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Dzieliński114, Asli Eksi108, Izidin El Kalak20, Saskia ter Ellen22,
Nicolas Eugster171, Martin D. D. Evans44, Michael Farrell189, Ester

Felez-Vinas179, Gerardo Ferrara11, El Mehdi Ferrouhi56, Andrea
Flori92, Jonathan T. Fluharty203, Sean D. V. Foley74, Kingsley Y. L.

Fong165, Thierry Foucault49, Tatiana Franus14, Francesco
Franzoni195, Bart Frijns89, Michael Frömmel45, Servanna M. Fu141,
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University Frankfurt, 47HEC Liège - University of Liège, 48HEC Montréal, 49HEC
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Non-Standard Errors

Abstract

In statistics, samples are drawn from a population in a data-
generating process (DGP). Standard errors measure the uncer-
tainty in sample estimates of population parameters. In sci-
ence, evidence is generated to test hypotheses in an evidence-
generating process (EGP). We claim that EGP variation across
researchers adds uncertainty: non-standard errors. To study
them, we let 164 teams test six hypotheses on the same sam-
ple. We find that non-standard errors are sizeable, on par with
standard errors. Their size (i) co-varies only weakly with team
merits, reproducibility, or peer rating, (ii) declines significantly
after peer-feedback, and (iii) is underestimated by participants.

Online appendix available at https://bit.ly/3DIQKrB.
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1 Introduction
Academic research recognizes randomness in data samples by com-
puting standard errors (SEs) for parameter estimates. It, however,
does not recognize the randomness that is in the research process it-
self. We believe that such randomness is the cause of, what we will
call, non-standard errors (NSEs).

The above schema depicts the overarching idea of non-standard er-
rors. Statisticians use the term data-generating process (DGP) to con-
vey the idea that samples are random draws from a population. These
samples are used to estimate population parameters, with error: stan-
dard error. Using the same language, one could say that scientists
collectively engage in an evidence-generating process (EGP). This
EGP exposes variation across researchers, adding further error, which
we refer to as non-standard error. Can this additional uncertainty be
safely ignored, or is it sizeable? Does it decline with peer feedback?
This has been our core motivation when designing the Finance Crowd
Analysis Project (#fincap).1

Our working definition of non-standard errors is the standard de-
viation across researchers for the results they report when indepen-
dently testing the same hypotheses on the same sample. For example,
in #fincap we provide researchers with identical data and then ask
them to independently propose a measure for market efficiency, es-
timate its average per-year change, and report it. The NSE for this
reported change is simply the standard deviation across researchers
of their reported changes.

Non-standard errors exist for a variety of reasons. They might,
of course, be due to glitches in computer code or due to machine

1To increase the credibility of the findings and address concerns of specification
searching, we wrote a pre-analysis plan (PAP) and filed it with the Open Science
Foundation at https://osf.io/h82aj/. This was done before distributing the sample
with instructions to the #fincap participants. We follow the PAP throughout unless
stated otherwise.

1
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precision. A more intriguing source of NSEs is the different routes
that researchers travel through the “garden of forking paths.” Gelman
and Loken (2014) use this metaphor to describe the non-trivial set
of choices that researchers have to make when generating evidence.
For example, they have to specify an appropriate econometric model,
they have to pre-process the sample to ready it for estimation (e.g.,
purge outliers), they have to pick a programming language, et cetera.
Error is therefore to be understood in the sense of erratic rather than
erroneous.

Our objective is to measure and explain the size of non-standard
errors. Are they large? And, how large are they compared to standard
errors?2 The four questions that we focus on are the following:

1. How large are non-standard errors for research in finance?

2. Can they be “explained” in the cross-section of researchers?
Are they smaller

(a) for papers by higher quality teams?

(b) for papers with more easily reproducible results?

(c) for papers that score higher in peer evaluations?

3. Does peer feedback reduce these non-standard errors?

4. Are researchers accurately aware of the size of non-standard
errors?

Answering these questions is extremely costly in terms of human re-
sources. The core structure of an ideal experiment involves two size-
able sets of representative researchers. A first set of researchers in-
dependently tests the same set of hypotheses on the same sample and
writes a short paper presenting the results. A second, non-overlapping
set of researchers obtains these papers, evaluates them, and provides
feedback.

We believe that #fincap is close to this “ideal experiment” for
three main reasons. First, Deutsche Börse supported the project by
offering exclusive access to 720 million trade records spanning 17

2Note that the relative size of NSEs in total uncertainty is likely to grow in view
of the trend of ever larger datasets. NSEs are invariant to sample size whereas SEs
decline with sample size.
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years of trading in Europe’s most actively traded instrument: the
EuroStoxx 50 index futures. It enables researchers to test impor-
tant hypotheses on how the market changes when migrating to super-
human speeds. Second, #fincap being the first crowd-sourced em-
pirical paper in finance might have pushed the hesitant few over the
line (in addition to us arguing in the invitation that this is an op-
portunity to forego future regret).3 164 research teams and 34 peer
evaluators participated in #fincap. A back-of-the-envelope calcula-
tion shows that this effort alone cost 27 full-time equivalent person
years (164 × 2 months + 34 × 2 days ≈ 27 years). Third, we believe
that #fincap participants did, in fact, exert serious effort for a vari-
ety of reasons, such as, strong on-time delivery statistics and a high
average rating of papers (more in Section 3.3).

Summary of our findings. First off, we show that the group of
#fincap participants is representative of the academic community that
studies empirical finance/liquidity. The hypotheses to be tested on
the Deutsche Börse sample are tailored to this group. To distinguish
them from the hypotheses we test in our (meta) study, we henceforth
refer to them as RT-hypotheses. About a third of the 164 research
teams (RTs) have at least one member with publications in the top-
three finance or the top-five economics journals.4 For the group of
peer evaluators (PEs), this share is 85%. 52% of RTs consist of at
least one associate or full professor. For PEs, this is 88%. On a scale
from 1 (low) to 10, the average self-ranked score on experience with
empirical-finance research is 8.1 for RTs and 8.4 for PEs. For ex-
perience with market-liquidity research, it is 6.9 for RTs and 7.8 for
PEs.

The dispersion in results across research teams is sizeable. All six
hypotheses had to be tested by proposing a measure and computing
the average per-year percentage change. The first RT-hypothesis, for
example, was “Market efficiency has not changed over time.” The
across-RT dispersion in estimates is enormous, but is mostly due to

3The #fincap was presented to all involved by means of a dedicated website
(https://fincap.academy) and a short video (https://youtu.be/HPtnus0Yu-o).

4Economics: American Economic Review, Econometrica, Journal of Political
Economy, Quarterly Journal of Economics, and Review of Economic Studies. Fi-
nance: Journal of Finance, Journal of Financial Economics, and Review of Finan-
cial Studies.

3

https://fincap.academy
https://youtu.be/HPtnus0Yu-o


the presence of extreme values. One RT reported a 74,491% increase,
which explains why the simple across-RT mean and standard devia-
tion (SD) are 446.3% and 5,817.5%, respectively. If, however, follow-
ing a standard practice in finance,5 outliers are treated by winsorizing
the sample using 2.5 and 97.5 percentiles, the mean and SD become
-7.5% and 20.6%, respectively.

An average 7.5% per-year decline in efficiency from 2002 to 2018
for a leading exchange, is remarkable. The really remarkable result
given our purposes, however, is the across-RT dispersion. An SD of
20.6% for a winsorized sample is striking. But, how does this non-
standard error compare to the standard error? The across-RT mean SE
for the winsorized sample is 13.2%. The NSE-SE ratio therefore is
1.6. The NSE, therefore, is non-trivial in a relative sense as well. The
NSE-SE ratio ranges between 0.6 and 2.1 across RT-hypotheses, in-
cluding some that were deliberately non-fuzzy (e.g., one on the share
of client volume in total volume). Not surprisingly, the non-fuzzy
ones tend to show lower NSE-SE ratios.

We further find that the size of non-standard errors is hard to ex-
plain in the cross-section of researchers. We formally test three hy-
potheses that relate team quality, work-flow quality, and paper qual-
ity to dispersion, or more specifically, the size of “errors.” These
errors are defined as the difference between a particular RT result,
and the across-RT mean result. A standard approach to model het-
eroskedasticity of errors regresses log squared error on explanatory
factors (Harvey, 1976). Although almost all coefficients are negative
consistent with a high-quality small-error association, none of them
are statistically significant.6 The only exceptions are team quality and
work-flow quality in the 2.5%-97.5% winsorized sample. The latter is
proxied by verifying how easy it is to reproduce the results of a partic-
ular RT with the code that the RT provided. For work-flow quality, we
find a statistically significant negative sign. For team quality we find

5Adams et al. (2019), for example, review how outliers are dealt with for all
ordinary least-squares (OLS) regressions in articles that appeared in premier finance
journals in the period from 2008 through 2017: Journal of Finance, Journal of
Financial Economics, Review of Financial Studies, and Journal of Financial and
Quantitative Analysis. We like to note that outlier treatment was not pre-registered.

6We use the conservative significance levels advocated by Benjamin et al.
(2018): 0.5% for significance and 5% for weak significance. The latter is referred
to as “suggestive evidence.”
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only a suggestive (weakly significant) negative sign. A one standard-
deviation increase in work-flow quality reduces non-standard error by
12%. For team quality, a one SD increase reduces it by 8%.

Peer feedback significantly reduces non-standard errors. The
peer-feedback process involves multiple stages. By and large, we find
that each stage reduces NSEs. The overall reduction across all four
stages is 8.5% for the raw sample, and 53.5% for the 2.5%-97.5%
winsorized sample. This stark difference is driven by extreme-result
teams largely staying put in the feedback process.

RTs mostly underestimate non-standard errors as tested in an in-
centivized belief survey. The extent to which the average team under-
estimates the realized across-RT standard deviation ranges between
9.0% and 99.5% across the six hypotheses. It is not merely due to the
outliers that they did not foresee as the vast majority also underesti-
mated the NSE for the 2.5%-97.5% winsorized sample. Such under-
estimation might well be the reason why non-standard errors never
attracted much attention, until recently.

These findings on dispersion in percentage-change estimates carry
over to the associated t-values. In a sense, t-values represent the sta-
tistical strength of a positive, or a negative percentage-change find-
ing. The non-standard error of t-values therefore measures the ex-
tent of agreement across RTs on statistical strength. Our finding of
non-trivial NSEs also for t-values therefore implies large dispersion
in findings of statistical strength. Most telling, perhaps, is that for the
first RT-hypothesis on efficiency, 23.8% of RTs find a significant de-
cline, 8.5% find a significant increase, and 67.7% find no significance
if their t-values are evaluated at a conventional significance level (in
finance) of 5%. We find a similar pattern for all other RT-hypotheses.

Finally, we like to point out that the sizeable non-standard errors
are not driven by the presence of poor-quality results. This could al-
ready be concluded from the very weak traction obtained from quality
variables in the error-size regressions (discussed above). To further
corroborate this point, we reduce the sample to research teams who
score high on all quality variables. Doing so yields a sample of only
nine out of 164 teams. Non-standard errors for this subsample remain
large, including implied t-values that for some RTs are above 1.96 and
for others are below -1.96 for the same RT-hypothesis.
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Contribution to the literature. The issue of variability in the re-
search process is not new.7 The extant literature is best discussed by
adding some structure. The following chart depicts the various ways
in which the existing literature touches on non-standard errors.

1. Model. One source of variability across researchers is model
specification. Is the empirical model linear or non-linear?
Which co-variates should be included? Et cetera. Economists
are cognizant of specification errors and they typically do
robustness analysis to show that their main results do not
critically depend on specification choices. They have even en-
dogenized the awareness specification error in their theoretical
models. Agents in these models are assumed to make decisions
in full awareness of potential model-specification errors (e.g.,
Hansen and Sargent, 2001, for economics or Garlappi, Uppal,
and Wang, 2006, for finance).

2. Method. An additional source of variability is in the empirical
method. What are reasonable empirical proxies for the param-
eters of interest? What filters should be applied to the sam-
ple (e.g., how to deal with outliers)? What are appropriate test
statistics? It has long been known that not only is this a source
of variability, it can actually produce misleading inference. In
finance, Lo and MacKinlay (1990) were the first to warn of
“data snooping” in which properties of the data are used to con-
struct test statistics. More recently, Mitton (2021) provides di-

7Leamer (1983), for example, was troubled by the “fumes which leak from our
computing centers.” He called for studying “fragility in a much more systematic
way.”
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rect evidence on substantial methodological variation by ana-
lyzing 604 empirical corporate-finance studies published in the
top-three finance journals (mentioned in footnote 4).

3. Execution. Variability remains, even if one fixes model and
method. This is the domain of computational reproducibility
studies that go far back in economics and finance. In eco-
nomics, the American Economic Review (AER) was the first
to introduce a Data Availability Policy in 2005 after the AER
had published two studies that illustrated how hard it was to
reproduce empirical studies (Dewald, Thursby, and Anderson,
1986; McCullough and Vinod, 2003). Reproducibility issues
persisted as, at most, half of the empirical studies published
in the top economics journals could be computationally repro-
duced (Glandon, 2011; Chang and Li, 2017; Gertler, Galiani,
and Romero, 2018). Reproducibility has become an issue for
finance journals as well as exemplified by the Journal of Fi-
nance retracting a published article for the first time in its his-
tory (Rampini, Viswanathan, and Vuillemey, 2021).

The presence of sizeable non-standard errors potentially corrupts the
research process through a phenomenon known as “p-hacking.” The
p-value of a statistical test refers to the probability (p) that the re-
ported effect is solely due to chance (under the null hypothesis of
there being no effect). Large non-standard errors create opportuni-
ties for researchers to pick a model, a method, and an execution that
produces a low p-value and write a report accordingly (i.e., they are
hacking the p-value).

Replication studies typically find much weaker effects and less
statistical strength,8 suggestive of p-hacking. We caution that these
results are not necessarily due to ill intent on the side of researchers,
because they might be demand- rather than supply-driven. That is,
journals might selectively publish papers with low p-values. Munafò

8See, for example, Open Science Collaboration (2015) and Camerer et al. (2016,
2018). Replication is an issue in finance as well (Harvey, 2017) and replication stud-
ies started to appear recently. Hou, Xue, and Zhang (2018), for example, study 452
asset-pricing anomalies, including “the bulk of published anomalies in finance and
accounting” (p. 2024). They conclude that most anomalies fail to replicate. Black
et al. (2021) try to replicate the results of four top finance/accounting/economics
publications. They were not able to reproduce any of them.
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et al. (2017) survey the various threats to credible empirical science
and propose several fixes.

Our study on the magnitude of non-standard errors, therefore, not
only measures the additional uncertainty in empirical results, it also
reveals the scope for p-hacking. #fincap was carefully designed to
minimize any p-hacking dynamics so as to obtain unbiased estimates
of NSEs. For example, researchers signed contracts that clarified that
their results would remain anonymous in all public communication
about #fincap.

We are the first to study how large these errors are in finance,
but not the first in science. Silberzahn et al. (2018) pioneered the
multi-analyst study by letting multiple research teams test whether
soccer referees are more likely to draw red cards for players with
darker skin color. Other examples are Botvinik-Nezer et al. (2020)
for neuroscience, Huntington-Klein et al. (2021) for economics, and
Breznau et al. (2021) and Schweinsberg et al. (2021) for sociology.
Our contribution relative to these studies is that we not only document
the size of NSEs,9 we also try to explain them in the cross-section,
and to study convergence in a peer-feedback process. Furthermore,
we ascertain whether research teams themselves are accurately aware
of the size of NSEs. A further strength of our study is the large sample
size: N=164. It is at least twice and up to 20 times larger than other
multi-analyst samples.

The remainder of the paper is organized as follows. Section 2 pro-
vides an in-depth discussion of the project design.10 It also presents
the hypotheses that we will test and how we test them. Section 3
presents our results and Section 4 concludes.

2 Project design and hypotheses
This section starts with presenting the details of #fincap. With this in
mind, we then translate our overall objectives into testable hypothe-
ses.

9We like to note that documenting the size of NSEs has been done before, but,
to the best of our knowledge, only in Huntington-Klein et al. (2021). Their sample
size is seven RTs, ours is 164 RTs.

10The design of #fincap follows the guidelines for multi-analyst studies proposed
by Aczel et al. (2021).

8



2.1 Project design
The core of #fincap is letting multiple research teams (RTs) indepen-
dently test the same six hypotheses on the same Deutsche Börse sam-
ple. We refer to these hypotheses as RT-hypotheses and to this sample
as RT-sample. This is to avoid potential confusion with the hypothe-
ses that we will test based on sample generated by RTs and peer eval-
uators (PEs).11

The RT-sample is a plain-vanilla trade dataset for the EuroStoxx
50 index futures with, added to it, an agency/principal flag.12 For
each buy and sell, we therefore know whether the exchange member
traded for its own account or for a client. The sample runs from 2002
through 2018 and contains 720 million trade records. These index
futures are among the world’s most actively traded index derivatives.
They give investors exposure to Europe, or, more precisely, to a bas-
ket of euro-area blue-chip equities. With the exception of over-the-
counter activity, all trading is done through an electronic limit-order
book (see, e.g., Parlour and Seppi, 2008).

The RT-hypotheses are all statements about trends in the following
market characteristics (with the null being no change):

RT-H1 market efficiency,

RT-H2 the realized bid-ask spread,

RT-H3 the share of client volume in total volume,

RT-H4 the realized spread on client orders,

RT-H5 the share of market orders in all client orders, and

RT-H6 the gross trading revenue of clients.

Appendix A discusses these RT-hypotheses in detail. For the
purpose of our analysis, it suffices to know that these market

11RTs and PEs have been recruited mostly by alerting appropriate candidates
through suitable channels (e.g., the https://microstructure.exchange/). To inform
them about #fincap, we created an online repository: https://fincap.academy. The
repository remains largely unaltered (except for, e.g., adding FAQs).

12Trade records contain the following fields: Datetime, expiration, buy-sell indi-
cator, size, price, aggressor flag, principal-agent flag, and a full- or partial-execution
flag. More details on the sample are in Figure OA.1 of the Online Appendix.
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characteristics should not surprise a researcher familiar with
empirical-finance/liquidity. There is, purposefully, considerable
variation across RT-hypotheses in the level of abstraction. Or, in
other words, the garden of forking paths is much larger for some than
for others. RT-H1, for example, is on the relatively abstract notion of
market efficiency. RT-H3, on the other hand, is on the market share
of client volume. Such share should be a relatively straightforward
to calculate because, in the RT-sample, each buy and sell trade is
flagged client or proprietary.

RTs are asked to test these RT-hypotheses by estimating an aver-
age yearly change for a self-proposed measure.13 In the interest of
readability, we refer to this estimate as the “effect size.” They are
further asked to report standard errors for these estimates. We com-
pute the ratio of the two, which we refer to as the implied t-value, or
t-value for short. Collectively, we refer to these results as RT results.

RTs write a short academic paper in which they present and dis-
cuss their findings. These papers are evaluated by PEs who were re-
cruited outside the set of researchers who registered as RTs. RT pa-
pers were randomly and evenly assigned to PEs in such a way that
each paper was evaluated twice, and each PE evaluated nine or ten
papers. PEs scored the papers in single-blinded process: PEs saw the
names of RTs but not vice versa. This was made clear to all ex-ante.14

PEs scored the papers both at the RT-hypothesis level, and at the ag-
gregate, paper level. They motivated their scores in a feedback form
and were encouraged to add constructive feedback. RTs received this
feedback unabridged and were allowed to update their results based
on it. Importantly, the design of #fincap was common knowledge to
all as it was communicated ex-ante via a dedicated website (see foot-
note 3). More specifically, #fincap consisted of the following four
stages:

Stage 1 (Jan 11 - Mar 23, 2021.) RTs receive the detailed instruc-
tions along with access to the RT-sample. They conduct their

13RTs are asked to express their results in annualized terms. To some it was not
clear. We therefore notified everyone of the following clarification that we added
to the FAQ section on https://fincap.academy: “Research teams are asked to report
annualized effect size estimates (and the corresponding standard errors); research
teams are not required, however, to consider only annualized data.”

14We picked a single-blinded process instead of double-blinded process in order
to incentivize RTs to exercise maximum effort.
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analysis and hand in their results (short paper plus code).
We emphasized in our emails and on the project website that
RTs should work in absolute secrecy so as to ensure inde-
pendence across RTs.

Stage 2 (May 10 - May 28, 2021.) RTs receive feedback from two
anonymous PEs and are allowed to update their analysis
based on it. They are asked to report their findings in the
same way they did in Stage 1.

Stage 3 (May 31 - June 18, 2021.) RTs receive the five best papers
based on the average raw PE score. The names of the authors
of these five papers were removed before distributing the pa-
pers.15 Similar to Stage 2, all RTs are allowed to update their
analysis and resubmit their results.

Stage 4 (June 20 - June 28, 2021.) RTs report their final results, this
time not constrained by delivering code that produces them.
In other words, RTs are allowed to Bayesian update their re-
sults (i.e., effect sizes and standard errors) taking in all the
information that has become available to them, in particu-
lar the five best papers. They could, for example, echo the
results of one of these papers, simply because of an econo-
metric approach that they believe is superior but that is be-
yond their capacity to code. This stage was added to remove
all constraints and see how far the RT community can get in
terms of reaching consensus.

The stages subsequent to the first one mimic the feedback researchers
get from various interactions with peer researchers in the research pro-
cess before a first journal submission (e.g., feedback from colleagues
over lunch or at the water cooler, during seminars, or in the coffee
breaks after conferences, but also hearing about and seeing similar
papers endorsed by others). The dynamics at play in a refereeing pro-
cess at a scientific journal are out of scope.16

15If two papers were tied in terms of their average score, then, following the pre-
analysis plan, we picked the one that had highest reproducibility score provided by
the Cascad. For more information on Cascad, see the statement of H2 in Section 2.2.

16Testing the dynamics in a refereeing process requires a different experiment
that involves “publishing” papers, including the names of the authors. Note that
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2.2 Hypotheses
The overall objectives outlined in the introduction were translated into
a set of pre-registered hypotheses (see footnote 1 for pre-registration
details). The hypotheses all center on across-RT dispersion. We use
variance as our dispersion measure because it is additive and the de
facto standard dispersion measure in statistics. Let us therefore define
dispersion at stage t for RT-hypothesis j as:

var
(
y jt

)
=

1
n − 1

∑(
yi jt − ȳ j

)2
, (1)

where

• i ∈ {1, . . . , n} indexes RTs,

• j ∈ {1, . . . , 6} indexes RT-hypotheses,

• t ∈ {1, . . . , 4} indexes group stages, and

where ȳ j is the overall average for RT-hypothesis j. To study the
extent of dispersion requires modeling variance, which is known in
econometrics as modeling heteroskedasticity. The idea is that the size
of “errors” are related to co-variates. In our application these errors
are defined as:17

ûi jt = yi jt − ȳ j. (2)

With all the groundwork done, we can now translate our overall
objectives into three sets of hypotheses. These hypotheses are tested
for the dispersion in two types of RT-results:

we do reveal the best five papers (according to PEs) to all RTs in Stage 4, but the
authors of these papers remain hidden. Our focus is narrowly on the pure findings
and beliefs of the RTs, avoiding any possible corruption by “the publication game.”
In other words, a refereeing system has two components. The first is anonymous
feedback from peers/experts and the second is an incentive to revise according to
this feedback in order for one’s paper to become published. We capture the first
component by asking PEs to rate the paper, but not the second one.

17The term error is used in a statistical sense of how observed data differ from a
population mean. It should not be confused with errors necessarily being mistakes.
Jumping ahead a little, we will model heteroskedasticity following Harvey (1976)
(Section 2.3). ûi jt in (2) denotes the OLS residual that results from estimating Har-
vey (1976, Equation (2)) with only intercepts pertaining to the six dummies for the
RT-hypotheses.
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• The effect size (i.e., the point estimate).

• The t-value (i.e., the point estimate divided by the stan-
dard error).

We believe that both are of interest. The effect size is of intrinsic
interest as it is about the outcome in the variable of interest. The t-
value captures the statistical strength of the reported effect in the sense
larger magnitudes are less likely to occur under the null of there being
no effect. All hypotheses on the dispersion in effect sizes and t-values
are stated as null hypotheses. The hypotheses tests will be two-sided.

The first set of three hypotheses focuses on whether error variance
relates to various quality measures:

H1 Team quality does not explain the size of errors in Stage 1 re-
sults. Team quality is proxied by the largest common factor in
various candidate proxies for team quality. We prefer an ap-
propriately weighted average over simply adding all proxies to
maximize statistical power in the regressions. More specifi-
cally, we define team quality as the first principal component of
standardized series that include:18

(a) Top publications: The team has at least one top-five pub-
lication in economics or top-three publication in finance
(0/1) (see footnote 4).

(b) Expertise in the field: Average of self-assessed experience
in market liquidity and empirical finance (scale from 0 to
10).

(c) Experience with big data: The team has worked with
datasets that are at least as big as the Deutsche Börse
dataset analyzed in #fincap (0/1).

(d) Academic seniority: At least one team member holds an
associate or a full professorship (0/1).

(e) Team size: The team size attains its maximum of two
members (0/1).

18An important advantage of a principal-component analysis (PCA) is that the
weighting is data-driven, thus avoiding subjective weights. Note that even the five
proxies that enter were picked ex-ante in the pre-analysis plan filed at OSF. The
PCA results will be discussed in Section 3.2.1.
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H2 Work flow quality does not co-vary with the size of errors in
Stage 1 results. We proxy for work-flow quality with a re-
producibility score per RT × RT-hypothesis. The score mea-
sures to what extent an RT result is reproducible from the RT
code. The scoring was done by the Certification Agency for
Scientific Code and Data (Cascad). Cascad is a non-profit cer-
tification agency created by academics with the support of the
French National Science Foundation (CNRS) and a consortium
of French research institutions. The goal of this agency is to
provide researchers with an innovative tool allowing them to
signal the reproducibility of their research (used by, for exam-
ple, the American Economic Review).19

H3 Paper quality as judged by the average score of PEs (hypothesis
level) does not explain the size of errors in the first submission
(scale from 0 to 10). To remove a possible PE fixed effect we
use demeaned PE scores in all of our analysis.

The second set of hypotheses are about convergence of RT results
across the four stages, and about convergence from the first to the
final stage to have a test with maximum power.20

H4 The error variance does not change from first to second stage.

H5 The error variance does not change from second to third stage.

H6 The error variance does not change from third to fourth stage.

H7 The error variance does not change from first to fourth stage.

The final hypothesis focuses on RT beliefs about the dispersion in
results across RTs.

H8 The average belief of RTs on the across-RT dispersion in re-
sults, is correct. The dispersion beliefs are solicited in terms of
the standard deviation measure.

19Cascad rates reproducibility on a five-category scale: RRR (perfectly repro-
ducible), RR (practically perfect), R (minor discrepancies), D (potentially serious
discrepancies), and DD (serious discrepancies). For #fincap, Cascad converted their
standard categorical rating to an equal-distance numeric one: RRR, RR, R, D, and
DD become 100, 75, 50, 25, 0, respectively.

20The decline across consecutive stages might be small, but after summing them
the total decline might be sizeable. It is in this sense that the first-to-final stage is
expected to be statistically most powerful.
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2.3 Statistical approach
Heterogeneity in error variance is known as heteroskedasticity in
econometrics. A standard textbook in econometrics, Greene (2007,
Ch. 9.7), refers to Harvey (1976) as a common approach to modeling
heteroskedasticity. We adapt this approach to our setting and follow
Harvey’s notation for ease of comparison. Error variance is modeled
as:

σ2
i jt = var

(
ui jt

)
= exp

(
z′i jtα

)
, (3)

where ui jt is the unobserved disturbance term, and zi jt contains the
set co-variates which, instead of an intercept, includes six dummies
corresponding to the six RT-hypotheses to account for possible
heteroskedasticity across hypotheses. The parameter vector α mea-
sures the marginal relative change in variance when the associated
co-variate is increased by one unit. For example, if the coefficient for
co-variate X is 0.1, then increasing X by one unit raises variance by
ten percent. It raises standard deviation by approximately half that
amount: five percent.21

Estimation. An attractive feature of the Harvey model is that it can
be estimated with ordinary least squares (OLS). More specifically, the
OLS model is:22

log û2
i jt = z′i jtα + wi jt. (4)

Let α̃ denote the resulting parameter estimate. Harvey shows that
α̃ estimates α consistently, except for the intercept coefficients. If,

21This follows directly from a first-order Taylor approximation of f (x) =
√

x
around µ: f (x) ≈

√
µ + 1

2
√
µ

(x − µ). If the predicted change in variance is ten

percent, then it follows that f (x) ≈
√
µ + 1

2
√
µ

0.10µ = 1.05
√
µ.

22It is tempting to drop the natural logarithm on the dependent variable and sim-
ply use squared errors as the dependent variable in an OLS regression. Harvey
(1976, p.6) mentions three reasons for why his model is more attractive than this
alternative one: “Firstly, the likelihood function is bounded and no problems arise
due to estimated variances being negative or zero. Secondly, the error terms in the
two-step equation [. . . ] are (asymptotically) homoscedastic and so the estimated co-
variance matrix of the two-step estimator, α̃, is consistent. Finally, the likelihood
ratio test has a much simpler form in the multiplicative model.”
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however, wi jt is assumed to be Gaussian, then a consistent estimator
for the full α vector becomes (where the subscript k refers the kth
element of the vector):

α̂k =

α̃k for k > 6,
α̃k − ψ

(
1
2

)
+ log

(
1
2

)
for k ≤ 6,

(5)

where ψ (ν) is the psi (digamma) function defined as d log Γ (ν) /dν
where Γ (ν) is the Gamma function with ν degrees of freedom. This
follows from Harvey (1976, Equation (6)). The predicted variance for
RT i’s error for RT-hypothesis j in stage t becomes:

σ̂2
i jt = exp

(
z′i jtα̂

)
, (6)

Importantly, the non-intercept elements of the parameter vector α are
estimated consistently, even if wi jt is non-Gaussian. The tests of our
hypotheses all pertain to non-intercept elements, and therefore remain
valid in the absence of normality.

Statistical inference. All hypotheses are tested using standard er-
rors that cluster residuals wi jt by RTs.23 The R-squared of the het-
eroskedasticity regression in (4) is a useful measure of how much of
the total dispersion can be explained. More precisely, the R-squared
captures how much of the variance of log squared errors is explained
by the set of explanatory variables.

Balanced sample. We will implement our tests on a balanced sam-
ple. We therefore include only observations for RTs that participated
in all of the four stages. This makes the results in all four stages com-
parable as they pertain to the same set of RTs. The balanced sample,
however, is not that different from the unbalanced one as only four
of the 168 RTs did not complete all rounds. The balanced sample
therefore consists of 164 RTs.

23The clustering is needed to account for possible non-zero correlation in resid-
uals wi jt per RT, across RT-hypotheses and stages. For example, if the error is large
for a particular RT on a particular RT-hypothesis, then it is likely to be large for
the other RT-hypotheses as well. We do not cluster on RT-hypotheses because the
model in (4) includes fixed effects for RT-hypotheses, which, we believe, removes
most of the commonality. We do not cluster on PEs as a possible PE fixed effect
was removed by demeaning PE scores in all of our analysis.
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Significance levels. The hypothesis tests are two-sided and tested at
significance levels of 0.005 and 0.05. Following the recommendations
of Benjamin et al. (2018), we refer to results with a p-value smaller
than 0.005 as statistically significant. Results with a p-value smaller
than 0.05 are referred to as suggestive (weakly significant) evidence.

3 Results
This section summarizes all our findings. The first subsection presents
various summary statistics to familiarize with the sample. The second
subsection presents and discusses the test results for our hypotheses.

3.1 Summary statistics
(Insert Table 1 about here.)

Table 1 summarizes our sample by means of three sets of statistics,
organized in three panels. Panel (a) summarizes the qualities of the
#fincap community. It consists of 164 research teams (RTs) and 34
peer evaluators (PEs). The maximum RT size is two members, which
is the size of 79% of RTs.

The statistics testify to the high quality of the #fincap community.
31% of RTs have at least one top publication in finance or economics
(see footnote 4 for the list of journals). For PEs this is 85%. Those
who provide feedback are therefore better published, which probably
mirrors reality as the feedback flow is most likely to come from more
senior or successful scholars. This finding is echoed in the percentage
of RTs that have at least one member who is tenured at the associate
or full professor level. This fraction is 52% for RTs and 88% for PEs.

(Insert Figure 1 about here.)

Figure 1 illustrates how RT members and PEs cover the global
academic-finance community reasonably well. RT members reside in
34 countries with most (51 out of 293) residing in the United States.
PEs reside in 13 countries with, again, most (13 out of 34) residing in
the United States. The stronger skew towards the Unites States (US)
is not surprising given that the more senior, well-published finance
scholars are predominantly affiliated with US universities.
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Most RTs and PEs seem to have the appropriate background
for testing the RT-hypotheses on the RT-sample. Their average
self-reported scores on having experience in the field of empirical
finance is 8.1 for RTs and 8.4 for PEs on a scale from 0 (low) to 10.
For experience in market-liquidity research these average scores are
6.9 for RTs and 7.8 for PEs. There is considerable variation around
these averages as the across-RT standard deviation for these scores
range from 1.7 to 2.4. When it comes to working with the large
RT-sample (720 million trade records), again, most RTs and PEs
seem up to it. 52% of RTs have worked with samples of similar size
or larger. For PEs, this percentage is 88%.

Panel (b) of Table 1 shows that the average quality of the RT
analysis is solid, and the dispersion is large. The average Cascad
reproducibility score is 64.5 on a scale from 0 (low) to 100 (see foot-
note 19). This is high when benchmarked against other studies on re-
producibility surveyed in Colliard, Hurlin, and Pérignon (2021). The
across-RT standard deviation is 43.7, which implies extreme variation
across RTs (most code either reproduces perfectly or not at all). The
paper-quality score of PEs show a similar pattern, albeit with consid-
erably lower dispersion. The average score across RTs is 6.2 on a
scale from 0 (low) to 10. The across-RT standard deviation is 2.0.

Panel (c) provides descriptive statistics on non-standard errors:
the dispersion in results across RTs. It does so, by hypothesis, and by
type of result: Estimate of the effect size, standard error, and t-value.
Our focus is on dispersion across RTs, which is why we relegate a dis-
cussion of RT means to Appendix A. More specifically, this appendix
discusses the RT-hypotheses in-depth and summarizes what RTs, as a
group, seem to find with a focus on the across-RT mean instead of the
across-RT standard deviation.

(Insert Figure 2 about here.)

Perhaps the most salient feature of the extensive Panel (c) is that
there is substantial across-RT variation in all hypotheses and for all
results. For RT-H1 on efficiency, for example, the across-RT mean
annual change is 446.3% with an across-RT standard deviation (NSE)
of 5,817.5%. These extraordinary numbers are intimately linked to
an extremely large value of 74,491.1% for a particular RT. If, as is
common in finance (Adams et al., 2019), the RT-sample is winsorized
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at a 2.5%-97.5% level (which is the default level for the remainder
of this text), then the mean becomes -7.4% with standard deviation
of 20.6%. Note that such NSE of 20.6% is similar in magnitude to
the mean reported SE of 13.2%. The NSE-SE ratio therefore is 1.6.
The dispersion is not much lower for RT-H3, where the correspond-
ing numbers are a mean change is -2.6% with an NSE of 1.4% and
a mean SE of 1.3%, leading to an NSE-SE ratio of 1.3. This pattern
emerges for all RT-hypotheses with NSE-SE ratios ranging from 0.6
to 2.1. Figure 2 illustrates the substantial across-RT dispersion with
boxplots.

The panel further shows that t-values also exhibit sizeable dis-
persion across RTs. For RT-H1, for example, the mean and standard
devation for t-value across RTs is -3.6 and 28.4, respectively. For
the winsorized sample, these values are -1.4 and 5.2, respectively. At
conventional threshold levels for 95% significance, -1.96 and 1.96, al-
most a third of RTs find statistically significant results. Interestingly,
there is no agreement in this group of RTs as the 32.3% decomposes
into 23.8% who find a significant decline and 8.5% who find a signif-
icant increase. This pattern is common across RT-hypotheses. Even
for the relatively straightforward RT-H3, 49.4% report an (implied)
t-value that is larger than 1.96 in absolute value. There is more agree-
ment on the sign of the significance, as 45.7% finds significant de-
cline, whereas 3.7% finds a significant increase. The 3.7% is not a
single RT, it corresponds to six RTs who find a significant increase
whereas 75 RTs (45.7%) find a significant decline.

Overall, the summary statistics show that there is substantial dis-
persion across RTs at various levels. There is substantial dispersion in
team quality (panel (a)), the quality of their analysis (panel (b)), and
in the results they report (panel (c)). These findings are promising for
the hypotheses tests that we will turn to next. The sizeable dispersion
in results implies that NSEs are large and therefore worthy of study.
The strong variation in both team quality and analysis quality creates
the statistical power needed to test whether they are significant co-
variates for the heteroskedasticity in results (H1-3). Are errors larger
in magnitude for lower quality teams or for teams with lower quality
analysis? This is what will be tested in the next subsection.
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3.2 Hypotheses tests
The results on the three sets of hypotheses are discussed in the next
three subsections.

3.2.1 Co-variates for stage-1 dispersion (H1-3)

(Insert Table 2 about here.)

The first set of hypotheses aims to measure whether various quality
variables significantly co-vary with the size of errors. The first hy-
pothesis centers on RT quality, which we measure by picking the first
principal component of five standardized proxies. Table 2 summa-
rizes the principal component analysis (PCA). Panel (a) presents the
simple correlation matrix that enters the PCA. Note that this matrix is
the covariance matrix since the five proxies are standardized. It is re-
assuring that the lion share of these correlations are positive. The only
exception is that big-data experience is negatively related to experi-
ence. Since both are positively correlated with the rest, this finding
suggests that the sample could be cut in two subgroups: those who are
relatively more experienced in the field and those who are relatively
more experienced in big-data analysis.

Panel (b) and (c) document that the largest principal component
explains 38.3% of all variance and loads positively on all variables. It
loads strongest on publications and weakest on big-data but, impor-
tantly, it loads positively on all of them. This is the principal compo-
nent that serves as the team-quality measure in hypothesis test. Note-
worthy is that the second principal component picks up 23.6/(100-
38.3)=38.2% of the remaining variance. The strongest loadings are
0.79 on big-data and -0.55 on experience. This component neatly
picks up the experience/big-data distinction in the group of RTs that
we commented on earlier.

(Insert Table 3 about here.)

Table 3 summarizes our findings when regressing log-squared errors
on the various quality co-variates. These regressions were done for
the raw sample as pre-registered in the PAP. We, however, had not
foreseen the types of extreme values that some RTs reported (as ev-
idenced, for example, by one RT reporting an average per-year in-
crease in efficiency of 74,491.1%). Following standard practice in
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finance, we treat these “outliers” by winsoring and trimming the sam-
ple with cut-off levels at the 1% and 99% quantile and at the 2.5% and
97.5% quantile (Adams et al., 2019). Winsorizing replaces values
beyond these levels by the quantile level, whereas trimming simply
removes them.

For effect-size estimates, the regression results show that log-
squared errors seem unrelated to the various quality co-variates, for
the most part. Most coefficients are negative, and thus consistent
with higher quality being associated with smaller errors. Loosely
speaking, higher quality is in the center of the distribution of RT
results and lower quality in the periphery. There is, however, no
statistical significance with two exceptions for the 2.5%-97.5%
winsorized sample.

First, we find suggestive evidence that higher team quality coin-
cides with smaller errors. A one standard-deviation (SD) increase in
team quality coincides with a 16% drop in error-variance, which, by
approximation,24 implies an SD drop of 0.5×16=8%.

Second, we find significant evidence that better reproducibility is
associated with smaller errors. A one-SD increase in reproducibility
coincides with an approximate 12% drop in SD. Phrased differently,
it coincides with a 12% drop in NSE. The findings for dispersion in
t-values are similar with, again, statistical significance only for repro-
ducibility, with higher reproducibility being associated with smaller
errors.

In summary, the evidence is such that the first three hypotheses
cannot be firmly rejected for both effect-size estimates and t-values.
In other words, team quality (H1), reproducibility (H2), and paper
quality (H3) seem unrelated to the size of errors. The only exception
is that for the 2.5%-97.5% winsorized sample we do reject the null of
no effect for H1 and H2.

(Insert Figure 3 about here.)

The almost absent statistical significance is unlikely to be due to low
statistical power. The sample contains almost one thousand observa-
tions: 164 RTs times six hypotheses yields 984 observations. The
result suggests that NSEs are sizeable, also for high-quality teams
and/or high-quality results. The large sample allows us to make this

24This approximation is derived in footnote 21.
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point in a more straightforward way: Pull out a sub-sample of RTs
that score high on all quality measures. We note that this additional
analysis was not pre-registered.

Figure 3 illustrates the result. Nine RTs score highest on all mea-
sures: all RT-quality proxies, reproducibility, and the average peer-
evaluator rating of their paper.25 The figure shows that NSEs remain
large. For the effect-size estimates depicted in the top plot, the NSE
for RT-H1 is 10.1% (reported on top of the plot) and for RT-H3 it is
0.4%. For the winsorized full sample, these values were 20.6% and
1.8%, respectively (see Table 1). The bottom plot shows that also for
t-values the across-RT dispersion is large. It is so large, in fact, that for
RT-H4, two RTs report values larger than 1.96 in magnitude, but with
opposite signs. If interpreted conventionally, the one RT would con-
clude that the realized spread on client order increased significantly
in the course of the sample, whereas the other RT would conclude it
significantly decreased.

3.2.2 Convergence across stages? (H4-7)

(Insert Table 4 about here.)

Whereas initial dispersion is large and seemingly only weakly related
to quality, the dispersion does decline with peer feedback. Table 4
shows that error variance declines significantly when comparing the
first to the last stage.

(Insert Figure 4 about here.)

Panel (a) presents the results for the effect-size estimates. In the raw
sample, error variance declines by 17% and the standard deviation,
therefore, by approximately half that amount: 8.5%. Figure 4 illus-
trates this finding by showing box plots for all four stages. One salient
pattern in the figure is that extreme values seem to stay put or move
only marginally. Most of the convergence seems to be in the boxes
that depict the interquartile range. This observation explains why for

25For the binary variables, the conditioning is trivial. For non-binary variables,
we picked 7.5 for the scales from zero to 10, and 75 for the scales from 0 to 100.
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the winsorized and trimmed samples the convergence across stages is
much stronger.26

For the winsorized sample, the standard deviation across RT es-
timates decline by approximately 53.5%. The decline is distributed
rather evenly across the three stages. After receiving written feed-
back on their paper by two PEs in the second stage, it declines by
14.5%. It declines by another 20% in the third stage after RTs see the
best five papers. There is a final 19% reduction in the final stage when
RTs hand in their final estimates, this time not constrained by having
to hand in the code to support it. All these changes are statistically
significant, except for first change where the significance is weak and
the result is therefore only suggestive.

The pattern for t-values is somewhat different for this winsorized
sample. The SD also declines significantly across all stages. The de-
cline, however, is smaller in magnitude: 20.5% instead of 53.5%. The
most salient difference is that the SD increases significantly by 14%
from Stage 1 to Stage 2. The subsequent decline of 4% is insignif-
icant. The real convergence is in the final stage where it drops by
30.5%. This maybe due to the nature of this final stage where RTs
might simply be Bayesian updating with less than full weight on their
own paper. This necessarily leads to convergence across RTs.

This evidence makes us reject most of the null hypotheses on con-
vergence. H7 is most firmly rejected. For both effect-size estimates
and t-values do we find rejection in all stages in favor of the alter-
native that error variance declines. The other three hypotheses that
pertain to changes across the three consecutive stages, the evidence is
weaker but largely rejecting the null of no changes.

3.2.3 Are RT-beliefs about dispersion accurate? (H8)

The eighth and final hypothesis is on whether RTs are accurately
aware of the size of non-standard errors: the standard deviation of
results across RTs. Beliefs were solicited in an incentivized way. If
their beliefs turn out to be within 50% of the realized standard devi-

26The winsorization and trimming was done per hypothesis, per stage. To retain a
balanced panel, the trimming procedure removes an RT for all stages in case it was
removed in a single stage. The balanced-panel condition is particularly important
when studying convergence across stages, because one wants to compare a fixed set
of RTs across stages.
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ation, they can earn a monetary reward of $300. The details of the
reward scheme are in the instruction sheet they obtained prior to re-
porting their beliefs (see Figure OA.10 in the Online Appendix). The
hypothesis pertains to Stage 1 results because they were solicited only
for this stage.

As H8 is stated in terms of the average belief being correct, test-
ing it requires a test on the equality of means: the mean belief about
standard deviation in results across RTs and the standard deviation of
these results in the population. Let us define the test statistic D that
measures relative distance between beliefs and realizations:

D =
1

6n

∑
i, j

(BeliefOnStDevi j − RealizationOfStDev j

RealizationOfStDev j

)
, (7)

where BeliefOnStDevi j is the belief of team i on the standard deviation
across RTs for hypothesis j and RealizationOfStDev j is the realized
standard deviation for this hypothesis in the raw sample.27 The distri-
bution of D under the null of equal means is obtained by bootstrap-
ping. For details on the bootstrap procedure we refer to Appendix C.

(Insert Table 5 about here.)

Table 5 presents the test results which show that non-standard errors
are severely underestimated. Effect-size estimates are significantly
underestimated by 71.7% and t-values by a significant 70.6%. Redo-
ing the test by RT-hypothesis shows that there is strong heterogeneity
but, where significant, there is underestimation. For effect-size esti-
mates, it seems that for the RT-hypotheses that are relatively straight-
forward to test, the null of accurate beliefs cannot be rejected. An
example is RT-H3, which is on the market share of client volume.
The average RT-belief for this RT-hypothesis is not significantly dif-
ferent from the realization. For RT-hypotheses that require more cre-
ative effort to test, NSEs are significantly underestimated. For RT-H1
on market efficiency, for example, the underestimation is 99.5%. In

27The benefit of a relative measure as opposed to an absolute measure is that (i)
it is easy to interpret as it allows for statements of RTs over- or underestimating by
some percentage and (ii) it accounts for level differences across hypotheses (e.g.,
under the null accurate beliefs, a uniform distribution of beliefs on the support 0.09
to 0.11 will exhibit the same dispersion as a uniform distribution of beliefs on 900
to 1100).

24



summary, the vast majority of tests show significant underestimation
and we therefore firmly reject the null of an accurate average belief.

(Insert Figure 5 about here.)

Figure 5 plots the entire distribution of reported beliefs along with
the realized values that are depicted by red dots. It illustrates that
the vast majority of RTs underestimated dispersion. The interquartile
range denoted by the boxes is consistently below the red dot. One
might think that RTs simply overlooked the extreme values that prop
up SDs. This, however, does not seem to be true since even if one
trims the RT-results (which is stronger than winsorizing in this case),
the boxes stay below the realized value which, for the trimmed sam-
ple, are depicted by orange dots. The only exception is RT-H3 and
effect size, for which the orange dot is just within the top of the box.
75% of the RTs therefore underestimate the NSEs for 11 out of the 12
cases.

3.3 Alternative explanations
After having presented all our results, it is useful to discuss alternative
explanations. Might the sizeable non-standard errors be due to the
presence of inexperienced researchers testing unsuitable hypotheses
with little effort? We believe this is unlikely to be the case for the
following reasons.

Experience. Aware of this potential pitfall, we selectively ap-
proached research teams and peer evaluators who we knew were
sufficiently experienced in the field. When signing up, they ticked
a box that they understood that participating in #fincap requires
research expertise and experience in empirical finance and the
analysis of large datasets. Ticking the box further meant that they
acknowledge that one of the team members held a PhD in finance
or economics. After ticking the box, researchers had to motivate in
open text box why they believe they meet these requirements. We
parsed the content of this box to make sure that the team qualifies
before accepting them into #fincap (see Figure OA.2 in the Online
Appendix for the sign-up sheet).
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Hypotheses. We proceeded with care when designing RT-
hypotheses. Early versions were shared with senior scholars, and
their feedback helped us fine-tune the RT-hypotheses. We therefore
feel comfortable that the RT-hypotheses are suitable and well mo-
tivated hypotheses to test with the RT-sample (see Figure OA.6 in
the Online Appendix for the RT instruction sheet which shows how
RT-hypotheses were presented to RTs).

Related to the suitability question, one might wonder whether
vagueness of an RT-hypothesis might be a viable alternative expla-
nation for sizeable NSEs. To address this concern, we included a very
precise RT-hypothesis: RT-H3 on client volume share. The results for
RT-H3 show that NSEs are sizeable for relatively precise hypotheses
as well. It is true, however, that NSEs tend to be lower for the more
precise RT-hypotheses.

Effort. We incentivized research teams to exert effort by informing
them about the following before signing up: the deadlines of the
various stages so that they could plan for it; their non-anonymized
paper would be evaluated by senior peer reviewers; the top-five
(anonymized) papers would be announced to all others;28 and, only
those who completed all stages would become co-authors. In addition
to these incentives, we believe that most scientists are propelled by
an intrinsic motivation to do good research.

Looking back, we have various reasons to believe that researchers
did indeed exert serious effort. First, only four out of 168 research
teams did not complete all stages. 123 out of 168 teams (73.2%)
handed in their Stage 1 report at least a day early, and none of the
teams seriously breached any deadline. The average reproducibil-
ity score was 64.5 on a scale from 0 (low) to 100, which is high in
comparison to what has been reported in other reproducibility stud-
ies (Colliard, Hurlin, and Pérignon, 2021). Finally, the average paper
quality was 6.2 on a scale from zero (low) to 10.

28Individuals obtain “ego utility” from positive views about their ability to do
well and they exert more effort (or take more risks) when they are informed about
their rank in non-incentivized competitions (Köszegi, 2006; Tran and Zeckhauser,
2012; Kirchler, Lindner, and Weitzel, 2018).
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4 Conclusion
Testing an hypothesis on a data sample involves many decisions on
the side of the researcher. He needs to find an appropriate economet-
ric model, clean the data, choose suitable software for estimation, et
cetera. These choices inherently generate some dispersion in results
across researchers. There is no right or wrong here, there simply are
many roads that lead to Rome. We propose the across-researcher stan-
dard deviation in results as a measure of such dispersion and refer to
it as the non-standard error.

Studying NSEs involves letting a representative group of re-
searchers independently test the same set of hypotheses on the same
sample. #fincap did exactly this. 164 research teams tested relatively
standard types of hypotheses on novel and proprietary trade data.

We compute NSEs and show that they are sizeable, similar in mag-
nitude to SEs. They, for the most part, do not co-vary with various
quality variables: research-team quality, work-flow quality, and paper
quality. The last one is assessed by 34 external peer evaluators. PEs
also provided written feedback, so that each research team received
anonymized feedback from two PEs. After receiving this feedback,
teams were allowed to update their analysis and post new results.
NSEs declined weakly signficantly in this stage. They declined sig-
nificantly further in two subsequent stages, in which teams received
new information. The total decline across all stages is substantial, up
to 50%. Finally, we find that teams grossly underestimate NSEs, and
more so for more abstract hypotheses.

In sum, we believe that our study shows that NSEs add non-
negligible uncertainty to the outcome of hypotheses tests in finance.
We document that NSE uncertainty is similar in magnitude as SE
uncertainty. This is particularly worrisome as it creates substan-
tial space for p-hacking (which had been scoped out here). An
encouraging result, however, is that peer feedback reduces NSEs.
We therefore believe that the profession should further encourage
researchers to make data available, to post a pre-registration plan,
to consider a multi-analyst approach, and to stimulate interaction
among researchers. This, hopefully, does not leave us lost in the
larger metropolitan area, but leads us right to the Forum Romanum.
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Appendices

A RT-sample, RT-hypotheses, and results
This appendix presents the RT-hypotheses in detail and the test results of #fincap
RTs as a group. We start by providing a motivating context.

A.1 Context
Electronic order matching systems (automated exchanges) and electronic order gen-
eration systems (algorithms) have changed financial markets over time. Investors
used to trade through broker-dealers by paying the dealers’ quoted ask prices when
buying, and accepting their bid prices when selling. The wedge between dealer bid
and ask prices, the bid-ask spread, was a useful measure of trading cost, and often
still is.

Now, investors more commonly trade in electronic limit-order markets (as is the
case for EuroStoxx 50 futures). They still trade at bid and ask prices. They do so by
submitting so-called market orders and marketable limit orders. However, investors
now also can quote bid and ask prices themselves by submitting (non-marketable)
standing limit orders. Increasingly, investors now also use agency algorithms to
automate their trades. Concurrently, exchanges have been continuously upgrading
their systems to better serve their clients. Has market quality improved, in particular
when taking the viewpoint of non-exchange members: (end-user) clients?

A.2 RT-hypotheses and test results
The RT-hypotheses and results are discussed based on RT-results in the final stage of
the project (Table OA.3 in the Online Appendix). We therefore base our discussion
on the results that RTs settled on after receiving feedback. What do RTs find after
having shown some convergence across the stages? And, consistent with the main
text, the presence of extreme values makes us prefer to analyze the 2.5%-97.5%
winsorized sample.

(The first two hypotheses focus on all trades.)

RT-H1. Assuming that informationally-efficient prices follow a random walk,
did market efficiency change over time?
Null hypothesis: Market efficiency has not changed over time.

Findings. RTs predominantly reject the hypothesis in favor of a decline of mar-
ket efficiency. In the final stage, 61.6% of RTs report an implied t-value that is larger
than 1.96 in absolute value, and therefore significant at a conventional 5% signifi-
cance level. Of these, 51.8/61.6 = 84.1% report a significant decline. The decline
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seems modest as the across-RT mean29 is -1.7% per year. The small changes add
up, though, to a total decline in the 2002-2018 sample of (0.98317 − 1) = 25.3%.
This might reflect a trend of declining depth in the market, possibly due to new
regulation in the aftermath of the global financial crisis of 2007-2008. The regula-
tion constrained the supply of liquidity by sell-side banks (e.g. Bao, O’Hara, and
Zhou, 2018; Jovanovic and Menkveld, 2021). If these banks incur higher inventory
costs as a result, then, in equilibrium, one observes larger transitory price pressures
thus reducing market efficiency (e.g., Pastor and Stambaugh, 2003; Hendershott and
Menkveld, 2014). In the interest of brevity, we discuss all remaining hypotheses in
the same way.

RT-H2. Did the (realized) bid-ask spread paid on market orders change over
time? The realized spread could be thought of as the gross-profit component of the
spread as earned by the limit-order submitter.
Null hypothesis: The realized spread on market orders has not changed over time.

Findings. The majority of RTs (53.7%) find statistical significance, mostly
(90.9%) in the direction of a decline in the realized spread. The decline is 2.1%
per year, which implies a 30.3% decline over the full sample. This trend might be
due to the arrival of high-frequency market makers who operate at low costs. They
do not have the deep pockets that sell-side banks have, but they will offer liquidity
for regular small trades by posting near the inside of the market. Their arrival is
typically associated with a tighter bid-ask spread, but not necessarily with better
liquidity supply for large orders (e.g., Jones, 2013; Angel, Harris, and Spatt, 2015;
Menkveld, 2016).

(The remaining hypotheses focus on agency trades only.)

RT-H3. Did the share of client volume in total volume change over time?
Null hypothesis: Client share volume as a fraction of total volume has not changed
over time.

Findings. Almost all RTs (86.6%) find statistical significance, almost exclu-
sively (97.9%) pointing towards a decline in the share of client volume. The average
decline is 2.7% per year, which implies a total decline of 37.2% for the full sample.
Intermediation, therefore, seems to have increased which should surprise those who
believe that the arrival of agency algorithms enables investors to execute optimally
themselves, thus reducing the need for intermediation.30

29The across-RT mean includes all RTs, thus also those who report insignificant
results.

30We verified with Deutsche Börse that this change is not purely mechanical in
the sense that, in the sample period, many institutions became an exchange member
and, with it, their volume changes status from agency to principal.
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RT-H4. On their market orders and marketable limit orders, did the realized bid-
ask spread that clients paid, change over time?
Null hypothesis: Client realized spreads have not changed over time.

Findings. 32.3% of RTs would reject the null hypothesis, with the majority
(71.8%) in favor of a decline in realized spread. The average decline is 0.7% per
year and 11.3% for the full sample. The decline in client realized spread is therefore
only about a third of the total realized spread decline, which suggests that market
orders of intermediaries benefited most from a general realized-spread decline.

RT-H5. Realized spread is a standard cost measure for market orders, but to
what extent do investors continue to use market and marketable limit orders (as op-
posed to non-marketable limit orders)?
Null hypothesis: The fraction of client trades executed via market orders and mar-
ketable limit orders has not changed over time.

Findings. 31.1% of RTs would reject the null, but this time, interestingly, about
half find a significant decline, whereas the other half finds a significant increase.
The average per-year change is -0.2% which adds up to -3.3% for the full sam-
ple. The results seem to suggest that clients neither increased their share of market
orders, nor did they decrease it. One might have expected the latter because an in-
creased use of agency algorithms should allow them to execute more through limit
orders31 as opposed to market orders. The benefit of execution via limit order is that
one earns half the bid-ask spread rather than pays for it.

RT-H6. A measure that does not rely on the classic limit- or market-order dis-
tinction is gross trading revenue (GTR). Investor GTR for a particular trading day
can be computed by assuming a zero position at the start of the day and evaluating
an end-of-day position at an appropriate reference price. Relative investor GTR can
then be defined as this GTR divided by the investor’s total (euro) volume for that
trading day. This relative GTR is, in a sense, a realized spread. It reveals what
various groups of market participants pay in aggregate for (or earn on) their trad-
ing. It transcends market structure as it can be meaningfully computed for any type
of trading in any type of market (be it trading through limit-orders only, through
market-orders only, through a mix of both, or in a completely different market struc-
ture).
Null hypothesis: Relative gross trading revenue (GTR) for clients has not changed
over time.

Findings. Only 12.8% of RTs find significance with about half in favor of GTR
decline and the other half in favor of an increase. The average change is a 1.5%
increase, which for the full sample implies a total change of 28.8%. Since the

31By executing via a limit order we mean, submitting a limit order that cannot be
executed immediately and, therefore, enters the book and eventually gets matched
with an incoming market order.
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average client GTR is most likely negative, this result implies that it became more
negative thus suggesting worse overall execution quality. We caution that this result
is very weak in terms of significance and in terms of agreement across RTs on the
sign. If, however, overall execution quality did indeed decline, then we would come
full circle with the RT-H1 finding of a market efficiency decline, potentially due to
a decline in market depth.

B Explanatory variables for error variance

B.1 Team quality
The quality measures for research teams are based on the survey that participants
filled out upon registration (see Figure OA.2 in the Online Appendix). To keep the
regression model both concise and meaningful, we reduce the ordinal variable “cur-
rent position” and the logarithmic interval-based variable “size of largest dataset
worked with” to binary variables. The academic position variable is one if a re-
searcher is either associate or full professor. The dataset variable is one if the re-
searcher has worked with datasets that are contained at least 100 million observa-
tions, because the #fincap sample contains 720 million observations. We aggregate
these binary variables to research team level by taking the maximum across the
team members.

As for self-assessed experience, we asked for both empirical finance and market
liquidity, which we deem equally relevant for testing the RT-hypotheses. Thus,
and because of the anticipated high correlation, we use the average of these two
measures to obtain the individual score. And, in the interest of consistency, we
again aggregate to the team level by taking the maximum across the team members.

B.2 Workflow quality
We proxy for workflow quality with an objectively obtained score of code quality
provided by Cascad (see footnote 19). The scale ranges from 0 (serious discrepan-
cies) to 100 (perfect reproducibility).

B.3 Paper quality
Papers are rated by an external group of peer evaluators (PEs). They rate the analy-
ses associated with each RT-hypothesis individually, but also the paper in its entirety
(see Figure OA.11 in the Online Appendix). The ratings range from from 0 (very
weak) to 10 (excellent). Each paper is rated by two PEs and the paper rating is the
average of the two (after removing a PE fixed effect as discussed in Section 2.1).
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C Bootstrap procedure for belief statistic D
The distribution of D under the null of equal means is obtained by bootstrapping
as follows. For each RT-hypothesis, we subtract the difference between the average
belief on standard deviation and the observed standard deviation, from the beliefs:

AdjBeliefOnStDevi j =

BeliefOnStDevi j −

1
n

∑
i

BeliefOnStDevi j

 − RealizationOfStDev j

 (8)

In this new sample with adjusted beliefs, the average belief about dispersion equals
the observed dispersion, by construction. This sample is input to the bootstrapping
procedure which iterates through the following steps 10,000 times:

1. As we have n RTs, in each iteration we draw n times from the new sample,
with replacement. Each draw picks a particular RT and stores its beliefs
and its results for all of the six RT-hypotheses. The result of these n draws
therefore is a simulated sample that has the same size as the original sample.

2. The simulated sample is used to compute the test statistic D in (7). This
statistic for iteration k, a scalar, is stored as Dk.

The bootstrap procedure yields 10,000 observations of the test statistic under the
null. For a significance level of 0.005, the statistic observed in the #fincap sample is
statistically significant if it lands below the 25th lowest simulated statistic or above
the 25th highest simulated statistic. Its p-value is:32

2 min(EmpiricalQuantileFincapStatistic,

1 − EmpiricalQuantileFincapStatistic). (9)
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Neunhoeffer, Daniel Nüst, Olav Nygård, Fabian Ochsenfeld, Gunnar Otte, Anna
Pechenkina, Christopher Prosser, Louis Raes, Kevin Ralston, Miguel Ramos,
Arne Roets, Jonathan Rogers, Guido Ropers, Robin Samuel, Gregor Sand, Ariela
Schachter, Merlin Schaeffer, David Schieferdecker, Elmar Schlueter, Regine
Schmidt, Katja M. Schmidt, Alexander Schmidt-Catran, Claudia Schmiedeberg,
Jürgen Schneider, Martijn Schoonvelde, Julia Schulte-Cloos, Sandy Schumann,
Reinhard Schunck, Jürgen Schupp, Julian Seuring, Henning Silber, Willem
Sleegers, Nico Sonntag, Alexander Staudt, Nadia Steiber, Nils Steiner, Sebastian
Sternberg, Dieter Stiers, Dragana Stojmenovska, Nora Storz, Erich Striessnig,
Anne-Kathrin Stroppe, Janna Teltemann, Andrey Tibajev, Brian Tung, Giacomo
Vagni, Jasper Van Assche, Meta van der Linden, Jolanda van der Noll, Arno Van
Hootegem, Stefan Vogtenhuber, Bogdan Voicu, Fieke Wagemans, Nadja Wehl,
Hannah Werner, Brenton M. Wiernik, Fabian Winter, Christof Wolf, Yuki Ya-
mada, Nan Zhang, Conrad Ziller, Stefan Zins, Tomasz Żółtak, and Hung H.V.
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Table 1: Summary statistics

This table presents summary statistics. Standard deviations are in
parentheses.

Panel (a): Quality of the #fincap community
Research

teams
Peer

evaluators

Fraction with top econ/finance publications (see footnote 4) 0.31 0.85
Fraction including at least associate/full professor 0.52 0.88

Experience empirical-finance research (low-high, 1-10) 8.1 (1.7) 8.4 (1.8)
Experience market-liquidity research (low-high, 1-10) 6.9 (2.4) 7.8 (2.3)

Relevant experience (average of the above two items) 7.5 (1.3) 8.1 (1.7)
Fraction with “big data” experience (>#fincap sample) 0.65 0.88
Fraction teams consisting of two members (maximum team size) 0.79
Number of observations 164 34

Panel (b): Quality of the analysis of research teams
Research

teams

Reproducibility score according to Cascad (low-high, 0-100) 64.5 (43.7)
Paper quality as judged by peer evaluators (low-high, 0-10) 6.2 (2.0)

(continued on next page)
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(continued from previous page)

Panel (c): Dispersion across teams of estimates, SEs, and t-values

RT-H1
Efficiency

RT-H2
RSpread

RT-H3
Client

Volume

RT-H4
Client

RSpread

RT-H5
Client

MOrders

RT-H6
Client
GTR

Estimate effect size
Mean 446.3 -1,093.4 -3.5 -38,276.1 -3.5 -87.1
Mean (wins.)a -7.4 9.0 -2.6 -2.1 -0.3 -27.6
Mean (trim)b -6.2 5.4 -2.7 0.6 -0.2 -22.1
SD 5,817.5 14,537.2 9.4 490,024.2 37.6 728.5
SD (wins.)a 20.6 49.5 1.8 46.8 1.1 187.8
SD (trim)b 16.6 29.0 1.5 24.9 0.9 128.7
Min -171.1 -186,074.5 -117.5 -6,275,383.0 -452.9 -8,254.5
Q(0.10) -23.7 -6.9 -3.8 -6.7 -1.6 -192.1
Q(0.25) -6.2 -3.6 -3.5 -2.1 -0.6 -18.2
Median -1.1 -0.0 -3.3 0.1 -0.0 0.0
Q(0.75) 0.5 3.9 -2.4 3.8 0.2 3.2
Q(0.90) 3.7 21.5 -0.1 20.4 1.0 56.5
Max 74,491.1 4,124.0 8.7 870.2 69.5 1,119.0

Standard error
Mean 468.7 1,195.3 3.7 38,302.0 6.2 148.2
Mean (wins.)a 13.2 23.5 1.4 26.9 1.7 104.8
Mean (trim)b 10.8 16.4 1.3 18.8 1.4 80.7
SD 5,810.6 14,711.9 29.5 489,929.5 40.1 526.0
SD (wins.)a 27.0 60.8 1.6 75.3 2.6 237.5
SD (trim)b 21.2 38.8 1.3 53.1 1.7 174.1
Min 0.0 0.0 0.0 0.0 0.0 0.0
Q(0.10) 0.1 0.2 0.1 0.2 0.1 0.0
Q(0.25) 0.5 1.1 0.3 1.2 0.2 0.7
Median 2.5 5.0 1.4 4.4 1.0 9.7
Q(0.75) 9.3 13.9 2.0 14.3 2.4 77.1
Q(0.90) 44.7 39.6 2.2 31.2 3.1 235.4
Max 74,425.5 188,404.1 378.8 6,274,203.0 463.7 4,836.2

t-value
Mean -3.6 35.3 -47.1 24.3 -5.7 -2.0
Mean (wins.)a -1.4 -1.3 -13.3 -0.4 0.2 -0.4
Mean (trim)b -1.1 -1.0 -11.6 -0.3 0.0 -0.2
SD 28.4 541.2 269.9 406.0 60.1 21.2
SD (wins.)a 5.2 4.1 25.4 3.0 4.2 2.0
SD (trim)b 3.4 3.3 22.0 2.4 2.6 1.4
Min -322.3 -764.6 -2,770.6 -852.6 -631.6 -191.7
Q(0.10) -4.7 -5.7 -37.4 -3.5 -2.3 -1.7
Q(0.25) -1.9 -1.5 -11.5 -1.0 -0.6 -1.0
Median -0.7 -0.1 -1.8 0.1 0.0 0.0
Q(0.75) 0.3 0.8 -1.6 1.0 0.8 0.7
Q(0.90) 1.7 1.5 -0.3 1.6 1.7 1.2
Max 51.6 6,880.5 29.5 5,119.5 89.6 100.6

More t-value statistics
t <-1.96 23.8% 22.6% 45.7% 17.7% 11.0% 9.8%
t >1.96 8.5% 6.1% 3.7% 9.1% 9.8% 3.0%
|t | >1.96 32.3% 28.7% 49.4% 26.8% 20.7% 12.8%

Relative size NSE (wins.)c

NSE/SE ratio 1.6 2.1 1.3 1.7 0.6 1.8

a: Winsorized at 2.5%-97.5%. b: Trimmed at 2.5%-97.5%. c: The non-standard error of effect
size is compared to the mean standard error of effect size for the winsorized sample.
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Table 2: Principal component analysis team quality

This table presents the results of a principal component analysis of
the standardized team quality variables.

Panel (a): Correlation team quality measures
Publications Experience Big Data Position #Members

Publications 0.34 0.10 0.54 0.30
Experience -0.18 0.25 0.12
Big Data 0.14 0.14
Position 0.16

Panel (b): Fraction of variance explained
PC1 PC2 PC3 PC4 PC5

Variance explained 38.3% 23.6% 17.1% 12.4% 8.6%

Panel (c): Loading of principal components on variables
Publications Experience Big Data Position #Members

PC1 0.61 0.40 0.13 0.55 0.37
PC2 -0.01 -0.55 0.79 0.05 0.26
PC3 -0.10 0.06 -0.21 -0.46 0.86
PC4 -0.20 0.71 0.56 -0.35 -0.12
PC5 -0.76 0.14 -0.02 0.60 0.22
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Table 3: Stage-1 error-variance regressions

This table presents the results of stage-1 error-variance regressions.
The standard errors in parentheses are based on clustering on research
teams. The incremental R2 measure how much more is explained be-
yond a model with simple dummies for RT-hypotheses. */** corre-
spond to significance at the 5/0.5% level, respectively.

Panel (a): Estimates
Raw Winsorized Trimmed

1%
to

99%

2.5%
to

97.5%

1%
to

99%

2.5%
to

97.5%

Team quality (standardized) 0.01
(0.06)

-0.13
(0.07)

-0.16∗
(0.08)

-0.12
(0.06)

-0.12
(0.08)

Reproducibility score (standardized) -0.13
(0.07)

-0.15
(0.09)

-0.24∗∗
(0.08)

-0.13
(0.09)

-0.08
(0.08)

Average rating (standardized) -0.12
(0.07)

-0.14
(0.10)

-0.18
(0.09)

-0.17
(0.11)

-0.17
(0.09)

RT-hypotheses dummies Yes Yes Yes Yes Yes
R2 0.95 0.73 0.65 0.72 0.63
#Observations 984 984 984 972 936

Panel (b): t-values
Raw Winsorized Trimmed

1%
to

99%

2.5%
to

97.5%

1%
to

99%

2.5%
to

97.5%

Team quality (standardized) -0.00
(0.08)

-0.01
(0.09)

0.00
(0.11)

-0.05
(0.09)

0.05
(0.10)

Reproducibility score (standardized) -0.12
(0.09)

-0.18
(0.09)

-0.23∗
(0.11)

-0.21∗
(0.08)

-0.09
(0.10)

Average rating (standardized) -0.15
(0.12)

-0.21
(0.13)

-0.09
(0.12)

-0.01
(0.10)

0.02
(0.11)

RT-hypotheses dummies Yes Yes Yes Yes Yes
R2 0.71 0.49 0.37 0.49 0.32
#Observations 984 984 984 972 936
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Table 4: All-stages error-variance regressions

This table presents the results of error-variance regressions including
all stages. The standard errors in parentheses are based on clustering
on research teams. */** correspond to significance at the 5/0.5% level,
respectively.

Panel (a): Estimates
Raw Winsorized Trimmed

1%
to

99%

2.5%
to

97.5%

1%
to

99%

2.5%
to

97.5%

Dummy Stage 2 - Dummy Stage 1 -0.11∗
(0.05)

-0.24∗
(0.09)

-0.29∗
(0.11)

-0.30∗∗
(0.10)

-0.21∗
(0.11)

Dummy Stage 3 - Dummy Stage 2 0.04
(0.03)

-0.26∗∗
(0.07)

-0.40∗∗
(0.09)

-0.21∗
(0.09)

-0.40∗∗
(0.09)

Dummy Stage 4 - Dummy Stage 3 -0.10∗∗
(0.03)

-0.26∗∗
(0.05)

-0.38∗∗
(0.06)

-0.25∗∗
(0.05)

-0.39∗∗
(0.06)

Dummy Stage 4 - Dummy Stage 1 -0.17∗
(0.06)

-0.75∗∗
(0.10)

-1.07∗∗
(0.12)

-0.76∗∗
(0.10)

-1.00∗∗
(0.12)

RT-hypotheses dummies Yes Yes Yes Yes Yes
R2 0.96 0.58 0.51 0.54 0.50
#Observations 3,936 3,936 3,936 3,888 3,744

Panel (b): t-values
Raw Winsorized Trimmed

1%
to

99%

2.5%
to

97.5%

1%
to

99%

2.5%
to

97.5%

Dummy Stage 2 - Dummy Stage 1 -0.01
(0.07)

0.04
(0.09)

0.28∗∗
(0.09)

0.10
(0.08)

0.24∗
(0.08)

Dummy Stage 3 - Dummy Stage 2 -0.20∗∗
(0.06)

-0.23∗
(0.09)

-0.08
(0.08)

-0.14
(0.09)

0.14
(0.07)

Dummy Stage 4 - Dummy Stage 3 -0.06
(0.03)

-0.32∗∗
(0.05)

-0.61∗∗
(0.08)

-0.43∗∗
(0.07)

-0.73∗∗
(0.09)

Dummy Stage 4 - Dummy Stage 1 -0.26∗∗
(0.09)

-0.51∗∗
(0.11)

-0.41∗∗
(0.12)

-0.46∗∗
(0.11)

-0.36∗∗
(0.12)

RT-hypotheses dummies Yes Yes Yes Yes Yes
R2 0.76 0.57 0.42 0.47 0.39
#Observations 3,936 3,936 3,936 3,888 3,744
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Table 5: Dispersion on research team beliefs

This presents test statistics on whether the beliefs of research teams
about dispersion across research teams matches realized dispersion.
More precisely, the test statistic is defined as the difference between
the average belief on the standard deviation across teams minus the
realized standard deviation, divided by the latter. The p-values in
parentheses are obtained through bootstrapping. This analysis is the
only one that uses the unwinsorized sample as beliefs were solicited
for the raw data. */** correspond to significance at the 5/0.5% level,
respectively.

RT-H1
Efficiency

RT-H2
RSpread

RT-H3
Client

Volume

RT-H4
Client

RSpread

RT-H5
Client

MOrders

RT-H6
Client
GTR All

Estimate -99.5%∗∗
(0.00)

-95.4%∗∗
(0.00)

-9.0%
(0.64)

-97.5%∗∗
(0.00)

-45.3%
(0.50)

-83.3%∗∗
(0.00)

-71.7%∗∗
(0.00)

t-value 15.9%
(0.19)

-96.0%∗∗
(0.00)

-92.4%∗∗
(0.00)

-97.1%∗∗
(0.00)

-86.0%∗∗
(0.00)

-68.2%∗∗
(0.00)

-70.6%∗∗
(0.00)
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Figure 1: Countries of #fincap community

This plot illustrates how the #fincap community is dispersed around
the globe. The top plot depicts how the members of the research teams
are dispersed across countries. The bottom plot does the same for the
peer evaluators.
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Figure 2: Dispersion in research-team estimates

This plot illustrates the dispersion in the stage-1 estimates reported
by the research teams for all six hypotheses. It is based on the raw
sample. The boxes span the the first to the third quartile with the
median as the interior horizontal line. The whiskers span 95% of
the the observations, starting from the 2.5% quantile to the 97.5%
quantile.
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Figure 3: Dispersion research-team estimates: A high-quality
subset

This plot mirrors Figure 2 but reports dispersion only for the subset of
the highest-quality research teams with highest-quality results (N=9).
The teams score one on all of the binary team-quality measures used
in Table 3 and at least 7.5 in the experience field (on a 1-10 scale).
The reproducibility score of their analysis is at least 75 (out of 100)
and their average peer evaluator rating is at least 7.5 (out of 10). The
boxes span the the first to the third quartile with the median as the in-
terior horizontal line. The whiskers span 95% of the the observations,
starting from the 2.5% quantile to the 97.5% quantile.
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Figure 4: Dispersion research team estimates across all stages

This plot illustrates the dispersion in the estimates reported by the
research teams for all six hypotheses. The boxes span the the first to
the third quartile with the median as the interior horizontal line. The
whiskers span 95% of the the observations, starting from the 2.5%
quantile to the 97.5% quantile.
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Figure 5: Dispersion research team beliefs

This plot illustrates the dispersion in beliefs across research teams for
all six hypotheses. The teams were asked to report their belief on how
large the standard deviation would be across all teams of the reported
estimates and t-values. The whiskers span 95% of the reported beliefs,
starting from the 2.5% quantile to the 97.5% quantile. The red dots
represent the “truth,” the observed standard deviation across research
teams. This figure is the only one that uses the unwinsorized sample
as beliefs were solicited for the raw data.
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