as influenced by trade and local comparative

advantages; and 2. The long-run dynamics and the death of (some) cities, as documented

in Section 3.

A linear economy We focus on a country with 200 cities arranged on a line. There

are two industries in the country. At the beginning of period 0, the 100 cities to the West

of the country centroid have a high TFP of 1.05 in industry 1, and a lower TFP of 0.95 in
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industry 2. The pattern is reversed in the 100 Eastern cities (top left panel of Figure 10).

Figure 10. The linear economy under trade in period 0.
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Notes: The values for the structural parameters are set as follows: 𝛼 = 0.06; 𝛾 = 0.65; 𝜖 = 5; 𝜙 = 0.25; 𝜎 = 4; �̄� = 10, 000, 000; 𝜁𝑐𝑡 = 2.

Using the algorithm proposed in Section 4.2, we simulate this stylized economy both

under autarky and under trade. In either scenario, we simulate the economy for two

subsequent time periods, period 0 and period 1. Under autarky, we assume that trade

costs between cities are infinitely high. Under trade, we assume that the cost of trading

between cities 𝑐 and 𝑑 takes the following form,

𝜏𝑖𝑐𝑑𝑡 = (1 + 𝑑𝑖𝑠𝑡𝑐𝑑)
𝜙 ,

in both industries and time periods, where 𝑑𝑖𝑠𝑡𝑐𝑑 denotes the Euclidean distance between

cities 𝑐 and 𝑑. That is, trade is cheaper between cities that are geographically close.

We set the values of structural parameters to central values used in the literature

(𝛼 = 0.06, 𝛾 = 0.65, 𝜖 = 5, 𝜙 = 0.25, 𝜎 = 4). We set the total population to 10 million,

which roughly equals the working population of England and Wales at the beginning

of the 19th century. Finally, we set 𝜁𝑐𝑡 = 2 for every city and time period for simplicity.

This implies a land supply elasticity of one in each city.
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The rise of (different) cities We first look at the patterns of specialization and the

distribution of population in period 0, i.e., in the short run. The top right panel of Fig-

ure 10 shows how cities specialize under trade, as measured by their Herfindahl index

across industries. One can see that cities near the center specialize more. Indeed, they

are the ones with the best access to trade with other cities, and hence the largest room

for specializing according to their comparative advantage. As the bottom panel of Fig-

ure 10 illustrates, population also reallocates towards these central cities as they benefit

from trade through their increased specialization. This stands in stark contrast with the

autarky scenario in which specialization and population are evenly distributed across

cities, due to their symmetric fundamentals (see Figure C1 for an illustration). Thus, a

short-run boom caused by trade favors cities in the center, which are able to gain from

specialization and attract more people as a consequence.

Figure 11. The linear economy in period 1 under differential industry trends.
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Notes: values of structural parameters set to: 𝛼 = 0.06; 𝛾 = 0.65; 𝜖 = 5; 𝜙 = 0.25; 𝜎 = 4; �̄� = 10, 000, 000; 𝜁𝑐𝑡 = 2.

The long-run dynamics and the death of (some) cities We study the distribution

of economic activity in the long run (period 1) in two different cases. In the first case,

we assume that industries differ in their aggregate productivity dynamics for exogenous

reasons (outside the model). More precisely, we assume that the TFP of industry 1 de-

creases by 0.05 uniformly across cities, while the TFP of industry 2 stays the same as in

period 0 (left panel of Figure 11). Such differential industry trends may be due to na-

tionwide productivity trends associated with structural transformation, as in Ngai and

Pissarides (2007), or increased international competition, as in Pierce and Schott (2016).

We abstract from other sources of TFP evolution, such as dynamic externalities, by set-

ting 𝑓𝑖 (⋅) = 1 in equation (11).

The right panel of Figure 11 shows that population reallocates from the West towards
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the East as a result of differential industry trends. This is not surprising as Western

cities were the ones specializing in industry 1, hence they are the ones that suffer from

declining TFP in this sector. Therefore, this case of the model can rationalize the boom

and the subsequent bust of center-West cities, which initially specialized in the industry

that starts declining after period 0.

Figure 12. The linear economy in period 1 under dynamic Jacobs externalities.
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In the second case, we abstract from differential industry trends but allow for dy-

namic agglomeration externalities. More precisely, we assume dynamic Jacobs external-

ities of the form

𝑓𝑖 (⋅) =
[
∑

𝑗
(

𝐿𝑗𝑐,𝑡−1

𝐿𝑐,𝑡−1 )

2

]

−1

in equation (11). This formulation implies that cities less specialized in period 0 (those

with a lower Herfindahl index, ∑𝑗 (
𝐿𝑗𝑐0

𝐿𝑐0 )
2
) see faster TFP growth by period 1. The result-

ing TFP distribution is presented in the left panel of Figure 12.

As the right panel of Figure 12 illustrates, the long-term disadvantage of initially

more specialized cities has the ability to reverse the hump-shaped population distribu-

tion of period 0. As a result, cities in the center see a period-1 bust after their period-0

boom.

How to tell apart differential industry trends from Jacobs externalities? Illustrating

the model for the simple geography of this section highlights that differential industry

trends and dynamic Jacobs externalities both have the ability to rationalize the death of

specialized cities. However, they have different implications. In particular, differential

industry trends imply that cities that hosted declining sectors suffer in the long-run.

Dynamic Jacobs externalities, by contrast, imply that specialized cities suffer in the long

run, no matter their industries. This is the insight that will allow us to disentangle these
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two mechanisms in Section 5.

5 Quantitative estimation

5.1 Taking the model to the data

To use the model for quantitative analysis, we take it to the data in this section. An

advantage of the model’s recursive structure is that it can be taken to the data in any

period. Therefore, we take the model to twentieth-century (“long-run”, period 1) data

as richer data are available for this period than for the nineteenth century (“short-run”,

period 0).

Taking the model to the data consists of two steps. In the first step, we use the

structure of the model to recover unobserved city-specific fundamentals that rationalize

observed late-twentieth century (1971) data on employment by city-industry and wages

by city. In the second step, we use the recovered TFP levels along with our instruments

to estimate equation (15), i.e., the equation that drives the dynamic evolution of TFP in

the model.

Recovering unobserved fundamentals In this step, we recover the distribution of

city amenities �̄�𝑐 and city-industry productivities �̂�𝑖𝑐1 that rationalize observed data on

wages 𝑤𝑐1 and employment by city-industry 𝐿𝑖𝑐1 in period 1. The following theorem

states that there is a unique set of fundamentals that rationalize the data.

Theorem 1. Given the values of structural parameters, trade costs in period 1, and data
on wages 𝑤𝑐1 and employment by city-industry 𝐿𝑖𝑐1, one can uniquely recover TFP levels �̂�𝑖𝑐1
(up to scale) and amenities relative to aggregate welfare, �̄�𝑐/�̄�1.

Proof. See Section C.2.

Intuitively, the uniqueness result of Theorem 1 stems from the fact that the system

of equations characterizing the equilibrium—equations (23) to (25) in Section C.1—can

be inverted to recover the values of fundamentals.

Estimating the dynamic evolution of TFP Armed with the distribution of �̂�𝑖𝑐1, we

estimate the following equation characterizing the evolution of city-industry productiv-

ities:

�̂�𝑖𝑐1 = �̄�𝑖1𝐿
𝜌

𝑐0
[
∑

𝑗
(

𝐿𝑗𝑐0

𝐿𝑐0 )

2

]

−𝜄

𝜀𝑖𝑐1 (16)
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Equation (16) is a special case of equation (15), i.e., the equation characterizing the evolu-

tion of TFP in the model. In particular, equation (16) restricts dynamic externalities, 𝑓𝑖, to

be a function of two objects: city 𝑐’s past population (𝐿𝑐0) and past Herfindahl (∑𝑗 (
𝐿𝑗𝑐0

𝐿𝑐0 )
2
).

This restriction is motivated by the reduced-form evidence of Section 3.3, which points

to the importance of these two objects in explaining long-run city outcomes.

Equation (16) can be estimated by an empirical strategy that mirrors the one of

Section 3.3. Specifically, one can use exogenous land fragmentation 𝜁𝑐 and predicted

Herfindahl ℎ̂𝑐 as instruments for late-nineteenth century (period-0) population and in-

dustrial specialization. Equation (16) corresponds to the second stage of this 2SLS pro-

cedure.

Note that we split the term 𝑇𝑖𝑐1 of equation (15) into two components in equation (16):

an aggregate industry trend �̄�𝑖1 and a structural error term 𝜀𝑖𝑐1. In practice, the term �̄�𝑖1

can be estimated as an industry fixed effect in equation (16). Isolating these industry

trends will allow us to disentangle them from the dynamic externalities, in line with the

logic discussed in the end of Section 4.3.

5.2 Results [TBC]

6 Concluding remarks

Armed with two hundred years of data on British cities and exogenous variation in these

cities’ capacity to grow and specialize, we presented evidence that suggests intertempo-

ral costs of the early success of these cities. Using our quantitative model, we suggest

a mechanism: While many locations can indeed gain from being able to grow and spe-

cialize in response to structural transformation, this specialization comes at future costs

as those locations fail to acquire the dynamic Jacobs externalities that sustain otherwise

more diverse cities.

In future work, we will conduct the full estimation of the model using the data. We

will then be in a position to use the model to conduct counterfactual analysis to ask,

for example, how much the growth in trade translated into faster urbanization and city

growth. We can also consider whether real aggregate gains arose, or whether the trade-

induced changes caused merely a reorganization of activity across space. In that vein, we

can also ask about the role of policy in a manner that is relevant for modern economies.

Undoubtedly, attempts to replicate a ‘Silicon Valley’-type success story in different parts

of the world by focusing on growing sectors may be beneficial in the short-run. That said,

the costs borne by formerly thriving hotspots of the industrial revolution that struggle

to recover their previous advantages suggest potentially adverse long-run consequences
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of policy-driven specialization.
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A An inspiration

Figure A1. The Death and Life of Great American Cities.
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B Data appendix

This section provides complements to Section 2. More specifically, we detail our map

digitization procedure, and we shed additional light on our land fragmentation algo-

rithm.

B.1 Data sources

Recognizing built-up

To recognize built-up and other land use types in historical maps, we develop an object-

based classification which is standard in remote sensing but less common in map digiti-

zation (Combes et al., 2022).16

Figure B1. Recognizing built-up—superpixels.

Note: This Figure illustrates our approach based on superpixels (county map of Yorkshire; superpixels are delineated in green).

The first step consists in collecting and digitizing early county maps. A subsample

of these maps was produced by the Ordnance Survey at the beginning of the nineteenth

century; they are usually referred to as the Old Series 1-inch maps. We complement these

maps with county-specific maps in the North of England.17 We project these flat map

16Litvine et al. (2023) employ a similar approach to extract urban footprints in Britain from these Ord-
nance Survey drawings and individual county maps.

17Please find below the covered COUNTIES, with the map resolution, its date and its author(s):
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tiles, which gives us an exhaustive coverage of England and Wales, albeit at different

dates around 1800.

The second step produces superpixels of homogenous colors. There are several image

segmentation algorithms, e.g., SLIC, Quickshift, Felzenszwalb or watershed.18 We opt for

“Quickshift”, which allows for a grouping of pixels that is more flexible in their proximity

in actual space (i.e., along the physical distance) versus the color space. We parametrize

the algorithm by choosing the scale parameter, the maximum physical distance, and

the relative weight between distance in the color-space and physical distance in order

to best capture: built-up areas; smaller letters; and tree symbols within one superpixel.

Figure B1 provides an example in Yorkshire, where we see how superpixels isolate letters,

farms and the tree symbols that represent woods.

The third step consists in constructing variables that characterize these superpix-

els; these variables will be the input of a machine-learning classification algorithm. We

can distinguish three types of variables: inner-superpixel variables capturing the color

gradient within each superpixel, shape variables capturing the shape of superpixels,

neighbor variables capturing the nature of neighboring superpixels. To capture the color

and texture of superpixels, we select the following inner-superpixel variables: average

R/G/B intensities, and within-standard deviation in R/G/B intensities (e.g., to capture

stripes). To capture the shape of superpixels, we select the following shape variables:

the compactness (minimum edge/maximum edge for the minimum bounding rectangle),

area, perimeter and complexity of the superpixel (perimeter/ perimeter of the minimum

bounding rectangle). To capture the nature of neighboring superpixels, we add their

average R/G/B intensities to our set of predicting variables.

The fourth step consists in producing a training sample: i.e., a set of labeled super-

pixels (in a few categories: text, forest, sparse trees, built-up, etc.). We conduct this step

using a simple manual labeling procedure whereby a window shows the outline of the

superpixel and the underlying map and research assistants can select a land use category.

The fifth step trains a random forest algorithm on the training sample and predicts

NORTHUMBERLAND, 1-inch map, 1769 (Andrew and Mostyn ARMSTRONG); DURHAM, 1-inch map
1768 (Thomas JEFFERYS and Andrew ARMSTRONG), 1-inch map 1820 (Christopher GREENWOOD);
CUMBERLAND, 1/2-inch map, 1773 (Joseph HODSKINSON and Thomas DONALD), 1-inch map, 1823
(Christopher and John GREENWOOD); WESTMORLAND, 1-inch map, 1771 (Thomas JEFFERYS); YORK-
SHIRE, ca 4/5 inch, 1828 (Christopher GREENWOOD, et al); LANCASHIRE, not stated, 1768 (William
YATES), 1 inch, 1818 (Christopher GREENWOOD, et al), 4/5 inch, 1830 (G. HENNET); CHESHIRE, 3/4
inch, 1830 (William SWIRE and W.F. HUTCHINGS), 5/4 inch, 1831 (Andrew BRYANT); DERBYSHIRE, 1-
inch map 1767/1791 (Peter BURDETT); NOTTINGHAMSHIRE, not stated, 1794 (John CHAPMAN), not
stated 1826 (Christopher and John GREENWOOD); LINCOLNSHIRE, ca. 1 inch, 1828 (A. Bryant), ca. 1
inch, 1830 (Christopher and John GREENWOOD).

18See, e.g., https://scikit-image.org/docs/stable/auto examples/segmentation/
plot segmentations.html.
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land use for all other non-labeled superpixels (Combes et al., 2022).

Recognizing roads

To identify roads, we cannot use any standard procedure: most available procedures are

designed to recognize straight lines,19 and (i) our roads are not very straight and (ii) there

are many other straight lines but road segments on county maps (e.g., letters or letter

fragments).

Our approach relies on the nature of roads: roads are contiguous (impervious) areas

which are designed to minimize travel cost between locations of interest. In practice, we

can design a procedure to detect black lines, but we would then typically end up with

many false positives (i.e., black lines that are not roads). Many of these black lines would,

however, not fulfill the previous requirement: letters, gradient lines in mountainous ter-

rain or farms are very inefficient patches of black pixels on which to travel between

locations of interest. Others may be better suited, e.g., rivers, county boundaries, or

railway tracks.

Figure B2. Recognizing roads.

(a) “Travel” cost (b) Paths

Note: Panel a displays the input of the least cost path procedure to detect roads on a historical county map. Panel b displays the
simulated least cost paths drawn between random departure and arrival points.

We exploit the previous discriminatory feature as follows. We first transform the

color map into a gray “travel cost” matrix by (i) filtering out non-gray colors, (ii) thick-

ening black areas to create continuous lines from dashed lines, (iii) simplifying images

by interpolating across pixels, and (iv) transforming the gray intensity through a power

function in order to best calibrate the “cost” of traveling across pixels of different black

intensity (with travel cost over a perfectly black pixel being 1, and travel cost over a

perfectly white pixel being as high as possible). The output is the left panel of Figure B2.

19See https://www.sciencedirect.com/topics/computer-science/hough-transforms.

45

https://www.sciencedirect.com/topics/computer-science/hough-transforms


Second, we draw many random departure points from the subsample of black pixels

on the image (as a proxy for the unobserved locations of interest) and we compute the

least cost paths to all other pixels of the image for each draw. Roads are already more

salient on this matrix. However, roads are designed to be used as “the” minimum cost

path between locations. To better, we randomize many arrival points for each departure

point and start drawing the actual minimum paths between departure and arrival pixels

on a black image. The output is a distribution of many minimum cost paths highlighting

the most traveled roads more than the others (right panel of Figure B2). As shown by

Figure B2, this algorithm not only identifies roads very well, but also their respective

importance within the transportation network.

Figure B3. Consistent parishes across England and Wales.

Notes: This Figure displays the output of the transitive closure algorithm implemented by the Cambridge Group for History of Pop-
ulation and Social Structure. Consistent mappable units based on parishes are displayed in gray; registration districts are displayed
with black borders.

Consistent parishes and travel cost

One issue with census data and baptism records is that they are nested at the parish

level, and parishes are regularly redefined, merged or split over the course of the nine-

teenth century. We thus apply an “envelope” algorithm which considers the union of the

different parishes covering the same points over time. For instance, if a parish is split

into two parishes in 1891, we would group the two sub-parishes from 1891 onward to
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create a consistent, unique parish from 1801 to the current day. This grouping is less

relevant at the city level, as none of these re-compositions of lowest administrative units

significantly affect the allocation of administrative units across cities. The output of the

procedure is shown in Figure B3, with about 11,500 consistent parishes across England

and Wales.

Figure B4. Travel cost and distance to coal across England and Wales, as computed around 1817.

(a) Travel cost (b) Distance to coal

Notes: The left panel displays the raster of transport costs as calculated using the transport network at the beginning of the 19th
century, and a penalization accounting for the local elevation gradient (yellow: low, green: medium, blue: high). The right panel
displays the minimum travel time from the nearest coal field (red: low, blue/green: high).

To compute trading costs over time, we gather roads, railways and waterways over

the course of the nineteenth century (Transport, urbanization and economic develop-

ment in England and Wales c.1670–1911, The Cambridge Group for the History of Pop-

ulation and Social Structure) and we apply a standard least cost path procedure across

all cities of our sample, from our cities to the major trading ports and from our cities to

major resources (see an illustration in Figure B4).

B.2 Data construction

Our land fragmentation algorithm consists of the following steps. In a first step, we ex-

tract fine-grained terrain characteristics including elevation, ruggedness, time-invariant
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soil attributes and water bodies from Google Earth Engine. We then store these char-

acteristics in an “image”, i.e., a 2D array where the value at each pixel (𝑥, 𝑦) is a vector

of attributes (𝑎1,… , 𝑎𝑚)—a standard color image is often stored as a 2D array where the

value at each pixel is a triplet RGB. We then normalize all the different attributes to be

between 0 (minimum) and 1 (maximum). The output is a multi-band raster covering

England and Wales at a resolution of 30m.

Figure B5. Gradient breaks in topography and soil.

(a) Darlington (topography) (b) Darlington (soil)

(c) Barnard Castle (topography) (d) Barnard Castle (soil)

Sources: topography (Google Earth Engine, 30m resolution), soil categories (National Soil Resources Institute).

In a second step, we use the same unsupervised segmentation algorithm as before,

Quickshift, to isolate contiguous zones of the image that are homogeneous in their at-

tributes. Applied to this peculiar setting, the algorithm relies on a standard “orthogonal”

distance between the n-dimensional vectors that are stored in every pixel. The algorithm

then maximizes a weighted sum of the two target distances within constituted superpix-

els, with a weight allocated to physical distance relative to the previously-defined “value

distance.” A superpixel with similar values is, here, a patch of land with homogeneous to-

pography and soil characteristics: a typical agricultural parcel. For illustration, we show

in Figure B5 the output of such an algorithm based on topography variable uniquely (left

panel), and on soil characteristics uniquely (right panel).

In a third step, we construct the centroids of all superpixels, and we use these cen-
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Figure B6. Predicted land fragmentation.

Note: This Figure displays an interpolated raster map of predicted land fragmentation (see Section 2.2). The color scheme is white
(low) to red, yellow and green (high).

troids to calculate the predicted density of farms at the fringe of each city—a measure

of predicted land fragmentation. The variation in predicted land fragmentation is very

local; we do however see more aggregate patterns in land fragmentation due to overall

topography (mountainous terrain in Central England or Wales) or soil composition (in

Cornwall). We illustrate these aggregate patterns in Figure B6.

B.3 Descriptive statistics

In this section, we provide complements to Section 3.1. We first shed additional light on

the role of 1-digit sectors in cities’ changing industrial composition as opposed to the

more granular variation within these 1-digit sectors. In Figure 9 of the main paper, we

display the relationship between the 1881 Herfindahl index of specialization computed

at the 2-digit level and a predicted measure, also computed at the 2-digit level. In Fig-

ure B7, we decompose this relationship into (i) the part explained by predicted industrial

concentration at the 1-digit level (panel a) and (ii) the residual of the 1-digit prediction,

thus exploiting within-sector variation only (panel b). We can see that the relationship

remains strong in panel b; the slope is about 60% to that of Figure 9.

Next, we illustrate the correlation between settlement characteristics at the begin-

ning of the nineteenth century and predicted land fragmentation in these settlements’

immediate fringe in Figure B8. We find that settlements with above- (red) and below-
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Figure B7. The role of the initial industrial mix—robustness checks.

(a) Specialization (1881, 1-digit) (b) Specialization (1881, residual)

Notes: The left panel displays the measure of predicted industrial concentration computed at the 1-digit level against the actual
industrial concentration. The top decile of growing settlements are highlighted in purple. The line is a locally weighted regression
on all observations. The right panel repeats the same exercise with a residualized measure of predicted industrial concentration that
is (i) computed at the 2-digit level and (ii) cleaned for the role of the previous 1-digit measure of predicted industrial concentration.
The slope is about 60% to that of Figure 9 (panel b).

median (blue) predicted land fragmentation are very similar in population density and

industrial specialization.

Figure B8. A balance test for urban settlements with different land fragmentation in their immediate
fringe.

(a) Population density (b) Industrial specialization (Herfindahl index)

Notes: This Figure displays the distribution of population density (left panel) and industrial specialization (calculated as a Herfindahl
index across 3-digit occupations, right panel) for cities with above- (red) and below-median (blue) predicted land fragmentation in
their immediate fringe.

In Section 3.1, we also show that fast-growing cities become more specialized. We

better qualify this observation in Figure B9 where we decompose specialization ℎ𝑐 (as

shown in Figure 8) into predicted specialization ℎ̂𝑐 (see Section 2.2) and residual special-
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ization ℎ𝑐 − ℎ̂𝑐. We then plot the distribution of these two objects for the top quartile

in terms of employment growth during 1817–1881 (in purple) and the rest (in teal). We

see that the specialization of fast-growing cities is entirely predicted from their initial

industry mix: fast-growing cities are initially specialized across a few key sectors that

flourish over the course of the nineteenth century.

Figure B9. Specialization of cities—prediction and residual Herfindahl.

(a) Predicted specialization (b) Residual specialization

Notes: This Figure shows the distribution of predicted specialization ℎ̂𝑐 (see Section 2.2, left panel) and residual specialization ℎ𝑐 − ℎ̂𝑐

(right panel). The top decile of growing settlements are highlighted in purple.

Figure B10. Gibrat’s law.

(a) Gibrat’s law, 1817–1881 (b) Gibrat’s law, 1881–1971

Notes: This Figure shows the relationship between cities’ (log) initial employment and subsequent yearly growth. Panel (a) conducts
the analysis for the period 1817–1881, while panel (b) conducts it for the period 1881–1971.
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Figure B11. Zipf’s law.

Notes: This Figure shows the relationship between cities’ (log) rank in 1817 (blue), 1881 (orange) and 1971 (purple) and their (log)
employment.

B.4 City population and city growth: Additional evidence

This section presents additional evidence about the distribution of city populations and

growth over time. In Figure B10, we display the relationship between cities’ average

yearly growth and initial employment. Panel (a) shows this relationship in the nine-

teenth century. As expected, initially large cities grow faster during this period. Panel (b)

repeats the analysis for the twentieth century. Over this period, the relationship becomes

flat, even slightly negative: that is, large cities lose their advantage in terms of growth.

This is in line with the empirical findings of Section 3.3: larger population does not con-

fer an advantage in terms of long-run growth. It is also in line with the urban literature

documenting a typically flat relationship between city size and growth (Gibrat’s Law).

We also provide support for another empirical regularity characterizing the distribu-

tion of city size: the Zipf law relating the rank of cities to their size. In Figure B11, we

plot the relationship between the (log) rank and the (log) employment across our cities

in 1817 (blue), 1881 (orange) and 1971 (purple). One can see that the relationship is close

to linear in all years; the slope is, however, not close to -1, but is between -2 and -3.

B.5 Robustness

In this section, we provide a sensitivity analysis for our main finding of Section 3.3. First,

we provide evidence that land fragmentation affects urban development even when con-

trolling for competing mechanisms, more specifically: general agricultural productivity

(Coeurdacier et al., 2022); returns to agriculture and the exposure to the repeal of the
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Table B1. The long-run effect of city population and specialization—robustness checks.

Unskilled workers (1971)
(1) (2) (3) (4) (5)

Herfindahl (1881) 0.779 0.754 0.788 0.621 0.809
(0.275) (0.283) (0.309) (0.253) (0.407)

Population (1881) 0.017 0.020 0.024 0.021 0.032
(0.011) (0.011) (0.012) (0.010) (0.018)

Observations 285 259 259 259 239

Additional controls — Agricultural Exposure to Most common Incidence of
productivity Corn Laws crops’ yields enclosures

Notes: The set of baseline controls include initial employment and Herfindahl in 1817, and: slope, elevation, bulk density, carbon
content, latitude/longitude, travel time to coal, travel time to London, distance to/density of roads (1830), distance to/density of
stations (1846), distance to waterways, distance to the shore, share of arable, suitability to grow wheat and grass, the “shift-share”
predictor of urban employment growth (�̂�𝑐) between 1817 and 1881 defined in Section 2.2, and the same “shift-share” predictor
constructed between 1881 and 1971.

Corn Laws (Heblich et al., 2020); and the role of local institutions through the preva-

lence of parliamentary enclosures (Heldring et al., 2022).

Table B1 reports a sensitivity analysis around our baseline specification (Table 3, col-

umn (2), replicated in column (1) of Table B1). In column (2), we control for the average

Caloric Suitability Index within a 3-kilometer buffer around the initial city boundaries

(Galor and Özak, 2016) and for the potential yield for wheat (GAEZ: high input, rain-

fed). In column (3), we control for the local share of arable in agricultural production

in a broader neighborhood around the city, as captured by the Tithe maps in 1836. In

column (4), we control for a decomposition of agricultural acreage between wheat, bar-

ley, oats, potato, peas, bean, rape, and turnip from the agricultural census in 1801. In

column (5), we control for the local incidence of parliamentary enclosures (Clark and

Clark, 2001; Heldring et al., 2022; Satchell, Max and Dan Bogart and Leigh Shaw Taylor,

2017). While we used a 3-kilometer buffer for all measures so far, we extend the buffer

to a 10-kilometer buffer for the latter measure.

Next, we examine whether our main empirical finding is driven by any one of the

major nineteenth-century industries. To this end, we re-run the baseline specification of

Table 3, column (2), after dropping each of the 16 major industries, one by one. Figure B12

shows that the estimated effect of specialization on the long-run share of unskilled pop-

ulation remains positive in all of these specifications. This suggests that none of the

major industries are driving our headline empirical result.
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Figure B12. The long-run effect of city specialization—dropping industries one by one.

Notes: This Figure shows the estimated effect of 1881 industrial specialization on the 1971 share of unskilled in specifications in
which we drop each of the 16 major nineteenth-century industries one by one.
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C Theory appendix

C.1 Derivation of equation (12)

Given that workers are freely mobile across industries, nominal wages equalize across

industries in each city:

𝑤𝑖𝑐𝑡 = 𝑤𝑐𝑡 .

Plugging this result into equation (7), we obtain total land rents in city 𝑐 as

𝑅𝑐𝑡𝐿𝑐𝑡 = 𝑟𝑐𝑡𝐻𝑐𝑡 =
1 − 𝛾

𝛾
𝑤𝑐𝑡𝐿𝑐𝑡 ,

from which

𝑤𝑐𝑡 + 𝑅𝑐𝑡 =
1

𝛾
𝑤𝑐𝑡 . (17)

Also, from equation (6), we get

𝑟𝑐𝑡 =
(

1 − 𝛾

𝛾 )

1/𝜁𝑐𝑡

𝑤
1/𝜁𝑐𝑡
𝑐𝑡 𝐿

1/𝜁𝑐𝑡
𝑐𝑡 . (18)

By perfect competition, the factory gate price of each variety 𝑐 in industry 𝑖 becomes

equal to its marginal cost of production in equilibrium:

𝑝𝑖𝑐𝑡 = 𝑇
−1
𝑖𝑐𝑡 𝑤

𝛾

𝑐𝑡𝑟
1−𝛾

𝑐𝑡 =
(

1 − 𝛾

𝛾 )

1−𝛾

𝜁𝑐𝑡

𝑇
−1
𝑖𝑐𝑡 𝐿

1−𝛾

𝜁𝑐𝑡

𝑐𝑡 𝑤
𝛾+

1−𝛾

𝜁𝑐𝑡

𝑐𝑡 , (19)

where we used equation (18). As a result, we can write the price index of industry 𝑖,

equation (9), as

𝑃𝑖𝑑𝑡 =
[

𝐶

∑

𝑐=1
(

1 − 𝛾

𝛾 )

−
1−𝛾

𝜁𝑐𝑡
(𝜖−1)

𝑇
𝜖−1
𝑖𝑐𝑡 𝐿

−
1−𝛾

𝜁𝑐𝑡
(𝜖−1)

𝑐𝑡 𝑤
−
(
𝛾+

1−𝛾

𝜁𝑐𝑡 )
(𝜖−1)

𝑐𝑡 𝜏
1−𝜖
𝑖𝑐𝑑𝑡

]

1
1−𝜖

, (20)

and market clearing condition (8) as

𝑤𝑐𝑡𝐿𝑖𝑐𝑡 =
(

1 − 𝛾

𝛾 )

−
1−𝛾

𝜁𝑐𝑡
(𝜖−1)

𝑇
𝜖−1
𝑖𝑐𝑡 𝐿

−
1−𝛾

𝜁𝑐𝑡
(𝜖−1)

𝑐𝑡 𝑤
−
(
𝛾+

1−𝛾

𝜁𝑐𝑡 )
(𝜖−1)

𝑐𝑡

𝐶

∑

𝑑=1

𝑃
𝜎−1
𝑑𝑡 𝑃

𝜖−𝜎
𝑖𝑑𝑡 𝑤𝑑𝑡𝐿𝑑𝑡𝜏

1−𝜖
𝑖𝑐𝑑𝑡 , (21)

where we also used equation (17).

By the Fréchet distribution of idiosyncratic city tastes, the probability that a worker
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chooses city 𝑐 equals

𝑃𝑟 [𝑈
𝑚
𝑐𝑡 ≥ 𝑈

𝑚
𝑑𝑡 ∀𝑑] =

(�̄�𝑐
𝑤𝑐𝑡+𝑅𝑐𝑡
𝑃𝑐𝑡

𝐿−𝜆𝑐𝑡 )
1/𝜂

∑
𝐶

𝑑=1 (
�̄�𝑑

𝑤𝑑𝑡+𝑅𝑑𝑡
𝑃𝑑𝑡

𝐿−𝜆
𝑑𝑡 )

1/𝜂
=

(
1

𝛾
�̄�𝑐

𝑤𝑐𝑡

𝑃𝑐𝑡
𝐿−𝜆𝑐𝑡 )

1/𝜂

∑
𝐶

𝑑=1 (
1

𝛾
�̄�𝑑

𝑤𝑑𝑡

𝑃𝑑𝑡
𝐿−𝜆
𝑑𝑡 )

1/𝜂
.

In equilibrium, the fraction of workers choosing to live in 𝑐 becomes equal to this prob-

ability:

𝐿𝑐𝑡

�̄�
=

(
1

𝛾
�̄�𝑐

𝑤𝑐𝑡

𝑃𝑐𝑡
𝐿−𝜆𝑐𝑡 )

1/𝜂

∑
𝐶

𝑑=1 (
1

𝛾
�̄�𝑑

𝑤𝑑𝑡

𝑃𝑑𝑡
𝐿−𝜆
𝑑𝑡 )

1/𝜂

from which

𝑃𝑐𝑡 = (𝛾�̄�𝑡)
−1
�̄�𝑐𝑤𝑐𝑡𝐿

−(𝜆+𝜂)
𝑐𝑡 (22)

where

�̄�𝑡 =

⎡
⎢
⎢
⎢
⎣

∑
𝐶

𝑑=1 (
1

𝛾
�̄�𝑑

𝑤𝑑𝑡

𝑃𝑑𝑡
𝐿−𝜆𝑑𝑡 )

1/𝜂

�̄�

⎤
⎥
⎥
⎥
⎦

𝜂

.

Plugging this result into equations (10) and (21) and rearranging equation (20), we obtain

the system of equations

𝑃
1−𝜖
𝑖𝑐𝑡 =

𝐶

∑

𝑑=1
(

1 − 𝛾

𝛾 )

−
1−𝛾

𝜁𝑑𝑡
(𝜖−1)

�̂�
𝜖−1
𝑖𝑑𝑡 𝐿

−
(

1−𝛾

𝜁𝑑𝑡
−𝛼

)(
𝜖−1)

𝑑𝑡
𝑤

−
(
𝛾+

1−𝛾

𝜁𝑑𝑡 )
(𝜖−1)

𝑑𝑡
𝜏
1−𝜖
𝑖𝑑𝑐𝑡 (23)

�̄�
1−𝜎
𝑐 𝑤

1−𝜎
𝑐𝑡 𝐿

(𝜆+𝜂)(𝜎−1)
𝑐𝑡 = (𝛾�̄�𝑡)

1−𝜎
𝐼

∑

𝑖=1

𝑃
1−𝜎
𝑖𝑐𝑡 (24)

(

1 − 𝛾

𝛾 )

1−𝛾

𝜁𝑐𝑡
(𝜖−1)

𝑤
1+

(
𝛾+

1−𝛾

𝜁𝑐𝑡 )
(𝜖−1)

𝑐𝑡 𝐿
1+

(
1−𝛾

𝜁𝑐𝑡
−𝛼

)(
𝜖−1)

𝑐𝑡 =

(𝛾�̄�𝑡)
1−𝜎

𝐼

∑

𝑖=1

𝐶

∑

𝑑=1

�̂�
𝜖−1
𝑖𝑐𝑡 𝑃

𝜖−𝜎
𝑖𝑑𝑡 �̄�

𝜎−1
𝑑 𝑤

𝜎
𝑑𝑡𝐿

1−(𝜆+𝜂)(𝜎−1)

𝑑𝑡
𝜏
1−𝜖
𝑖𝑐𝑑𝑡

(25)

where

�̂�𝑖𝑐𝑡 = 𝑇𝑖𝑐𝑡𝑓𝑖 (
𝐿𝑐,𝑡−1,

{
𝐿𝑗𝑐,𝑡−1

}

𝑗∈𝐼)
,

is the part of TFP that is exogenous in period 𝑡. Applying the change in variables in

equation (14) and recalling 𝑤𝑖𝑐𝑡 = 𝑤𝑐𝑡 , equation (12) immediately follows from equations

(23), (24) and (25).
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C.2 Proof of Theorem 1

Rearranging the period-1 version of equations (23) to (25) yields

𝑃
1−𝜖
𝑖𝑐1 =

𝐶

∑

𝑑=1
(

1 − 𝛾

𝛾 )

−
1−𝛾

𝜉𝑑1
(𝜖−1)

�̂�
𝜖−1
𝑖𝑑1 𝐿

−
(

1−𝛾

𝜉𝑑1
−𝛼

)(
𝜖−1)

𝑑1
𝑤

−
(
𝛾+

1−𝛾

𝜉𝑑1 )
(𝜖−1)

𝑑1
𝜏
1−𝜖
𝑖𝑑𝑐1

(

�̄�𝑐

�̄�1)

1−𝜎

𝑤
1−𝜎
𝑐1 𝐿

(𝜆+𝜂)(𝜎−1)

𝑐1 = 𝛾
1−𝜎

𝐼

∑

𝑖=1

𝑃
1−𝜎
𝑖𝑐1

(

1 − 𝛾

𝛾 )

1−𝛾

𝜉𝑐1
(𝜖−1)

𝑤
1+

(
𝛾+

1−𝛾

𝜉𝑐1 )
(𝜖−1)

𝑐1 𝐿
(

1−𝛾

𝜉𝑐1
−𝛼

)(
𝜖−1)

𝑐1 �̂�
1−𝜖
𝑖𝑐1 𝐿𝑖𝑐1 =

𝛾
1−𝜎

𝐶

∑

𝑑=1

𝑃
𝜖−𝜎
𝑖𝑑1 (

�̄�𝑑

�̄�1)

𝜎−1

𝑤
𝜎
𝑑1𝐿

1−(𝜆+𝜂)(𝜎−1)

𝑑1
𝜏
1−𝜖
𝑖𝑐𝑑1

from which we obtain the following system of 3𝐼𝐶 equations:

�̂�
1
𝑖𝑐 =

𝐼

∑

𝑗=1

𝐶

∑

𝑑=1

(�̂�
3
𝑗𝑑)

−1
�̂�

1
𝑖𝑐𝑗𝑑

�̂�
2
𝑖𝑐 =

𝐼

∑

𝑗=1

𝐶

∑

𝑑=1

(�̂�
1
𝑗𝑑)

𝜎−1
𝜖−1

�̂�
2
𝑖𝑐𝑗𝑑

�̂�
3
𝑖𝑐 =

𝐼

∑

𝑗=1

𝐶

∑

𝑑=1

(�̂�
1
𝑗𝑑)

− 𝜖−𝜎
𝜖−1

(�̂�
2
𝑗𝑑)

−1
�̂�

3
𝑖𝑐𝑗𝑑

where �̂�1
𝑖𝑐 = 𝑃 1−𝜖

𝑖𝑐1 , �̂�2
𝑖𝑐 = (

�̄�𝑐
�̄�1 )

1−𝜎
, and �̂�3

𝑖𝑐 = �̂� 1−𝜖
𝑖𝑐1 .

The solution to this system exists and is unique if the largest eigenvalue of matrix 𝐀

is less or equal to one in absolute value (Allen et al., 2020), where 𝐀 is

𝐀 =

⎡
⎢
⎢
⎢
⎣

0 0 1

|
|
𝜎−1

𝜖−1
|
| 0 0

|
|
𝜖−𝜎

𝜖−1
|
| 1 0

⎤
⎥
⎥
⎥
⎦

.

One can easily verify that, under the assumption 𝜖 > 𝜎 > 1, the largest eigenvalue of 𝐀

is equal to 1.

C.3 Complements to the linear economy

Figure C1 presents the spatial distribution of industrial specialization and population in

a world in which cities are in autarky. Figure C2 presents the same outcomes in a world

in which the land supply elasticity of Western cities is decreased to zero.
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Figure C1. The linear economy under autarky in period 0.
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(a) Industrial specialization.
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(b) Distribution of population.

Notes: The values for the structural parameters are set as follows: 𝛼 = 0.06; 𝛾 = 0.65; 𝜖 = 5; 𝜙 = 0.25; 𝜎 = 4; �̄� = 10, 000, 000; 𝜁𝑐𝑡 = 2.

Figure C2. The linear economy in period 0 with heterogeneous land supply.
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(b) Distribution of population.

Notes: The values for the structural parameters are set as follows: 𝛼 = 0.06; 𝛾 = 0.65; 𝜖 = 5; 𝜙 = 0.25; 𝜎 = 4; �̄� = 10, 000, 000.
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